A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?
For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intellige...
Saved in:
Published in | PeerJ. Computer science Vol. 8; p. e958 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
25.04.2022
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed. |
---|---|
AbstractList | For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed. For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed. |
ArticleNumber | e958 |
Audience | Academic |
Author | Rasmussen, Nicholas Mamun, Muntasir Aryal, Sunil Santosh, KC |
Author_xml | – sequence: 1 givenname: KC orcidid: 0000-0003-4176-0236 surname: Santosh fullname: Santosh, KC organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States – sequence: 2 givenname: Nicholas orcidid: 0000-0001-6196-9956 surname: Rasmussen fullname: Rasmussen, Nicholas organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States – sequence: 3 givenname: Muntasir orcidid: 0000-0001-9802-2627 surname: Mamun fullname: Mamun, Muntasir organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States – sequence: 4 givenname: Sunil surname: Aryal fullname: Aryal, Sunil organization: School of Information Technology, Deakin University, Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35634112$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttv0zAUhyM0xMbYG88oEi8gkWLHcR3vAVSVW6VJk7i9Wqe-ZK4Su9hJof89zrrBMi15SHT8nc_y8e9pduS801n2HKMZY5i93WodNoWMM07rR9lJSdi8oJyXR3f-j7OzGDcIIUxxeviT7JjQOakwLk-ybpHHfex1B72VedA7q3_n3uXSD81VHv3gVA4O2n20MTc-5Eu_s6rAPFcWGufHMiQmyqC1s645z1Ol208Ey8ufqw-p5_2z7LGBNuqzm-9p9uPTx-_LL8XF5efVcnFRSMp4X2iCa4IrhasKy_W8xBgYRTVZG6y4UZiCIVApw7hBTBGJkdRM0hqAlMRUQE6z1cGrPGzENtgOwl54sOK64EMjIKQDt1qUSAKtpKnBVFUJOO1BK6XWiEuqtKHJ9e7g2g7rTiupXR-gnUinK85eicbvBMekRiVKglc3guB_DTr2orNR6rYFp_0QRTlnmPN5jVlCX95DN34IafwjRat0fzXh_6kG0gGsMz7tK0epWDBUVwwRMrpmD1DpVbqzMsXI2FSfNLyeNCSm13_6BoYYxerb1yn74u5Q_k3jNlgJKA-ADD7GoI2Qtk8Z8-OMbCswEmOAxXWAhYwiBTg1vbnXdOt9EP8LY-XxTg |
CitedBy_id | crossref_primary_10_1007_s42979_022_01522_1 crossref_primary_10_1016_j_jksuci_2024_102261 crossref_primary_10_3389_fmed_2022_1076184 crossref_primary_10_1080_02770903_2024_2344156 crossref_primary_10_3389_frai_2023_1100112 crossref_primary_10_3390_diagnostics14182037 crossref_primary_10_1007_s11042_024_20392_8 crossref_primary_10_3390_axioms13050335 crossref_primary_10_1007_s00246_024_03561_2 crossref_primary_10_1016_j_engappai_2025_110558 crossref_primary_10_1038_d41586_024_00869_0 crossref_primary_10_1007_s42979_024_02617_7 |
Cites_doi | 10.1109/CCCI49893.2020.9256700 10.23919/FRUCT52173.2021.9435454 10.1109/EMBC44109.2020.9175345 10.1016/j.compbiomed.2021.104944 10.1136/bmjresp-2018-000375 10.1056/NEJMoa2002032 10.1109/ICCMC51019.2021.9418358 10.1109/ICICCS51141.2021.9432324 10.1089/tmj.2020.0114 10.1109/EMBC.2019.8856412 10.5152/electrica.2021.21005 10.1007/s00408-007-9039-5 10.1016/j.imu.2020.100319 10.1136/bmjinnov-2021-000668 10.1109/CBMS52027.2021.00069 10.1002/jmv.26306 10.1016/j.imu.2020.100378 10.1109/JSEN.2020.3028494 10.1007/s42979-020-00422-6 10.1121/10.0003434 10.1145/3412841.3441943 10.1186/s12879-020-05647-7 10.1109/ICASSP39728.2021.9414576 10.1016/B978-0-12-818130-0.00001-5 10.1007/s00521-021-06346-3 10.1109/SoutheastCon45413.2021.9401826 10.1016/j.patcog.2021.107999 10.1016/S2213-2600(20)30079-5 10.1145/3394486.3412865 10.1109/JTEHM.2021.3058841 10.1002/jmv.26196 10.1145/3382507.3418855 10.1109/OJEMB.2020.2998051 10.1038/s41598-021-95042-2 10.1371/journal.pone.0239590 10.21437/Interspeech.2020-2223 10.1007/s10916-020-01681-9 10.1016/j.bspc.2021.102960 10.1109/OJEMB.2020.3026468 10.1109/CCCI49893.2020.9256562 10.1142/S0218001421570081 10.1016/j.jinf.2020.09.033 10.1007/s11739-020-02379-z 10.1136/bmj.b2700 10.1109/TSC.2021.3061402 10.1007/s00408-007-9036-8 10.1016/j.aej.2021.06.024 10.1109/BHI50953.2021.9508482 10.1016/j.compbiomed.2021.104572 10.1016/S0140-6736(20)32589-7 10.1016/j.cmi.2020.03.032 10.1371/journal.pone.0244272 10.1109/OJEMB.2020.3042051 10.21437/Interspeech.2020-2105 10.1109/EMBC44109.2020.9175986 10.1109/OJEMB.2020.3026928 10.1109/GUCON48875.2020.9231094 10.1186/s12879-021-05764-x |
ContentType | Journal Article |
Copyright | 2022 Santosh et al. COPYRIGHT 2022 PeerJ. Ltd. 2022 Santosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Santosh et al. 2022 Santosh et al. |
Copyright_xml | – notice: 2022 Santosh et al. – notice: COPYRIGHT 2022 PeerJ. Ltd. – notice: 2022 Santosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Santosh et al. 2022 Santosh et al. |
DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.958 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_20ca54cf8af442a1bf154ddb09c5def5 PMC9138020 A708470337 35634112 10_7717_peerj_cs_958 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The University of South Dakota |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM ARCSS NPM PQGLB PMFND 3V. 7XB 8AL 8FK COVID JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-e318314d1441cb6211a75083bf1d9fd15af3a4df79f07d3c10ce7c58aa323f4a3 |
IEDL.DBID | BENPR |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:30:23 EDT 2025 Thu Aug 21 14:05:46 EDT 2025 Fri Jul 11 11:14:40 EDT 2025 Fri Jul 25 02:41:01 EDT 2025 Tue Jun 17 20:53:22 EDT 2025 Tue Jun 10 20:21:33 EDT 2025 Fri Jun 27 03:48:29 EDT 2025 Mon Jul 21 06:03:23 EDT 2025 Tue Jul 01 02:28:49 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AI Diagnosis Covid-19 Public healthcare Cough sound Machine learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2022 Santosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-e318314d1441cb6211a75083bf1d9fd15af3a4df79f07d3c10ce7c58aa323f4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6196-9956 0000-0003-4176-0236 0000-0001-9802-2627 |
OpenAccessLink | https://www.proquest.com/docview/2654511839?pq-origsite=%requestingapplication% |
PMID | 35634112 |
PQID | 2654511839 |
PQPubID | 2045934 |
PageCount | e958 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20ca54cf8af442a1bf154ddb09c5def5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9138020 proquest_miscellaneous_2671996817 proquest_journals_2654511839 gale_infotracmisc_A708470337 gale_infotracacademiconefile_A708470337 gale_incontextgauss_ISR_A708470337 pubmed_primary_35634112 crossref_citationtrail_10_7717_peerj_cs_958 crossref_primary_10_7717_peerj_cs_958 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-25 |
PublicationDateYYYYMMDD | 2022-04-25 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2022 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Mohammed (10.7717/peerj-cs.958/ref-37) 2021; 11 Anupam (10.7717/peerj-cs.958/ref-4) 2021 Vaughan (10.7717/peerj-cs.958/ref-54) 2021; 21 Han (10.7717/peerj-cs.958/ref-23) 2020 Yang (10.7717/peerj-cs.958/ref-59) 2020; 8 Feng (10.7717/peerj-cs.958/ref-16) 2021; 2021 Guan (10.7717/peerj-cs.958/ref-21) 2020; 382 Rudraraju (10.7717/peerj-cs.958/ref-50) 2020; 19 Nessiem (10.7717/peerj-cs.958/ref-45) 2021 Wei (10.7717/peerj-cs.958/ref-57) 2020 Han (10.7717/peerj-cs.958/ref-22) 2021 Melek (10.7717/peerj-cs.958/ref-35) 2021; 33 Mukherjee (10.7717/peerj-cs.958/ref-41) 2021; 45 Nemati (10.7717/peerj-cs.958/ref-43) 2020 Mouawad (10.7717/peerj-cs.958/ref-39) 2021; 2 Pinkas (10.7717/peerj-cs.958/ref-48) 2020; 1 Miranda (10.7717/peerj-cs.958/ref-36) 2019 Topol (10.7717/peerj-cs.958/ref-53) 2020; 396 Laguarta (10.7717/peerj-cs.958/ref-28) 2020; 1 Chen (10.7717/peerj-cs.958/ref-9) 2021; 2 Pal (10.7717/peerj-cs.958/ref-47) 2021 Khriji (10.7717/peerj-cs.958/ref-27) 2021 Grant (10.7717/peerj-cs.958/ref-20) 2021 Quatieri (10.7717/peerj-cs.958/ref-49) 2020; 1 Matangila (10.7717/peerj-cs.958/ref-33) 2020; 15 Gokcen (10.7717/peerj-cs.958/ref-19) 2021; 21 Wang (10.7717/peerj-cs.958/ref-56) 2020; 26 Fontana (10.7717/peerj-cs.958/ref-17) 2007; 186 Liberati (10.7717/peerj-cs.958/ref-31) 2009; 339 Weng (10.7717/peerj-cs.958/ref-58) 2020; 93 Lapostolle (10.7717/peerj-cs.958/ref-29) 2020; 15 Hassan (10.7717/peerj-cs.958/ref-24) 2020 Shimon (10.7717/peerj-cs.958/ref-52) 2021; 149 Imran (10.7717/peerj-cs.958/ref-25) 2020; 20 Dash (10.7717/peerj-cs.958/ref-12) 2021; 117 Despotovic (10.7717/peerj-cs.958/ref-13) 2021; 138 Nakamori (10.7717/peerj-cs.958/ref-42) 2020; 15 Pahar (10.7717/peerj-cs.958/ref-46) 2021; 135 McDonagh (10.7717/peerj-cs.958/ref-34) 2013 Alsabek (10.7717/peerj-cs.958/ref-2) 2020 Andreu-Perez (10.7717/peerj-cs.958/ref-3) 2021; 2021 Bansal (10.7717/peerj-cs.958/ref-5) 2020 Brendish (10.7717/peerj-cs.958/ref-6) 2020; 81 Coppock (10.7717/peerj-cs.958/ref-11) 2021; 7 Donnelly (10.7717/peerj-cs.958/ref-14) 2019; 6 Chuma (10.7717/peerj-cs.958/ref-10) 2021; 21 Mukherjee (10.7717/peerj-cs.958/ref-40) 2021; 35 Cattelan (10.7717/peerj-cs.958/ref-8) 2020; 20 Santosh (10.7717/peerj-cs.958/ref-51) 2019; 2019 Brown (10.7717/peerj-cs.958/ref-7) 2020 Vrindavanam (10.7717/peerj-cs.958/ref-55) 2021 Nemati (10.7717/peerj-cs.958/ref-44) 2020 Jayachitra (10.7717/peerj-cs.958/ref-26) 2021; 70 Faezipour (10.7717/peerj-cs.958/ref-15) 2020; 26 Morice (10.7717/peerj-cs.958/ref-38) 2007; 186 Ahmed (10.7717/peerj-cs.958/ref-1) 2020 Gayam (10.7717/peerj-cs.958/ref-18) 2020; 93 Lella (10.7717/peerj-cs.958/ref-30) 2021; 61 Lonini (10.7717/peerj-cs.958/ref-32) 2021; 9 |
References_xml | – year: 2020 ident: 10.7717/peerj-cs.958/ref-2 article-title: Studying the similarity of COVID-19 sounds based on correlation analysis of MFCC doi: 10.1109/CCCI49893.2020.9256700 – year: 2021 ident: 10.7717/peerj-cs.958/ref-27 article-title: COVID-19 recognition based on patient’s coughing and breathing patterns analysis: deep learning approach doi: 10.23919/FRUCT52173.2021.9435454 – volume-title: Methods Guide for Effectiveness and Comparative Effectiveness Reviews year: 2013 ident: 10.7717/peerj-cs.958/ref-34 article-title: Avoiding bias in selecting studies – year: 2020 ident: 10.7717/peerj-cs.958/ref-44 article-title: A comprehensive approach for classification of the cough type* doi: 10.1109/EMBC44109.2020.9175345 – volume: 138 start-page: 104944 issue: 18 year: 2021 ident: 10.7717/peerj-cs.958/ref-13 article-title: Detection of COVID-19 from voice, cough and breathing patterns: dataset and preliminary results publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104944 – volume: 6 start-page: e000375 issue: 1 year: 2019 ident: 10.7717/peerj-cs.958/ref-14 article-title: ‘Dry’ and ‘Wet’ cough: how reliable is parental reporting? publication-title: BMJ Open Respiratory Research doi: 10.1136/bmjresp-2018-000375 – volume: 382 start-page: 1708 issue: 18 year: 2020 ident: 10.7717/peerj-cs.958/ref-21 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa2002032 – year: 2021 ident: 10.7717/peerj-cs.958/ref-55 article-title: Machine learning based COVID-19 cough classification models-a comparative analysis doi: 10.1109/ICCMC51019.2021.9418358 – year: 2021 ident: 10.7717/peerj-cs.958/ref-4 article-title: Preliminary diagnosis of COVID-19 based on cough sounds using machine learning algorithms doi: 10.1109/ICICCS51141.2021.9432324 – volume: 26 start-page: 1202 issue: 10 year: 2020 ident: 10.7717/peerj-cs.958/ref-15 article-title: Smartphone-based self-testing of COVID-19 using breathing sounds publication-title: Telemedicine and e-Health doi: 10.1089/tmj.2020.0114 – year: 2019 ident: 10.7717/peerj-cs.958/ref-36 article-title: A comparative study of features for acoustic cough detection using deep architectures* doi: 10.1109/EMBC.2019.8856412 – volume: 21 start-page: 203 issue: 2 year: 2021 ident: 10.7717/peerj-cs.958/ref-19 article-title: Artificial intelligence–based COVID-19 detection using cough records publication-title: Electrica doi: 10.5152/electrica.2021.21005 – volume: 186 start-page: 7 issue: S1 year: 2007 ident: 10.7717/peerj-cs.958/ref-38 article-title: Rebuttal: cough is an expiratory sound publication-title: Lung doi: 10.1007/s00408-007-9039-5 – volume: 19 start-page: 100319 issue: 6 year: 2020 ident: 10.7717/peerj-cs.958/ref-50 article-title: Cough sound analysis and objective correlation with spirometry and clinical diagnosis publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100319 – volume: 7 start-page: 356 issue: 2 year: 2021 ident: 10.7717/peerj-cs.958/ref-11 article-title: End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study publication-title: BMJ Innovations doi: 10.1136/bmjinnov-2021-000668 – year: 2021 ident: 10.7717/peerj-cs.958/ref-45 article-title: Detecting COVID-19 from breathing and coughing sounds using deep neural networks doi: 10.1109/CBMS52027.2021.00069 – volume: 93 start-page: 812 issue: 2 year: 2020 ident: 10.7717/peerj-cs.958/ref-18 article-title: Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York publication-title: Journal of Medical Virology doi: 10.1002/jmv.26306 – volume: 20 start-page: 100378 issue: 16 year: 2020 ident: 10.7717/peerj-cs.958/ref-25 article-title: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100378 – volume: 21 start-page: 2921 issue: 3 year: 2021 ident: 10.7717/peerj-cs.958/ref-10 article-title: A movement detection system using continuous-wave doppler radar sensor and convolutional neural network to detect cough and other gestures publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.3028494 – volume: 2 start-page: 2448 issue: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-39 article-title: Robust detection of COVID-19 in cough sounds publication-title: SN Computer Science doi: 10.1007/s42979-020-00422-6 – volume: 149 start-page: 1120 issue: 2 year: 2021 ident: 10.7717/peerj-cs.958/ref-52 article-title: Artificial intelligence enabled preliminary diagnosis for COVID-19 from voice cues and questionnaires publication-title: The Journal of the Acoustical Society of America doi: 10.1121/10.0003434 – year: 2021 ident: 10.7717/peerj-cs.958/ref-47 article-title: Pay attention to the cough doi: 10.1145/3412841.3441943 – volume: 20 start-page: 1110 issue: 1 year: 2020 ident: 10.7717/peerj-cs.958/ref-8 article-title: Clinical characteristics and laboratory biomarkers changes in COVID-19 patients requiring or not intensive or sub-intensive care: a comparative study publication-title: BMC Infectious Diseases doi: 10.1186/s12879-020-05647-7 – year: 2021 ident: 10.7717/peerj-cs.958/ref-22 article-title: Exploring automatic COVID-19 diagnosis via voice and symptoms from crowdsourced data doi: 10.1109/ICASSP39728.2021.9414576 – volume: 2019 start-page: 1 year: 2019 ident: 10.7717/peerj-cs.958/ref-51 article-title: Speech processing in healthcare: can we integrate? publication-title: Intelligent Speech Signal Processing doi: 10.1016/B978-0-12-818130-0.00001-5 – volume: 33 start-page: 17621 issue: 24 year: 2021 ident: 10.7717/peerj-cs.958/ref-35 article-title: Diagnosis of COVID-19 and non-COVID-19 patients by classifying only a single cough sound publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06346-3 – volume: 2021 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-16 article-title: Deep-learning based approach to identify COVID-19 publication-title: SoutheastCon doi: 10.1109/SoutheastCon45413.2021.9401826 – volume: 117 start-page: 107999 issue: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-12 article-title: Detection of COVID-19 from speech signal using bio-inspired based cepstral features publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.107999 – volume: 8 start-page: 475 issue: 5 year: 2020 ident: 10.7717/peerj-cs.958/ref-59 article-title: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study publication-title: The Lancet Respiratory Medicine doi: 10.1016/S2213-2600(20)30079-5 – year: 2020 ident: 10.7717/peerj-cs.958/ref-7 article-title: Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data doi: 10.1145/3394486.3412865 – volume: 9 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-32 article-title: Rapid screening of physiological changes associated with COVID-19 using soft-wearables and structured activities: a pilot study publication-title: IEEE Journal of Translational Engineering in Health and Medicine doi: 10.1109/JTEHM.2021.3058841 – volume: 93 start-page: 115 issue: 1 year: 2020 ident: 10.7717/peerj-cs.958/ref-58 article-title: Characteristics and clinical outcomes of covid-19 in hispanic/latino patients in a community setting: a retrospective cohort study publication-title: Journal of Medical Virology doi: 10.1002/jmv.26196 – year: 2020 ident: 10.7717/peerj-cs.958/ref-1 article-title: Automated time synchronization of cough events from multimodal sensors in mobile devices doi: 10.1145/3382507.3418855 – volume: 1 start-page: 203 year: 2020 ident: 10.7717/peerj-cs.958/ref-49 article-title: A framework for biomarkers of COVID-19 based on coordination of speech-production subsystems publication-title: IEEE Open Journal of Engineering in Medicine and Biology doi: 10.1109/OJEMB.2020.2998051 – volume: 11 start-page: 1570 issue: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-37 article-title: An ensemble learning approach to digital corona virus preliminary screening from cough sounds publication-title: Scientific Reports doi: 10.1038/s41598-021-95042-2 – volume: 15 start-page: e0239590 issue: 9 year: 2020 ident: 10.7717/peerj-cs.958/ref-42 article-title: Simplified cough test can predict the risk for pneumonia in patients with acute stroke publication-title: PLOS ONE doi: 10.1371/journal.pone.0239590 – year: 2020 ident: 10.7717/peerj-cs.958/ref-23 article-title: An early study on intelligent analysis of speech under COVID-19: severity, sleep quality, fatigue, and anxiety doi: 10.21437/Interspeech.2020-2223 – volume: 45 start-page: 19 issue: 2 year: 2021 ident: 10.7717/peerj-cs.958/ref-41 article-title: Automatic lung health screening using respiratory sounds publication-title: Journal of Medical Systems doi: 10.1007/s10916-020-01681-9 – volume: 70 start-page: 102960 issue: 4 year: 2021 ident: 10.7717/peerj-cs.958/ref-26 article-title: A cognitive IoT-based framework for effective diagnosis of COVID-19 using multimodal data publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102960 – volume: 1 start-page: 268 year: 2020 ident: 10.7717/peerj-cs.958/ref-48 article-title: SARS-CoV-2 detection from voice publication-title: IEEE Open Journal of Engineering in Medicine and Biology doi: 10.1109/OJEMB.2020.3026468 – year: 2020 ident: 10.7717/peerj-cs.958/ref-24 article-title: COVID-19 detection system using recurrent neural networks doi: 10.1109/CCCI49893.2020.9256562 – volume: 35 start-page: 2157008 issue: 14 year: 2021 ident: 10.7717/peerj-cs.958/ref-40 article-title: Lung health analysis: adventitious respiratory sound classification using filterbank energies publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001421570081 – volume: 81 start-page: 937 issue: 6 year: 2020 ident: 10.7717/peerj-cs.958/ref-6 article-title: Clinical characteristics, symptoms and outcomes of 1054 adults presenting to hospital with suspected COVID-19: a comparison of patients with and without SARS-CoV-2 infection publication-title: Journal of Infection doi: 10.1016/j.jinf.2020.09.033 – volume: 15 start-page: 813 issue: 5 year: 2020 ident: 10.7717/peerj-cs.958/ref-29 article-title: Clinical features of 1487 COVID-19 patients with outpatient management in the greater paris: the COVID-call study publication-title: Internal and Emergency Medicine doi: 10.1007/s11739-020-02379-z – volume: 339 start-page: b2700 year: 2009 ident: 10.7717/peerj-cs.958/ref-31 article-title: The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration publication-title: BMJ doi: 10.1136/bmj.b2700 – volume: 2021 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-3 article-title: A generic deep learning based cough analysis system from clinically validated samples for point-of-need COVID-19 test and severity levels publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2021.3061402 – volume: 186 start-page: 3 issue: S1 year: 2007 ident: 10.7717/peerj-cs.958/ref-17 article-title: Before we get started: what is a cough? publication-title: Lung doi: 10.1007/s00408-007-9036-8 – volume: 61 start-page: 1319 issue: 2 year: 2021 ident: 10.7717/peerj-cs.958/ref-30 article-title: Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: cough, voice, and breath publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.06.024 – year: 2021 ident: 10.7717/peerj-cs.958/ref-20 article-title: Rapid and scalable COVID-19 screening using speech, breath, and cough recordings doi: 10.1109/BHI50953.2021.9508482 – volume: 135 start-page: 104572 year: 2021 ident: 10.7717/peerj-cs.958/ref-46 article-title: COVID-19 cough classification using machine learning and global smartphone recordings publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104572 – volume: 396 start-page: 1874 issue: 10266 year: 2020 ident: 10.7717/peerj-cs.958/ref-53 article-title: Is my cough COVID-19? publication-title: The Lancet doi: 10.1016/S0140-6736(20)32589-7 – volume: 26 start-page: 1063 issue: 8 year: 2020 ident: 10.7717/peerj-cs.958/ref-56 article-title: Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital publication-title: Clinical Microbiology and Infection doi: 10.1016/j.cmi.2020.03.032 – volume: 15 start-page: e0244272 issue: 12 year: 2020 ident: 10.7717/peerj-cs.958/ref-33 article-title: Clinical characteristics of COVID-19 patients hospitalized at clinique ngaliema, a public hospital in kinshasa, in the democratic republic of congo: a retrospective cohort study publication-title: PLOS ONE doi: 10.1371/journal.pone.0244272 – volume: 2 start-page: 11 year: 2021 ident: 10.7717/peerj-cs.958/ref-9 article-title: A pervasive respiratory monitoring sensor for COVID-19 pandemic publication-title: IEEE Open Journal of Engineering in Medicine and Biology doi: 10.1109/OJEMB.2020.3042051 – year: 2020 ident: 10.7717/peerj-cs.958/ref-57 article-title: A real-time robot-based auxiliary system for risk evaluation of COVID-19 infection doi: 10.21437/Interspeech.2020-2105 – year: 2020 ident: 10.7717/peerj-cs.958/ref-43 article-title: Estimation of the lung function using acoustic features of the voluntary cough* doi: 10.1109/EMBC44109.2020.9175986 – volume: 1 start-page: 275 year: 2020 ident: 10.7717/peerj-cs.958/ref-28 article-title: COVID-19 artificial intelligence diagnosis using only cough recordings publication-title: IEEE Open Journal of Engineering in Medicine and Biology doi: 10.1109/OJEMB.2020.3026928 – year: 2020 ident: 10.7717/peerj-cs.958/ref-5 article-title: Cough classification for COVID-19 based on audio MFCC features using convolutional neural networks doi: 10.1109/GUCON48875.2020.9231094 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 10.7717/peerj-cs.958/ref-54 article-title: Relationship of socio-demographics, comorbidities, symptoms and healthcare access with early COVID-19 presentation and disease severity publication-title: BMC Infectious Diseases doi: 10.1186/s12879-021-05764-x |
SSID | ssj0001511119 |
Score | 2.3323953 |
Snippet | For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e958 |
SubjectTerms | Acoustics Algorithms Analysis Artificial Intelligence Bioinformatics Coronaviruses Cough Cough sound Covid-19 COVID-19 vaccines Data mining Data Mining and Machine Learning Deep learning Diagnosis Disease Health aspects Human subjects Illnesses Infections Machine learning Pandemics Pneumonia Public healthcare Screening Sociodemographics Sound State-of-the-art reviews Systematic review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4P1Ja5CIQBxSIYzt2ekHLQtUiARJQ1JvlJw-12arZPfTfM5Nkt4kQ4sLVnkT2zNgzY818Q8hTLiQ-b1S5DiLkIqWQayd07qWTwXFwUSsscP7wsTo8Fu9P5Mmo1RfmhPXwwD3jIDj3VgqftE1ClJa5BEY_BFfUXoaYOvRSsHmjYKqvD8aroO4z3RWELK_OY7z4lfv2ZY3d3Uc2qIPq__NCHlmkabbkyPwc3CI3Br-Rzvr13ibXYnOH3Fz3ZKDDEb1Lzmb0CpyZ9oUpdNFQj914aItNlKgdgEgoOKx0jpV4Oatp6JPuYNgCDdwmEOGCXdunMHJ2OfnB_NO3o7fwzet75Pjg3df5YT60VADmq3qZ44snZyJgGOVdBdGfVQgID1wNdQpM2sStCEnVqVCBe1b4qLzU1vKSJ2H5fbLVLJr4kFDPWLIBAswi1sJHrZ1z4C_o6LnjhXYZebFmsvED3ji2vTg1EHegSEwnEuNbAyLJyLMN9XmPs_EXujcorw0NomN3A6AzZtAZ8y-dycgTlLZB_IsGE2y-21XbmqMvn81MFWCvC85VRp4PRGkB6_Z2qFeA3SNk1oRyZ0IJB9RPp9dKZYYLojVlJREZDtzTjOxtpvFLTHpr4mKFNApzxDWDXzzodXCzby4r8D9YmRE10c4JY6Yzzc8fHXx4zbiGIGH7f3DyEbleYj1IIfJS7pCt5cUq7oKXtnSPuwP5GyKxPrk priority: 102 providerName: Directory of Open Access Journals |
Title | A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35634112 https://www.proquest.com/docview/2654511839 https://www.proquest.com/docview/2671996817 https://pubmed.ncbi.nlm.nih.gov/PMC9138020 https://doaj.org/article/20ca54cf8af442a1bf154ddb09c5def5 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-HC-xEoK4NAHFBoEtuJw6XaLi0tEgUVinqz_IgLiCbLZvfAv2cm8T4iBFd7EsUee16Z-YaQ54wLDG_ksXTcxdx7F0vDZWyFEc4wMFFzLHD-cJofn_P3F-IiBNzakFa5lImdoHaNxRj5XpYLhNICfb4__RVj1yj8uxpaaGyRHRDBEpyvnYPD009n6yiLQJFQ9hnvBbgue9Oqmv2Ibfu6xC7vG7qog-z_WzBvaKZh1uSGGjq6RW4E-5GOe4bfJteq-g65uezNQMNVvUuuxnQN0kz7AhXa1NRiVx7aYjMlqgMgCQXDlU6wIi9OS-r65DsY1kADUgU8XdBvbyiMXP0evGDy8evJW3hm_x45Pzr8MjmOQ2sFYEJRzmOMfLKUO3SnrMnBC9QFAsMbn7rSu1RozzR3vih9Ujhm08RWhRVSa5YxzzW7T7brpq4eEmrT1GsHjmZSldxWUhpjwG6QlWWGJdJE5NVyk5UNuOPY_uKnAv8DWaI6lijbKmBJRF6sqKc93sY_6A6QXysaRMnuBprZpQqXTmWJ1YJbL7XnPNMprE5w50xSWuEqLyLyDLmtEAejxkSbS71oW3Xy-UyNiwT0dsJYEZGXgcg38N1Wh7oFWD1CZw0odweUcFHtcHp5qFQQFK1aH-uIPF1N45OY_FZXzQJpCswVlym84kF_BlfrZiIHOyTNIlIMTudgY4Yz9fdvHYx4mTIJzsKj_3_WY3I9w4qPhMeZ2CXb89miegJ22NyMyJY8ejcKV27URTP-ALZQOAE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CrlABf2JVDAICoOKDSJ7UmChKphyjBDFyTaot6Ml7iAaDJMZoT6U3wj72WZmQjBrVf7xYn9ducthDxnXOD1Rs9PLLc-d876ieaJb4QWVjMwUXuY4Lx_0Bsd8w8n4mSN_G5zYTCsspWJlaC2hcE78q2oJ7CUFujz7clPH7tG4d_VtoVGTRa72fkvcNnKN-MdwO9mFA3fHQ1GftNVAN4fpzMfL_1YyC16Ekb3wAFSMdZE1y60qbOhUI4pbl2cuiC2zISByWIjEqVYxBxXDNa9RC5zxlLkqGT4fnmnI1AApXV8fQyO0tYky6bffVO-SrGn_IrmqxoE_K0GVvRgN0ZzRekNb5BrjbVK-zV53SRrWX6LXG87QdBGMNwmZ326LAlN63QYWuTUYA8gWmLrJqqa8icUzGQ6wPw_P0yprUP9YFgBDMgw8KtBm76mMHJ23llg8PHzeAee2b5Dji_kyO-S9bzIs_uEmjB0yoJbG2QpN1mSaK3BSkkywzQLEu2Rl-0hS9NUOcdmGz8keDuIElmhRJpSAko8srmAntTVPf4B9xbxtYDBmtzVQDE9lQ2LyygwSnDjEuU4j1QIuxPcWh2kRtjMCY88Q2xLrLqRY1jPqZqXpRwffpL9OAArIWAs9siLBsgV8N1GNVkSsHss1NWB3OhAglgw3emWqGQjlkq5ZCKPPF1M45MYapdnxRxhYoxMT0JY4l5Ng4t9M9EDqyeMPBJ3qLNzMN2Z_NvXqmh5GrIEXJMH__-sJ-TK6Gh_T-6ND3YfkqsR5poE3I_EBlmfTefZI7AAZ_pxxXaUfLloPv8DIEVxpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhHjhfgkMMIiJBxSaxHYuSGjq2lUrgzJtDO3NOHY8QCwpTSu0X-PrOKdJ2kYI3vZqn1i2z905F0JeMC7weSN0Y8ONy601bpzy2NUiFSZlYKKGmOD8YRzun_B3p-J0g_xucmEwrLKRiQtBbQqNb-TdIBRYSgv0edfWYRGHg-HO5KeLHaTwT2vTTqMikYPs4he4b-Xb0QBwvR0Ew71P_X237jAAe4mSmYsPgMznBr0KnYbgDKkI66On1jeJNb5QlilubJRYLzJM-57OIi1ipVjALFcM1r1CNiPwirwO2dzdGx8erV54BIqjpIq2j8Bt6k6ybPrd1eXrBDvMr-nBRbuAv5XCmlZsR2yuqcDhTXK9tl1pryK2W2Qjy2-TG01fCFqLiTvkvEdXBaJplRxDi5xq7AhES2zkRFVdDIWC0Uz7mA3o-gk1VeAfDCuAAYkGXjbo1jcURs4vWgv0P34eDeCbnbvk5FIu_R7p5EWePSBU-75VBpxcL0u4zuI4TVOwWeJMs5R5ceqQV80lS13XPMfWGz8k-D6IErlAidSlBJQ4ZHsJPalqffwDbhfxtYTBCt2LgWJ6JmuGl4GnleDaxspyHigfTie4MamXaGEyKxzyHLEtsQZHjtR8puZlKUfHR7IXeWAzeIxFDnlZA9kC9q1VnTMBp8eyXS3IrRYkCAndnm6IStZCqpQrlnLIs-U0fomBd3lWzBEmwjj12Icl7lc0uDw3EyHYQH7gkKhFna2Lac_k374uSpgnPovBUXn4_209JVeBx-X70fjgEbkWYOKJx91AbJHObDrPHoM5OEuf1HxHyZfLZvU_USp3OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+on+cough+sound+analysis+for+Covid-19+diagnosis+and+screening%3A+is+my+cough+sound+COVID-19%3F&rft.jtitle=PeerJ.+Computer+science&rft.au=Santosh%2C+KC&rft.au=Rasmussen%2C+Nicholas&rft.au=Mamun%2C+Muntasir&rft.au=Aryal%2C+Sunil&rft.date=2022-04-25&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e958&rft_id=info:doi/10.7717%2Fpeerj-cs.958&rft.externalDocID=A708470337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |