Deep-learning-based prediction of late age-related macular degeneration progression
Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression usi...
Saved in:
Published in | Nature machine intelligence Vol. 2; no. 2; pp. 141 - 150 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment.
Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future. |
---|---|
AbstractList | Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment.
Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future. Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83–0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment. Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment.Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future. Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We implemented our model in a cloud-based application for individual risk assessment.Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We implemented our model in a cloud-based application for individual risk assessment. |
Author | Chen, Wei Yan, Qi Ding, Ying Chew, Emily Y. Huang, Heng Weeks, Daniel E. Xin, Hongyi Swaroop, Anand |
AuthorAffiliation | 1 Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 2 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA 6 Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 4 Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 5 Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 3 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA |
AuthorAffiliation_xml | – name: 4 Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD – name: 2 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA – name: 1 Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA – name: 5 Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD – name: 6 Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA – name: 3 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-5236-9673 surname: Yan fullname: Yan, Qi email: qiy17@pitt.edu organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh – sequence: 2 givenname: Daniel E. orcidid: 0000-0001-9410-7228 surname: Weeks fullname: Weeks, Daniel E. organization: Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh – sequence: 3 givenname: Hongyi surname: Xin fullname: Xin, Hongyi organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh – sequence: 4 givenname: Anand orcidid: 0000-0002-1975-1141 surname: Swaroop fullname: Swaroop, Anand organization: Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health – sequence: 5 givenname: Emily Y. surname: Chew fullname: Chew, Emily Y. organization: Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health – sequence: 6 givenname: Heng surname: Huang fullname: Huang, Heng organization: Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh – sequence: 7 givenname: Ying orcidid: 0000-0003-1352-1000 surname: Ding fullname: Ding, Ying email: yingding@pitt.edu organization: Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh – sequence: 8 givenname: Wei orcidid: 0000-0001-7196-8703 surname: Chen fullname: Chen, Wei email: wec47@pitt.edu organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32285025$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1UREvpA7BBkdiwMdhjO042SKj8SpVYAGvLjifBVa4d7KQSb49vbymlEqw8kr8zc2bOY3IUU0RCnnL2kjPRvSoSQLWUAaOMK0n7B-QEFABVneiP7tTH5KyUS8YYcCkVk4_IsQDoFAN1Qr68RVzojDbHECfqbEHfLBl9GNaQYpPGZrYrNnZCmnFf-mZnh222ufE4YcRsr8ElpyljKbV-Qh6Odi54dvOekm_v3309_0gvPn_4dP7mgg5K9ytFzjR45GpwbtSaM2zRgkIPo7MjSKmF1OgHL1znnHBCWyZ0Cx6wB221OCWvD32Xze0qiHHNdjZLDjubf5pkg_n7J4bvZkpXRnMltOhrgxc3DXL6sWFZzS6UAefZRkxbMSC6vu0la7uKPr-HXqYtx7qegRaglbxvWaWe3XV0a-X3vSvAD8CQUykZx1uEM7OP1RxiNTVWs4_V7F3qe5ohrNdHr0uF-b9KOChLnRInzH9M_1v0C0nstzs |
CitedBy_id | crossref_primary_10_1080_08820538_2024_2414353 crossref_primary_10_1109_TMI_2024_3391215 crossref_primary_10_1097_APO_0000000000000512 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108070 crossref_primary_10_3390_electronics12041046 crossref_primary_10_1002_14651858_CD015522_pub2 crossref_primary_10_1097_IIO_0000000000000334 crossref_primary_10_3390_electronics12122697 crossref_primary_10_1016_j_cmpb_2022_107302 crossref_primary_10_1038_s41433_022_02097_0 crossref_primary_10_1038_s41746_024_01207_4 crossref_primary_10_1016_S2589_7500_20_30287_9 crossref_primary_10_1097_ICU_0000000000000678 crossref_primary_10_1109_MCI_2024_3401348 crossref_primary_10_1155_2021_7651462 crossref_primary_10_1016_j_compbiomed_2023_107881 crossref_primary_10_1167_tvst_13_7_10 crossref_primary_10_7759_cureus_17579 crossref_primary_10_1167_tvst_11_9_25 crossref_primary_10_1089_cmb_2022_0378 crossref_primary_10_1109_TSMC_2023_3331847 crossref_primary_10_1136_bmjophth_2020_000569 crossref_primary_10_1177_11206721221096294 crossref_primary_10_1136_bmjophth_2021_000824 crossref_primary_10_1167_tvst_11_8_7 crossref_primary_10_1001_jamaophthalmol_2023_4659 crossref_primary_10_3390_jpm11111127 crossref_primary_10_3390_bioengineering12020139 crossref_primary_10_1111_ceo_14405 crossref_primary_10_3928_23258160_20220315_02 crossref_primary_10_1097_IAE_0000000000004204 crossref_primary_10_1186_s40537_023_00800_w crossref_primary_10_3389_fgene_2021_569120 crossref_primary_10_1007_s11042_023_16366_x crossref_primary_10_1038_s41598_024_57072_4 crossref_primary_10_3390_ijms242015105 crossref_primary_10_1016_j_ajhg_2021_05_005 crossref_primary_10_1038_s41433_024_03370_0 crossref_primary_10_1080_08820538_2021_1896756 crossref_primary_10_1167_tvst_9_2_36 crossref_primary_10_1167_tvst_11_6_23 crossref_primary_10_1016_j_oret_2021_06_010 crossref_primary_10_3389_fcell_2022_1107689 crossref_primary_10_3389_fcell_2023_1168327 crossref_primary_10_1016_j_ailsci_2021_100018 crossref_primary_10_1016_j_bbe_2024_11_005 crossref_primary_10_1016_j_media_2022_102364 crossref_primary_10_1097_WNO_0000000000002229 crossref_primary_10_1007_s00417_023_06052_x crossref_primary_10_1109_TMI_2024_3390940 crossref_primary_10_3389_fmed_2022_808402 crossref_primary_10_3390_diagnostics13010130 crossref_primary_10_1109_JBHI_2021_3083605 crossref_primary_10_3390_ijms24054557 crossref_primary_10_3389_fpubh_2022_971943 crossref_primary_10_1177_15353702211031547 crossref_primary_10_1016_j_artmed_2023_102617 crossref_primary_10_3390_photonics10020149 crossref_primary_10_3390_app132011437 crossref_primary_10_1002_14651858_CD015522 crossref_primary_10_1093_pnasnexus_pgab003 crossref_primary_10_3390_cells10112924 crossref_primary_10_1016_j_ophtha_2022_01_002 crossref_primary_10_1038_s41598_024_54251_1 crossref_primary_10_3390_medicina60040527 crossref_primary_10_1097_APO_0000000000000531 crossref_primary_10_3390_computers13080212 crossref_primary_10_1080_08164622_2022_2111201 crossref_primary_10_1093_jrsssc_qlae051 crossref_primary_10_1016_j_xcrm_2023_101095 crossref_primary_10_1016_j_apjo_2024_100095 crossref_primary_10_1109_ACCESS_2022_3178372 crossref_primary_10_3390_diagnostics12112736 crossref_primary_10_3390_s23187809 crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1016_j_bspc_2024_106516 crossref_primary_10_1007_s00417_022_05565_1 crossref_primary_10_17816_OV625627 |
Cites_doi | 10.1167/iovs.17-22617 10.1001/jamaophthalmol.2018.4118 10.1167/iovs.18-24106 10.1167/iovs.16-19964 10.1038/s41598-018-35044-9 10.1186/s12877-015-0122-0 10.1109/42.34715 10.1016/j.ophtha.2018.02.037 10.1109/RBME.2010.2084567 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 10.1038/s41551-018-0195-0 10.1111/cge.12206 10.1016/j.ajo.2006.11.041 10.1073/pnas.0912702107 10.1109/TBME.2014.2314714 10.1371/journal.pmed.1001779 10.1016/j.cell.2018.02.010 10.1016/j.ejpb.2015.04.039 10.1534/genetics.116.196998 10.15252/msb.20156651 10.1001/archopht.123.11.1484 10.1016/j.ophtha.2012.10.036 10.1016/S0002-9394(01)01218-1 10.2307/2531595 10.1093/hmg/ddm212 10.1016/j.ophtha.2018.11.015 10.1016/S0197-2456(99)00031-8 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1146/annurev-genom-090413-025610 10.1093/hmg/ddy002 10.1001/jama.2016.17216 10.1146/annurev.genom.9.081307.164350 10.1038/nature14539 10.1001/archopht.122.4.477 10.1001/jamaophthalmol.2017.3782 10.1038/ng.3448 10.1145/2939672.2939778 10.1109/CVPR.2016.308 10.1109/BIBM.2018.8621345 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s42256-020-0154-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Computer Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2522-5839 |
EndPage | 150 |
ExternalDocumentID | PMC7153739 32285025 10_1038_s42256_020_0154_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI) grantid: ZIAEY000546 funderid: https://doi.org/10.13039/100000053 – fundername: NSF | Directorate for Computer & Information Science & Engineering | Division of Information and Intelligent Systems (Information & Intelligent Systems) grantid: 1837956 funderid: https://doi.org/10.13039/100000145 – fundername: Intramural NIH HHS grantid: ZIA EY000546 |
GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF AAYXX AFANA ATHPR CITATION PHGZM PHGZT NFIDA NPM PQGLB 3V. 7SC 7XB 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c579t-e1072de15cbbf7710e6ea25ed2fbaf2447347edcd3b8bb3b37a03762d2e927a73 |
IEDL.DBID | BENPR |
ISSN | 2522-5839 |
IngestDate | Thu Aug 21 14:01:32 EDT 2025 Fri Jul 11 08:17:39 EDT 2025 Sat Aug 23 14:49:13 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Tue Jul 01 01:05:59 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-e1072de15cbbf7710e6ea25ed2fbaf2447347edcd3b8bb3b37a03762d2e927a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS These authors jointly supervised this work. Conception and Project Supervision: Q.Y., Y.D., W.C.; Data Processing and Analysis: Q.Y.; Study design: Q.Y., H.X.; Data Interpretation: Q.Y., A.S., E.Y.C.; Writing: Q.Y. and D.E.W.; Critical Review of Manuscript: D.E.W., Y.D., W.C., H.H., A.S. and E.Y.C. |
ORCID | 0000-0001-7196-8703 0000-0001-9410-7228 0000-0003-1352-1000 0000-0002-1975-1141 0000-0002-5236-9673 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7153739 |
PMID | 32285025 |
PQID | 2622641960 |
PQPubID | 5342773 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7153739 proquest_miscellaneous_2389694068 proquest_journals_2622641960 pubmed_primary_32285025 crossref_primary_10_1038_s42256_020_0154_9 crossref_citationtrail_10_1038_s42256_020_0154_9 springer_journals_10_1038_s42256_020_0154_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Basingstoke |
PublicationTitle | Nature machine intelligence |
PublicationTitleAbbrev | Nat Mach Intell |
PublicationTitleAlternate | Nat Mach Intell |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Devalla (CR16) 2018; 59 Ding (CR38) 2017; 206 Swaroop, Chew, Rickman, Abecasis (CR3) 2009; 10 Poplin (CR19) 2018; 2 Grassmann, Fauser, Weber (CR6) 2015; 95 Fritsche (CR8) 2013; 45 CR39 Holz (CR7) 2007; 143 Chaudhuri, Chatterjee, Katz, Nelson, Goldbaum (CR23) 1989; 8 Graf, Schmoor, Sauerbrei, Schumacher (CR40) 1999; 18 Fritsche (CR9) 2016; 48 Yan (CR10) 2018; 27 Grassmann (CR17) 2018; 125 CR35 Yousefi (CR22) 2014; 61 Stark (CR1) 2015; 15 (CR29) 2001; 132 Ratnapriya, Chew (CR5) 2013; 84 Chen (CR11) 2010; 107 Russakovsky (CR37) 2015; 115 Burlina (CR18) 2017; 135 DeLong, DeLong, Clarke-Pearson (CR43) 1988; 44 Congdon (CR2) 2004; 122 LeCun, Bengio, Hinton (CR34) 2015; 521 Fritsche (CR4) 2014; 15 Kermany (CR15) 2018; 172 Burlina (CR24) 2018; 136 Davis (CR30) 2005; 123 Sudlow (CR26) 2015; 12 CR28 Peng (CR20) 2019; 126 Abramoff (CR13) 2016; 57 Schmidt-Erfurth (CR27) 2018; 59 (CR12) 1999; 20 Youden (CR25) 1950; 3 CR42 CR41 Gulshan (CR14) 2016; 316 Abramoff, Garvin, Sonka (CR21) 2010; 3 Ferris (CR32) 2013; 120 Swaroop, Branham, Chen, Abecasis (CR31) 2007; 16 Angermueller, Parnamaa, Parts, Stegle (CR33) 2016; 12 Christopher (CR36) 2018; 8 N Congdon (154_CR2) 2004; 122 F Grassmann (154_CR17) 2018; 125 LG Fritsche (154_CR8) 2013; 45 U Schmidt-Erfurth (154_CR27) 2018; 59 R Poplin (154_CR19) 2018; 2 WJ Youden (154_CR25) 1950; 3 DS Kermany (154_CR15) 2018; 172 A Swaroop (154_CR31) 2007; 16 PM Burlina (154_CR24) 2018; 136 R Ratnapriya (154_CR5) 2013; 84 E Graf (154_CR40) 1999; 18 C Sudlow (154_CR26) 2015; 12 MD Abramoff (154_CR21) 2010; 3 LG Fritsche (154_CR4) 2014; 15 S Chaudhuri (154_CR23) 1989; 8 W Chen (154_CR11) 2010; 107 LG Fritsche (154_CR9) 2016; 48 PM Burlina (154_CR18) 2017; 135 154_CR28 Y Ding (154_CR38) 2017; 206 The Age-Related Eye Disease Study Research Group. (154_CR12) 1999; 20 154_CR41 Q Yan (154_CR10) 2018; 27 154_CR42 A Swaroop (154_CR3) 2009; 10 M Christopher (154_CR36) 2018; 8 O Russakovsky (154_CR37) 2015; 115 MD Abramoff (154_CR13) 2016; 57 SK Devalla (154_CR16) 2018; 59 FL Ferris 3rd (154_CR32) 2013; 120 ER DeLong (154_CR43) 1988; 44 FG Holz (154_CR7) 2007; 143 Y LeCun (154_CR34) 2015; 521 MD Davis (154_CR30) 2005; 123 F Grassmann (154_CR6) 2015; 95 K Stark (154_CR1) 2015; 15 Y Peng (154_CR20) 2019; 126 The Age-Related Eye Disease Study Research Group. (154_CR29) 2001; 132 V Gulshan (154_CR14) 2016; 316 154_CR35 C Angermueller (154_CR33) 2016; 12 S Yousefi (154_CR22) 2014; 61 154_CR39 |
References_xml | – volume: 59 start-page: 63 year: 2018 end-page: 74 ident: CR16 article-title: A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.17-22617 – volume: 136 start-page: 1359 year: 2018 end-page: 1366 ident: CR24 article-title: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2018.4118 – volume: 59 start-page: 3199 year: 2018 end-page: 3208 ident: CR27 article-title: Prediction of individual disease conversion in early AMD using artificial intelligence publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-24106 – volume: 57 start-page: 5200 year: 2016 end-page: 5206 ident: CR13 article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-19964 – volume: 8 year: 2018 ident: CR36 article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs publication-title: Sci. Rep. doi: 10.1038/s41598-018-35044-9 – volume: 15 start-page: 130 year: 2015 ident: CR1 article-title: The German AugUR study: study protocol of a prospective study to investigate chronic diseases in the elderly publication-title: BMC Geriatr. doi: 10.1186/s12877-015-0122-0 – volume: 8 start-page: 263 year: 1989 end-page: 269 ident: CR23 article-title: Detection of blood vessels in retinal images using two-dimensional matched filters publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.34715 – volume: 125 start-page: 1410 year: 2018 end-page: 1420 ident: CR17 article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.02.037 – ident: CR39 – volume: 3 start-page: 169 year: 2010 end-page: 208 ident: CR21 article-title: Retinal imaging and image analysis publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084567 – volume: 18 start-page: 2529 year: 1999 end-page: 2545 ident: CR40 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: CR19 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 84 start-page: 160 year: 2013 end-page: 166 ident: CR5 article-title: Age-related macular degeneration-clinical review and genetics update publication-title: Clin. Genet. doi: 10.1111/cge.12206 – volume: 143 start-page: 463 year: 2007 end-page: 472 ident: CR7 article-title: Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2006.11.041 – volume: 107 start-page: 7401 year: 2010 end-page: 7406 ident: CR11 article-title: Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912702107 – ident: CR35 – volume: 61 start-page: 2112 year: 2014 end-page: 2124 ident: CR22 article-title: Learning from data: recognizing glaucomatous defect patterns and detecting progression from visual field measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2314714 – volume: 12 start-page: e1001779 year: 2015 ident: CR26 article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 172 start-page: 1122 year: 2018 end-page: 1131 ident: CR15 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 95 start-page: 194 year: 2015 end-page: 202 ident: CR6 article-title: The genetics of age-related macular degeneration (AMD)–novel targets for designing treatment options? publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.04.039 – volume: 206 start-page: 119 year: 2017 end-page: 133 ident: CR38 article-title: Bivariate analysis of age-related macular degeneration progression using genetic risk scores publication-title: Genetics doi: 10.1534/genetics.116.196998 – volume: 45 start-page: 439 year: 2013 ident: CR8 article-title: Seven new loci associated with age-related macular degeneration publication-title: Nat. Genet. – volume: 12 start-page: 878 year: 2016 ident: CR33 article-title: Deep learning for computational biology publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156651 – ident: CR42 – volume: 123 start-page: 1484 year: 2005 end-page: 1498 ident: CR30 article-title: The Age-Related Eye Disease Study severity scale for age-related macular degeneration. AREDS Report No. 17 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.123.11.1484 – volume: 120 start-page: 844 year: 2013 end-page: 851 ident: CR32 article-title: Clinical classification of age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.10.036 – volume: 132 start-page: 668 year: 2001 end-page: 681 ident: CR29 article-title: The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs. AREDS Report No. 6 publication-title: Am. J. Ophthalmol. doi: 10.1016/S0002-9394(01)01218-1 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR43 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: CR37 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comp. Sci. – volume: 16 start-page: R174 year: 2007 end-page: R182 ident: CR31 article-title: Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm212 – volume: 126 start-page: 565 year: 2019 end-page: 575 ident: CR20 article-title: DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.11.015 – volume: 20 start-page: 573 year: 1999 end-page: 600 ident: CR12 article-title: The Age-Related Eye Disease Study (AREDS): design implications. AREDS Report No. 1 publication-title: Control Clin. Trials doi: 10.1016/S0197-2456(99)00031-8 – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: CR25 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 15 start-page: 151 year: 2014 end-page: 171 ident: CR4 article-title: Age-related macular degeneration: genetics and biology coming together publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev-genom-090413-025610 – volume: 27 start-page: 929 year: 2018 end-page: 940 ident: CR10 article-title: Genome-wide analysis of disease progression in age-related macular degeneration publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy002 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR14 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2016.17216 – volume: 10 start-page: 19 year: 2009 end-page: 43 ident: CR3 article-title: Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev.genom.9.081307.164350 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR34 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 122 start-page: 477 year: 2004 end-page: 485 ident: CR2 article-title: Causes and prevalence of visual impairment among adults in the United States publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.122.4.477 – ident: CR28 – ident: CR41 – volume: 135 start-page: 1170 year: 2017 end-page: 1176 ident: CR18 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2017.3782 – volume: 48 start-page: 134 year: 2016 end-page: 143 ident: CR9 article-title: A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants publication-title: Nat. Genet. doi: 10.1038/ng.3448 – volume: 172 start-page: 1122 year: 2018 ident: 154_CR15 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 44 start-page: 837 year: 1988 ident: 154_CR43 publication-title: Biometrics doi: 10.2307/2531595 – volume: 15 start-page: 151 year: 2014 ident: 154_CR4 publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev-genom-090413-025610 – volume: 125 start-page: 1410 year: 2018 ident: 154_CR17 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.02.037 – volume: 3 start-page: 32 year: 1950 ident: 154_CR25 publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 135 start-page: 1170 year: 2017 ident: 154_CR18 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2017.3782 – volume: 95 start-page: 194 year: 2015 ident: 154_CR6 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.04.039 – volume: 143 start-page: 463 year: 2007 ident: 154_CR7 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2006.11.041 – volume: 8 start-page: 263 year: 1989 ident: 154_CR23 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.34715 – volume: 10 start-page: 19 year: 2009 ident: 154_CR3 publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev.genom.9.081307.164350 – ident: 154_CR42 doi: 10.1145/2939672.2939778 – volume: 15 start-page: 130 year: 2015 ident: 154_CR1 publication-title: BMC Geriatr. doi: 10.1186/s12877-015-0122-0 – volume: 59 start-page: 3199 year: 2018 ident: 154_CR27 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.18-24106 – ident: 154_CR41 – volume: 84 start-page: 160 year: 2013 ident: 154_CR5 publication-title: Clin. Genet. doi: 10.1111/cge.12206 – volume: 12 start-page: 878 year: 2016 ident: 154_CR33 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156651 – volume: 115 start-page: 211 year: 2015 ident: 154_CR37 publication-title: Int. J. Comp. Sci. – ident: 154_CR39 – volume: 123 start-page: 1484 year: 2005 ident: 154_CR30 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.123.11.1484 – volume: 8 year: 2018 ident: 154_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-018-35044-9 – volume: 3 start-page: 169 year: 2010 ident: 154_CR21 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084567 – volume: 61 start-page: 2112 year: 2014 ident: 154_CR22 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2314714 – volume: 20 start-page: 573 year: 1999 ident: 154_CR12 publication-title: Control Clin. Trials doi: 10.1016/S0197-2456(99)00031-8 – volume: 2 start-page: 158 year: 2018 ident: 154_CR19 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 16 start-page: R174 year: 2007 ident: 154_CR31 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm212 – volume: 316 start-page: 2402 year: 2016 ident: 154_CR14 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2016.17216 – volume: 48 start-page: 134 year: 2016 ident: 154_CR9 publication-title: Nat. Genet. doi: 10.1038/ng.3448 – volume: 126 start-page: 565 year: 2019 ident: 154_CR20 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.11.015 – volume: 12 start-page: e1001779 year: 2015 ident: 154_CR26 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 57 start-page: 5200 year: 2016 ident: 154_CR13 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-19964 – volume: 59 start-page: 63 year: 2018 ident: 154_CR16 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.17-22617 – volume: 132 start-page: 668 year: 2001 ident: 154_CR29 publication-title: Am. J. Ophthalmol. doi: 10.1016/S0002-9394(01)01218-1 – volume: 18 start-page: 2529 year: 1999 ident: 154_CR40 publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – ident: 154_CR35 doi: 10.1109/CVPR.2016.308 – volume: 107 start-page: 7401 year: 2010 ident: 154_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912702107 – volume: 120 start-page: 844 year: 2013 ident: 154_CR32 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.10.036 – volume: 206 start-page: 119 year: 2017 ident: 154_CR38 publication-title: Genetics doi: 10.1534/genetics.116.196998 – volume: 27 start-page: 929 year: 2018 ident: 154_CR10 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy002 – volume: 122 start-page: 477 year: 2004 ident: 154_CR2 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.122.4.477 – volume: 521 start-page: 436 year: 2015 ident: 154_CR34 publication-title: Nature doi: 10.1038/nature14539 – ident: 154_CR28 doi: 10.1109/BIBM.2018.8621345 – volume: 136 start-page: 1359 year: 2018 ident: 154_CR24 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2018.4118 – volume: 45 start-page: 439 year: 2013 ident: 154_CR8 publication-title: Nat. Genet. |
SSID | ssj0002144504 |
Score | 2.4773226 |
Snippet | Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | 631/114/1305 631/114/1564 631/1647/245/2226 631/208/721 Accuracy Age Age related diseases Artificial neural networks Automation Blindness Cloud computing Confidence intervals Deep learning Diabetic retinopathy Engineering Etiology Eye diseases Genomes Health risk assessment Machine learning Macular degeneration Photoreceptors Risk assessment |
Title | Deep-learning-based prediction of late age-related macular degeneration progression |
URI | https://link.springer.com/article/10.1038/s42256-020-0154-9 https://www.ncbi.nlm.nih.gov/pubmed/32285025 https://www.proquest.com/docview/2622641960 https://www.proquest.com/docview/2389694068 https://pubmed.ncbi.nlm.nih.gov/PMC7153739 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfG8bIXBGKMMkCdtKehiF7SNOnTND5uaNIQYkPirWpal02C3o07_n_sNC06EDzHVRPbsX-JHRvgi3KkByYt6VgypgNKVmW056pUEFpGTJxzVc2Pk3-dZ2dX6c9rfR0u3OYhrbK3id5Q19OK78gPZcZPPklfkm-z_4K7RnF0NbTQWIFVMsHWjmD16PT84nK4ZeGCYDpJ-3CmsofzlDSY8245H0unIl92SC9Q5stkyWcRU--IJuuwFhBk_L0T-Qa8w3YTfp8gzkRoAXEj2DfV8eyeozDM-XjaxLeEKmOyHsI_X6Hhu9LnoMY13vja057Q52t1tTo-wNXk9M_xmQj9EkSlTb4QSEc5WeNYV841hqADZlhKjbVsXNmQHzcqNbSQWjnrnHLKlAnZF1lLzKUpjdqCUTttcRviTI0b3ejESVRcBKy0jaswHWOOPngYQdIzrahCMXHuaXFb-KC2skXH54L4XDCfizyCr8Mns66SxlvEu70kirCp5sWTCkTweRim7cAxjrLF6QPREADLckIpNoKPneCGv5HtspowXgRmSaQDAZfaXh5p__31JbcNOQajaFoHvfCfpvXqInbeXsQneC-9GnJuzC6MFvcPuEcIZ-H2YcVOfuwHZX4EVxP7hg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS4IxCtQSpDgAoqa9SNODqiqKMuWPi60Um8mjictUsku3a0QP8U3dsZ5VEtFbz17kjjztucF8FY64gOjSjqWjOiAklUZyVylEvKWEVPnXOW5OHn_IJscqa_H-ngF_va1MJxW2evEoKj9tOI78g2Rcckn8Uu6OfuV8NQojq72IzRattjFP7_pyDb_uLNN9H0nxPjz4adJ0k0VSCptikWCdOARHke6cq42ZGAxw1Jo9KJ2ZU3Wzkhl0Fdeutw56aQpU5JC4QUWwpRG0nvvwF0lyZJzZfr4y3Cnw-3HdKr64KnMN-aK5IWzfDn7S6ukWDZ_13za66mZ_8Rng9kbP4QHnb8ab7UM9ghWsHkM37YRZ0k3cOIkYUvo49k5x3yYzvG0js_Ih41JVyWhWIaWf5Yh4zX2eBI6XQfAkB3WdgZ5Ake3gsensNpMG3wOcSZHta516gRKbjlW5rWrUI2wwBCqjCDtkWarrnU5T9A4syGELnPb4tkSni3j2RYRvB8embV9O24CXuspYTsRntsrhovgzbBMwscRlbLB6QXBkLuXFeQT5RE8awk3fI00Za7Jo4zALJF0AODG3ssrzY_T0ODbkBkykrb1oSf-1bb--xMvbv6J13Bvcri_Z_d2DnZfwn0RWJKzctZgdXF-ga_It1q49cDQMXy_bQm6BCybN2M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EuKCQLwCBYIEF5C1WTuOkwOqgO2qpbCqgEq9hdiZtEglu3S3Qv21fl1nnEe1VPTWsyeJMw_PjOcF8FpZ4gMTF-SWjMhBSVxCMudiQdYyYmStdSUXJ3-dJtv78ecDfbAG510tDKdVdmeiP6jLmeM78qFMuOST-CUaVm1axN54sjn_I3iCFEdau3EaDYvs4tlfct8W73fGROs3Uk62fnzaFu2EAeG0yZYCyfmRJY60s7YypGwxwUJqLGVli4o0n1GxwdKVyqbWKqtMEZFEylJiJk1hFL33Fqwb9ooGsP5xa7r3rb_h4WZkOoq7UKpKh4uYpIdzfjkXTMciW1WGVyzcq4ma_0RrvRKc3IO7rfUafmjY7T6sYf0Avo8R56IdP3EoWC-W4fyEI0BM9XBWhcdk0YZ0cglfOkPLvwuf_xqWeOj7XntAnyvW9Al5CPs3gslHMKhnNT6BMFGjSlc6shIVNyAr0so6jEeYoQ9cBhB1SMtd28ic52kc5z6grtK8wXNOeM4Zz3kWwNv-kXnTxeM64I2OEnkr0Iv8kv0CeNUvkyhyfKWocXZKMGT8JRlZSGkAjxvC9V-jczPVZF8GYFZI2gNwm-_VlfrXkW_3bUgpGUXbetcR_3Jb__2Jp9f_xEu4TdKTf9mZ7j6DO9JzJKfobMBgeXKKz8nQWtoXLUeH8POmhegCwPM89Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+Prediction+of+Late+Age-Related+Macular+Degeneration+Progression&rft.jtitle=Nature+machine+intelligence&rft.au=Yan%2C+Qi&rft.au=Weeks%2C+Daniel+E.&rft.au=Xin%2C+Hongyi&rft.au=Swaroop%2C+Anand&rft.date=2020-02-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=2&rft.issue=2&rft.spage=141&rft.epage=150&rft_id=info:doi/10.1038%2Fs42256-020-0154-9&rft_id=info%3Apmid%2F32285025&rft.externalDocID=PMC7153739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon |