A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?

For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intellige...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 8; p. e958
Main Authors Santosh, KC, Rasmussen, Nicholas, Mamun, Muntasir, Aryal, Sunil
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 25.04.2022
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.
AbstractList For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.
For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as one of the primary symptoms in severe and non-severe infections alike. For mass screening in resource-constrained regions, artificial intelligence (AI)-guided tools have progressively contributed to detect/screen COVID-19 infections using cough sounds. Therefore, in this article, we review state-of-the-art works in both years 2020 and 2021 by considering AI-guided tools to analyze cough sound for COVID-19 screening primarily based on machine learning algorithms. In our study, we used PubMed central repository and Web of Science with key words: (Cough OR Cough Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we screened for appropriate dataset (size and source), algorithmic factors (both shallow learning and deep learning models) and corresponding performance scores. Further, in order not to miss up-to-date experimental research-based articles, we also included articles outside of PubMed and Web of Science, but pre-print articles were strictly avoided as they are not peer-reviewed.
ArticleNumber e958
Audience Academic
Author Rasmussen, Nicholas
Mamun, Muntasir
Aryal, Sunil
Santosh, KC
Author_xml – sequence: 1
  givenname: KC
  orcidid: 0000-0003-4176-0236
  surname: Santosh
  fullname: Santosh, KC
  organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0001-6196-9956
  surname: Rasmussen
  fullname: Rasmussen, Nicholas
  organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States
– sequence: 3
  givenname: Muntasir
  orcidid: 0000-0001-9802-2627
  surname: Mamun
  fullname: Mamun, Muntasir
  organization: 2AI: Applied Artificial Intelligence Lab, Computer Science, University of South Dakota, Vermiillion, South Dakota, United States
– sequence: 4
  givenname: Sunil
  surname: Aryal
  fullname: Aryal, Sunil
  organization: School of Information Technology, Deakin University, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35634112$$D View this record in MEDLINE/PubMed
BookMark eNptkttv0zAUhyM0xMbYG88oEi8gkWLHcR3vAVSVW6VJk7i9Wqe-ZK4Su9hJof89zrrBMi15SHT8nc_y8e9pduS801n2HKMZY5i93WodNoWMM07rR9lJSdi8oJyXR3f-j7OzGDcIIUxxeviT7JjQOakwLk-ybpHHfex1B72VedA7q3_n3uXSD81VHv3gVA4O2n20MTc-5Eu_s6rAPFcWGufHMiQmyqC1s645z1Ol208Ey8ufqw-p5_2z7LGBNuqzm-9p9uPTx-_LL8XF5efVcnFRSMp4X2iCa4IrhasKy_W8xBgYRTVZG6y4UZiCIVApw7hBTBGJkdRM0hqAlMRUQE6z1cGrPGzENtgOwl54sOK64EMjIKQDt1qUSAKtpKnBVFUJOO1BK6XWiEuqtKHJ9e7g2g7rTiupXR-gnUinK85eicbvBMekRiVKglc3guB_DTr2orNR6rYFp_0QRTlnmPN5jVlCX95DN34IafwjRat0fzXh_6kG0gGsMz7tK0epWDBUVwwRMrpmD1DpVbqzMsXI2FSfNLyeNCSm13_6BoYYxerb1yn74u5Q_k3jNlgJKA-ADD7GoI2Qtk8Z8-OMbCswEmOAxXWAhYwiBTg1vbnXdOt9EP8LY-XxTg
CitedBy_id crossref_primary_10_1007_s42979_022_01522_1
crossref_primary_10_1016_j_jksuci_2024_102261
crossref_primary_10_3389_fmed_2022_1076184
crossref_primary_10_1080_02770903_2024_2344156
crossref_primary_10_3389_frai_2023_1100112
crossref_primary_10_3390_diagnostics14182037
crossref_primary_10_1007_s11042_024_20392_8
crossref_primary_10_3390_axioms13050335
crossref_primary_10_1007_s00246_024_03561_2
crossref_primary_10_1016_j_engappai_2025_110558
crossref_primary_10_1038_d41586_024_00869_0
crossref_primary_10_1007_s42979_024_02617_7
Cites_doi 10.1109/CCCI49893.2020.9256700
10.23919/FRUCT52173.2021.9435454
10.1109/EMBC44109.2020.9175345
10.1016/j.compbiomed.2021.104944
10.1136/bmjresp-2018-000375
10.1056/NEJMoa2002032
10.1109/ICCMC51019.2021.9418358
10.1109/ICICCS51141.2021.9432324
10.1089/tmj.2020.0114
10.1109/EMBC.2019.8856412
10.5152/electrica.2021.21005
10.1007/s00408-007-9039-5
10.1016/j.imu.2020.100319
10.1136/bmjinnov-2021-000668
10.1109/CBMS52027.2021.00069
10.1002/jmv.26306
10.1016/j.imu.2020.100378
10.1109/JSEN.2020.3028494
10.1007/s42979-020-00422-6
10.1121/10.0003434
10.1145/3412841.3441943
10.1186/s12879-020-05647-7
10.1109/ICASSP39728.2021.9414576
10.1016/B978-0-12-818130-0.00001-5
10.1007/s00521-021-06346-3
10.1109/SoutheastCon45413.2021.9401826
10.1016/j.patcog.2021.107999
10.1016/S2213-2600(20)30079-5
10.1145/3394486.3412865
10.1109/JTEHM.2021.3058841
10.1002/jmv.26196
10.1145/3382507.3418855
10.1109/OJEMB.2020.2998051
10.1038/s41598-021-95042-2
10.1371/journal.pone.0239590
10.21437/Interspeech.2020-2223
10.1007/s10916-020-01681-9
10.1016/j.bspc.2021.102960
10.1109/OJEMB.2020.3026468
10.1109/CCCI49893.2020.9256562
10.1142/S0218001421570081
10.1016/j.jinf.2020.09.033
10.1007/s11739-020-02379-z
10.1136/bmj.b2700
10.1109/TSC.2021.3061402
10.1007/s00408-007-9036-8
10.1016/j.aej.2021.06.024
10.1109/BHI50953.2021.9508482
10.1016/j.compbiomed.2021.104572
10.1016/S0140-6736(20)32589-7
10.1016/j.cmi.2020.03.032
10.1371/journal.pone.0244272
10.1109/OJEMB.2020.3042051
10.21437/Interspeech.2020-2105
10.1109/EMBC44109.2020.9175986
10.1109/OJEMB.2020.3026928
10.1109/GUCON48875.2020.9231094
10.1186/s12879-021-05764-x
ContentType Journal Article
Copyright 2022 Santosh et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Santosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Santosh et al. 2022 Santosh et al.
Copyright_xml – notice: 2022 Santosh et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Santosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Santosh et al. 2022 Santosh et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.958
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_20ca54cf8af442a1bf154ddb09c5def5
PMC9138020
A708470337
35634112
10_7717_peerj_cs_958
Genre Journal Article
GrantInformation_xml – fundername: The University of South Dakota
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
ARCSS
NPM
PQGLB
PMFND
3V.
7XB
8AL
8FK
COVID
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c579t-e318314d1441cb6211a75083bf1d9fd15af3a4df79f07d3c10ce7c58aa323f4a3
IEDL.DBID BENPR
ISSN 2376-5992
IngestDate Wed Aug 27 01:30:23 EDT 2025
Thu Aug 21 14:05:46 EDT 2025
Fri Jul 11 11:14:40 EDT 2025
Fri Jul 25 02:41:01 EDT 2025
Tue Jun 17 20:53:22 EDT 2025
Tue Jun 10 20:21:33 EDT 2025
Fri Jun 27 03:48:29 EDT 2025
Mon Jul 21 06:03:23 EDT 2025
Tue Jul 01 02:28:49 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AI
Diagnosis
Covid-19
Public healthcare
Cough sound
Machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Santosh et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-e318314d1441cb6211a75083bf1d9fd15af3a4df79f07d3c10ce7c58aa323f4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6196-9956
0000-0003-4176-0236
0000-0001-9802-2627
OpenAccessLink https://www.proquest.com/docview/2654511839?pq-origsite=%requestingapplication%
PMID 35634112
PQID 2654511839
PQPubID 2045934
PageCount e958
ParticipantIDs doaj_primary_oai_doaj_org_article_20ca54cf8af442a1bf154ddb09c5def5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9138020
proquest_miscellaneous_2671996817
proquest_journals_2654511839
gale_infotracmisc_A708470337
gale_infotracacademiconefile_A708470337
gale_incontextgauss_ISR_A708470337
pubmed_primary_35634112
crossref_citationtrail_10_7717_peerj_cs_958
crossref_primary_10_7717_peerj_cs_958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-25
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Mohammed (10.7717/peerj-cs.958/ref-37) 2021; 11
Anupam (10.7717/peerj-cs.958/ref-4) 2021
Vaughan (10.7717/peerj-cs.958/ref-54) 2021; 21
Han (10.7717/peerj-cs.958/ref-23) 2020
Yang (10.7717/peerj-cs.958/ref-59) 2020; 8
Feng (10.7717/peerj-cs.958/ref-16) 2021; 2021
Guan (10.7717/peerj-cs.958/ref-21) 2020; 382
Rudraraju (10.7717/peerj-cs.958/ref-50) 2020; 19
Nessiem (10.7717/peerj-cs.958/ref-45) 2021
Wei (10.7717/peerj-cs.958/ref-57) 2020
Han (10.7717/peerj-cs.958/ref-22) 2021
Melek (10.7717/peerj-cs.958/ref-35) 2021; 33
Mukherjee (10.7717/peerj-cs.958/ref-41) 2021; 45
Nemati (10.7717/peerj-cs.958/ref-43) 2020
Mouawad (10.7717/peerj-cs.958/ref-39) 2021; 2
Pinkas (10.7717/peerj-cs.958/ref-48) 2020; 1
Miranda (10.7717/peerj-cs.958/ref-36) 2019
Topol (10.7717/peerj-cs.958/ref-53) 2020; 396
Laguarta (10.7717/peerj-cs.958/ref-28) 2020; 1
Chen (10.7717/peerj-cs.958/ref-9) 2021; 2
Pal (10.7717/peerj-cs.958/ref-47) 2021
Khriji (10.7717/peerj-cs.958/ref-27) 2021
Grant (10.7717/peerj-cs.958/ref-20) 2021
Quatieri (10.7717/peerj-cs.958/ref-49) 2020; 1
Matangila (10.7717/peerj-cs.958/ref-33) 2020; 15
Gokcen (10.7717/peerj-cs.958/ref-19) 2021; 21
Wang (10.7717/peerj-cs.958/ref-56) 2020; 26
Fontana (10.7717/peerj-cs.958/ref-17) 2007; 186
Liberati (10.7717/peerj-cs.958/ref-31) 2009; 339
Weng (10.7717/peerj-cs.958/ref-58) 2020; 93
Lapostolle (10.7717/peerj-cs.958/ref-29) 2020; 15
Hassan (10.7717/peerj-cs.958/ref-24) 2020
Shimon (10.7717/peerj-cs.958/ref-52) 2021; 149
Imran (10.7717/peerj-cs.958/ref-25) 2020; 20
Dash (10.7717/peerj-cs.958/ref-12) 2021; 117
Despotovic (10.7717/peerj-cs.958/ref-13) 2021; 138
Nakamori (10.7717/peerj-cs.958/ref-42) 2020; 15
Pahar (10.7717/peerj-cs.958/ref-46) 2021; 135
McDonagh (10.7717/peerj-cs.958/ref-34) 2013
Alsabek (10.7717/peerj-cs.958/ref-2) 2020
Andreu-Perez (10.7717/peerj-cs.958/ref-3) 2021; 2021
Bansal (10.7717/peerj-cs.958/ref-5) 2020
Brendish (10.7717/peerj-cs.958/ref-6) 2020; 81
Coppock (10.7717/peerj-cs.958/ref-11) 2021; 7
Donnelly (10.7717/peerj-cs.958/ref-14) 2019; 6
Chuma (10.7717/peerj-cs.958/ref-10) 2021; 21
Mukherjee (10.7717/peerj-cs.958/ref-40) 2021; 35
Cattelan (10.7717/peerj-cs.958/ref-8) 2020; 20
Santosh (10.7717/peerj-cs.958/ref-51) 2019; 2019
Brown (10.7717/peerj-cs.958/ref-7) 2020
Vrindavanam (10.7717/peerj-cs.958/ref-55) 2021
Nemati (10.7717/peerj-cs.958/ref-44) 2020
Jayachitra (10.7717/peerj-cs.958/ref-26) 2021; 70
Faezipour (10.7717/peerj-cs.958/ref-15) 2020; 26
Morice (10.7717/peerj-cs.958/ref-38) 2007; 186
Ahmed (10.7717/peerj-cs.958/ref-1) 2020
Gayam (10.7717/peerj-cs.958/ref-18) 2020; 93
Lella (10.7717/peerj-cs.958/ref-30) 2021; 61
Lonini (10.7717/peerj-cs.958/ref-32) 2021; 9
References_xml – year: 2020
  ident: 10.7717/peerj-cs.958/ref-2
  article-title: Studying the similarity of COVID-19 sounds based on correlation analysis of MFCC
  doi: 10.1109/CCCI49893.2020.9256700
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-27
  article-title: COVID-19 recognition based on patient’s coughing and breathing patterns analysis: deep learning approach
  doi: 10.23919/FRUCT52173.2021.9435454
– volume-title: Methods Guide for Effectiveness and Comparative Effectiveness Reviews
  year: 2013
  ident: 10.7717/peerj-cs.958/ref-34
  article-title: Avoiding bias in selecting studies
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-44
  article-title: A comprehensive approach for classification of the cough type*
  doi: 10.1109/EMBC44109.2020.9175345
– volume: 138
  start-page: 104944
  issue: 18
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-13
  article-title: Detection of COVID-19 from voice, cough and breathing patterns: dataset and preliminary results
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104944
– volume: 6
  start-page: e000375
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.958/ref-14
  article-title: ‘Dry’ and ‘Wet’ cough: how reliable is parental reporting?
  publication-title: BMJ Open Respiratory Research
  doi: 10.1136/bmjresp-2018-000375
– volume: 382
  start-page: 1708
  issue: 18
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-21
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa2002032
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-55
  article-title: Machine learning based COVID-19 cough classification models-a comparative analysis
  doi: 10.1109/ICCMC51019.2021.9418358
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-4
  article-title: Preliminary diagnosis of COVID-19 based on cough sounds using machine learning algorithms
  doi: 10.1109/ICICCS51141.2021.9432324
– volume: 26
  start-page: 1202
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-15
  article-title: Smartphone-based self-testing of COVID-19 using breathing sounds
  publication-title: Telemedicine and e-Health
  doi: 10.1089/tmj.2020.0114
– year: 2019
  ident: 10.7717/peerj-cs.958/ref-36
  article-title: A comparative study of features for acoustic cough detection using deep architectures*
  doi: 10.1109/EMBC.2019.8856412
– volume: 21
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-19
  article-title: Artificial intelligence–based COVID-19 detection using cough records
  publication-title: Electrica
  doi: 10.5152/electrica.2021.21005
– volume: 186
  start-page: 7
  issue: S1
  year: 2007
  ident: 10.7717/peerj-cs.958/ref-38
  article-title: Rebuttal: cough is an expiratory sound
  publication-title: Lung
  doi: 10.1007/s00408-007-9039-5
– volume: 19
  start-page: 100319
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-50
  article-title: Cough sound analysis and objective correlation with spirometry and clinical diagnosis
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100319
– volume: 7
  start-page: 356
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-11
  article-title: End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study
  publication-title: BMJ Innovations
  doi: 10.1136/bmjinnov-2021-000668
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-45
  article-title: Detecting COVID-19 from breathing and coughing sounds using deep neural networks
  doi: 10.1109/CBMS52027.2021.00069
– volume: 93
  start-page: 812
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-18
  article-title: Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York
  publication-title: Journal of Medical Virology
  doi: 10.1002/jmv.26306
– volume: 20
  start-page: 100378
  issue: 16
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-25
  article-title: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100378
– volume: 21
  start-page: 2921
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-10
  article-title: A movement detection system using continuous-wave doppler radar sensor and convolutional neural network to detect cough and other gestures
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.3028494
– volume: 2
  start-page: 2448
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-39
  article-title: Robust detection of COVID-19 in cough sounds
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00422-6
– volume: 149
  start-page: 1120
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-52
  article-title: Artificial intelligence enabled preliminary diagnosis for COVID-19 from voice cues and questionnaires
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/10.0003434
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-47
  article-title: Pay attention to the cough
  doi: 10.1145/3412841.3441943
– volume: 20
  start-page: 1110
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-8
  article-title: Clinical characteristics and laboratory biomarkers changes in COVID-19 patients requiring or not intensive or sub-intensive care: a comparative study
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-020-05647-7
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-22
  article-title: Exploring automatic COVID-19 diagnosis via voice and symptoms from crowdsourced data
  doi: 10.1109/ICASSP39728.2021.9414576
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.958/ref-51
  article-title: Speech processing in healthcare: can we integrate?
  publication-title: Intelligent Speech Signal Processing
  doi: 10.1016/B978-0-12-818130-0.00001-5
– volume: 33
  start-page: 17621
  issue: 24
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-35
  article-title: Diagnosis of COVID-19 and non-COVID-19 patients by classifying only a single cough sound
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06346-3
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-16
  article-title: Deep-learning based approach to identify COVID-19
  publication-title: SoutheastCon
  doi: 10.1109/SoutheastCon45413.2021.9401826
– volume: 117
  start-page: 107999
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-12
  article-title: Detection of COVID-19 from speech signal using bio-inspired based cepstral features
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.107999
– volume: 8
  start-page: 475
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-59
  article-title: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study
  publication-title: The Lancet Respiratory Medicine
  doi: 10.1016/S2213-2600(20)30079-5
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-7
  article-title: Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data
  doi: 10.1145/3394486.3412865
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-32
  article-title: Rapid screening of physiological changes associated with COVID-19 using soft-wearables and structured activities: a pilot study
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
  doi: 10.1109/JTEHM.2021.3058841
– volume: 93
  start-page: 115
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-58
  article-title: Characteristics and clinical outcomes of covid-19 in hispanic/latino patients in a community setting: a retrospective cohort study
  publication-title: Journal of Medical Virology
  doi: 10.1002/jmv.26196
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-1
  article-title: Automated time synchronization of cough events from multimodal sensors in mobile devices
  doi: 10.1145/3382507.3418855
– volume: 1
  start-page: 203
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-49
  article-title: A framework for biomarkers of COVID-19 based on coordination of speech-production subsystems
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.2998051
– volume: 11
  start-page: 1570
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-37
  article-title: An ensemble learning approach to digital corona virus preliminary screening from cough sounds
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-95042-2
– volume: 15
  start-page: e0239590
  issue: 9
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-42
  article-title: Simplified cough test can predict the risk for pneumonia in patients with acute stroke
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0239590
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-23
  article-title: An early study on intelligent analysis of speech under COVID-19: severity, sleep quality, fatigue, and anxiety
  doi: 10.21437/Interspeech.2020-2223
– volume: 45
  start-page: 19
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-41
  article-title: Automatic lung health screening using respiratory sounds
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-020-01681-9
– volume: 70
  start-page: 102960
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-26
  article-title: A cognitive IoT-based framework for effective diagnosis of COVID-19 using multimodal data
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102960
– volume: 1
  start-page: 268
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-48
  article-title: SARS-CoV-2 detection from voice
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.3026468
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-24
  article-title: COVID-19 detection system using recurrent neural networks
  doi: 10.1109/CCCI49893.2020.9256562
– volume: 35
  start-page: 2157008
  issue: 14
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-40
  article-title: Lung health analysis: adventitious respiratory sound classification using filterbank energies
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001421570081
– volume: 81
  start-page: 937
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-6
  article-title: Clinical characteristics, symptoms and outcomes of 1054 adults presenting to hospital with suspected COVID-19: a comparison of patients with and without SARS-CoV-2 infection
  publication-title: Journal of Infection
  doi: 10.1016/j.jinf.2020.09.033
– volume: 15
  start-page: 813
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-29
  article-title: Clinical features of 1487 COVID-19 patients with outpatient management in the greater paris: the COVID-call study
  publication-title: Internal and Emergency Medicine
  doi: 10.1007/s11739-020-02379-z
– volume: 339
  start-page: b2700
  year: 2009
  ident: 10.7717/peerj-cs.958/ref-31
  article-title: The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration
  publication-title: BMJ
  doi: 10.1136/bmj.b2700
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-3
  article-title: A generic deep learning based cough analysis system from clinically validated samples for point-of-need COVID-19 test and severity levels
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2021.3061402
– volume: 186
  start-page: 3
  issue: S1
  year: 2007
  ident: 10.7717/peerj-cs.958/ref-17
  article-title: Before we get started: what is a cough?
  publication-title: Lung
  doi: 10.1007/s00408-007-9036-8
– volume: 61
  start-page: 1319
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-30
  article-title: Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: cough, voice, and breath
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.06.024
– year: 2021
  ident: 10.7717/peerj-cs.958/ref-20
  article-title: Rapid and scalable COVID-19 screening using speech, breath, and cough recordings
  doi: 10.1109/BHI50953.2021.9508482
– volume: 135
  start-page: 104572
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-46
  article-title: COVID-19 cough classification using machine learning and global smartphone recordings
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104572
– volume: 396
  start-page: 1874
  issue: 10266
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-53
  article-title: Is my cough COVID-19?
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)32589-7
– volume: 26
  start-page: 1063
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-56
  article-title: Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital
  publication-title: Clinical Microbiology and Infection
  doi: 10.1016/j.cmi.2020.03.032
– volume: 15
  start-page: e0244272
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-33
  article-title: Clinical characteristics of COVID-19 patients hospitalized at clinique ngaliema, a public hospital in kinshasa, in the democratic republic of congo: a retrospective cohort study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0244272
– volume: 2
  start-page: 11
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-9
  article-title: A pervasive respiratory monitoring sensor for COVID-19 pandemic
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.3042051
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-57
  article-title: A real-time robot-based auxiliary system for risk evaluation of COVID-19 infection
  doi: 10.21437/Interspeech.2020-2105
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-43
  article-title: Estimation of the lung function using acoustic features of the voluntary cough*
  doi: 10.1109/EMBC44109.2020.9175986
– volume: 1
  start-page: 275
  year: 2020
  ident: 10.7717/peerj-cs.958/ref-28
  article-title: COVID-19 artificial intelligence diagnosis using only cough recordings
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.3026928
– year: 2020
  ident: 10.7717/peerj-cs.958/ref-5
  article-title: Cough classification for COVID-19 based on audio MFCC features using convolutional neural networks
  doi: 10.1109/GUCON48875.2020.9231094
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.958/ref-54
  article-title: Relationship of socio-demographics, comorbidities, symptoms and healthcare access with early COVID-19 presentation and disease severity
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-021-05764-x
SSID ssj0001511119
Score 2.3323953
Snippet For COVID-19, the need for robust, inexpensive, and accessible screening becomes critical. Even though symptoms present differently, cough is still taken as...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e958
SubjectTerms Acoustics
Algorithms
Analysis
Artificial Intelligence
Bioinformatics
Coronaviruses
Cough
Cough sound
Covid-19
COVID-19 vaccines
Data mining
Data Mining and Machine Learning
Deep learning
Diagnosis
Disease
Health aspects
Human subjects
Illnesses
Infections
Machine learning
Pandemics
Pneumonia
Public healthcare
Screening
Sociodemographics
Sound
State-of-the-art reviews
Systematic review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1x4P1Ja5CIQBxSIYzt2ekHLQtUiARJQ1JvlJw-12arZPfTfM5Nkt4kQ4sLVnkT2zNgzY818Q8hTLiQ-b1S5DiLkIqWQayd07qWTwXFwUSsscP7wsTo8Fu9P5Mmo1RfmhPXwwD3jIDj3VgqftE1ClJa5BEY_BFfUXoaYOvRSsHmjYKqvD8aroO4z3RWELK_OY7z4lfv2ZY3d3Uc2qIPq__NCHlmkabbkyPwc3CI3Br-Rzvr13ibXYnOH3Fz3ZKDDEb1Lzmb0CpyZ9oUpdNFQj914aItNlKgdgEgoOKx0jpV4Oatp6JPuYNgCDdwmEOGCXdunMHJ2OfnB_NO3o7fwzet75Pjg3df5YT60VADmq3qZ44snZyJgGOVdBdGfVQgID1wNdQpM2sStCEnVqVCBe1b4qLzU1vKSJ2H5fbLVLJr4kFDPWLIBAswi1sJHrZ1z4C_o6LnjhXYZebFmsvED3ji2vTg1EHegSEwnEuNbAyLJyLMN9XmPs_EXujcorw0NomN3A6AzZtAZ8y-dycgTlLZB_IsGE2y-21XbmqMvn81MFWCvC85VRp4PRGkB6_Z2qFeA3SNk1oRyZ0IJB9RPp9dKZYYLojVlJREZDtzTjOxtpvFLTHpr4mKFNApzxDWDXzzodXCzby4r8D9YmRE10c4JY6Yzzc8fHXx4zbiGIGH7f3DyEbleYj1IIfJS7pCt5cUq7oKXtnSPuwP5GyKxPrk
  priority: 102
  providerName: Directory of Open Access Journals
Title A systematic review on cough sound analysis for Covid-19 diagnosis and screening: is my cough sound COVID-19?
URI https://www.ncbi.nlm.nih.gov/pubmed/35634112
https://www.proquest.com/docview/2654511839
https://www.proquest.com/docview/2671996817
https://pubmed.ncbi.nlm.nih.gov/PMC9138020
https://doaj.org/article/20ca54cf8af442a1bf154ddb09c5def5
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-HC-xEoK4NAHFBoEtuJw6XaLi0tEgUVinqz_IgLiCbLZvfAv2cm8T4iBFd7EsUee16Z-YaQ54wLDG_ksXTcxdx7F0vDZWyFEc4wMFFzLHD-cJofn_P3F-IiBNzakFa5lImdoHaNxRj5XpYLhNICfb4__RVj1yj8uxpaaGyRHRDBEpyvnYPD009n6yiLQJFQ9hnvBbgue9Oqmv2Ibfu6xC7vG7qog-z_WzBvaKZh1uSGGjq6RW4E-5GOe4bfJteq-g65uezNQMNVvUuuxnQN0kz7AhXa1NRiVx7aYjMlqgMgCQXDlU6wIi9OS-r65DsY1kADUgU8XdBvbyiMXP0evGDy8evJW3hm_x45Pzr8MjmOQ2sFYEJRzmOMfLKUO3SnrMnBC9QFAsMbn7rSu1RozzR3vih9Ujhm08RWhRVSa5YxzzW7T7brpq4eEmrT1GsHjmZSldxWUhpjwG6QlWWGJdJE5NVyk5UNuOPY_uKnAv8DWaI6lijbKmBJRF6sqKc93sY_6A6QXysaRMnuBprZpQqXTmWJ1YJbL7XnPNMprE5w50xSWuEqLyLyDLmtEAejxkSbS71oW3Xy-UyNiwT0dsJYEZGXgcg38N1Wh7oFWD1CZw0odweUcFHtcHp5qFQQFK1aH-uIPF1N45OY_FZXzQJpCswVlym84kF_BlfrZiIHOyTNIlIMTudgY4Yz9fdvHYx4mTIJzsKj_3_WY3I9w4qPhMeZ2CXb89miegJ22NyMyJY8ejcKV27URTP-ALZQOAE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CrlABf2JVDAICoOKDSJ7UmChKphyjBDFyTaot6Ml7iAaDJMZoT6U3wj72WZmQjBrVf7xYn9ducthDxnXOD1Rs9PLLc-d876ieaJb4QWVjMwUXuY4Lx_0Bsd8w8n4mSN_G5zYTCsspWJlaC2hcE78q2oJ7CUFujz7clPH7tG4d_VtoVGTRa72fkvcNnKN-MdwO9mFA3fHQ1GftNVAN4fpzMfL_1YyC16Ekb3wAFSMdZE1y60qbOhUI4pbl2cuiC2zISByWIjEqVYxBxXDNa9RC5zxlLkqGT4fnmnI1AApXV8fQyO0tYky6bffVO-SrGn_IrmqxoE_K0GVvRgN0ZzRekNb5BrjbVK-zV53SRrWX6LXG87QdBGMNwmZ326LAlN63QYWuTUYA8gWmLrJqqa8icUzGQ6wPw_P0yprUP9YFgBDMgw8KtBm76mMHJ23llg8PHzeAee2b5Dji_kyO-S9bzIs_uEmjB0yoJbG2QpN1mSaK3BSkkywzQLEu2Rl-0hS9NUOcdmGz8keDuIElmhRJpSAko8srmAntTVPf4B9xbxtYDBmtzVQDE9lQ2LyygwSnDjEuU4j1QIuxPcWh2kRtjMCY88Q2xLrLqRY1jPqZqXpRwffpL9OAArIWAs9siLBsgV8N1GNVkSsHss1NWB3OhAglgw3emWqGQjlkq5ZCKPPF1M45MYapdnxRxhYoxMT0JY4l5Ng4t9M9EDqyeMPBJ3qLNzMN2Z_NvXqmh5GrIEXJMH__-sJ-TK6Gh_T-6ND3YfkqsR5poE3I_EBlmfTefZI7AAZ_pxxXaUfLloPv8DIEVxpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhHjhfgkMMIiJBxSaxHYuSGjq2lUrgzJtDO3NOHY8QCwpTSu0X-PrOKdJ2kYI3vZqn1i2z905F0JeMC7weSN0Y8ONy601bpzy2NUiFSZlYKKGmOD8YRzun_B3p-J0g_xucmEwrLKRiQtBbQqNb-TdIBRYSgv0edfWYRGHg-HO5KeLHaTwT2vTTqMikYPs4he4b-Xb0QBwvR0Ew71P_X237jAAe4mSmYsPgMznBr0KnYbgDKkI66On1jeJNb5QlilubJRYLzJM-57OIi1ipVjALFcM1r1CNiPwirwO2dzdGx8erV54BIqjpIq2j8Bt6k6ybPrd1eXrBDvMr-nBRbuAv5XCmlZsR2yuqcDhTXK9tl1pryK2W2Qjy2-TG01fCFqLiTvkvEdXBaJplRxDi5xq7AhES2zkRFVdDIWC0Uz7mA3o-gk1VeAfDCuAAYkGXjbo1jcURs4vWgv0P34eDeCbnbvk5FIu_R7p5EWePSBU-75VBpxcL0u4zuI4TVOwWeJMs5R5ceqQV80lS13XPMfWGz8k-D6IErlAidSlBJQ4ZHsJPalqffwDbhfxtYTBCt2LgWJ6JmuGl4GnleDaxspyHigfTie4MamXaGEyKxzyHLEtsQZHjtR8puZlKUfHR7IXeWAzeIxFDnlZA9kC9q1VnTMBp8eyXS3IrRYkCAndnm6IStZCqpQrlnLIs-U0fomBd3lWzBEmwjj12Icl7lc0uDw3EyHYQH7gkKhFna2Lac_k374uSpgnPovBUXn4_209JVeBx-X70fjgEbkWYOKJx91AbJHObDrPHoM5OEuf1HxHyZfLZvU_USp3OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+on+cough+sound+analysis+for+Covid-19+diagnosis+and+screening%3A+is+my+cough+sound+COVID-19%3F&rft.jtitle=PeerJ.+Computer+science&rft.au=Santosh%2C+KC&rft.au=Rasmussen%2C+Nicholas&rft.au=Mamun%2C+Muntasir&rft.au=Aryal%2C+Sunil&rft.date=2022-04-25&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e958&rft_id=info:doi/10.7717%2Fpeerj-cs.958&rft.externalDocID=A708470337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon