Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery
Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn...
Saved in:
Published in | Nano-micro letters Vol. 14; no. 1; pp. 128 - 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Zn
x
Cu
y
alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.
The self-supported nanoporous Zn
x
Cu
y
/Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn
x
Cu
y
to guide uniform Zn deposition and facilitate Zn stripping.
Aqueous Zn-ion batteries assembled with nanoporous Zn
x
Cu
y
/Zn anode and K
z
MnO
2
cathode achieve specific energy of as high as ~430 Wh kg
‒1
and retain ~86% after long-term cycles for >700 h.
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn
x
Cu
y
alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn
x
Cu
y
/Zn galvanic couples, the self-supported nanoporous Zn
x
Cu
y
/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm
‒2
, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn
x
Cu
y
/Zn anode and K
z
MnO
2
cathode to achieve specific energy of as high as ~ 430 Wh kg
‒1
with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. |
---|---|
AbstractList | Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn
x
Cu
y
alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn
x
Cu
y
/Zn galvanic couples, the self-supported nanoporous Zn
x
Cu
y
/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm
‒2
, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn
x
Cu
y
/Zn anode and K
z
MnO
2
cathode to achieve specific energy of as high as ~ 430 Wh kg
‒1
with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn Cu alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn Cu /Zn galvanic couples, the self-supported nanoporous Zn Cu /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn Cu /Zn anode and K MnO cathode to achieve specific energy of as high as ~ 430 Wh kg with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. HighlightsZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.The self-supported nanoporous ZnxCuy/Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic ZnxCuy to guide uniform Zn deposition and facilitate Zn stripping.Aqueous Zn-ion batteries assembled with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode achieve specific energy of as high as ~430 Wh kg‒1 and retain ~86% after long-term cycles for >700 h.Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn x Cu y to guide uniform Zn deposition and facilitate Zn stripping. Aqueous Zn-ion batteries assembled with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode achieve specific energy of as high as ~430 Wh kg ‒1 and retain ~86% after long-term cycles for >700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn x Cu y to guide uniform Zn deposition and facilitate Zn stripping. Aqueous Zn-ion batteries assembled with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode achieve specific energy of as high as ~430 Wh kg ‒1 and retain ~86% after long-term cycles for >700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. Abstract Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h. |
ArticleNumber | 128 |
Author | Lang, Xing-You Zheng, Wei-Tao Zhang, Wei Shi, Hang Wen, Zi Dai, Tian-Yi Zhu, Yong-Fu Jiang, Qing Meng, Huan Zeng, Shu-Pei Ran, Qing |
Author_xml | – sequence: 1 givenname: Huan surname: Meng fullname: Meng, Huan organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 2 givenname: Qing surname: Ran fullname: Ran, Qing organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 3 givenname: Tian-Yi surname: Dai fullname: Dai, Tian-Yi organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 4 givenname: Hang surname: Shi fullname: Shi, Hang organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 5 givenname: Shu-Pei surname: Zeng fullname: Zeng, Shu-Pei organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 6 givenname: Yong-Fu surname: Zhu fullname: Zhu, Yong-Fu organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 7 givenname: Zi surname: Wen fullname: Wen, Zi organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 8 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 9 givenname: Xing-You surname: Lang fullname: Lang, Xing-You email: xylang@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, State Key Laboratory of Automotive Simulation and Control, Jilin University – sequence: 10 givenname: Wei-Tao surname: Zheng fullname: Zheng, Wei-Tao organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 11 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35699828$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpF-CAInHhErCd-N8FaamArlQBonDhYk2c8dZV1l7sbKX99nh3u0B76CmjzHs_PY3f8-ooxIBV9ZKSt5QQ-S53RDHSEMYaQpSQjX5SnTDKScM5p0dlbilthCTiuDrL2feEs04yybtn1XHLhdaKqZNqebVODiw2s3GMGxzqLxDiKqa4zvUvH2wNuf6Ot5gKYcQawlBfTbAdZyEOmGsXU33hF9fNN0xlXkKwZfd7jQdCM4-h_gDThGnzonrqYMx4dvc9rX5--vjj_KK5_Pp5fj67bCyXemoG1mvBWNeDc7qHlgABJYR2lkLbtsTJtuWAaDWCHHonmSNCk4GLQRHHVHtazffcIcKNWSW_hLQxEbzZ_YhpYSBN3o5oLLedYBopl7ajTvaSDBapZhaZssOW9X7PWq37JZZdmBKM96D3N8Ffm0W8NZpqRTUvgDd3gBTLXfJklj5bHEcI2yMZJqTgvJM76esH0pu4TqGcyjClCemU0LSoXv2f6G-Uw6sWgdoLbIo5J3TG-gkmH7cB_WgoMdsOmX2HTOmQ2XXI6GJlD6wH-qOmdm_KRRwWmP7FfsT1B0pt2cY |
CitedBy_id | crossref_primary_10_1021_acsaem_4c02016 crossref_primary_10_1002_anie_202409096 crossref_primary_10_1016_j_ensm_2024_103454 crossref_primary_10_1039_D5EE00075K crossref_primary_10_1002_smll_202402767 crossref_primary_10_1016_j_cej_2023_143644 crossref_primary_10_1016_j_cej_2023_144735 crossref_primary_10_1016_j_jechem_2024_08_023 crossref_primary_10_1002_sus2_184 crossref_primary_10_1021_acsnano_4c01137 crossref_primary_10_1016_j_jcis_2023_04_121 crossref_primary_10_1016_j_est_2024_111740 crossref_primary_10_1016_j_jallcom_2024_174899 crossref_primary_10_1002_adma_202211498 crossref_primary_10_1039_D4TA06942K crossref_primary_10_1002_aenm_202302395 crossref_primary_10_1016_j_jpowsour_2025_236316 crossref_primary_10_1002_adfm_202314157 crossref_primary_10_1080_14686996_2025_2451017 crossref_primary_10_1149_1945_7111_acfff7 crossref_primary_10_3390_molecules28062721 crossref_primary_10_1002_adma_202403803 crossref_primary_10_1007_s40820_023_01177_4 crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1002_ente_202300885 crossref_primary_10_1016_j_nxmate_2025_100517 crossref_primary_10_1002_ange_202412853 crossref_primary_10_1002_anie_202402327 crossref_primary_10_1016_j_jpowsour_2022_232348 crossref_primary_10_1016_j_nanoen_2024_109911 crossref_primary_10_1002_cssc_202400479 crossref_primary_10_1039_D4EE03067B crossref_primary_10_1016_j_nantod_2024_102461 crossref_primary_10_1007_s40820_024_01337_0 crossref_primary_10_1016_j_jcis_2024_11_097 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1021_acsaem_3c01137 crossref_primary_10_1016_j_est_2025_116266 crossref_primary_10_1016_j_jechem_2022_08_040 crossref_primary_10_1016_j_jcis_2023_08_034 crossref_primary_10_1016_j_vacuum_2024_113365 crossref_primary_10_1002_adfm_202305550 crossref_primary_10_1016_j_est_2023_108081 crossref_primary_10_1002_cssc_202301942 crossref_primary_10_1002_anie_202212587 crossref_primary_10_1002_celc_202400064 crossref_primary_10_1016_j_jmst_2024_09_003 crossref_primary_10_1007_s40820_022_00969_4 crossref_primary_10_1007_s10854_023_11585_2 crossref_primary_10_1002_smll_202304640 crossref_primary_10_1039_D4RA04353G crossref_primary_10_1021_acs_nanolett_4c06181 crossref_primary_10_1007_s40820_023_01174_7 crossref_primary_10_1016_j_apsusc_2023_156384 crossref_primary_10_1002_advs_202204087 crossref_primary_10_1021_acsenergylett_2c01960 crossref_primary_10_1039_D2TA08498H crossref_primary_10_1002_adfm_202211271 crossref_primary_10_1016_j_cej_2022_139335 crossref_primary_10_1002_smtd_202401668 crossref_primary_10_1002_smll_202408124 crossref_primary_10_1002_adfm_202306346 crossref_primary_10_1016_j_jelechem_2025_119007 crossref_primary_10_1016_j_cej_2024_154916 crossref_primary_10_1016_j_cej_2022_141250 crossref_primary_10_1016_j_jelechem_2023_117306 crossref_primary_10_1016_j_jechem_2024_08_061 crossref_primary_10_1039_D4TA00979G crossref_primary_10_1002_ange_202402327 crossref_primary_10_1016_j_est_2025_115991 crossref_primary_10_1016_j_jcis_2023_10_029 crossref_primary_10_1016_j_est_2024_112116 crossref_primary_10_1016_j_cej_2024_154345 crossref_primary_10_1039_D2SC04385H crossref_primary_10_1002_anie_202415221 crossref_primary_10_1021_acsaem_4c02586 crossref_primary_10_1002_ange_202409096 crossref_primary_10_1016_j_cej_2023_143834 crossref_primary_10_26599_EMD_2024_9370044 crossref_primary_10_1016_j_jcis_2024_08_189 crossref_primary_10_1002_adfm_202309840 crossref_primary_10_1021_acsnano_4c06008 crossref_primary_10_26599_EMD_2023_9370023 crossref_primary_10_1016_j_ensm_2023_103142 crossref_primary_10_1021_acs_jpcc_3c06164 crossref_primary_10_23919_IEN_2024_0003 crossref_primary_10_1002_aenm_202303695 crossref_primary_10_1016_j_ensm_2024_103516 crossref_primary_10_1149_1945_7111_acdafa crossref_primary_10_1002_ange_202212587 crossref_primary_10_1016_j_jpowsour_2025_236343 crossref_primary_10_1007_s40820_022_00948_9 crossref_primary_10_1039_D3CE01139A crossref_primary_10_1016_j_cej_2024_157431 crossref_primary_10_1002_cnl2_54 crossref_primary_10_1002_smll_202310722 crossref_primary_10_1007_s40820_023_01031_7 crossref_primary_10_1007_s40820_023_01278_0 crossref_primary_10_12677_JAPC_2023_122004 crossref_primary_10_1016_j_cclet_2024_109988 crossref_primary_10_1016_j_electacta_2023_143508 crossref_primary_10_1186_s43074_024_00122_x crossref_primary_10_1002_smll_202307557 crossref_primary_10_1002_batt_202200478 crossref_primary_10_1016_j_cej_2024_149881 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1021_acsami_2c19518 crossref_primary_10_1002_anie_202412853 crossref_primary_10_1007_s12598_023_02441_7 crossref_primary_10_1016_j_ensm_2024_103227 crossref_primary_10_3390_en16217443 crossref_primary_10_1016_j_pmatsci_2023_101171 crossref_primary_10_1016_j_cej_2024_154395 crossref_primary_10_1016_j_cej_2024_155245 crossref_primary_10_1021_acssuschemeng_4c07557 crossref_primary_10_1016_j_cej_2025_160615 crossref_primary_10_1016_j_cej_2025_161944 crossref_primary_10_1002_aenm_202303871 crossref_primary_10_1016_j_nanoen_2024_109416 crossref_primary_10_1007_s10854_023_11200_4 crossref_primary_10_1007_s11426_024_2098_6 crossref_primary_10_1039_D4NJ05238B crossref_primary_10_1002_ange_202415221 |
Cites_doi | 10.1021/acsenergylett.0c01792 10.1038/nenergy.2016.71 10.1016/j.joule.2021.10.011 10.1039/c3ee43754j 10.1021/acsenergylett.0c02684 10.1021/acs.chemrev.0c00767 10.1039/C6CS00776G 10.1007/s40820-021-00594-7 10.1007/s40820-020-0401-y 10.1016/j.jmst.2022.01.007 10.1038/s41467-020-15478-4 10.1126/sciadv.aav7412 10.1007/s40820-021-00599-2 10.1007/s40820-019-0351-4 10.1007/s40820-021-00782-5 10.1039/d1ee01472b 10.1002/aenm.202003065 10.1016/j.scib.2022.01.027 10.1039/c9cs00349e 10.1038/s41560-020-0674-x 10.1007/s40820-020-0397-3 10.1002/adma.202105133 10.1016/j.solidstatesciences.2008.10.016 10.1002/anie.201702099 10.1039/c8ee01651h 10.1002/adfm.202107652 10.1021/acsnano.1c02928 10.1021/acsenergylett.1c01418 10.1038/35068529 10.1021/acsenergylett.8b01426 10.1002/adma.202100187 10.1038/nmat4919 10.1126/science.aak9991 10.1038/s41467-020-16769-6 10.1002/adma.202003021 10.1021/acsenergylett.1c00939 10.1126/science.1212741 10.1002/adma.201704531 10.1002/aenm.201801090 10.1038/s41560-018-0108-1 10.1021/acs.chemrev.1c00191 10.1038/s41578-020-00241-4 10.1038/nenergy.2016.39 10.1002/adma.202106867 10.1021/cr500232y 10.1002/aenm.202003902 10.1038/s41467-018-07980-7 10.1038/s41467-022-28238-3 10.1002/anie.202012322 10.1021/cm070425l 10.1038/s41467-020-16039-5 10.1038/nenergy.2016.10 10.1126/sciadv.aao1761 10.1038/ncomms3169 10.1038/s41467-018-04949-4 10.1038/nenergy.2016.119 10.1126/science.aax6873 10.1126/science.254.5032.687 10.1007/s40820-021-00764-7 10.1038/s41467-021-23209-6 10.1007/s40820-020-00554-7 10.1016/j.ensm.2020.04.038 10.1002/adma.202105951 10.1038/s41563-018-0063-z 10.1021/acs.chemrev.9b00628 10.1007/s40820-021-00783-4 10.1093/nsr/nwab177 10.1002/anie.202105756 10.1002/adfm.202106114 10.1002/aenm.202001460 10.1038/s41560-020-00734-0 10.34133/2020/2987234 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-022-00867-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_c5c4629e157c41f7b70dce192ce28cd8 PMC9198195 35699828 10_1007_s40820_022_00867_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-d2b96224baff9ba30a0a8669fc1a3330f7335aeec9ea7dbf72f0690d56d80f283 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:22:38 EDT 2025 Thu Aug 21 14:13:18 EDT 2025 Fri Jul 11 07:25:12 EDT 2025 Wed Aug 13 04:15:23 EDT 2025 Wed Feb 19 02:24:55 EST 2025 Tue Jul 01 00:55:47 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoporous metal Aqueous zinc-ion batteries Surface alloying Zinc-based alloy anode |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-d2b96224baff9ba30a0a8669fc1a3330f7335aeec9ea7dbf72f0690d56d80f283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-022-00867-9 |
PMID | 35699828 |
PQID | 2890048691 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5c4629e157c41f7b70dce192ce28cd8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9198195 proquest_miscellaneous_2676554795 proquest_journals_2890048691 pubmed_primary_35699828 crossref_citationtrail_10_1007_s40820_022_00867_9 crossref_primary_10_1007_s40820_022_00867_9 springer_journals_10_1007_s40820_022_00867_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Yang, Li, Sun, Yang, Shi (CR50) 2021; 33 Guo, Cong, Guo, Chang, Liang (CR57) 2020; 30 Zhang, Yin, Wang, Guo (CR70) 2009; 11 Zheng, Zhao, Tang, Yin, Quilty (CR44) 2019; 366 Wu, Gu, Zhang, Bai, Li (CR13) 2019; 10 Pan, Shao, Yan, Cheng, Han (CR19) 2016; 1 Ma, Schroeder, Borodin, Pollard, Ding (CR33) 2020; 5 Jia, Liu, Neale, Yang, Cao (CR17) 2020; 120 Yi, Chen, Hou, Wang, Liang (CR34) 2021; 11 Ran, Shi, Meng, Zeng, Wan (CR15) 2022; 13 Yang, Tang, Fang, Shan, Guo (CR26) 2018; 11 Lang, Fu, Hou, Han, Yang (CR64) 2013; 4 Dong, Tutusaus, Liang, Zhang, Lebens-Higgins (CR12) 2020; 5 Liu, Xu, Mei, Li, Chen (CR71) 2021; 11 Zhang, Liu (CR6) 2019; 5 Cano, Banham, Ye, Hintennach, Lu (CR2) 2018; 3 Wang, Ran, Yao, Shi, Wen (CR16) 2020; 11 Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR63) 2001; 410 Wu, Yi, Liu, Sun, Cui (CR49) 2021; 13 Liang, Mo, Ji, Zhi (CR8) 2021; 6 Huang, Wang, Hou, Dong, Liu (CR20) 2018; 9 Zheng, Deng, Yin, Tang, Garcia-Mendez (CR45) 2021; 34 Hao, Li, Li, Zeng, Zhang (CR51) 2020; 32 Sui, Ji (CR10) 2021; 121 Parker, Chervin, Pala, Machler, Burz (CR69) 2017; 356 Kundu, Adams, Duffort, Vajargah, Nazar (CR24) 2016; 1 Liang, Jing, Gheytani, Lee, Liu (CR29) 2017; 16 Liu, Xie, Lu, Zhou, Liang (CR37) 2021; 6 Tian, Zeng, Rutt, Shi, Kim (CR4) 2021; 121 Li, Zhang, Wang, He, Lu (CR14) 2022; 14 Li, Rui, Chen, Feng, Xiao (CR28) 2020; 12 Wang, Borodin, Gao, Fan, Sun (CR35) 2018; 17 Xie, Li, Li, Zhou, Dang (CR55) 2022; 14 Wang, Dong, Huang, Jia, Zhao (CR43) 2021; 13 Zhao, Lei (CR56) 2020; 10 Wang, Ran, Wan, Shi, Zeng (CR27) 2022; 120 Jia, Yu, Ai, Zhang (CR65) 2007; 19 Zhang, Wan, Huang, Wang, Niu (CR25) 2020; 11 Feng, Gao, Zhang, Guo, Song (CR22) 2020; 12 Shi, Zhou, Yao, Wang, Ge (CR61) 2020; 11 Hwang, Myung, Sun (CR5) 2017; 46 Yang, Yin, Sun, Pan, Sun (CR11) 2022; 14 Zhu, Yin, Zheng, Emwas, Lei (CR38) 2021; 14 Yan, Lu, Lee, Xiong, Hsu (CR66) 2016; 1 Tang, Zhou, Zhang, Wang, Li (CR21) 2021; 12 Li, Liu, Ba, Liu, Gui (CR40) 2021; 13 Zhang, Chen, Chen, Cheng, Zhang (CR67) 2017; 56 Zhou, Guo, Li, Luo, Liu (CR46) 2021; 33 Dunn, Kamath, Tarascon (CR1) 2011; 334 Zhang, Qin, Fang, Chai, Xie (CR39) 2022 Jiao, Li, Jin, Lei, Li (CR54) 2021; 31 Zhao, Huang, Luo, Liu, Lu (CR30) 2018; 4 Wang, Meng, Lin, Yang, Zhou (CR52) 2021; 31 Zhai, Qu, Hao, Jing, Chang (CR23) 2020; 12 An, Tian, Xiong, Feng, Qian (CR59) 2021; 15 Lu, Zhang, Zhang, Li (CR32) 2021; 6 Bayaguud, Luo, Fu, Zhu (CR42) 2020; 5 Fang, Zhou, Pan, Liang (CR31) 2018; 3 Sun, Ma, Zhou, Qiu, Wang (CR41) 2021; 60 Zhang, Huang, Yuan, Zhu, Zhao (CR48) 2021; 60 Lv, Luo, Tang, Wei, Zhu (CR72) 2018; 30 Liu, Lu, Lai, Liu, Shearing (CR9) 2021; 5 Kang, Cui, Jiang, Gao, Luo (CR47) 2018; 8 Guo, Fan, Zhao, Chen, Liu (CR53) 2021; 34 Oppenheim, Trevor, Chidsey, Trevor, Sieradzki (CR62) 1991; 254 Zhang, Chen, Yu, Niu, Cheng (CR18) 2020; 49 Yan, Dong, Zhao, Sun, Pan (CR36) 2021; 6 CR60 Parker, Chervin, Nelson, Rolison, Long (CR68) 2014; 7 Sun, Liu, Cui (CR3) 2016; 1 Li, Xie, Liu, Wang, Deng (CR58) 2022; 9 Kim, Hong, Park, Kim, Kim (CR7) 2014; 114 SB Wang (867_CR27) 2022; 120 J Erlebacher (867_CR63) 2001; 410 IC Oppenheim (867_CR62) 1991; 254 C Wu (867_CR13) 2019; 10 B Zhang (867_CR39) 2022 R Zhang (867_CR70) 2009; 11 K Wu (867_CR49) 2021; 13 Q Li (867_CR28) 2020; 12 B Dunn (867_CR1) 2011; 334 W Zhang (867_CR6) 2019; 5 G Liang (867_CR8) 2021; 6 G Fang (867_CR31) 2018; 3 JF Parker (867_CR68) 2014; 7 C Liu (867_CR71) 2021; 11 Y Jiao (867_CR54) 2021; 31 N Zhang (867_CR48) 2021; 60 XZ Zhai (867_CR23) 2020; 12 J Zheng (867_CR45) 2021; 34 H Kim (867_CR7) 2014; 114 ZP Cano (867_CR2) 2018; 3 R Zhang (867_CR67) 2017; 56 D Feng (867_CR22) 2020; 12 L Li (867_CR40) 2021; 13 Y Sui (867_CR10) 2021; 121 Y Yang (867_CR26) 2018; 11 J Yang (867_CR11) 2022; 14 D Kundu (867_CR24) 2016; 1 Q Ran (867_CR15) 2022; 13 H Zhao (867_CR56) 2020; 10 A Bayaguud (867_CR42) 2020; 5 F Jia (867_CR65) 2007; 19 H Pan (867_CR19) 2016; 1 XY Lang (867_CR64) 2013; 4 K Yan (867_CR66) 2016; 1 M Yan (867_CR36) 2021; 6 J Huang (867_CR20) 2018; 9 SB Wang (867_CR16) 2020; 11 J Hao (867_CR51) 2020; 32 S Xie (867_CR55) 2022; 14 Y Sun (867_CR3) 2016; 1 Z Yi (867_CR34) 2021; 11 X Wang (867_CR52) 2021; 31 C Li (867_CR58) 2022; 9 Y An (867_CR59) 2021; 15 Y Zhang (867_CR25) 2020; 11 X Yang (867_CR50) 2021; 33 Q Zhao (867_CR30) 2018; 4 L Kang (867_CR47) 2018; 8 Z Lv (867_CR72) 2018; 30 J Zheng (867_CR44) 2019; 366 W Guo (867_CR57) 2020; 30 N Zhang (867_CR18) 2020; 49 C Liu (867_CR37) 2021; 6 M Zhou (867_CR46) 2021; 33 Y Liu (867_CR9) 2021; 5 W Lu (867_CR32) 2021; 6 B Li (867_CR14) 2022; 14 Z Guo (867_CR53) 2021; 34 JY Hwang (867_CR5) 2017; 46 P Sun (867_CR41) 2021; 60 H Dong (867_CR12) 2020; 5 X Jia (867_CR17) 2020; 120 867_CR60 L Ma (867_CR33) 2020; 5 F Wang (867_CR35) 2018; 17 JF Parker (867_CR69) 2017; 356 Y Liang (867_CR29) 2017; 16 Y Zhu (867_CR38) 2021; 14 H Shi (867_CR61) 2020; 11 Y Tian (867_CR4) 2021; 121 X Tang (867_CR21) 2021; 12 Z Wang (867_CR43) 2021; 13 |
References_xml | – volume: 5 start-page: 3012 issue: 9 year: 2020 end-page: 3020 ident: CR42 article-title: Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01792 – volume: 1 start-page: 16071 year: 2016 ident: CR3 article-title: Promises and challenges of nanomaterials for lithium-based rechargeable batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 5 start-page: 2845 issue: 11 year: 2021 end-page: 2903 ident: CR9 article-title: Rechargeable aqueous Zn-based energy storage devices publication-title: Joule doi: 10.1016/j.joule.2021.10.011 – volume: 7 start-page: 1117 issue: 3 year: 2014 end-page: 1124 ident: CR68 article-title: Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43754j – volume: 6 start-page: 1015 issue: 3 year: 2021 end-page: 1033 ident: CR37 article-title: Electrolyte strategies toward better zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02684 – volume: 121 start-page: 1623 issue: 3 year: 2021 end-page: 1669 ident: CR4 article-title: Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00767 – volume: 46 start-page: 3529 issue: 12 year: 2017 end-page: 3614 ident: CR5 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 13 start-page: 73 year: 2021 ident: CR43 article-title: Simultaneously regulating uniform Zn flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00594-7 – volume: 12 start-page: 67 year: 2020 ident: CR28 article-title: A high-capacity ammonium vanadate cathode for zinc-ion battery publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0401-y – volume: 120 start-page: 159 year: 2022 end-page: 166 ident: CR27 article-title: Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.01.007 – volume: 11 start-page: 1634 year: 2020 ident: CR16 article-title: Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-15478-4 – volume: 5 start-page: eaav7412 issue: 5 year: 2019 ident: CR6 article-title: Z, Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 13 start-page: 79 year: 2021 ident: CR49 article-title: Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00599-2 – volume: 12 start-page: 14 year: 2020 ident: CR22 article-title: Boosting high-rate zinc-storage performance by the rational design of Mn O nanoporous architecture cathode publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0351-4 – volume: 14 start-page: 42 year: 2022 ident: CR11 article-title: Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00782-5 – volume: 14 start-page: 4463 issue: 8 year: 2021 ident: CR38 article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01472b – volume: 11 start-page: 2003065 issue: 1 year: 2021 ident: CR34 article-title: Strategies for the stabilization of Zn metal anodes for Zn-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – year: 2022 ident: CR39 article-title: Tuning Zn coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.01.027 – volume: 49 start-page: 4203 issue: 13 year: 2020 end-page: 4219 ident: CR18 article-title: Materials chemistry for rechargeable zinc-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00349e – volume: 5 start-page: 743 issue: 10 year: 2020 end-page: 749 ident: CR33 article-title: Realizing high zinc reversibility in rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0674-x – volume: 12 start-page: 56 year: 2020 ident: CR23 article-title: Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0397-3 – volume: 34 start-page: 2105133 issue: 2 year: 2021 ident: CR53 article-title: A dynamic and self-adapting interface coating for stable Zn-metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.202105133 – volume: 11 start-page: 865 issue: 4 year: 2009 end-page: 869 ident: CR70 article-title: Photoluminescence and Raman scattering of ZnO nanorods publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2008.10.016 – volume: 56 start-page: 7764 issue: 27 year: 2017 end-page: 7768 ident: CR67 article-title: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702099 – volume: 11 start-page: 3157 issue: 11 year: 2018 end-page: 3162 ident: CR26 article-title: Li intercalated V O ·nH O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode publication-title: Energy Environ. Sci. doi: 10.1039/c8ee01651h – volume: 31 start-page: 2107652 issue: 49 year: 2021 ident: CR54 article-title: Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107652 – volume: 15 start-page: 11828 issue: 7 year: 2021 end-page: 11842 ident: CR59 article-title: Scalable and controllable synthesis of interface engineered nanoporous host for dendrite-free and high rate zinc metal batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c02928 – volume: 6 start-page: 3236 issue: 9 year: 2021 end-page: 3243 ident: CR36 article-title: Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01418 – volume: 410 start-page: 450 issue: 6827 year: 2001 end-page: 453 ident: CR63 article-title: Evolution of nanoporosity in dealloying publication-title: Nature doi: 10.1038/35068529 – volume: 3 start-page: 2480 issue: 10 year: 2018 end-page: 2501 ident: CR31 article-title: Recent advances in aqueous zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 33 start-page: 2100187 issue: 21 year: 2021 ident: CR46 article-title: Surface-preferred crystal plane for a stable and reversible zinc anode publication-title: Adv. Mater. doi: 10.1002/adma.202100187 – ident: CR60 – volume: 16 start-page: 841 issue: 8 year: 2017 end-page: 848 ident: CR29 article-title: Universal quinone electrodes for long cycle life aqueous rechargeable batteries publication-title: Nat. Mater. doi: 10.1038/nmat4919 – volume: 356 start-page: 414 issue: 6336 year: 2017 end-page: 417 ident: CR69 article-title: Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion publication-title: Science doi: 10.1126/science.aak9991 – volume: 11 start-page: 2940 year: 2020 ident: CR61 article-title: Spontaneously separated intermetallic Co Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-020-16769-6 – volume: 32 start-page: 2003021 issue: 34 year: 2020 ident: CR51 article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.202003021 – volume: 6 start-page: 2765 issue: 8 year: 2021 end-page: 2785 ident: CR32 article-title: Anode for zinc-based batteries: challenges, strategies, and prospects publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00939 – volume: 334 start-page: 928 issue: 6058 year: 2011 end-page: 935 ident: CR1 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 30 start-page: 1704531 issue: 2 year: 2018 ident: CR72 article-title: Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO nanowire composite publication-title: Adv. Mater. doi: 10.1002/adma.201704531 – volume: 8 start-page: 1801090 issue: 25 year: 2018 ident: CR47 article-title: Nanoporous CaCO coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 3 start-page: 279 issue: 4 year: 2018 end-page: 289 ident: CR2 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 121 start-page: 6654 issue: 11 year: 2021 end-page: 6695 ident: CR10 article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 6 start-page: 109 issue: 2 year: 2021 end-page: 123 ident: CR8 article-title: Non-metallic charge carriers for aqueous batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00241-4 – volume: 1 start-page: 16039 year: 2016 ident: CR19 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 34 start-page: 2106867 issue: 1 year: 2021 ident: CR45 article-title: Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation publication-title: Adv. Mater. doi: 10.1002/adma.202106867 – volume: 114 start-page: 11788 issue: 23 year: 2014 end-page: 11827 ident: CR7 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 11 start-page: 2003902 issue: 25 year: 2021 ident: CR71 article-title: A chemically self-charging flexible solid-state zinc-ion battery based on VO cathode and polyacrylamide–chitin nanofiber hydrogel electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003902 – volume: 10 start-page: 73 year: 2019 ident: CR13 article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery publication-title: Nat. Commun. doi: 10.1038/s41467-018-07980-7 – volume: 13 start-page: 576 year: 2022 ident: CR15 article-title: Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-28238-3 – volume: 60 start-page: 2861 issue: 6 year: 2021 end-page: 2865 ident: CR48 article-title: Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012322 – volume: 19 start-page: 3648 issue: 15 year: 2007 end-page: 3653 ident: CR65 article-title: Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity publication-title: Chem. Mater. doi: 10.1021/cm070425l – volume: 11 start-page: 2199 year: 2020 ident: CR25 article-title: A chemically self-charging aqueous zinc-ion battery publication-title: Nat. Commun. doi: 10.1038/s41467-020-16039-5 – volume: 1 start-page: 16010 year: 2016 ident: CR66 article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth publication-title: Nat. Energy doi: 10.1038/nenergy.2016.10 – volume: 4 start-page: eaao1761 issue: 3 year: 2018 ident: CR30 article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes publication-title: Sci. Adv. doi: 10.1126/sciadv.aao1761 – volume: 4 start-page: 2169 year: 2013 ident: CR64 article-title: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors publication-title: Nat. Commun. doi: 10.1038/ncomms3169 – volume: 9 start-page: 2906 year: 2018 ident: CR20 article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery publication-title: Nat. Commun. doi: 10.1038/s41467-018-04949-4 – volume: 1 start-page: 16119 year: 2016 ident: CR24 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 366 start-page: 645 issue: 6465 year: 2019 end-page: 648 ident: CR44 article-title: Reversible epitaxial electrodeposition of metals in battery anodes publication-title: Science doi: 10.1126/science.aax6873 – volume: 254 start-page: 687 issue: 5032 year: 1991 end-page: 689 ident: CR62 article-title: In situ scanning tunneling microscopy of corrosion of silver-gold alloys publication-title: Science doi: 10.1126/science.254.5032.687 – volume: 14 start-page: 6 year: 2022 ident: CR14 article-title: Interfacial engineering strategy for high-performance Zn metal anodes publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00764-7 – volume: 12 start-page: 2857 year: 2021 ident: CR21 article-title: A universal strategy towards high–energy aqueous multivalent–ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-021-23209-6 – volume: 13 start-page: 34 year: 2021 ident: CR40 article-title: Electrolyte concentration regulation boosting zinc storage stability of high-capacity K V O cathode for bendable quasi-solid-state zinc ion batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00554-7 – volume: 30 start-page: 104 year: 2020 end-page: 112 ident: CR57 article-title: Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.038 – volume: 33 start-page: 2105951 issue: 52 year: 2021 ident: CR50 article-title: Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.202105951 – volume: 17 start-page: 543 issue: 6 year: 2018 end-page: 549 ident: CR35 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 120 start-page: 7795 issue: 15 year: 2020 end-page: 7866 ident: CR17 article-title: Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00628 – volume: 14 start-page: 39 year: 2022 ident: CR55 article-title: Stable zinc anodes enabled by zincophilic Cu nanowire networks publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00783-4 – volume: 9 start-page: nwab177 issue: 3 year: 2022 ident: CR58 article-title: Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab177 – volume: 60 start-page: 18247 issue: 33 year: 2021 end-page: 18255 ident: CR41 article-title: Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – volume: 31 start-page: 2106114 issue: 48 year: 2021 ident: CR52 article-title: Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106114 – volume: 10 start-page: 2001460 issue: 28 year: 2020 ident: CR56 article-title: 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001460 – volume: 5 start-page: 1043 issue: 12 year: 2020 end-page: 1050 ident: CR12 article-title: High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-020-00734-0 – volume: 34 start-page: 2106867 issue: 1 year: 2021 ident: 867_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.202106867 – volume: 120 start-page: 7795 issue: 15 year: 2020 ident: 867_CR17 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00628 – volume: 12 start-page: 67 year: 2020 ident: 867_CR28 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0401-y – volume: 7 start-page: 1117 issue: 3 year: 2014 ident: 867_CR68 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43754j – volume: 14 start-page: 39 year: 2022 ident: 867_CR55 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00783-4 – volume: 12 start-page: 14 year: 2020 ident: 867_CR22 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0351-4 – volume: 56 start-page: 7764 issue: 27 year: 2017 ident: 867_CR67 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702099 – volume: 366 start-page: 645 issue: 6465 year: 2019 ident: 867_CR44 publication-title: Science doi: 10.1126/science.aax6873 – volume: 5 start-page: 743 issue: 10 year: 2020 ident: 867_CR33 publication-title: Nat. Energy doi: 10.1038/s41560-020-0674-x – volume: 34 start-page: 2105133 issue: 2 year: 2021 ident: 867_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.202105133 – volume: 11 start-page: 2940 year: 2020 ident: 867_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16769-6 – volume: 6 start-page: 109 issue: 2 year: 2021 ident: 867_CR8 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00241-4 – volume: 1 start-page: 16039 year: 2016 ident: 867_CR19 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 13 start-page: 73 year: 2021 ident: 867_CR43 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00594-7 – volume: 19 start-page: 3648 issue: 15 year: 2007 ident: 867_CR65 publication-title: Chem. Mater. doi: 10.1021/cm070425l – volume: 12 start-page: 56 year: 2020 ident: 867_CR23 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0397-3 – volume: 14 start-page: 4463 issue: 8 year: 2021 ident: 867_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01472b – volume: 10 start-page: 2001460 issue: 28 year: 2020 ident: 867_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001460 – volume: 10 start-page: 73 year: 2019 ident: 867_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07980-7 – volume: 14 start-page: 6 year: 2022 ident: 867_CR14 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00764-7 – volume: 15 start-page: 11828 issue: 7 year: 2021 ident: 867_CR59 publication-title: ACS Nano doi: 10.1021/acsnano.1c02928 – volume: 6 start-page: 2765 issue: 8 year: 2021 ident: 867_CR32 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00939 – volume: 11 start-page: 1634 year: 2020 ident: 867_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15478-4 – volume: 33 start-page: 2100187 issue: 21 year: 2021 ident: 867_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.202100187 – volume: 33 start-page: 2105951 issue: 52 year: 2021 ident: 867_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.202105951 – volume: 334 start-page: 928 issue: 6058 year: 2011 ident: 867_CR1 publication-title: Science doi: 10.1126/science.1212741 – volume: 60 start-page: 2861 issue: 6 year: 2021 ident: 867_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012322 – volume: 30 start-page: 1704531 issue: 2 year: 2018 ident: 867_CR72 publication-title: Adv. Mater. doi: 10.1002/adma.201704531 – volume: 5 start-page: 2845 issue: 11 year: 2021 ident: 867_CR9 publication-title: Joule doi: 10.1016/j.joule.2021.10.011 – volume: 121 start-page: 1623 issue: 3 year: 2021 ident: 867_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00767 – volume: 410 start-page: 450 issue: 6827 year: 2001 ident: 867_CR63 publication-title: Nature doi: 10.1038/35068529 – volume: 114 start-page: 11788 issue: 23 year: 2014 ident: 867_CR7 publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 9 start-page: nwab177 issue: 3 year: 2022 ident: 867_CR58 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab177 – volume: 14 start-page: 42 year: 2022 ident: 867_CR11 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00782-5 – volume: 3 start-page: 2480 issue: 10 year: 2018 ident: 867_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 1 start-page: 16119 year: 2016 ident: 867_CR24 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – year: 2022 ident: 867_CR39 publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.01.027 – volume: 13 start-page: 576 year: 2022 ident: 867_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28238-3 – volume: 1 start-page: 16071 year: 2016 ident: 867_CR3 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 11 start-page: 2003902 issue: 25 year: 2021 ident: 867_CR71 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003902 – volume: 46 start-page: 3529 issue: 12 year: 2017 ident: 867_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 5 start-page: 3012 issue: 9 year: 2020 ident: 867_CR42 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01792 – volume: 254 start-page: 687 issue: 5032 year: 1991 ident: 867_CR62 publication-title: Science doi: 10.1126/science.254.5032.687 – volume: 356 start-page: 414 issue: 6336 year: 2017 ident: 867_CR69 publication-title: Science doi: 10.1126/science.aak9991 – volume: 16 start-page: 841 issue: 8 year: 2017 ident: 867_CR29 publication-title: Nat. Mater. doi: 10.1038/nmat4919 – volume: 5 start-page: eaav7412 issue: 5 year: 2019 ident: 867_CR6 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 31 start-page: 2107652 issue: 49 year: 2021 ident: 867_CR54 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107652 – volume: 120 start-page: 159 year: 2022 ident: 867_CR27 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.01.007 – volume: 17 start-page: 543 issue: 6 year: 2018 ident: 867_CR35 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 4 start-page: 2169 year: 2013 ident: 867_CR64 publication-title: Nat. Commun. doi: 10.1038/ncomms3169 – volume: 31 start-page: 2106114 issue: 48 year: 2021 ident: 867_CR52 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106114 – volume: 32 start-page: 2003021 issue: 34 year: 2020 ident: 867_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.202003021 – volume: 8 start-page: 1801090 issue: 25 year: 2018 ident: 867_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 6 start-page: 1015 issue: 3 year: 2021 ident: 867_CR37 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02684 – volume: 30 start-page: 104 year: 2020 ident: 867_CR57 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.038 – volume: 60 start-page: 18247 issue: 33 year: 2021 ident: 867_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – volume: 11 start-page: 3157 issue: 11 year: 2018 ident: 867_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/c8ee01651h – volume: 5 start-page: 1043 issue: 12 year: 2020 ident: 867_CR12 publication-title: Nat. Energy doi: 10.1038/s41560-020-00734-0 – volume: 13 start-page: 79 year: 2021 ident: 867_CR49 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00599-2 – volume: 11 start-page: 865 issue: 4 year: 2009 ident: 867_CR70 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2008.10.016 – volume: 4 start-page: eaao1761 issue: 3 year: 2018 ident: 867_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao1761 – volume: 11 start-page: 2199 year: 2020 ident: 867_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16039-5 – volume: 6 start-page: 3236 issue: 9 year: 2021 ident: 867_CR36 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01418 – ident: 867_CR60 doi: 10.34133/2020/2987234 – volume: 49 start-page: 4203 issue: 13 year: 2020 ident: 867_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00349e – volume: 3 start-page: 279 issue: 4 year: 2018 ident: 867_CR2 publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 121 start-page: 6654 issue: 11 year: 2021 ident: 867_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 12 start-page: 2857 year: 2021 ident: 867_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23209-6 – volume: 11 start-page: 2003065 issue: 1 year: 2021 ident: 867_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – volume: 1 start-page: 16010 year: 2016 ident: 867_CR66 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.10 – volume: 9 start-page: 2906 year: 2018 ident: 867_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04949-4 – volume: 13 start-page: 34 year: 2021 ident: 867_CR40 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00554-7 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5968058 |
Snippet | Highlights
Zn
x
Cu
y
alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of... Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high... HighlightsZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn... Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.... Abstract Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 128 |
SubjectTerms | Anodes Aqueous electrolytes Aqueous zinc-ion batteries Cathodes Copper Deposition Electrode materials Electrode polarization Electrodes Electrolytic cells Engineering Lithium batteries Nanoporous metal Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nucleation Plating Rechargeable batteries Specific energy Stability Surface alloying Surfactants Zinc Zinc-based alloy anode Zn-ion batteries |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYOFHbMfHBVEVJBACKlVcIj9FpW2CuruH_vt6nGyyy_PCLUocy5oZez5rZr5B6LkOUnsRNImJOlKrwIkJXJGmrn1DnWdNggLnDx_V8Un9_lSe7rT6gpywgR54ENwrL32tuIksz1mzpJ2mwceMS3zkjQ-lzDf7vJ3LVLYkrqEj0xwfhLbK9Q5LTQ2cLmImMpNAXKZnfkzJ6-zXR0c7AGkNIazSqY4xojRVYwVOqcODrs2UQGI8XBE0MXterjQD-B2C_TUR86dobHFyR7fQzRGd4sUgldvoWuzuoBs7nIV30fmXzUWyPpLFEloFB5zP5z6D-H6zwt_OOo_tCn-OJdnDLSO2XcAZ0MLjoutDXOGMkjFkl5BPc80CXuQlb2cg7_oOD7yfl_fQydHbr2-OydizgXipzZoE7ozKsMDZlIyzglpqG6VM8swKIWjSQkgbozfR6uCS5gm4koNUoaEpY5376KDru_gQYSuNYyYG4bmrg6ONi5xGHhKNTIsYK8S2Mm79SGgOfTWW7UTFXPTSZr20RS-tqdCL6Z8fA53HX0e_BtVNI4GKu7zIBtqOBtr-y0ArdLhVfDueD6sWwrtAdmhYhZ5Nn_POhnCN7UDiLVdaZbCnjazQg8FOppUIqfI9mefJ9Z4F7S11_0t39r2whxtmIHZaoZdbW5uX9WdRPPofoniMrnPYJCUb6BAdrC828UnGdGv3tGzfK9z-PhM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagvcABsRMoyEjcwMKxYzs-oVfUqiBRVYVKFZfIK1R6JOUtB_49nsR56WPpLcomxzMef86Mvw-hV8oL5bhXJERqSSU9I9ozSeqqcjW1rqwjbHD-dCyPzqqP5-I8_3Bb5rLKMSb2gdp3Dv6Rv4WEGNDD6fLd5U8CqlGQXc0SGjfRbgrBdVp87e4fHJ-cjh7FFCgzTXlCkFeurrDVVMDtwidCMwEEZmriyRSsSvN7nnAHQK0gldUr1pUlkYrKvBOn348H6s2UQIE8LBUU0VuzXS8K8C8k-3dB5h9Z2X6yO7yL7mSUimeDW91DN0J7H92-wl34AP34vF5E4wKZzUEy2OMUp7sE5rv1En-9aB02S3wa-qIPOw_YtB4nYAuHs7bzYYkTWsZQZUJOpr0LeJaaPL6BfOhaPPB__nqIzg4Pvrw_Ilm7gTih9Ip4ZrVM8MCaGLU1nBpqail1dKXhnNOoOBcmBKeDUd5GxSJwJnshfU1jwjyP0E7bteEJwkZoW-rguWO28pbWNjAamI80lIqHUKBy7OPGZWJz0NeYNxtK5t4uTbJL09ul0QV6vXnmcqD1uPbufTDd5k6g5O5PdItvTR7hjROukkyHMjl_VUZlFU32TADaBVY7XxdobzR8k-PEspm8ukAvN5fTCIe0jWmhxxsmlUygT2lRoMeDn2xawoVM62WWXq62PGirqdtX2ovvPYu4LjXkUAv0ZvS1qVn_74qn13_FM3SLgfv39T57aGe1WIfnCbWt7Is8NH8DpGQ2fA priority: 102 providerName: ProQuest |
Title | Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery |
URI | https://link.springer.com/article/10.1007/s40820-022-00867-9 https://www.ncbi.nlm.nih.gov/pubmed/35699828 https://www.proquest.com/docview/2890048691 https://www.proquest.com/docview/2676554795 https://pubmed.ncbi.nlm.nih.gov/PMC9198195 https://doaj.org/article/c5c4629e157c41f7b70dce192ce28cd8 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4ED4k2grIzEDSw5TmzHx92lS0GiqgqVKi6Rn1BpSdDu9sC_x-PNowsFiUsSJU408oztz5mZbxB6JR2XtnCS-EANKYVjRDkmSFWWtqLG5lWABOePJ-L4vPxwwS-6pLB1H-3euyTTTD0ku0FpZEog-hxwuCRqDx3wuHcHu56PnONMQjWm0TcIJZXLaww1JfC5FCOJGQfSMjlyY3JWxjW9W2S3IFqC-ypVqctzIiQVXfbNzWLtrHCpEMBN6PXPIMzfPLFpgVvcQ3c7ZIqnW1O6j2755gG6c42v8CH6_ulqFbT1ZLqEMsEOx7m5jQC-vVrjL5eNxXqNz3wK9DBLj3XjcASzcDltWufXOCJkDJEl5HTMV8DTKHL_BfK-bfCW8_PnI3S-OPo8PyZdvQZiuVQb4phRIkICo0NQRhdUU10JoYLNdVEUNMii4Np7q7yWzgTJAvAkOy5cRUPEOY_RftM2_inCmiuTK-8Ky0zpDK2MZ9QzF6jPZeF9hvK-j2vbkZlDTY1lPdAwJ73UUS910kutMvR6eOfHlsrjn61noLqhJdBwpxvt6mvdjeraclsKpnweDb7MgzSSRn1G0Gw9q6yrMnTYK77u5oZ1Da5dIDpUeYZeDo_jqAZXjW6gx2smpIhATyqeoSdbOxkkKbiIe2QWPy53LGhH1N0nzeW3xByucgV-0wy96W1tFOvvXfHs_5o_R7cZDIcU83OI9jerK_8iIreNmaC9avFugg6ms7ezRTzPjk5OzyZp-MJRzCfpn8gv_YM3gg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOUAPiJ1AASPBCSwSJ7HjA0LDMszQRQhaqeoleC2VhqTMItQ_xW_Ez0kmHZbeeouSjOXx2_Pe-x5CT7nJuU4NJ9bFimTMUCIMZaTIMl3ESieFgwbnnV022s8-HuQHa-hX1wsDZZWdTgyK2tQavpG_hIQYwMOJ5PXJDwJToyC72o3QaNhiy57-9CHb7NX4nafvM0qH7_fejkg7VYDonIs5MVQJ5g2Xks4JJdNYxrJgTDidyNRH946naS6t1cJKbpTj1AGar8mZKWLnrbFf9xK6nKWpAIkqhh86_qUc5kD1WUkY5pydwcbJAEkm7eHTcoBL4z0qZ04z70205r1x3zkkzsJ8vCQhjMes7fsJ3X8wKzomUI4PgQknYsW2hhEE__Kb_y7__CMHHEzr8Dq61vrEeNAw8Q20ZqubaOMMUuIt9P3LYuqktmQwgQHFBnurUPvQoV7M8OFxpbGc4c82lJioicWyMti70XA5qGpjZ9j75hhqWsinvlMCD_yWuxXIuK5wgzZ6ehvtXwhN76D1qq7sPYRlLlQirEk1VZlRcaEsjS01LrYJT62NUNKdcalbGHWY5jEplwDQgS6lp0sZ6FKKCD1f_uakARE59-03QLrlmwAAHm7U06Oy1SelznXGqLCJF7UscVzx2NPTu-va0kKbIkKbHeHLVivNyl6GIvRk-djrE0gSyQpOvKSMM-9icpFH6G7DJ8udpDnz0Tn1i_MVDlrZ6uqT6vhbwCwXiYCMbYRedLzWb-v_R3H__H_xGF0Z7e1sl9vj3a0H6CoFUQiVRptofT5d2IfeX5yrR0FIMfp60VrhN9CJcuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiGcJFDASN7BqO7EdH5fCquVRVUClikvkJ1RakmofB_49niSb7EJB4hYljjXyzNifNTPfIPRCeaFc7hUJkVpSSM-J9lySsihcSa1jZYQC54_H8vC0eHcmzjaq-Nts93VIsqtpAJamerl_4eP-UPgGbZIpgUx0wOSK6KvoWrqpMEjqOxj5x7mCzkxjnBDaKxcbbDUFcLvkI6GZAAIzNfJkCl6k870_cDtArSCU1XasY4xIRWVfiXO5WFunXdsU4DIk-2dC5m9R2fawm95Gt3qUiiedWd1BV0J9F93c4C68h358Xs2jcYFMZtAy2OO0TzcJzDerBf56XjtsFvhTaJM-7CxgU3ucgC08TurGhwVOaBlDlgk5GWsX8CSJvJ6BHDU17vg_f95Hp9O3Xw4OSd-7gTih9JJ4brVM8MCaGLU1OTXUlFLq6JjJ85xGlefChOB0MMrbqHgEzmQvpC9pTJjnAdqpmzo8RNgIbZkOPnfcFt7S0gZOA_eRBqbyEDLE1mtcuZ7YHPprzKqBkrnVS5X0UrV6qXSGXg7_XHS0Hv8c_RpUN4wESu72RTP_VvUeXjnhCsl1YMn4CxaVVTTpMwFoF3jpfJmhvbXiq36fWFQQ5gXSQ80y9Hz4nDwcwjamhhWvuFQygT6lRYZ2OzsZJMmFTPdlniZXWxa0Jer2l_r8e8sirpmGGGqGXq1tbRTr70vx6P-GP0PXT95Mqw9Hx-8foxscPKNNBdpDO8v5KjxJgG5pn7Y--wtQUTjv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Alloyed+Nanoporous+Zinc+as+Reversible+and+Stable+Anodes+for+High-Performance+Aqueous+Zinc-Ion+Battery&rft.jtitle=Nano-micro+letters&rft.au=Meng%2C+Huan&rft.au=Ran%2C+Qing&rft.au=Dai%2C+Tian-Yi&rft.au=Shi%2C+Hang&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=14&rft_id=info:doi/10.1007%2Fs40820-022-00867-9&rft_id=info%3Apmid%2F35699828&rft.externalDocID=PMC9198195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |