Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery

Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 14; no. 1; pp. 128 - 14
Main Authors Meng, Huan, Ran, Qing, Dai, Tian-Yi, Shi, Hang, Zeng, Shu-Pei, Zhu, Yong-Fu, Wen, Zi, Zhang, Wei, Lang, Xing-You, Zheng, Wei-Tao, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn x Cu y to guide uniform Zn deposition and facilitate Zn stripping. Aqueous Zn-ion batteries assembled with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode achieve specific energy of as high as ~430 Wh kg ‒1 and retain ~86% after long-term cycles for >700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
AbstractList Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn Cu alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn Cu /Zn galvanic couples, the self-supported nanoporous Zn Cu /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn Cu /Zn anode and K MnO cathode to achieve specific energy of as high as ~ 430 Wh kg with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
HighlightsZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.The self-supported nanoporous ZnxCuy/Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic ZnxCuy to guide uniform Zn deposition and facilitate Zn stripping.Aqueous Zn-ion batteries assembled with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode achieve specific energy of as high as ~430 Wh kg‒1 and retain ~86% after long-term cycles for >700 h.Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn x Cu y to guide uniform Zn deposition and facilitate Zn stripping. Aqueous Zn-ion batteries assembled with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode achieve specific energy of as high as ~430 Wh kg ‒1 and retain ~86% after long-term cycles for >700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu. The self-supported nanoporous Zn x Cu y /Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic Zn x Cu y to guide uniform Zn deposition and facilitate Zn stripping. Aqueous Zn-ion batteries assembled with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode achieve specific energy of as high as ~430 Wh kg ‒1 and retain ~86% after long-term cycles for >700 h. Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm ‒2 , exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO 2 cathode to achieve specific energy of as high as ~ 430 Wh kg ‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Abstract Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic Zn x Cu y alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the Zn x Cu y /Zn galvanic couples, the self-supported nanoporous Zn x Cu y /Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous Zn x Cu y /Zn anode and K z MnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
ArticleNumber 128
Author Lang, Xing-You
Zheng, Wei-Tao
Zhang, Wei
Shi, Hang
Wen, Zi
Dai, Tian-Yi
Zhu, Yong-Fu
Jiang, Qing
Meng, Huan
Zeng, Shu-Pei
Ran, Qing
Author_xml – sequence: 1
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 2
  givenname: Qing
  surname: Ran
  fullname: Ran, Qing
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 3
  givenname: Tian-Yi
  surname: Dai
  fullname: Dai, Tian-Yi
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 4
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 5
  givenname: Shu-Pei
  surname: Zeng
  fullname: Zeng, Shu-Pei
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 6
  givenname: Yong-Fu
  surname: Zhu
  fullname: Zhu, Yong-Fu
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 7
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 8
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 9
  givenname: Xing-You
  surname: Lang
  fullname: Lang, Xing-You
  email: xylang@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, State Key Laboratory of Automotive Simulation and Control, Jilin University
– sequence: 10
  givenname: Wei-Tao
  surname: Zheng
  fullname: Zheng, Wei-Tao
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 11
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35699828$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CAInHhErCd-N8FaamArlQBonDhYk2c8dZV1l7sbKX99nh3u0B76CmjzHs_PY3f8-ooxIBV9ZKSt5QQ-S53RDHSEMYaQpSQjX5SnTDKScM5p0dlbilthCTiuDrL2feEs04yybtn1XHLhdaKqZNqebVODiw2s3GMGxzqLxDiKqa4zvUvH2wNuf6Ot5gKYcQawlBfTbAdZyEOmGsXU33hF9fNN0xlXkKwZfd7jQdCM4-h_gDThGnzonrqYMx4dvc9rX5--vjj_KK5_Pp5fj67bCyXemoG1mvBWNeDc7qHlgABJYR2lkLbtsTJtuWAaDWCHHonmSNCk4GLQRHHVHtazffcIcKNWSW_hLQxEbzZ_YhpYSBN3o5oLLedYBopl7ajTvaSDBapZhaZssOW9X7PWq37JZZdmBKM96D3N8Ffm0W8NZpqRTUvgDd3gBTLXfJklj5bHEcI2yMZJqTgvJM76esH0pu4TqGcyjClCemU0LSoXv2f6G-Uw6sWgdoLbIo5J3TG-gkmH7cB_WgoMdsOmX2HTOmQ2XXI6GJlD6wH-qOmdm_KRRwWmP7FfsT1B0pt2cY
CitedBy_id crossref_primary_10_1021_acsaem_4c02016
crossref_primary_10_1002_anie_202409096
crossref_primary_10_1016_j_ensm_2024_103454
crossref_primary_10_1039_D5EE00075K
crossref_primary_10_1002_smll_202402767
crossref_primary_10_1016_j_cej_2023_143644
crossref_primary_10_1016_j_cej_2023_144735
crossref_primary_10_1016_j_jechem_2024_08_023
crossref_primary_10_1002_sus2_184
crossref_primary_10_1021_acsnano_4c01137
crossref_primary_10_1016_j_jcis_2023_04_121
crossref_primary_10_1016_j_est_2024_111740
crossref_primary_10_1016_j_jallcom_2024_174899
crossref_primary_10_1002_adma_202211498
crossref_primary_10_1039_D4TA06942K
crossref_primary_10_1002_aenm_202302395
crossref_primary_10_1016_j_jpowsour_2025_236316
crossref_primary_10_1002_adfm_202314157
crossref_primary_10_1080_14686996_2025_2451017
crossref_primary_10_1149_1945_7111_acfff7
crossref_primary_10_3390_molecules28062721
crossref_primary_10_1002_adma_202403803
crossref_primary_10_1007_s40820_023_01177_4
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1002_ente_202300885
crossref_primary_10_1016_j_nxmate_2025_100517
crossref_primary_10_1002_ange_202412853
crossref_primary_10_1002_anie_202402327
crossref_primary_10_1016_j_jpowsour_2022_232348
crossref_primary_10_1016_j_nanoen_2024_109911
crossref_primary_10_1002_cssc_202400479
crossref_primary_10_1039_D4EE03067B
crossref_primary_10_1016_j_nantod_2024_102461
crossref_primary_10_1007_s40820_024_01337_0
crossref_primary_10_1016_j_jcis_2024_11_097
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1021_acsaem_3c01137
crossref_primary_10_1016_j_est_2025_116266
crossref_primary_10_1016_j_jechem_2022_08_040
crossref_primary_10_1016_j_jcis_2023_08_034
crossref_primary_10_1016_j_vacuum_2024_113365
crossref_primary_10_1002_adfm_202305550
crossref_primary_10_1016_j_est_2023_108081
crossref_primary_10_1002_cssc_202301942
crossref_primary_10_1002_anie_202212587
crossref_primary_10_1002_celc_202400064
crossref_primary_10_1016_j_jmst_2024_09_003
crossref_primary_10_1007_s40820_022_00969_4
crossref_primary_10_1007_s10854_023_11585_2
crossref_primary_10_1002_smll_202304640
crossref_primary_10_1039_D4RA04353G
crossref_primary_10_1021_acs_nanolett_4c06181
crossref_primary_10_1007_s40820_023_01174_7
crossref_primary_10_1016_j_apsusc_2023_156384
crossref_primary_10_1002_advs_202204087
crossref_primary_10_1021_acsenergylett_2c01960
crossref_primary_10_1039_D2TA08498H
crossref_primary_10_1002_adfm_202211271
crossref_primary_10_1016_j_cej_2022_139335
crossref_primary_10_1002_smtd_202401668
crossref_primary_10_1002_smll_202408124
crossref_primary_10_1002_adfm_202306346
crossref_primary_10_1016_j_jelechem_2025_119007
crossref_primary_10_1016_j_cej_2024_154916
crossref_primary_10_1016_j_cej_2022_141250
crossref_primary_10_1016_j_jelechem_2023_117306
crossref_primary_10_1016_j_jechem_2024_08_061
crossref_primary_10_1039_D4TA00979G
crossref_primary_10_1002_ange_202402327
crossref_primary_10_1016_j_est_2025_115991
crossref_primary_10_1016_j_jcis_2023_10_029
crossref_primary_10_1016_j_est_2024_112116
crossref_primary_10_1016_j_cej_2024_154345
crossref_primary_10_1039_D2SC04385H
crossref_primary_10_1002_anie_202415221
crossref_primary_10_1021_acsaem_4c02586
crossref_primary_10_1002_ange_202409096
crossref_primary_10_1016_j_cej_2023_143834
crossref_primary_10_26599_EMD_2024_9370044
crossref_primary_10_1016_j_jcis_2024_08_189
crossref_primary_10_1002_adfm_202309840
crossref_primary_10_1021_acsnano_4c06008
crossref_primary_10_26599_EMD_2023_9370023
crossref_primary_10_1016_j_ensm_2023_103142
crossref_primary_10_1021_acs_jpcc_3c06164
crossref_primary_10_23919_IEN_2024_0003
crossref_primary_10_1002_aenm_202303695
crossref_primary_10_1016_j_ensm_2024_103516
crossref_primary_10_1149_1945_7111_acdafa
crossref_primary_10_1002_ange_202212587
crossref_primary_10_1016_j_jpowsour_2025_236343
crossref_primary_10_1007_s40820_022_00948_9
crossref_primary_10_1039_D3CE01139A
crossref_primary_10_1016_j_cej_2024_157431
crossref_primary_10_1002_cnl2_54
crossref_primary_10_1002_smll_202310722
crossref_primary_10_1007_s40820_023_01031_7
crossref_primary_10_1007_s40820_023_01278_0
crossref_primary_10_12677_JAPC_2023_122004
crossref_primary_10_1016_j_cclet_2024_109988
crossref_primary_10_1016_j_electacta_2023_143508
crossref_primary_10_1186_s43074_024_00122_x
crossref_primary_10_1002_smll_202307557
crossref_primary_10_1002_batt_202200478
crossref_primary_10_1016_j_cej_2024_149881
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1021_acsami_2c19518
crossref_primary_10_1002_anie_202412853
crossref_primary_10_1007_s12598_023_02441_7
crossref_primary_10_1016_j_ensm_2024_103227
crossref_primary_10_3390_en16217443
crossref_primary_10_1016_j_pmatsci_2023_101171
crossref_primary_10_1016_j_cej_2024_154395
crossref_primary_10_1016_j_cej_2024_155245
crossref_primary_10_1021_acssuschemeng_4c07557
crossref_primary_10_1016_j_cej_2025_160615
crossref_primary_10_1016_j_cej_2025_161944
crossref_primary_10_1002_aenm_202303871
crossref_primary_10_1016_j_nanoen_2024_109416
crossref_primary_10_1007_s10854_023_11200_4
crossref_primary_10_1007_s11426_024_2098_6
crossref_primary_10_1039_D4NJ05238B
crossref_primary_10_1002_ange_202415221
Cites_doi 10.1021/acsenergylett.0c01792
10.1038/nenergy.2016.71
10.1016/j.joule.2021.10.011
10.1039/c3ee43754j
10.1021/acsenergylett.0c02684
10.1021/acs.chemrev.0c00767
10.1039/C6CS00776G
10.1007/s40820-021-00594-7
10.1007/s40820-020-0401-y
10.1016/j.jmst.2022.01.007
10.1038/s41467-020-15478-4
10.1126/sciadv.aav7412
10.1007/s40820-021-00599-2
10.1007/s40820-019-0351-4
10.1007/s40820-021-00782-5
10.1039/d1ee01472b
10.1002/aenm.202003065
10.1016/j.scib.2022.01.027
10.1039/c9cs00349e
10.1038/s41560-020-0674-x
10.1007/s40820-020-0397-3
10.1002/adma.202105133
10.1016/j.solidstatesciences.2008.10.016
10.1002/anie.201702099
10.1039/c8ee01651h
10.1002/adfm.202107652
10.1021/acsnano.1c02928
10.1021/acsenergylett.1c01418
10.1038/35068529
10.1021/acsenergylett.8b01426
10.1002/adma.202100187
10.1038/nmat4919
10.1126/science.aak9991
10.1038/s41467-020-16769-6
10.1002/adma.202003021
10.1021/acsenergylett.1c00939
10.1126/science.1212741
10.1002/adma.201704531
10.1002/aenm.201801090
10.1038/s41560-018-0108-1
10.1021/acs.chemrev.1c00191
10.1038/s41578-020-00241-4
10.1038/nenergy.2016.39
10.1002/adma.202106867
10.1021/cr500232y
10.1002/aenm.202003902
10.1038/s41467-018-07980-7
10.1038/s41467-022-28238-3
10.1002/anie.202012322
10.1021/cm070425l
10.1038/s41467-020-16039-5
10.1038/nenergy.2016.10
10.1126/sciadv.aao1761
10.1038/ncomms3169
10.1038/s41467-018-04949-4
10.1038/nenergy.2016.119
10.1126/science.aax6873
10.1126/science.254.5032.687
10.1007/s40820-021-00764-7
10.1038/s41467-021-23209-6
10.1007/s40820-020-00554-7
10.1016/j.ensm.2020.04.038
10.1002/adma.202105951
10.1038/s41563-018-0063-z
10.1021/acs.chemrev.9b00628
10.1007/s40820-021-00783-4
10.1093/nsr/nwab177
10.1002/anie.202105756
10.1002/adfm.202106114
10.1002/aenm.202001460
10.1038/s41560-020-00734-0
10.34133/2020/2987234
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00867-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_c5c4629e157c41f7b70dce192ce28cd8
PMC9198195
35699828
10_1007_s40820_022_00867_9
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c579t-d2b96224baff9ba30a0a8669fc1a3330f7335aeec9ea7dbf72f0690d56d80f283
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:22:38 EDT 2025
Thu Aug 21 14:13:18 EDT 2025
Fri Jul 11 07:25:12 EDT 2025
Wed Aug 13 04:15:23 EDT 2025
Wed Feb 19 02:24:55 EST 2025
Tue Jul 01 00:55:47 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Fri Feb 21 02:45:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoporous metal
Aqueous zinc-ion batteries
Surface alloying
Zinc-based alloy anode
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-d2b96224baff9ba30a0a8669fc1a3330f7335aeec9ea7dbf72f0690d56d80f283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-022-00867-9
PMID 35699828
PQID 2890048691
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c5c4629e157c41f7b70dce192ce28cd8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9198195
proquest_miscellaneous_2676554795
proquest_journals_2890048691
pubmed_primary_35699828
crossref_citationtrail_10_1007_s40820_022_00867_9
crossref_primary_10_1007_s40820_022_00867_9
springer_journals_10_1007_s40820_022_00867_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Yang, Li, Sun, Yang, Shi (CR50) 2021; 33
Guo, Cong, Guo, Chang, Liang (CR57) 2020; 30
Zhang, Yin, Wang, Guo (CR70) 2009; 11
Zheng, Zhao, Tang, Yin, Quilty (CR44) 2019; 366
Wu, Gu, Zhang, Bai, Li (CR13) 2019; 10
Pan, Shao, Yan, Cheng, Han (CR19) 2016; 1
Ma, Schroeder, Borodin, Pollard, Ding (CR33) 2020; 5
Jia, Liu, Neale, Yang, Cao (CR17) 2020; 120
Yi, Chen, Hou, Wang, Liang (CR34) 2021; 11
Ran, Shi, Meng, Zeng, Wan (CR15) 2022; 13
Yang, Tang, Fang, Shan, Guo (CR26) 2018; 11
Lang, Fu, Hou, Han, Yang (CR64) 2013; 4
Dong, Tutusaus, Liang, Zhang, Lebens-Higgins (CR12) 2020; 5
Liu, Xu, Mei, Li, Chen (CR71) 2021; 11
Zhang, Liu (CR6) 2019; 5
Cano, Banham, Ye, Hintennach, Lu (CR2) 2018; 3
Wang, Ran, Yao, Shi, Wen (CR16) 2020; 11
Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR63) 2001; 410
Wu, Yi, Liu, Sun, Cui (CR49) 2021; 13
Liang, Mo, Ji, Zhi (CR8) 2021; 6
Huang, Wang, Hou, Dong, Liu (CR20) 2018; 9
Zheng, Deng, Yin, Tang, Garcia-Mendez (CR45) 2021; 34
Hao, Li, Li, Zeng, Zhang (CR51) 2020; 32
Sui, Ji (CR10) 2021; 121
Parker, Chervin, Pala, Machler, Burz (CR69) 2017; 356
Kundu, Adams, Duffort, Vajargah, Nazar (CR24) 2016; 1
Liang, Jing, Gheytani, Lee, Liu (CR29) 2017; 16
Liu, Xie, Lu, Zhou, Liang (CR37) 2021; 6
Tian, Zeng, Rutt, Shi, Kim (CR4) 2021; 121
Li, Zhang, Wang, He, Lu (CR14) 2022; 14
Li, Rui, Chen, Feng, Xiao (CR28) 2020; 12
Wang, Borodin, Gao, Fan, Sun (CR35) 2018; 17
Xie, Li, Li, Zhou, Dang (CR55) 2022; 14
Wang, Dong, Huang, Jia, Zhao (CR43) 2021; 13
Zhao, Lei (CR56) 2020; 10
Wang, Ran, Wan, Shi, Zeng (CR27) 2022; 120
Jia, Yu, Ai, Zhang (CR65) 2007; 19
Zhang, Wan, Huang, Wang, Niu (CR25) 2020; 11
Feng, Gao, Zhang, Guo, Song (CR22) 2020; 12
Shi, Zhou, Yao, Wang, Ge (CR61) 2020; 11
Hwang, Myung, Sun (CR5) 2017; 46
Yang, Yin, Sun, Pan, Sun (CR11) 2022; 14
Zhu, Yin, Zheng, Emwas, Lei (CR38) 2021; 14
Yan, Lu, Lee, Xiong, Hsu (CR66) 2016; 1
Tang, Zhou, Zhang, Wang, Li (CR21) 2021; 12
Li, Liu, Ba, Liu, Gui (CR40) 2021; 13
Zhang, Chen, Chen, Cheng, Zhang (CR67) 2017; 56
Zhou, Guo, Li, Luo, Liu (CR46) 2021; 33
Dunn, Kamath, Tarascon (CR1) 2011; 334
Zhang, Qin, Fang, Chai, Xie (CR39) 2022
Jiao, Li, Jin, Lei, Li (CR54) 2021; 31
Zhao, Huang, Luo, Liu, Lu (CR30) 2018; 4
Wang, Meng, Lin, Yang, Zhou (CR52) 2021; 31
Zhai, Qu, Hao, Jing, Chang (CR23) 2020; 12
An, Tian, Xiong, Feng, Qian (CR59) 2021; 15
Lu, Zhang, Zhang, Li (CR32) 2021; 6
Bayaguud, Luo, Fu, Zhu (CR42) 2020; 5
Fang, Zhou, Pan, Liang (CR31) 2018; 3
Sun, Ma, Zhou, Qiu, Wang (CR41) 2021; 60
Zhang, Huang, Yuan, Zhu, Zhao (CR48) 2021; 60
Lv, Luo, Tang, Wei, Zhu (CR72) 2018; 30
Liu, Lu, Lai, Liu, Shearing (CR9) 2021; 5
Kang, Cui, Jiang, Gao, Luo (CR47) 2018; 8
Guo, Fan, Zhao, Chen, Liu (CR53) 2021; 34
Oppenheim, Trevor, Chidsey, Trevor, Sieradzki (CR62) 1991; 254
Zhang, Chen, Yu, Niu, Cheng (CR18) 2020; 49
Yan, Dong, Zhao, Sun, Pan (CR36) 2021; 6
CR60
Parker, Chervin, Nelson, Rolison, Long (CR68) 2014; 7
Sun, Liu, Cui (CR3) 2016; 1
Li, Xie, Liu, Wang, Deng (CR58) 2022; 9
Kim, Hong, Park, Kim, Kim (CR7) 2014; 114
SB Wang (867_CR27) 2022; 120
J Erlebacher (867_CR63) 2001; 410
IC Oppenheim (867_CR62) 1991; 254
C Wu (867_CR13) 2019; 10
B Zhang (867_CR39) 2022
R Zhang (867_CR70) 2009; 11
K Wu (867_CR49) 2021; 13
Q Li (867_CR28) 2020; 12
B Dunn (867_CR1) 2011; 334
W Zhang (867_CR6) 2019; 5
G Liang (867_CR8) 2021; 6
G Fang (867_CR31) 2018; 3
JF Parker (867_CR68) 2014; 7
C Liu (867_CR71) 2021; 11
Y Jiao (867_CR54) 2021; 31
N Zhang (867_CR48) 2021; 60
XZ Zhai (867_CR23) 2020; 12
J Zheng (867_CR45) 2021; 34
H Kim (867_CR7) 2014; 114
ZP Cano (867_CR2) 2018; 3
R Zhang (867_CR67) 2017; 56
D Feng (867_CR22) 2020; 12
L Li (867_CR40) 2021; 13
Y Sui (867_CR10) 2021; 121
Y Yang (867_CR26) 2018; 11
J Yang (867_CR11) 2022; 14
D Kundu (867_CR24) 2016; 1
Q Ran (867_CR15) 2022; 13
H Zhao (867_CR56) 2020; 10
A Bayaguud (867_CR42) 2020; 5
F Jia (867_CR65) 2007; 19
H Pan (867_CR19) 2016; 1
XY Lang (867_CR64) 2013; 4
K Yan (867_CR66) 2016; 1
M Yan (867_CR36) 2021; 6
J Huang (867_CR20) 2018; 9
SB Wang (867_CR16) 2020; 11
J Hao (867_CR51) 2020; 32
S Xie (867_CR55) 2022; 14
Y Sun (867_CR3) 2016; 1
Z Yi (867_CR34) 2021; 11
X Wang (867_CR52) 2021; 31
C Li (867_CR58) 2022; 9
Y An (867_CR59) 2021; 15
Y Zhang (867_CR25) 2020; 11
X Yang (867_CR50) 2021; 33
Q Zhao (867_CR30) 2018; 4
L Kang (867_CR47) 2018; 8
Z Lv (867_CR72) 2018; 30
J Zheng (867_CR44) 2019; 366
W Guo (867_CR57) 2020; 30
N Zhang (867_CR18) 2020; 49
C Liu (867_CR37) 2021; 6
M Zhou (867_CR46) 2021; 33
Y Liu (867_CR9) 2021; 5
W Lu (867_CR32) 2021; 6
B Li (867_CR14) 2022; 14
Z Guo (867_CR53) 2021; 34
JY Hwang (867_CR5) 2017; 46
P Sun (867_CR41) 2021; 60
H Dong (867_CR12) 2020; 5
X Jia (867_CR17) 2020; 120
867_CR60
L Ma (867_CR33) 2020; 5
F Wang (867_CR35) 2018; 17
JF Parker (867_CR69) 2017; 356
Y Liang (867_CR29) 2017; 16
Y Zhu (867_CR38) 2021; 14
H Shi (867_CR61) 2020; 11
Y Tian (867_CR4) 2021; 121
X Tang (867_CR21) 2021; 12
Z Wang (867_CR43) 2021; 13
References_xml – volume: 5
  start-page: 3012
  issue: 9
  year: 2020
  end-page: 3020
  ident: CR42
  article-title: Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01792
– volume: 1
  start-page: 16071
  year: 2016
  ident: CR3
  article-title: Promises and challenges of nanomaterials for lithium-based rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 5
  start-page: 2845
  issue: 11
  year: 2021
  end-page: 2903
  ident: CR9
  article-title: Rechargeable aqueous Zn-based energy storage devices
  publication-title: Joule
  doi: 10.1016/j.joule.2021.10.011
– volume: 7
  start-page: 1117
  issue: 3
  year: 2014
  end-page: 1124
  ident: CR68
  article-title: Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43754j
– volume: 6
  start-page: 1015
  issue: 3
  year: 2021
  end-page: 1033
  ident: CR37
  article-title: Electrolyte strategies toward better zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02684
– volume: 121
  start-page: 1623
  issue: 3
  year: 2021
  end-page: 1669
  ident: CR4
  article-title: Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00767
– volume: 46
  start-page: 3529
  issue: 12
  year: 2017
  end-page: 3614
  ident: CR5
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 13
  start-page: 73
  year: 2021
  ident: CR43
  article-title: Simultaneously regulating uniform Zn flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00594-7
– volume: 12
  start-page: 67
  year: 2020
  ident: CR28
  article-title: A high-capacity ammonium vanadate cathode for zinc-ion battery
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0401-y
– volume: 120
  start-page: 159
  year: 2022
  end-page: 166
  ident: CR27
  article-title: Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.007
– volume: 11
  start-page: 1634
  year: 2020
  ident: CR16
  article-title: Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15478-4
– volume: 5
  start-page: eaav7412
  issue: 5
  year: 2019
  ident: CR6
  article-title: Z, Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 13
  start-page: 79
  year: 2021
  ident: CR49
  article-title: Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00599-2
– volume: 12
  start-page: 14
  year: 2020
  ident: CR22
  article-title: Boosting high-rate zinc-storage performance by the rational design of Mn O nanoporous architecture cathode
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0351-4
– volume: 14
  start-page: 42
  year: 2022
  ident: CR11
  article-title: Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00782-5
– volume: 14
  start-page: 4463
  issue: 8
  year: 2021
  ident: CR38
  article-title: Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01472b
– volume: 11
  start-page: 2003065
  issue: 1
  year: 2021
  ident: CR34
  article-title: Strategies for the stabilization of Zn metal anodes for Zn-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003065
– year: 2022
  ident: CR39
  article-title: Tuning Zn coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.01.027
– volume: 49
  start-page: 4203
  issue: 13
  year: 2020
  end-page: 4219
  ident: CR18
  article-title: Materials chemistry for rechargeable zinc-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00349e
– volume: 5
  start-page: 743
  issue: 10
  year: 2020
  end-page: 749
  ident: CR33
  article-title: Realizing high zinc reversibility in rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0674-x
– volume: 12
  start-page: 56
  year: 2020
  ident: CR23
  article-title: Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0397-3
– volume: 34
  start-page: 2105133
  issue: 2
  year: 2021
  ident: CR53
  article-title: A dynamic and self-adapting interface coating for stable Zn-metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105133
– volume: 11
  start-page: 865
  issue: 4
  year: 2009
  end-page: 869
  ident: CR70
  article-title: Photoluminescence and Raman scattering of ZnO nanorods
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2008.10.016
– volume: 56
  start-page: 7764
  issue: 27
  year: 2017
  end-page: 7768
  ident: CR67
  article-title: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702099
– volume: 11
  start-page: 3157
  issue: 11
  year: 2018
  end-page: 3162
  ident: CR26
  article-title: Li intercalated V O ·nH O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee01651h
– volume: 31
  start-page: 2107652
  issue: 49
  year: 2021
  ident: CR54
  article-title: Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107652
– volume: 15
  start-page: 11828
  issue: 7
  year: 2021
  end-page: 11842
  ident: CR59
  article-title: Scalable and controllable synthesis of interface engineered nanoporous host for dendrite-free and high rate zinc metal batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02928
– volume: 6
  start-page: 3236
  issue: 9
  year: 2021
  end-page: 3243
  ident: CR36
  article-title: Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01418
– volume: 410
  start-page: 450
  issue: 6827
  year: 2001
  end-page: 453
  ident: CR63
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 3
  start-page: 2480
  issue: 10
  year: 2018
  end-page: 2501
  ident: CR31
  article-title: Recent advances in aqueous zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 33
  start-page: 2100187
  issue: 21
  year: 2021
  ident: CR46
  article-title: Surface-preferred crystal plane for a stable and reversible zinc anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100187
– ident: CR60
– volume: 16
  start-page: 841
  issue: 8
  year: 2017
  end-page: 848
  ident: CR29
  article-title: Universal quinone electrodes for long cycle life aqueous rechargeable batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4919
– volume: 356
  start-page: 414
  issue: 6336
  year: 2017
  end-page: 417
  ident: CR69
  article-title: Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion
  publication-title: Science
  doi: 10.1126/science.aak9991
– volume: 11
  start-page: 2940
  year: 2020
  ident: CR61
  article-title: Spontaneously separated intermetallic Co Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16769-6
– volume: 32
  start-page: 2003021
  issue: 34
  year: 2020
  ident: CR51
  article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 6
  start-page: 2765
  issue: 8
  year: 2021
  end-page: 2785
  ident: CR32
  article-title: Anode for zinc-based batteries: challenges, strategies, and prospects
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00939
– volume: 334
  start-page: 928
  issue: 6058
  year: 2011
  end-page: 935
  ident: CR1
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 30
  start-page: 1704531
  issue: 2
  year: 2018
  ident: CR72
  article-title: Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO nanowire composite
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704531
– volume: 8
  start-page: 1801090
  issue: 25
  year: 2018
  ident: CR47
  article-title: Nanoporous CaCO coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 3
  start-page: 279
  issue: 4
  year: 2018
  end-page: 289
  ident: CR2
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 121
  start-page: 6654
  issue: 11
  year: 2021
  end-page: 6695
  ident: CR10
  article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 6
  start-page: 109
  issue: 2
  year: 2021
  end-page: 123
  ident: CR8
  article-title: Non-metallic charge carriers for aqueous batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00241-4
– volume: 1
  start-page: 16039
  year: 2016
  ident: CR19
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 34
  start-page: 2106867
  issue: 1
  year: 2021
  ident: CR45
  article-title: Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106867
– volume: 114
  start-page: 11788
  issue: 23
  year: 2014
  end-page: 11827
  ident: CR7
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 11
  start-page: 2003902
  issue: 25
  year: 2021
  ident: CR71
  article-title: A chemically self-charging flexible solid-state zinc-ion battery based on VO cathode and polyacrylamide–chitin nanofiber hydrogel electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003902
– volume: 10
  start-page: 73
  year: 2019
  ident: CR13
  article-title: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07980-7
– volume: 13
  start-page: 576
  year: 2022
  ident: CR15
  article-title: Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28238-3
– volume: 60
  start-page: 2861
  issue: 6
  year: 2021
  end-page: 2865
  ident: CR48
  article-title: Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012322
– volume: 19
  start-page: 3648
  issue: 15
  year: 2007
  end-page: 3653
  ident: CR65
  article-title: Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity
  publication-title: Chem. Mater.
  doi: 10.1021/cm070425l
– volume: 11
  start-page: 2199
  year: 2020
  ident: CR25
  article-title: A chemically self-charging aqueous zinc-ion battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16039-5
– volume: 1
  start-page: 16010
  year: 2016
  ident: CR66
  article-title: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.10
– volume: 4
  start-page: eaao1761
  issue: 3
  year: 2018
  ident: CR30
  article-title: High-capacity aqueous zinc batteries using sustainable quinone electrodes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao1761
– volume: 4
  start-page: 2169
  year: 2013
  ident: CR64
  article-title: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3169
– volume: 9
  start-page: 2906
  year: 2018
  ident: CR20
  article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04949-4
– volume: 1
  start-page: 16119
  year: 2016
  ident: CR24
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 366
  start-page: 645
  issue: 6465
  year: 2019
  end-page: 648
  ident: CR44
  article-title: Reversible epitaxial electrodeposition of metals in battery anodes
  publication-title: Science
  doi: 10.1126/science.aax6873
– volume: 254
  start-page: 687
  issue: 5032
  year: 1991
  end-page: 689
  ident: CR62
  article-title: In situ scanning tunneling microscopy of corrosion of silver-gold alloys
  publication-title: Science
  doi: 10.1126/science.254.5032.687
– volume: 14
  start-page: 6
  year: 2022
  ident: CR14
  article-title: Interfacial engineering strategy for high-performance Zn metal anodes
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00764-7
– volume: 12
  start-page: 2857
  year: 2021
  ident: CR21
  article-title: A universal strategy towards high–energy aqueous multivalent–ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23209-6
– volume: 13
  start-page: 34
  year: 2021
  ident: CR40
  article-title: Electrolyte concentration regulation boosting zinc storage stability of high-capacity K V O cathode for bendable quasi-solid-state zinc ion batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00554-7
– volume: 30
  start-page: 104
  year: 2020
  end-page: 112
  ident: CR57
  article-title: Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.038
– volume: 33
  start-page: 2105951
  issue: 52
  year: 2021
  ident: CR50
  article-title: Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105951
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  end-page: 549
  ident: CR35
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 120
  start-page: 7795
  issue: 15
  year: 2020
  end-page: 7866
  ident: CR17
  article-title: Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00628
– volume: 14
  start-page: 39
  year: 2022
  ident: CR55
  article-title: Stable zinc anodes enabled by zincophilic Cu nanowire networks
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00783-4
– volume: 9
  start-page: nwab177
  issue: 3
  year: 2022
  ident: CR58
  article-title: Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwab177
– volume: 60
  start-page: 18247
  issue: 33
  year: 2021
  end-page: 18255
  ident: CR41
  article-title: Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– volume: 31
  start-page: 2106114
  issue: 48
  year: 2021
  ident: CR52
  article-title: Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106114
– volume: 10
  start-page: 2001460
  issue: 28
  year: 2020
  ident: CR56
  article-title: 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001460
– volume: 5
  start-page: 1043
  issue: 12
  year: 2020
  end-page: 1050
  ident: CR12
  article-title: High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00734-0
– volume: 34
  start-page: 2106867
  issue: 1
  year: 2021
  ident: 867_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106867
– volume: 120
  start-page: 7795
  issue: 15
  year: 2020
  ident: 867_CR17
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00628
– volume: 12
  start-page: 67
  year: 2020
  ident: 867_CR28
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0401-y
– volume: 7
  start-page: 1117
  issue: 3
  year: 2014
  ident: 867_CR68
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43754j
– volume: 14
  start-page: 39
  year: 2022
  ident: 867_CR55
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00783-4
– volume: 12
  start-page: 14
  year: 2020
  ident: 867_CR22
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0351-4
– volume: 56
  start-page: 7764
  issue: 27
  year: 2017
  ident: 867_CR67
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702099
– volume: 366
  start-page: 645
  issue: 6465
  year: 2019
  ident: 867_CR44
  publication-title: Science
  doi: 10.1126/science.aax6873
– volume: 5
  start-page: 743
  issue: 10
  year: 2020
  ident: 867_CR33
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0674-x
– volume: 34
  start-page: 2105133
  issue: 2
  year: 2021
  ident: 867_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105133
– volume: 11
  start-page: 2940
  year: 2020
  ident: 867_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16769-6
– volume: 6
  start-page: 109
  issue: 2
  year: 2021
  ident: 867_CR8
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00241-4
– volume: 1
  start-page: 16039
  year: 2016
  ident: 867_CR19
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 13
  start-page: 73
  year: 2021
  ident: 867_CR43
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00594-7
– volume: 19
  start-page: 3648
  issue: 15
  year: 2007
  ident: 867_CR65
  publication-title: Chem. Mater.
  doi: 10.1021/cm070425l
– volume: 12
  start-page: 56
  year: 2020
  ident: 867_CR23
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0397-3
– volume: 14
  start-page: 4463
  issue: 8
  year: 2021
  ident: 867_CR38
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01472b
– volume: 10
  start-page: 2001460
  issue: 28
  year: 2020
  ident: 867_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001460
– volume: 10
  start-page: 73
  year: 2019
  ident: 867_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07980-7
– volume: 14
  start-page: 6
  year: 2022
  ident: 867_CR14
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00764-7
– volume: 15
  start-page: 11828
  issue: 7
  year: 2021
  ident: 867_CR59
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02928
– volume: 6
  start-page: 2765
  issue: 8
  year: 2021
  ident: 867_CR32
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00939
– volume: 11
  start-page: 1634
  year: 2020
  ident: 867_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15478-4
– volume: 33
  start-page: 2100187
  issue: 21
  year: 2021
  ident: 867_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100187
– volume: 33
  start-page: 2105951
  issue: 52
  year: 2021
  ident: 867_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105951
– volume: 334
  start-page: 928
  issue: 6058
  year: 2011
  ident: 867_CR1
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 60
  start-page: 2861
  issue: 6
  year: 2021
  ident: 867_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012322
– volume: 30
  start-page: 1704531
  issue: 2
  year: 2018
  ident: 867_CR72
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704531
– volume: 5
  start-page: 2845
  issue: 11
  year: 2021
  ident: 867_CR9
  publication-title: Joule
  doi: 10.1016/j.joule.2021.10.011
– volume: 121
  start-page: 1623
  issue: 3
  year: 2021
  ident: 867_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00767
– volume: 410
  start-page: 450
  issue: 6827
  year: 2001
  ident: 867_CR63
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 114
  start-page: 11788
  issue: 23
  year: 2014
  ident: 867_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 9
  start-page: nwab177
  issue: 3
  year: 2022
  ident: 867_CR58
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwab177
– volume: 14
  start-page: 42
  year: 2022
  ident: 867_CR11
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00782-5
– volume: 3
  start-page: 2480
  issue: 10
  year: 2018
  ident: 867_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 1
  start-page: 16119
  year: 2016
  ident: 867_CR24
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– year: 2022
  ident: 867_CR39
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.01.027
– volume: 13
  start-page: 576
  year: 2022
  ident: 867_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28238-3
– volume: 1
  start-page: 16071
  year: 2016
  ident: 867_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 11
  start-page: 2003902
  issue: 25
  year: 2021
  ident: 867_CR71
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003902
– volume: 46
  start-page: 3529
  issue: 12
  year: 2017
  ident: 867_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 5
  start-page: 3012
  issue: 9
  year: 2020
  ident: 867_CR42
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01792
– volume: 254
  start-page: 687
  issue: 5032
  year: 1991
  ident: 867_CR62
  publication-title: Science
  doi: 10.1126/science.254.5032.687
– volume: 356
  start-page: 414
  issue: 6336
  year: 2017
  ident: 867_CR69
  publication-title: Science
  doi: 10.1126/science.aak9991
– volume: 16
  start-page: 841
  issue: 8
  year: 2017
  ident: 867_CR29
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4919
– volume: 5
  start-page: eaav7412
  issue: 5
  year: 2019
  ident: 867_CR6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 31
  start-page: 2107652
  issue: 49
  year: 2021
  ident: 867_CR54
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107652
– volume: 120
  start-page: 159
  year: 2022
  ident: 867_CR27
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.007
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  ident: 867_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 4
  start-page: 2169
  year: 2013
  ident: 867_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3169
– volume: 31
  start-page: 2106114
  issue: 48
  year: 2021
  ident: 867_CR52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106114
– volume: 32
  start-page: 2003021
  issue: 34
  year: 2020
  ident: 867_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 8
  start-page: 1801090
  issue: 25
  year: 2018
  ident: 867_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 6
  start-page: 1015
  issue: 3
  year: 2021
  ident: 867_CR37
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02684
– volume: 30
  start-page: 104
  year: 2020
  ident: 867_CR57
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.038
– volume: 60
  start-page: 18247
  issue: 33
  year: 2021
  ident: 867_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– volume: 11
  start-page: 3157
  issue: 11
  year: 2018
  ident: 867_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee01651h
– volume: 5
  start-page: 1043
  issue: 12
  year: 2020
  ident: 867_CR12
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00734-0
– volume: 13
  start-page: 79
  year: 2021
  ident: 867_CR49
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00599-2
– volume: 11
  start-page: 865
  issue: 4
  year: 2009
  ident: 867_CR70
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2008.10.016
– volume: 4
  start-page: eaao1761
  issue: 3
  year: 2018
  ident: 867_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao1761
– volume: 11
  start-page: 2199
  year: 2020
  ident: 867_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16039-5
– volume: 6
  start-page: 3236
  issue: 9
  year: 2021
  ident: 867_CR36
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01418
– ident: 867_CR60
  doi: 10.34133/2020/2987234
– volume: 49
  start-page: 4203
  issue: 13
  year: 2020
  ident: 867_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00349e
– volume: 3
  start-page: 279
  issue: 4
  year: 2018
  ident: 867_CR2
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 121
  start-page: 6654
  issue: 11
  year: 2021
  ident: 867_CR10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 12
  start-page: 2857
  year: 2021
  ident: 867_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23209-6
– volume: 11
  start-page: 2003065
  issue: 1
  year: 2021
  ident: 867_CR34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003065
– volume: 1
  start-page: 16010
  year: 2016
  ident: 867_CR66
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.10
– volume: 9
  start-page: 2906
  year: 2018
  ident: 867_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04949-4
– volume: 13
  start-page: 34
  year: 2021
  ident: 867_CR40
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00554-7
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5968058
Snippet Highlights Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of...
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high...
HighlightsZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn...
Zn x Cu y alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu....
Abstract Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms Anodes
Aqueous electrolytes
Aqueous zinc-ion batteries
Cathodes
Copper
Deposition
Electrode materials
Electrode polarization
Electrodes
Electrolytic cells
Engineering
Lithium batteries
Nanoporous metal
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nucleation
Plating
Rechargeable batteries
Specific energy
Stability
Surface alloying
Surfactants
Zinc
Zinc-based alloy anode
Zn-ion batteries
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYOFHbMfHBVEVJBACKlVcIj9FpW2CuruH_vt6nGyyy_PCLUocy5oZez5rZr5B6LkOUnsRNImJOlKrwIkJXJGmrn1DnWdNggLnDx_V8Un9_lSe7rT6gpywgR54ENwrL32tuIksz1mzpJ2mwceMS3zkjQ-lzDf7vJ3LVLYkrqEj0xwfhLbK9Q5LTQ2cLmImMpNAXKZnfkzJ6-zXR0c7AGkNIazSqY4xojRVYwVOqcODrs2UQGI8XBE0MXterjQD-B2C_TUR86dobHFyR7fQzRGd4sUgldvoWuzuoBs7nIV30fmXzUWyPpLFEloFB5zP5z6D-H6zwt_OOo_tCn-OJdnDLSO2XcAZ0MLjoutDXOGMkjFkl5BPc80CXuQlb2cg7_oOD7yfl_fQydHbr2-OydizgXipzZoE7ozKsMDZlIyzglpqG6VM8swKIWjSQkgbozfR6uCS5gm4koNUoaEpY5376KDru_gQYSuNYyYG4bmrg6ONi5xGHhKNTIsYK8S2Mm79SGgOfTWW7UTFXPTSZr20RS-tqdCL6Z8fA53HX0e_BtVNI4GKu7zIBtqOBtr-y0ArdLhVfDueD6sWwrtAdmhYhZ5Nn_POhnCN7UDiLVdaZbCnjazQg8FOppUIqfI9mefJ9Z4F7S11_0t39r2whxtmIHZaoZdbW5uX9WdRPPofoniMrnPYJCUb6BAdrC828UnGdGv3tGzfK9z-PhM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagvcABsRMoyEjcwMKxYzs-oVfUqiBRVYVKFZfIK1R6JOUtB_49nsR56WPpLcomxzMef86Mvw-hV8oL5bhXJERqSSU9I9ozSeqqcjW1rqwjbHD-dCyPzqqP5-I8_3Bb5rLKMSb2gdp3Dv6Rv4WEGNDD6fLd5U8CqlGQXc0SGjfRbgrBdVp87e4fHJ-cjh7FFCgzTXlCkFeurrDVVMDtwidCMwEEZmriyRSsSvN7nnAHQK0gldUr1pUlkYrKvBOn348H6s2UQIE8LBUU0VuzXS8K8C8k-3dB5h9Z2X6yO7yL7mSUimeDW91DN0J7H92-wl34AP34vF5E4wKZzUEy2OMUp7sE5rv1En-9aB02S3wa-qIPOw_YtB4nYAuHs7bzYYkTWsZQZUJOpr0LeJaaPL6BfOhaPPB__nqIzg4Pvrw_Ilm7gTih9Ip4ZrVM8MCaGLU1nBpqail1dKXhnNOoOBcmBKeDUd5GxSJwJnshfU1jwjyP0E7bteEJwkZoW-rguWO28pbWNjAamI80lIqHUKBy7OPGZWJz0NeYNxtK5t4uTbJL09ul0QV6vXnmcqD1uPbufTDd5k6g5O5PdItvTR7hjROukkyHMjl_VUZlFU32TADaBVY7XxdobzR8k-PEspm8ukAvN5fTCIe0jWmhxxsmlUygT2lRoMeDn2xawoVM62WWXq62PGirqdtX2ovvPYu4LjXkUAv0ZvS1qVn_74qn13_FM3SLgfv39T57aGe1WIfnCbWt7Is8NH8DpGQ2fA
  priority: 102
  providerName: ProQuest
Title Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery
URI https://link.springer.com/article/10.1007/s40820-022-00867-9
https://www.ncbi.nlm.nih.gov/pubmed/35699828
https://www.proquest.com/docview/2890048691
https://www.proquest.com/docview/2676554795
https://pubmed.ncbi.nlm.nih.gov/PMC9198195
https://doaj.org/article/c5c4629e157c41f7b70dce192ce28cd8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4ED4k2grIzEDSw5TmzHx92lS0GiqgqVKi6Rn1BpSdDu9sC_x-PNowsFiUsSJU408oztz5mZbxB6JR2XtnCS-EANKYVjRDkmSFWWtqLG5lWABOePJ-L4vPxwwS-6pLB1H-3euyTTTD0ku0FpZEog-hxwuCRqDx3wuHcHu56PnONMQjWm0TcIJZXLaww1JfC5FCOJGQfSMjlyY3JWxjW9W2S3IFqC-ypVqctzIiQVXfbNzWLtrHCpEMBN6PXPIMzfPLFpgVvcQ3c7ZIqnW1O6j2755gG6c42v8CH6_ulqFbT1ZLqEMsEOx7m5jQC-vVrjL5eNxXqNz3wK9DBLj3XjcASzcDltWufXOCJkDJEl5HTMV8DTKHL_BfK-bfCW8_PnI3S-OPo8PyZdvQZiuVQb4phRIkICo0NQRhdUU10JoYLNdVEUNMii4Np7q7yWzgTJAvAkOy5cRUPEOY_RftM2_inCmiuTK-8Ky0zpDK2MZ9QzF6jPZeF9hvK-j2vbkZlDTY1lPdAwJ73UUS910kutMvR6eOfHlsrjn61noLqhJdBwpxvt6mvdjeraclsKpnweDb7MgzSSRn1G0Gw9q6yrMnTYK77u5oZ1Da5dIDpUeYZeDo_jqAZXjW6gx2smpIhATyqeoSdbOxkkKbiIe2QWPy53LGhH1N0nzeW3xByucgV-0wy96W1tFOvvXfHs_5o_R7cZDIcU83OI9jerK_8iIreNmaC9avFugg6ms7ezRTzPjk5OzyZp-MJRzCfpn8gv_YM3gg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOUAPiJ1AASPBCSwSJ7HjA0LDMszQRQhaqeoleC2VhqTMItQ_xW_Ez0kmHZbeeouSjOXx2_Pe-x5CT7nJuU4NJ9bFimTMUCIMZaTIMl3ESieFgwbnnV022s8-HuQHa-hX1wsDZZWdTgyK2tQavpG_hIQYwMOJ5PXJDwJToyC72o3QaNhiy57-9CHb7NX4nafvM0qH7_fejkg7VYDonIs5MVQJ5g2Xks4JJdNYxrJgTDidyNRH946naS6t1cJKbpTj1AGar8mZKWLnrbFf9xK6nKWpAIkqhh86_qUc5kD1WUkY5pydwcbJAEkm7eHTcoBL4z0qZ04z70205r1x3zkkzsJ8vCQhjMes7fsJ3X8wKzomUI4PgQknYsW2hhEE__Kb_y7__CMHHEzr8Dq61vrEeNAw8Q20ZqubaOMMUuIt9P3LYuqktmQwgQHFBnurUPvQoV7M8OFxpbGc4c82lJioicWyMti70XA5qGpjZ9j75hhqWsinvlMCD_yWuxXIuK5wgzZ6ehvtXwhN76D1qq7sPYRlLlQirEk1VZlRcaEsjS01LrYJT62NUNKdcalbGHWY5jEplwDQgS6lp0sZ6FKKCD1f_uakARE59-03QLrlmwAAHm7U06Oy1SelznXGqLCJF7UscVzx2NPTu-va0kKbIkKbHeHLVivNyl6GIvRk-djrE0gSyQpOvKSMM-9icpFH6G7DJ8udpDnz0Tn1i_MVDlrZ6uqT6vhbwCwXiYCMbYRedLzWb-v_R3H__H_xGF0Z7e1sl9vj3a0H6CoFUQiVRptofT5d2IfeX5yrR0FIMfp60VrhN9CJcuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiGcJFDASN7BqO7EdH5fCquVRVUClikvkJ1RakmofB_49niSb7EJB4hYljjXyzNifNTPfIPRCeaFc7hUJkVpSSM-J9lySsihcSa1jZYQC54_H8vC0eHcmzjaq-Nts93VIsqtpAJamerl_4eP-UPgGbZIpgUx0wOSK6KvoWrqpMEjqOxj5x7mCzkxjnBDaKxcbbDUFcLvkI6GZAAIzNfJkCl6k870_cDtArSCU1XasY4xIRWVfiXO5WFunXdsU4DIk-2dC5m9R2fawm95Gt3qUiiedWd1BV0J9F93c4C68h358Xs2jcYFMZtAy2OO0TzcJzDerBf56XjtsFvhTaJM-7CxgU3ucgC08TurGhwVOaBlDlgk5GWsX8CSJvJ6BHDU17vg_f95Hp9O3Xw4OSd-7gTih9JJ4brVM8MCaGLU1OTXUlFLq6JjJ85xGlefChOB0MMrbqHgEzmQvpC9pTJjnAdqpmzo8RNgIbZkOPnfcFt7S0gZOA_eRBqbyEDLE1mtcuZ7YHPprzKqBkrnVS5X0UrV6qXSGXg7_XHS0Hv8c_RpUN4wESu72RTP_VvUeXjnhCsl1YMn4CxaVVTTpMwFoF3jpfJmhvbXiq36fWFQQ5gXSQ80y9Hz4nDwcwjamhhWvuFQygT6lRYZ2OzsZJMmFTPdlniZXWxa0Jer2l_r8e8sirpmGGGqGXq1tbRTr70vx6P-GP0PXT95Mqw9Hx-8foxscPKNNBdpDO8v5KjxJgG5pn7Y--wtQUTjv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Alloyed+Nanoporous+Zinc+as+Reversible+and+Stable+Anodes+for+High-Performance+Aqueous+Zinc-Ion+Battery&rft.jtitle=Nano-micro+letters&rft.au=Meng%2C+Huan&rft.au=Ran%2C+Qing&rft.au=Dai%2C+Tian-Yi&rft.au=Shi%2C+Hang&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=14&rft_id=info:doi/10.1007%2Fs40820-022-00867-9&rft_id=info%3Apmid%2F35699828&rft.externalDocID=PMC9198195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon