Deep-learning-based prediction of late age-related macular degeneration progression

Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression usi...

Full description

Saved in:
Bibliographic Details
Published inNature machine intelligence Vol. 2; no. 2; pp. 141 - 150
Main Authors Yan, Qi, Weeks, Daniel E., Xin, Hongyi, Swaroop, Anand, Chew, Emily Y., Huang, Heng, Ding, Ying, Chen, Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment. Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future.
AbstractList Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment. Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future.
Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83–0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment.
Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by images of the fundus of the retina and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have used both genetic and image data for predicting AMD progression. Here we used both genotypes and fundus images to predict whether an eye had progressed to late AMD with a modified deep convolutional neural network. In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study, which provided disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area-under-the-curve value of 0.85 (95% confidence interval 0.83–0.86). The results using fundus images alone showed an averaged area under the receiver operating characteristic curve value of 0.81 (95% confidence interval 0.80–0.83). We implemented our model in a cloud-based application for individual risk assessment.Age-related macular degeneration is a serious eye disease which should be detected as early as possible. Using both fundus images and genetic information, a deep neural network is able to detect the severity of the disease and predict its progression seven years into the future.
Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We implemented our model in a cloud-based application for individual risk assessment.Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We implemented our model in a cloud-based application for individual risk assessment.
Author Chen, Wei
Yan, Qi
Ding, Ying
Chew, Emily Y.
Huang, Heng
Weeks, Daniel E.
Xin, Hongyi
Swaroop, Anand
AuthorAffiliation 1 Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
2 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA
6 Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
4 Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
5 Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
3 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
AuthorAffiliation_xml – name: 4 Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
– name: 2 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA
– name: 1 Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
– name: 5 Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
– name: 6 Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
– name: 3 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-5236-9673
  surname: Yan
  fullname: Yan, Qi
  email: qiy17@pitt.edu
  organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh
– sequence: 2
  givenname: Daniel E.
  orcidid: 0000-0001-9410-7228
  surname: Weeks
  fullname: Weeks, Daniel E.
  organization: Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
– sequence: 3
  givenname: Hongyi
  surname: Xin
  fullname: Xin, Hongyi
  organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh
– sequence: 4
  givenname: Anand
  orcidid: 0000-0002-1975-1141
  surname: Swaroop
  fullname: Swaroop, Anand
  organization: Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health
– sequence: 5
  givenname: Emily Y.
  surname: Chew
  fullname: Chew, Emily Y.
  organization: Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health
– sequence: 6
  givenname: Heng
  surname: Huang
  fullname: Huang, Heng
  organization: Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh
– sequence: 7
  givenname: Ying
  orcidid: 0000-0003-1352-1000
  surname: Ding
  fullname: Ding, Ying
  email: yingding@pitt.edu
  organization: Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-7196-8703
  surname: Chen
  fullname: Chen, Wei
  email: wec47@pitt.edu
  organization: Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32285025$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1UREvpA7BBkdiwMdhjO042SKj8SpVYAGvLjifBVa4d7KQSb49vbymlEqw8kr8zc2bOY3IUU0RCnnL2kjPRvSoSQLWUAaOMK0n7B-QEFABVneiP7tTH5KyUS8YYcCkVk4_IsQDoFAN1Qr68RVzojDbHECfqbEHfLBl9GNaQYpPGZrYrNnZCmnFf-mZnh222ufE4YcRsr8ElpyljKbV-Qh6Odi54dvOekm_v3309_0gvPn_4dP7mgg5K9ytFzjR45GpwbtSaM2zRgkIPo7MjSKmF1OgHL1znnHBCWyZ0Cx6wB221OCWvD32Xze0qiHHNdjZLDjubf5pkg_n7J4bvZkpXRnMltOhrgxc3DXL6sWFZzS6UAefZRkxbMSC6vu0la7uKPr-HXqYtx7qegRaglbxvWaWe3XV0a-X3vSvAD8CQUykZx1uEM7OP1RxiNTVWs4_V7F3qe5ohrNdHr0uF-b9KOChLnRInzH9M_1v0C0nstzs
CitedBy_id crossref_primary_10_1080_08820538_2024_2414353
crossref_primary_10_1109_TMI_2024_3391215
crossref_primary_10_1097_APO_0000000000000512
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108070
crossref_primary_10_3390_electronics12041046
crossref_primary_10_1002_14651858_CD015522_pub2
crossref_primary_10_1097_IIO_0000000000000334
crossref_primary_10_3390_electronics12122697
crossref_primary_10_1016_j_cmpb_2022_107302
crossref_primary_10_1038_s41433_022_02097_0
crossref_primary_10_1038_s41746_024_01207_4
crossref_primary_10_1016_S2589_7500_20_30287_9
crossref_primary_10_1097_ICU_0000000000000678
crossref_primary_10_1109_MCI_2024_3401348
crossref_primary_10_1155_2021_7651462
crossref_primary_10_1016_j_compbiomed_2023_107881
crossref_primary_10_1167_tvst_13_7_10
crossref_primary_10_7759_cureus_17579
crossref_primary_10_1167_tvst_11_9_25
crossref_primary_10_1089_cmb_2022_0378
crossref_primary_10_1109_TSMC_2023_3331847
crossref_primary_10_1136_bmjophth_2020_000569
crossref_primary_10_1177_11206721221096294
crossref_primary_10_1136_bmjophth_2021_000824
crossref_primary_10_1167_tvst_11_8_7
crossref_primary_10_1001_jamaophthalmol_2023_4659
crossref_primary_10_3390_jpm11111127
crossref_primary_10_3390_bioengineering12020139
crossref_primary_10_1111_ceo_14405
crossref_primary_10_3928_23258160_20220315_02
crossref_primary_10_1097_IAE_0000000000004204
crossref_primary_10_1186_s40537_023_00800_w
crossref_primary_10_3389_fgene_2021_569120
crossref_primary_10_1007_s11042_023_16366_x
crossref_primary_10_1038_s41598_024_57072_4
crossref_primary_10_3390_ijms242015105
crossref_primary_10_1016_j_ajhg_2021_05_005
crossref_primary_10_1038_s41433_024_03370_0
crossref_primary_10_1080_08820538_2021_1896756
crossref_primary_10_1167_tvst_9_2_36
crossref_primary_10_1167_tvst_11_6_23
crossref_primary_10_1016_j_oret_2021_06_010
crossref_primary_10_3389_fcell_2022_1107689
crossref_primary_10_3389_fcell_2023_1168327
crossref_primary_10_1016_j_ailsci_2021_100018
crossref_primary_10_1016_j_bbe_2024_11_005
crossref_primary_10_1016_j_media_2022_102364
crossref_primary_10_1097_WNO_0000000000002229
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_1109_TMI_2024_3390940
crossref_primary_10_3389_fmed_2022_808402
crossref_primary_10_3390_diagnostics13010130
crossref_primary_10_1109_JBHI_2021_3083605
crossref_primary_10_3390_ijms24054557
crossref_primary_10_3389_fpubh_2022_971943
crossref_primary_10_1177_15353702211031547
crossref_primary_10_1016_j_artmed_2023_102617
crossref_primary_10_3390_photonics10020149
crossref_primary_10_3390_app132011437
crossref_primary_10_1002_14651858_CD015522
crossref_primary_10_1093_pnasnexus_pgab003
crossref_primary_10_3390_cells10112924
crossref_primary_10_1016_j_ophtha_2022_01_002
crossref_primary_10_1038_s41598_024_54251_1
crossref_primary_10_3390_medicina60040527
crossref_primary_10_1097_APO_0000000000000531
crossref_primary_10_3390_computers13080212
crossref_primary_10_1080_08164622_2022_2111201
crossref_primary_10_1093_jrsssc_qlae051
crossref_primary_10_1016_j_xcrm_2023_101095
crossref_primary_10_1016_j_apjo_2024_100095
crossref_primary_10_1109_ACCESS_2022_3178372
crossref_primary_10_3390_diagnostics12112736
crossref_primary_10_3390_s23187809
crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1016_j_bspc_2024_106516
crossref_primary_10_1007_s00417_022_05565_1
crossref_primary_10_17816_OV625627
Cites_doi 10.1167/iovs.17-22617
10.1001/jamaophthalmol.2018.4118
10.1167/iovs.18-24106
10.1167/iovs.16-19964
10.1038/s41598-018-35044-9
10.1186/s12877-015-0122-0
10.1109/42.34715
10.1016/j.ophtha.2018.02.037
10.1109/RBME.2010.2084567
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1038/s41551-018-0195-0
10.1111/cge.12206
10.1016/j.ajo.2006.11.041
10.1073/pnas.0912702107
10.1109/TBME.2014.2314714
10.1371/journal.pmed.1001779
10.1016/j.cell.2018.02.010
10.1016/j.ejpb.2015.04.039
10.1534/genetics.116.196998
10.15252/msb.20156651
10.1001/archopht.123.11.1484
10.1016/j.ophtha.2012.10.036
10.1016/S0002-9394(01)01218-1
10.2307/2531595
10.1093/hmg/ddm212
10.1016/j.ophtha.2018.11.015
10.1016/S0197-2456(99)00031-8
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1146/annurev-genom-090413-025610
10.1093/hmg/ddy002
10.1001/jama.2016.17216
10.1146/annurev.genom.9.081307.164350
10.1038/nature14539
10.1001/archopht.122.4.477
10.1001/jamaophthalmol.2017.3782
10.1038/ng.3448
10.1145/2939672.2939778
10.1109/CVPR.2016.308
10.1109/BIBM.2018.8621345
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s42256-020-0154-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
Computer Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 150
ExternalDocumentID PMC7153739
32285025
10_1038_s42256_020_0154_9
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
  grantid: ZIAEY000546
  funderid: https://doi.org/10.13039/100000053
– fundername: NSF | Directorate for Computer & Information Science & Engineering | Division of Information and Intelligent Systems (Information & Intelligent Systems)
  grantid: 1837956
  funderid: https://doi.org/10.13039/100000145
– fundername: Intramural NIH HHS
  grantid: ZIA EY000546
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PQGLB
3V.
7SC
7XB
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c579t-e1072de15cbbf7710e6ea25ed2fbaf2447347edcd3b8bb3b37a03762d2e927a73
IEDL.DBID BENPR
ISSN 2522-5839
IngestDate Thu Aug 21 14:01:32 EDT 2025
Fri Jul 11 08:17:39 EDT 2025
Sat Aug 23 14:49:13 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Tue Jul 01 01:05:59 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-e1072de15cbbf7710e6ea25ed2fbaf2447347edcd3b8bb3b37a03762d2e927a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
These authors jointly supervised this work.
Conception and Project Supervision: Q.Y., Y.D., W.C.; Data Processing and Analysis: Q.Y.; Study design: Q.Y., H.X.; Data Interpretation: Q.Y., A.S., E.Y.C.; Writing: Q.Y. and D.E.W.; Critical Review of Manuscript: D.E.W., Y.D., W.C., H.H., A.S. and E.Y.C.
ORCID 0000-0001-7196-8703
0000-0001-9410-7228
0000-0003-1352-1000
0000-0002-1975-1141
0000-0002-5236-9673
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7153739
PMID 32285025
PQID 2622641960
PQPubID 5342773
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7153739
proquest_miscellaneous_2389694068
proquest_journals_2622641960
pubmed_primary_32285025
crossref_primary_10_1038_s42256_020_0154_9
crossref_citationtrail_10_1038_s42256_020_0154_9
springer_journals_10_1038_s42256_020_0154_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationTitleAlternate Nat Mach Intell
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Devalla (CR16) 2018; 59
Ding (CR38) 2017; 206
Swaroop, Chew, Rickman, Abecasis (CR3) 2009; 10
Poplin (CR19) 2018; 2
Grassmann, Fauser, Weber (CR6) 2015; 95
Fritsche (CR8) 2013; 45
CR39
Holz (CR7) 2007; 143
Chaudhuri, Chatterjee, Katz, Nelson, Goldbaum (CR23) 1989; 8
Graf, Schmoor, Sauerbrei, Schumacher (CR40) 1999; 18
Fritsche (CR9) 2016; 48
Yan (CR10) 2018; 27
Grassmann (CR17) 2018; 125
CR35
Yousefi (CR22) 2014; 61
Stark (CR1) 2015; 15
(CR29) 2001; 132
Ratnapriya, Chew (CR5) 2013; 84
Chen (CR11) 2010; 107
Russakovsky (CR37) 2015; 115
Burlina (CR18) 2017; 135
DeLong, DeLong, Clarke-Pearson (CR43) 1988; 44
Congdon (CR2) 2004; 122
LeCun, Bengio, Hinton (CR34) 2015; 521
Fritsche (CR4) 2014; 15
Kermany (CR15) 2018; 172
Burlina (CR24) 2018; 136
Davis (CR30) 2005; 123
Sudlow (CR26) 2015; 12
CR28
Peng (CR20) 2019; 126
Abramoff (CR13) 2016; 57
Schmidt-Erfurth (CR27) 2018; 59
(CR12) 1999; 20
Youden (CR25) 1950; 3
CR42
CR41
Gulshan (CR14) 2016; 316
Abramoff, Garvin, Sonka (CR21) 2010; 3
Ferris (CR32) 2013; 120
Swaroop, Branham, Chen, Abecasis (CR31) 2007; 16
Angermueller, Parnamaa, Parts, Stegle (CR33) 2016; 12
Christopher (CR36) 2018; 8
N Congdon (154_CR2) 2004; 122
F Grassmann (154_CR17) 2018; 125
LG Fritsche (154_CR8) 2013; 45
U Schmidt-Erfurth (154_CR27) 2018; 59
R Poplin (154_CR19) 2018; 2
WJ Youden (154_CR25) 1950; 3
DS Kermany (154_CR15) 2018; 172
A Swaroop (154_CR31) 2007; 16
PM Burlina (154_CR24) 2018; 136
R Ratnapriya (154_CR5) 2013; 84
E Graf (154_CR40) 1999; 18
C Sudlow (154_CR26) 2015; 12
MD Abramoff (154_CR21) 2010; 3
LG Fritsche (154_CR4) 2014; 15
S Chaudhuri (154_CR23) 1989; 8
W Chen (154_CR11) 2010; 107
LG Fritsche (154_CR9) 2016; 48
PM Burlina (154_CR18) 2017; 135
154_CR28
Y Ding (154_CR38) 2017; 206
The Age-Related Eye Disease Study Research Group. (154_CR12) 1999; 20
154_CR41
Q Yan (154_CR10) 2018; 27
154_CR42
A Swaroop (154_CR3) 2009; 10
M Christopher (154_CR36) 2018; 8
O Russakovsky (154_CR37) 2015; 115
MD Abramoff (154_CR13) 2016; 57
SK Devalla (154_CR16) 2018; 59
FL Ferris 3rd (154_CR32) 2013; 120
ER DeLong (154_CR43) 1988; 44
FG Holz (154_CR7) 2007; 143
Y LeCun (154_CR34) 2015; 521
MD Davis (154_CR30) 2005; 123
F Grassmann (154_CR6) 2015; 95
K Stark (154_CR1) 2015; 15
Y Peng (154_CR20) 2019; 126
The Age-Related Eye Disease Study Research Group. (154_CR29) 2001; 132
V Gulshan (154_CR14) 2016; 316
154_CR35
C Angermueller (154_CR33) 2016; 12
S Yousefi (154_CR22) 2014; 61
154_CR39
References_xml – volume: 59
  start-page: 63
  year: 2018
  end-page: 74
  ident: CR16
  article-title: A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-22617
– volume: 136
  start-page: 1359
  year: 2018
  end-page: 1366
  ident: CR24
  article-title: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2018.4118
– volume: 59
  start-page: 3199
  year: 2018
  end-page: 3208
  ident: CR27
  article-title: Prediction of individual disease conversion in early AMD using artificial intelligence
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-24106
– volume: 57
  start-page: 5200
  year: 2016
  end-page: 5206
  ident: CR13
  article-title: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-19964
– volume: 8
  year: 2018
  ident: CR36
  article-title: Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35044-9
– volume: 15
  start-page: 130
  year: 2015
  ident: CR1
  article-title: The German AugUR study: study protocol of a prospective study to investigate chronic diseases in the elderly
  publication-title: BMC Geriatr.
  doi: 10.1186/s12877-015-0122-0
– volume: 8
  start-page: 263
  year: 1989
  end-page: 269
  ident: CR23
  article-title: Detection of blood vessels in retinal images using two-dimensional matched filters
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.34715
– volume: 125
  start-page: 1410
  year: 2018
  end-page: 1420
  ident: CR17
  article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.02.037
– ident: CR39
– volume: 3
  start-page: 169
  year: 2010
  end-page: 208
  ident: CR21
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084567
– volume: 18
  start-page: 2529
  year: 1999
  end-page: 2545
  ident: CR40
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: CR19
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 84
  start-page: 160
  year: 2013
  end-page: 166
  ident: CR5
  article-title: Age-related macular degeneration-clinical review and genetics update
  publication-title: Clin. Genet.
  doi: 10.1111/cge.12206
– volume: 143
  start-page: 463
  year: 2007
  end-page: 472
  ident: CR7
  article-title: Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2006.11.041
– volume: 107
  start-page: 7401
  year: 2010
  end-page: 7406
  ident: CR11
  article-title: Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912702107
– ident: CR35
– volume: 61
  start-page: 2112
  year: 2014
  end-page: 2124
  ident: CR22
  article-title: Learning from data: recognizing glaucomatous defect patterns and detecting progression from visual field measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2314714
– volume: 12
  start-page: e1001779
  year: 2015
  ident: CR26
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: CR15
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 95
  start-page: 194
  year: 2015
  end-page: 202
  ident: CR6
  article-title: The genetics of age-related macular degeneration (AMD)–novel targets for designing treatment options?
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2015.04.039
– volume: 206
  start-page: 119
  year: 2017
  end-page: 133
  ident: CR38
  article-title: Bivariate analysis of age-related macular degeneration progression using genetic risk scores
  publication-title: Genetics
  doi: 10.1534/genetics.116.196998
– volume: 45
  start-page: 439
  year: 2013
  ident: CR8
  article-title: Seven new loci associated with age-related macular degeneration
  publication-title: Nat. Genet.
– volume: 12
  start-page: 878
  year: 2016
  ident: CR33
  article-title: Deep learning for computational biology
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156651
– ident: CR42
– volume: 123
  start-page: 1484
  year: 2005
  end-page: 1498
  ident: CR30
  article-title: The Age-Related Eye Disease Study severity scale for age-related macular degeneration. AREDS Report No. 17
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.123.11.1484
– volume: 120
  start-page: 844
  year: 2013
  end-page: 851
  ident: CR32
  article-title: Clinical classification of age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.10.036
– volume: 132
  start-page: 668
  year: 2001
  end-page: 681
  ident: CR29
  article-title: The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs. AREDS Report No. 6
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(01)01218-1
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR43
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR37
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comp. Sci.
– volume: 16
  start-page: R174
  year: 2007
  end-page: R182
  ident: CR31
  article-title: Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm212
– volume: 126
  start-page: 565
  year: 2019
  end-page: 575
  ident: CR20
  article-title: DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.11.015
– volume: 20
  start-page: 573
  year: 1999
  end-page: 600
  ident: CR12
  article-title: The Age-Related Eye Disease Study (AREDS): design implications. AREDS Report No. 1
  publication-title: Control Clin. Trials
  doi: 10.1016/S0197-2456(99)00031-8
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: CR25
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 15
  start-page: 151
  year: 2014
  end-page: 171
  ident: CR4
  article-title: Age-related macular degeneration: genetics and biology coming together
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev-genom-090413-025610
– volume: 27
  start-page: 929
  year: 2018
  end-page: 940
  ident: CR10
  article-title: Genome-wide analysis of disease progression in age-related macular degeneration
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy002
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR14
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– volume: 10
  start-page: 19
  year: 2009
  end-page: 43
  ident: CR3
  article-title: Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev.genom.9.081307.164350
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR34
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 122
  start-page: 477
  year: 2004
  end-page: 485
  ident: CR2
  article-title: Causes and prevalence of visual impairment among adults in the United States
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.122.4.477
– ident: CR28
– ident: CR41
– volume: 135
  start-page: 1170
  year: 2017
  end-page: 1176
  ident: CR18
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2017.3782
– volume: 48
  start-page: 134
  year: 2016
  end-page: 143
  ident: CR9
  article-title: A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3448
– volume: 172
  start-page: 1122
  year: 2018
  ident: 154_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 44
  start-page: 837
  year: 1988
  ident: 154_CR43
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 15
  start-page: 151
  year: 2014
  ident: 154_CR4
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev-genom-090413-025610
– volume: 125
  start-page: 1410
  year: 2018
  ident: 154_CR17
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.02.037
– volume: 3
  start-page: 32
  year: 1950
  ident: 154_CR25
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 135
  start-page: 1170
  year: 2017
  ident: 154_CR18
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2017.3782
– volume: 95
  start-page: 194
  year: 2015
  ident: 154_CR6
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2015.04.039
– volume: 143
  start-page: 463
  year: 2007
  ident: 154_CR7
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2006.11.041
– volume: 8
  start-page: 263
  year: 1989
  ident: 154_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.34715
– volume: 10
  start-page: 19
  year: 2009
  ident: 154_CR3
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev.genom.9.081307.164350
– ident: 154_CR42
  doi: 10.1145/2939672.2939778
– volume: 15
  start-page: 130
  year: 2015
  ident: 154_CR1
  publication-title: BMC Geriatr.
  doi: 10.1186/s12877-015-0122-0
– volume: 59
  start-page: 3199
  year: 2018
  ident: 154_CR27
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.18-24106
– ident: 154_CR41
– volume: 84
  start-page: 160
  year: 2013
  ident: 154_CR5
  publication-title: Clin. Genet.
  doi: 10.1111/cge.12206
– volume: 12
  start-page: 878
  year: 2016
  ident: 154_CR33
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156651
– volume: 115
  start-page: 211
  year: 2015
  ident: 154_CR37
  publication-title: Int. J. Comp. Sci.
– ident: 154_CR39
– volume: 123
  start-page: 1484
  year: 2005
  ident: 154_CR30
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.123.11.1484
– volume: 8
  year: 2018
  ident: 154_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35044-9
– volume: 3
  start-page: 169
  year: 2010
  ident: 154_CR21
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084567
– volume: 61
  start-page: 2112
  year: 2014
  ident: 154_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2314714
– volume: 20
  start-page: 573
  year: 1999
  ident: 154_CR12
  publication-title: Control Clin. Trials
  doi: 10.1016/S0197-2456(99)00031-8
– volume: 2
  start-page: 158
  year: 2018
  ident: 154_CR19
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 16
  start-page: R174
  year: 2007
  ident: 154_CR31
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm212
– volume: 316
  start-page: 2402
  year: 2016
  ident: 154_CR14
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– volume: 48
  start-page: 134
  year: 2016
  ident: 154_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3448
– volume: 126
  start-page: 565
  year: 2019
  ident: 154_CR20
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.11.015
– volume: 12
  start-page: e1001779
  year: 2015
  ident: 154_CR26
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 57
  start-page: 5200
  year: 2016
  ident: 154_CR13
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-19964
– volume: 59
  start-page: 63
  year: 2018
  ident: 154_CR16
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-22617
– volume: 132
  start-page: 668
  year: 2001
  ident: 154_CR29
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(01)01218-1
– volume: 18
  start-page: 2529
  year: 1999
  ident: 154_CR40
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– ident: 154_CR35
  doi: 10.1109/CVPR.2016.308
– volume: 107
  start-page: 7401
  year: 2010
  ident: 154_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912702107
– volume: 120
  start-page: 844
  year: 2013
  ident: 154_CR32
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.10.036
– volume: 206
  start-page: 119
  year: 2017
  ident: 154_CR38
  publication-title: Genetics
  doi: 10.1534/genetics.116.196998
– volume: 27
  start-page: 929
  year: 2018
  ident: 154_CR10
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy002
– volume: 122
  start-page: 477
  year: 2004
  ident: 154_CR2
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.122.4.477
– volume: 521
  start-page: 436
  year: 2015
  ident: 154_CR34
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 154_CR28
  doi: 10.1109/BIBM.2018.8621345
– volume: 136
  start-page: 1359
  year: 2018
  ident: 154_CR24
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2018.4118
– volume: 45
  start-page: 439
  year: 2013
  ident: 154_CR8
  publication-title: Nat. Genet.
SSID ssj0002144504
Score 2.4773226
Snippet Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms 631/114/1305
631/114/1564
631/1647/245/2226
631/208/721
Accuracy
Age
Age related diseases
Artificial neural networks
Automation
Blindness
Cloud computing
Confidence intervals
Deep learning
Diabetic retinopathy
Engineering
Etiology
Eye diseases
Genomes
Health risk assessment
Machine learning
Macular degeneration
Photoreceptors
Risk assessment
Title Deep-learning-based prediction of late age-related macular degeneration progression
URI https://link.springer.com/article/10.1038/s42256-020-0154-9
https://www.ncbi.nlm.nih.gov/pubmed/32285025
https://www.proquest.com/docview/2622641960
https://www.proquest.com/docview/2389694068
https://pubmed.ncbi.nlm.nih.gov/PMC7153739
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfG8bIXBGKMMkCdtKehiF7SNOnTND5uaNIQYkPirWpal02C3o07_n_sNC06EDzHVRPbsX-JHRvgi3KkByYt6VgypgNKVmW056pUEFpGTJxzVc2Pk3-dZ2dX6c9rfR0u3OYhrbK3id5Q19OK78gPZcZPPklfkm-z_4K7RnF0NbTQWIFVMsHWjmD16PT84nK4ZeGCYDpJ-3CmsofzlDSY8245H0unIl92SC9Q5stkyWcRU--IJuuwFhBk_L0T-Qa8w3YTfp8gzkRoAXEj2DfV8eyeozDM-XjaxLeEKmOyHsI_X6Hhu9LnoMY13vja057Q52t1tTo-wNXk9M_xmQj9EkSlTb4QSEc5WeNYV841hqADZlhKjbVsXNmQHzcqNbSQWjnrnHLKlAnZF1lLzKUpjdqCUTttcRviTI0b3ejESVRcBKy0jaswHWOOPngYQdIzrahCMXHuaXFb-KC2skXH54L4XDCfizyCr8Mns66SxlvEu70kirCp5sWTCkTweRim7cAxjrLF6QPREADLckIpNoKPneCGv5HtspowXgRmSaQDAZfaXh5p__31JbcNOQajaFoHvfCfpvXqInbeXsQneC-9GnJuzC6MFvcPuEcIZ-H2YcVOfuwHZX4EVxP7hg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS4IxCtQSpDgAoqa9SNODqiqKMuWPi60Um8mjictUsku3a0QP8U3dsZ5VEtFbz17kjjztucF8FY64gOjSjqWjOiAklUZyVylEvKWEVPnXOW5OHn_IJscqa_H-ngF_va1MJxW2evEoKj9tOI78g2Rcckn8Uu6OfuV8NQojq72IzRattjFP7_pyDb_uLNN9H0nxPjz4adJ0k0VSCptikWCdOARHke6cq42ZGAxw1Jo9KJ2ZU3Wzkhl0Fdeutw56aQpU5JC4QUWwpRG0nvvwF0lyZJzZfr4y3Cnw-3HdKr64KnMN-aK5IWzfDn7S6ukWDZ_13za66mZ_8Rng9kbP4QHnb8ab7UM9ghWsHkM37YRZ0k3cOIkYUvo49k5x3yYzvG0js_Ih41JVyWhWIaWf5Yh4zX2eBI6XQfAkB3WdgZ5Ake3gsensNpMG3wOcSZHta516gRKbjlW5rWrUI2wwBCqjCDtkWarrnU5T9A4syGELnPb4tkSni3j2RYRvB8embV9O24CXuspYTsRntsrhovgzbBMwscRlbLB6QXBkLuXFeQT5RE8awk3fI00Za7Jo4zALJF0AODG3ssrzY_T0ODbkBkykrb1oSf-1bb--xMvbv6J13Bvcri_Z_d2DnZfwn0RWJKzctZgdXF-ga_It1q49cDQMXy_bQm6BCybN2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EuKCQLwCBYIEF5C1WTuOkwOqgO2qpbCqgEq9hdiZtEglu3S3Qv21fl1nnEe1VPTWsyeJMw_PjOcF8FpZ4gMTF-SWjMhBSVxCMudiQdYyYmStdSUXJ3-dJtv78ecDfbAG510tDKdVdmeiP6jLmeM78qFMuOST-CUaVm1axN54sjn_I3iCFEdau3EaDYvs4tlfct8W73fGROs3Uk62fnzaFu2EAeG0yZYCyfmRJY60s7YypGwxwUJqLGVli4o0n1GxwdKVyqbWKqtMEZFEylJiJk1hFL33Fqwb9ooGsP5xa7r3rb_h4WZkOoq7UKpKh4uYpIdzfjkXTMciW1WGVyzcq4ma_0RrvRKc3IO7rfUafmjY7T6sYf0Avo8R56IdP3EoWC-W4fyEI0BM9XBWhcdk0YZ0cglfOkPLvwuf_xqWeOj7XntAnyvW9Al5CPs3gslHMKhnNT6BMFGjSlc6shIVNyAr0so6jEeYoQ9cBhB1SMtd28ic52kc5z6grtK8wXNOeM4Zz3kWwNv-kXnTxeM64I2OEnkr0Iv8kv0CeNUvkyhyfKWocXZKMGT8JRlZSGkAjxvC9V-jczPVZF8GYFZI2gNwm-_VlfrXkW_3bUgpGUXbetcR_3Jb__2Jp9f_xEu4TdKTf9mZ7j6DO9JzJKfobMBgeXKKz8nQWtoXLUeH8POmhegCwPM89Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+Prediction+of+Late+Age-Related+Macular+Degeneration+Progression&rft.jtitle=Nature+machine+intelligence&rft.au=Yan%2C+Qi&rft.au=Weeks%2C+Daniel+E.&rft.au=Xin%2C+Hongyi&rft.au=Swaroop%2C+Anand&rft.date=2020-02-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=2&rft.issue=2&rft.spage=141&rft.epage=150&rft_id=info:doi/10.1038%2Fs42256-020-0154-9&rft_id=info%3Apmid%2F32285025&rft.externalDocID=PMC7153739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon