Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption

Highlights A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable c...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 14; no. 1; pp. 96 - 14
Main Authors Huang, Wenhuan, Qiu, Qiang, Yang, Xiufang, Zuo, Shouwei, Bai, Jianan, Zhang, Huabin, Pei, Ke, Che, Renchao
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer Nature B.V
Springer Singapore
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors. The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation. Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1  mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
AbstractList Highlights A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors. The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation. Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1  mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
HighlightsA typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm.The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors.The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg−1 mm−1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1  mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg  mm at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors. The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation. Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1  mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
Abstract Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg−1 mm−1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.
ArticleNumber 96
Author Zuo, Shouwei
Zhang, Huabin
Che, Renchao
Bai, Jianan
Huang, Wenhuan
Qiu, Qiang
Pei, Ke
Yang, Xiufang
Author_xml – sequence: 1
  givenname: Wenhuan
  surname: Huang
  fullname: Huang, Wenhuan
  email: huangwenhuan@sust.edu.cn
  organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 2
  givenname: Qiang
  surname: Qiu
  fullname: Qiu, Qiang
  organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 3
  givenname: Xiufang
  surname: Yang
  fullname: Yang, Xiufang
  organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 4
  givenname: Shouwei
  surname: Zuo
  fullname: Zuo, Shouwei
  organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 5
  givenname: Jianan
  surname: Bai
  fullname: Bai, Jianan
  organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 6
  givenname: Huabin
  surname: Zhang
  fullname: Zhang, Huabin
  email: huabin.zhang@kaust.edu.sa
  organization: KAUST Catalysis Center, King Abdullah University of Science and Technology
– sequence: 7
  givenname: Ke
  surname: Pei
  fullname: Pei, Ke
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University
– sequence: 8
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35384519$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vEzEQxVeoiJbQL8ABWeLCZcF_d-0LUpSmtFKBA1QcLcc7u3G1sYPtVOTCZ8dJWqA99GTL895PbzzzsjrywUNVvSb4PcG4_ZA4lhTXmNIaY8lwLZ9VJ5QIXAshyFG5M0LqpsXNcXWakltgQXlLW8FfVMdMMMkFUSfV7-sxR7N0wxKdgU8ub1Ho0TSHlbNoFs6hno9gcwwefdt6iMMWOY--BG-Dz85vwiahmYmLUv9scnS_UB8iuii8cYvmfe-sA59LbfCQC_KHuQU07VKI6-yCf1U9782Y4PTunFTX5_Pvs4v66uuny9n0qraiVbm2jQQhW0K4MgvgnTEApDRASccs5p1qpeXEio62C054yxQFTnBPgVBlm55NqssDtwvmRq-jW5m41cE4vX8IcdAmlnwj6B4zJUQjjRSE98ooBlJ2igNXTQuwY308sNabxQo6W_qLZnwAfVjxbqmHcKulko3CtADe3QFi-LmBlPXKJQvjaDyU_9S04W0jBCtTmlRvH0lvwib68lV7FW-YkDvVm_8T_Y1yP-YikAeBjSGlCL22LpvdAEpAN2qC9W6p9GGpdFkqvV8qLYuVPrLe0580sYMpFbEfIP6L_YTrD35Z3tU
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118479
crossref_primary_10_1016_j_jmst_2022_08_016
crossref_primary_10_1007_s40820_022_00905_6
crossref_primary_10_1016_j_compositesb_2022_110268
crossref_primary_10_1002_adma_202403322
crossref_primary_10_1016_j_carbon_2023_03_043
crossref_primary_10_1016_j_carbon_2024_119049
crossref_primary_10_1016_j_jallcom_2022_168523
crossref_primary_10_1002_smll_202402000
crossref_primary_10_1016_j_compscitech_2023_110274
crossref_primary_10_1007_s12274_023_6387_2
crossref_primary_10_1016_j_inoche_2023_110994
crossref_primary_10_1021_acsapm_4c00269
crossref_primary_10_1016_j_jallcom_2023_170016
crossref_primary_10_1016_j_matlet_2022_132863
crossref_primary_10_1016_j_carbon_2022_12_050
crossref_primary_10_1016_j_carbon_2023_118043
crossref_primary_10_1002_adfm_202310475
crossref_primary_10_1021_acsami_4c08107
crossref_primary_10_1002_smll_202302686
crossref_primary_10_1016_j_carbon_2024_119976
crossref_primary_10_1021_acs_cgd_2c00963
crossref_primary_10_1016_j_compositesb_2022_110479
crossref_primary_10_1016_j_nanoen_2025_110642
crossref_primary_10_1002_smll_202308378
crossref_primary_10_1007_s12274_022_4411_6
crossref_primary_10_1016_j_compositesb_2022_110199
crossref_primary_10_1021_acsanm_3c01785
crossref_primary_10_1002_adfm_202305082
crossref_primary_10_1002_adfm_202403508
crossref_primary_10_1016_j_jcis_2024_04_150
crossref_primary_10_1002_adfm_202301351
crossref_primary_10_1016_j_carbon_2023_118506
crossref_primary_10_1002_chem_202300785
crossref_primary_10_1016_j_carbon_2024_118925
crossref_primary_10_1016_j_jpba_2022_114963
crossref_primary_10_1016_j_carbon_2023_04_002
crossref_primary_10_1016_j_cej_2025_161603
crossref_primary_10_1002_adfm_202404484
crossref_primary_10_1002_smll_202303484
crossref_primary_10_1016_j_mtcomm_2024_108344
crossref_primary_10_1016_j_carbon_2023_01_057
crossref_primary_10_1039_D3TA04895K
crossref_primary_10_1016_j_surfin_2025_106184
crossref_primary_10_1016_j_jallcom_2024_177792
crossref_primary_10_1016_j_matchar_2023_113328
crossref_primary_10_1002_adfm_202210456
crossref_primary_10_1007_s40820_024_01396_3
crossref_primary_10_1016_j_compositesb_2022_110402
crossref_primary_10_1016_j_carbon_2023_118254
crossref_primary_10_1016_j_diamond_2023_110487
crossref_primary_10_1002_smll_202307473
crossref_primary_10_1016_j_jallcom_2022_166201
crossref_primary_10_1016_j_jallcom_2025_179081
crossref_primary_10_1080_15421406_2024_2348200
crossref_primary_10_1016_j_compositesb_2024_111932
crossref_primary_10_1002_adfm_202423947
crossref_primary_10_1039_D3TC02072J
crossref_primary_10_1016_j_carbon_2025_120095
crossref_primary_10_1016_j_mtnano_2024_100520
crossref_primary_10_2139_ssrn_4165214
crossref_primary_10_1088_1361_6463_ace5ba
crossref_primary_10_1016_j_cej_2024_157715
crossref_primary_10_1016_j_carbon_2024_119594
crossref_primary_10_1016_j_cej_2022_140277
crossref_primary_10_1007_s40820_023_01112_7
crossref_primary_10_1016_j_carbon_2024_119392
crossref_primary_10_1002_adfm_202313483
crossref_primary_10_1007_s40820_023_01218_y
crossref_primary_10_1016_j_jpcs_2023_111395
crossref_primary_10_1007_s42114_023_00629_0
crossref_primary_10_1016_j_ceramint_2023_06_159
crossref_primary_10_1038_s41467_024_52520_1
crossref_primary_10_1016_j_ceramint_2023_10_036
crossref_primary_10_1016_j_ica_2023_121750
crossref_primary_10_1039_D2NR06503G
crossref_primary_10_1007_s12274_023_6120_1
crossref_primary_10_1016_j_inoche_2023_111334
crossref_primary_10_1007_s42114_024_01052_9
crossref_primary_10_1039_D2QM00578F
crossref_primary_10_1016_j_carbon_2025_120244
crossref_primary_10_1002_smll_202302132
crossref_primary_10_1016_j_apsusc_2022_154337
crossref_primary_10_1016_j_jmst_2023_01_053
crossref_primary_10_1021_acsami_4c07406
crossref_primary_10_1021_acs_iecr_3c02150
crossref_primary_10_1016_j_mtcomm_2023_107893
crossref_primary_10_1002_adfm_202501720
crossref_primary_10_1016_j_jallcom_2024_177770
Cites_doi 10.1002/adma.201305293
10.1021/acsnano.0c02401
10.1038/s41467-021-21103-9
10.3390/micro1010007
10.1002/adfm.201803938
10.1016/j.compositesa.2018.12.012
10.1021/acssuschemeng.9b00191
10.1021/acsnano.0c06971
10.1002/adfm.201403809
10.1016/j.compscitech.2021.108800
10.1021/acsnano.0c03337
10.1002/adma.201706343
10.1021/acsami.9b10168
10.1002/adfm.202102812
10.1021/acsnano.8b05739
10.1016/j.cej.2016.11.089
10.1016/j.cej.2019.123096
10.1002/adfm.202002595
10.1002/adma.201906769
10.1002/aelm.201700565
10.1002/adfm.201907451
10.1007/s40820-020-0398-2
10.1002/adfm.201901448
10.1002/adfm.201702807
10.1002/adfm.202000883
10.1002/adfm.201400079
10.1002/adfm.202011229
10.1021/acsnano.0c08830
10.1002/aelm.202000970
10.1002/adom.202000012
10.1007/s00289-019-02892-y
10.1002/adfm.202100470
10.1002/adfm.201901236
10.1002/advs.201902162
10.1021/acssuschemeng.8b01270
10.1021/acsami.7b11592
10.1002/adma.201701583
10.1021/acsami.7b10067
10.1002/adma.201907499
10.1021/acsnano.1c04526
10.1016/j.matchemphys.2021.124532
10.1021/acsami.8b07107
10.1002/adma.201104483
10.1021/acsnano.1c01552
10.1002/adfm.201803360
10.1007/s40820-021-00678-4
10.1002/smll.202001686
10.1007/s40820-020-00432-2
10.1002/adfm.201703801
10.1007/s40820-021-00727-y
10.1002/adma.201907411
10.1007/s40820-021-00704-5
10.1016/j.cej.2019.123039
10.1002/adfm.202100275
10.1021/acsami.6b12178
10.1002/adfm.201503579
10.1002/adma.202002112
10.1039/d1tc00455g
10.1002/adfm.201800761
10.1039/d0nr04615a
10.1021/acsnano.0c10666
10.1002/adfm.202000475
10.1002/adfm.201806819
10.1002/adfm.201807624
10.1002/adma.201702367
10.1021/acsnano.9b07452
10.1002/adfm.201900163
10.1002/adom.201801318
10.1002/adfm.201707205
10.1021/acsami.9b00356
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00830-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_f0395568a8514f9a93e88d94e4967eef
PMC8986902
35384519
10_1007_s40820_022_00830_8
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c579t-c68e5871149abe4daaee145121d3c04d978c41c5d27b4147392e410f2e129c6f3
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:30:17 EDT 2025
Thu Aug 21 17:55:20 EDT 2025
Fri Jul 11 00:20:07 EDT 2025
Wed Aug 13 04:50:05 EDT 2025
Wed Feb 19 02:24:54 EST 2025
Tue Jul 01 00:55:47 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Fri Feb 21 02:45:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Off-axis electron hologram
Electromagnetic wave-absorbing materials
Energetic metal organic framework
Hierarchical porous structure
M–M’ interaction
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-c68e5871149abe4daaee145121d3c04d978c41c5d27b4147392e410f2e129c6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2647463585?pq-origsite=%requestingapplication%
PMID 35384519
PQID 2647463585
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f0395568a8514f9a93e88d94e4967eef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8986902
proquest_miscellaneous_2647655335
proquest_journals_2647463585
pubmed_primary_35384519
crossref_citationtrail_10_1007_s40820_022_00830_8
crossref_primary_10_1007_s40820_022_00830_8
springer_journals_10_1007_s40820_022_00830_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Springer Singapore
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: Springer Singapore
– name: SpringerOpen
References Wan, Xiong, Liu, Feng, Xun (CR10) 2021; 15
Shen, Zhai, Zheng (CR25) 2014; 24
Wei, Pei, Qian, Liu, Liu (CR28) 2020; 32
Song, Zhang, Zhang, Wang, Zhang (CR3) 2020; 7
Wan, Wang, Li, Liao, Lin (CR11) 2020; 14
Chen, Ma, Huang, Zhang, Huang (CR21) 2019; 7
Yao, Hong, Chen, Han, Xu (CR22) 2020; 32
Liu, Duan, Xiong, Su, Zhang (CR54) 2021; 9
Zhang, Liang, Zhang, Kang, Liao (CR6) 2018; 28
Lv, Yang, Wang, Ji, Song (CR41) 2018; 30
Lv, Yang, Ong, Wei, Liao (CR39) 2019; 29
Zhang, Qiao, Zhao, Xu, Wang (CR61) 2019; 11
Iqbal, Sambyal, Koo (CR18) 2020; 30
Liu, Sun, Song, Liu, Yu (CR46) 2021; 7
Wang, Cao, Cao, Yuan (CR9) 2020; 32
Wang, Wang, Ye, Shi, Feng (CR64) 2019; 383
Ganguly, Ghosh, Das, Das, Ghosh (CR5) 2020; 77
Liu, Zhang, Sun, Liu, Liu (CR33) 2017; 29
Zeng, Jin, Chen, Li, Zhou (CR7) 2016; 26
Yun, Kim, Iqbal, Cho, Lee (CR12) 2020; 32
Zhou, Song, Huang, Feng, Lu (CR14) 2021; 15
Gao, Wu, Qiu (CR47) 2018; 4
Yang, Chen, Li, Li, Ma (CR26) 2020; 14
Wang, Ma, Chen, Sun, Cui (CR2) 2021; 31
Zhang, Yang, Li, Yang, Liu (CR63) 2020; 382
Shu, Cao, Cao (CR24) 2021; 31
Ning, Jiang, Ding, Zhu, Tan (CR45) 2021; 31
Yin, Liu, Wei, Li, Nie (CR52) 2017; 9
Yin, Liu, Wei, Yu, Shui (CR51) 2016; 8
Zhu, Liu, Guo, Wang, Tang (CR35) 2021; 15
Bao, Tang, Song, Jiang, Jiang (CR65) 2020; 12
Huynen (CR70) 2021; 1
Li, Yin, Song, Han, Xu (CR30) 2018; 28
Weng, Li, Alhabeb, Karpovich, Wang (CR29) 2018; 28
Deng, Xiang, Xiong, Liu, Yu (CR57) 2020; 12
Huang, Duan, Liu, Zeng, Ma (CR4) 2020; 8
Wu, Pei, Xing, Yu, You (CR67) 2019; 29
Quan, Shi, Ong, Lu, Wang (CR38) 2019; 29
Wang, Liu, Jiao, Ma, Lv (CR44) 2020; 30
Li, Han, Ma, Liu, Wang (CR49) 2018; 6
Song, Ye, Kong, Shen, Han (CR17) 2020; 30
Fan, Peng, Huang, Li, Liu (CR1) 2012; 24
Ravindren, Mondal, Nath, Das (CR16) 2019; 118
Zhang, Zhu, Yin, Guo, Huang (CR43) 2018; 28
Yan, Pang, Li, Vajtai, Xu (CR23) 2015; 25
Xu, Li, Ji, Zhao, Cui (CR19) 2021; 15
Tian, Li, Liu, Ali, Guo (CR69) 2021; 13
Wang, Zhang, Liu, Zhao, Xie (CR31) 2019; 29
Liang, Man, Quan, Zheng, Gu (CR59) 2020; 12
Yousefi, Sun, Lin, Shen, Jia (CR13) 2014; 26
Lv, Yang, Liu, Wu, Lou (CR58) 2021; 12
Ghosh, Das, Ghosh, Remanan, Nath (CR27) 2021; 210
Zhang, Yan, Zhang, Yuan, Zhu (CR66) 2018; 10
Li, Tian, Gao, Jing, Li (CR34) 2020; 30
Wang, Jia, Liu, Dou, Xu (CR50) 2021; 13
Sun, Zhang, Liu, Xie, Yang (CR8) 2017; 27
Ma, Kang, Ma, Shao, Zhang (CR20) 2020; 14
Wu, Chen, Wang, Cao, Zhang (CR56) 2020; 16
Liu, Gao, Zhang, Huang, You (CR68) 2021; 31
Zhao, Zhang, Luo, Wang, Xu (CR36) 2018; 12
Zhang, Wu, Xie, Sun, Dong (CR37) 2017; 9
Liu, Liu, Feng, Shui, Yu (CR55) 2017; 314
Li, Liu, Nie, Yang, Wang (CR32) 2019; 29
Xu, Ran, Fan, Lai, Cheng (CR62) 2019; 11
Kang, Tan, Man, Ning, Chen (CR53) 2021; 266
Zhao, Xu, Du, Jiang, Huang (CR48) 2019; 7
Wang, Sun, Yang, Zhao, Zhang (CR60) 2021; 13
Zeng, Wu, Han, Ren, Siqueira (CR15) 2020; 14
Ye, Song, Zhang, Li, Zhang (CR42) 2018; 28
Song, Ye, Yin, Li, Li (CR40) 2017; 29
P Liu (830_CR68) 2021; 31
X Gao (830_CR47) 2018; 4
Y Yin (830_CR52) 2017; 9
F Ye (830_CR42) 2018; 28
B Deng (830_CR57) 2020; 12
I Huynen (830_CR70) 2021; 1
C Wu (830_CR56) 2020; 16
GM Weng (830_CR29) 2018; 28
X Zhang (830_CR66) 2018; 10
J Xu (830_CR19) 2021; 15
J Liu (830_CR33) 2017; 29
W Liu (830_CR54) 2021; 9
B Quan (830_CR38) 2019; 29
H Lv (830_CR58) 2021; 12
H Lv (830_CR41) 2018; 30
T Yun (830_CR12) 2020; 32
QW Wang (830_CR31) 2019; 29
HY Wang (830_CR60) 2021; 13
J Wang (830_CR44) 2020; 30
WL Song (830_CR3) 2020; 7
Q Song (830_CR40) 2017; 29
B Yao (830_CR22) 2020; 32
B Shen (830_CR25) 2014; 24
X Li (830_CR30) 2018; 28
HL Wang (830_CR2) 2021; 31
S Zhao (830_CR36) 2018; 12
X Wang (830_CR9) 2020; 32
Y Kang (830_CR53) 2021; 266
DX Yan (830_CR23) 2015; 25
Y Liu (830_CR46) 2021; 7
L Huang (830_CR4) 2020; 8
A Iqbal (830_CR18) 2020; 30
Q Song (830_CR17) 2020; 30
Y Zhu (830_CR35) 2021; 15
Y Yin (830_CR51) 2016; 8
Z Zhou (830_CR14) 2021; 15
Z Wu (830_CR67) 2019; 29
M Ning (830_CR45) 2021; 31
N Yousefi (830_CR13) 2014; 26
K Zhang (830_CR37) 2017; 9
Y Zhang (830_CR63) 2020; 382
Y Wan (830_CR11) 2020; 14
Y Li (830_CR34) 2020; 30
Y Wang (830_CR64) 2019; 383
H Lv (830_CR39) 2019; 29
W Tian (830_CR69) 2021; 13
RH Fan (830_CR1) 2012; 24
X Xu (830_CR62) 2019; 11
X Zhang (830_CR43) 2018; 28
Z Li (830_CR49) 2018; 6
S Ganguly (830_CR5) 2020; 77
SK Ghosh (830_CR27) 2021; 210
Z Zeng (830_CR7) 2016; 26
Z Zeng (830_CR15) 2020; 14
Q Liu (830_CR55) 2017; 314
S Bao (830_CR65) 2020; 12
Y Wan (830_CR10) 2021; 15
R Ravindren (830_CR16) 2019; 118
H Chen (830_CR21) 2019; 7
Y Yang (830_CR26) 2020; 14
J Wang (830_CR50) 2021; 13
X Zhang (830_CR61) 2019; 11
Q Zhang (830_CR6) 2018; 28
R Sun (830_CR8) 2017; 27
Q Wei (830_CR28) 2020; 32
Y Li (830_CR32) 2019; 29
Z Ma (830_CR20) 2020; 14
Z Zhao (830_CR48) 2019; 7
X Liang (830_CR59) 2020; 12
J Shu (830_CR24) 2021; 31
References_xml – volume: 26
  start-page: 5480
  issue: 31
  year: 2014
  end-page: 5487
  ident: CR13
  article-title: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305293
– volume: 14
  start-page: 8368
  issue: 7
  year: 2020
  end-page: 8382
  ident: CR20
  article-title: Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti C T MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02401
– volume: 12
  start-page: 834
  year: 2021
  ident: CR58
  article-title: A flexible electromagnetic wave-electricity harvester
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21103-9
– volume: 1
  start-page: 86
  issue: 1
  year: 2021
  end-page: 101
  ident: CR70
  article-title: Investigation of microwave absorption mechanisms in microcellular foamed conductive composites
  publication-title: Micro
  doi: 10.3390/micro1010007
– volume: 28
  start-page: 1803938
  issue: 41
  year: 2018
  ident: CR30
  article-title: Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803938
– volume: 118
  start-page: 75
  year: 2019
  end-page: 89
  ident: CR16
  article-title: Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.12.012
– volume: 7
  start-page: 7183
  issue: 7
  year: 2019
  end-page: 7192
  ident: CR48
  article-title: Metal-organic framework-based Pb@MoS core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00191
– volume: 14
  start-page: 14134
  issue: 10
  year: 2020
  end-page: 14145
  ident: CR11
  article-title: Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06971
– volume: 25
  start-page: 559
  issue: 4
  year: 2015
  end-page: 566
  ident: CR23
  article-title: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403809
– volume: 210
  start-page: 108800
  year: 2021
  ident: CR27
  article-title: Selective distribution of conductive carbonaceous inclusion in thermoplastic elastomer: a wet chemical approach of promoting dual percolation and inhibiting radiation pollution in X-band
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108800
– volume: 14
  start-page: 8754
  issue: 7
  year: 2020
  end-page: 8765
  ident: CR26
  article-title: Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03337
– volume: 30
  start-page: 1706343
  issue: 15
  year: 2018
  ident: CR41
  article-title: A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706343
– volume: 11
  start-page: 35959
  issue: 39
  year: 2019
  end-page: 35968
  ident: CR61
  article-title: High-efficiency electromagnetic wave absorption of cobalt-decorated NH -UIO-66-derived porous ZrO /C
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10168
– volume: 31
  start-page: 2102812
  issue: 27
  year: 2021
  ident: CR68
  article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 12
  start-page: 11193
  issue: 11
  year: 2018
  end-page: 11202
  ident: CR36
  article-title: Highly electrically conductive three-dimensional Ti C T MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05739
– volume: 314
  start-page: 320
  year: 2017
  end-page: 327
  ident: CR55
  article-title: Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.089
– volume: 383
  start-page: 123096
  year: 2019
  ident: CR64
  article-title: Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123096
– volume: 30
  start-page: 2002595
  issue: 45
  year: 2020
  ident: CR44
  article-title: Hierarchical carbon fiber@MXene@MoS core-sheath synergistic microstructure for tunable and efficient microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002595
– volume: 32
  start-page: 1906769
  issue: 9
  year: 2020
  ident: CR12
  article-title: Electromagnetic shielding of monolayer MXene assemblies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906769
– volume: 4
  start-page: 1700565
  issue: 5
  year: 2018
  ident: CR47
  article-title: High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers–carbon nanotubes and Fe O nanoparticles
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700565
– volume: 30
  start-page: 1907451
  issue: 5
  year: 2020
  ident: CR34
  article-title: Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907451
– volume: 12
  start-page: 55
  year: 2020
  ident: CR57
  article-title: Sandwich-like Fe&TiO @C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0398-2
– volume: 29
  start-page: 1901448
  issue: 28
  year: 2019
  ident: CR67
  article-title: Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901448
– volume: 27
  start-page: 1702807
  issue: 45
  year: 2017
  ident: CR8
  article-title: Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702807
– volume: 30
  start-page: 2000883
  issue: 47
  year: 2020
  ident: CR18
  article-title: 2D MXenes for electromagnetic shielding: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 24
  start-page: 4542
  issue: 28
  year: 2014
  end-page: 4548
  ident: CR25
  article-title: Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400079
– volume: 31
  start-page: 2011229
  issue: 19
  year: 2021
  ident: CR45
  article-title: Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011229
– volume: 15
  start-page: 1465
  issue: 1
  year: 2021
  end-page: 1474
  ident: CR35
  article-title: Multifunctional Ti C T MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08830
– volume: 7
  start-page: 2000970
  issue: 3
  year: 2021
  ident: CR46
  article-title: Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000970
– volume: 8
  start-page: 2000012
  issue: 12
  year: 2020
  ident: CR4
  article-title: Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000012
– volume: 77
  start-page: 2923
  issue: 6
  year: 2020
  end-page: 2943
  ident: CR5
  article-title: Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02892-y
– volume: 31
  start-page: 2100470
  issue: 23
  year: 2021
  ident: CR24
  article-title: Diverse metal–organic framework architectures for electromagnetic absorbers and shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100470
– volume: 29
  start-page: 1901236
  issue: 28
  year: 2019
  ident: CR38
  article-title: Defect engineering in two common types of dielectric materials for electromagnetic absorption applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901236
– volume: 7
  start-page: 1902162
  issue: 2
  year: 2020
  ident: CR3
  article-title: Ionic conductive gels for optically manipulatable microwave stealth structures
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902162
– volume: 6
  start-page: 8904
  issue: 7
  year: 2018
  end-page: 8913
  ident: CR49
  article-title: MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01270
– volume: 9
  start-page: 33041
  issue: 38
  year: 2017
  end-page: 33048
  ident: CR37
  article-title: In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11592
– volume: 29
  start-page: 1701583
  issue: 31
  year: 2017
  ident: CR40
  article-title: Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701583
– volume: 9
  start-page: 30850
  issue: 36
  year: 2017
  end-page: 30861
  ident: CR52
  article-title: Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10067
– volume: 32
  start-page: 1907499
  issue: 14
  year: 2020
  ident: CR22
  article-title: Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907499
– volume: 15
  start-page: 12405
  issue: 7
  year: 2021
  end-page: 12417
  ident: CR14
  article-title: Facile fabrication of densely packed Ti C MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04526
– volume: 266
  start-page: 124532
  year: 2021
  ident: CR53
  article-title: A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124532
– volume: 10
  start-page: 24920
  issue: 29
  year: 2018
  end-page: 24929
  ident: CR66
  article-title: Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07107
– volume: 24
  start-page: 1980
  issue: 15
  year: 2012
  end-page: 1986
  ident: CR1
  article-title: Transparent metals for ultrabroadband electromagnetic waves
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104483
– volume: 15
  start-page: 8907
  issue: 5
  year: 2021
  end-page: 8918
  ident: CR19
  article-title: Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01552
– volume: 28
  start-page: 1803360
  issue: 44
  year: 2018
  ident: CR29
  article-title: Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803360
– volume: 13
  start-page: 161
  year: 2021
  ident: CR69
  article-title: Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al O hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00678-4
– volume: 16
  start-page: 2001686
  issue: 30
  year: 2020
  ident: CR56
  article-title: Confining tiny MoO clusters into reduced graphene oxide for highly efficient low frequency microwave absorption
  publication-title: Small
  doi: 10.1002/smll.202001686
– volume: 12
  start-page: 102
  year: 2020
  ident: CR59
  article-title: Environment-stable Co Ni encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00432-2
– volume: 28
  start-page: 1703801
  issue: 1
  year: 2018
  ident: CR6
  article-title: Electromagnetic shielding hybrid nanogenerator for health monitoring and protection
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703801
– volume: 13
  start-page: 206
  year: 2021
  ident: CR60
  article-title: 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00727-y
– volume: 32
  start-page: 1907411
  issue: 14
  year: 2020
  ident: CR28
  article-title: Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907411
– volume: 13
  start-page: 175
  year: 2021
  ident: CR50
  article-title: Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00704-5
– volume: 382
  start-page: 123039
  year: 2020
  ident: CR63
  article-title: Heterostructured CoFe@C@MnO nanocubes for efficient microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123039
– volume: 31
  start-page: 2100275
  issue: 25
  year: 2021
  ident: CR2
  article-title: A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100275
– volume: 8
  start-page: 34686
  issue: 50
  year: 2016
  end-page: 34698
  ident: CR51
  article-title: Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12178
– volume: 26
  start-page: 303
  issue: 2
  year: 2016
  end-page: 310
  ident: CR7
  article-title: Lightweight and anisotropic porous mwcnt/wpu composites for ultrahigh performance electromagnetic interference shielding
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503579
– volume: 32
  start-page: 2002112
  issue: 36
  year: 2020
  ident: CR9
  article-title: Assembling nano–microarchitecture for electromagnetic absorbers and smart devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002112
– volume: 9
  start-page: 5505
  issue: 16
  year: 2021
  end-page: 5514
  ident: CR54
  article-title: Multicomponent Fe-based composites derived from the oxidation and reduction of prussian blue towards efficient electromagnetic wave absorption
  publication-title: J. Mater. Chem. C
  doi: 10.1039/d1tc00455g
– volume: 28
  start-page: 1800761
  issue: 49
  year: 2018
  ident: CR43
  article-title: Tunable high-performance microwave absorption of Co S hollow spheres constructed by nanosheets within ultralow filler loading
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800761
– volume: 12
  start-page: 18790
  issue: 36
  year: 2020
  end-page: 18799
  ident: CR65
  article-title: Synthesis of sandwich-like Co Fe @C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance
  publication-title: Nanoscale
  doi: 10.1039/d0nr04615a
– volume: 15
  start-page: 8439
  issue: 5
  year: 2021
  end-page: 8449
  ident: CR10
  article-title: Ultrathin, strong, and highly flexible Ti C T MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10666
– volume: 30
  start-page: 2000475
  issue: 31
  year: 2020
  ident: CR17
  article-title: Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000475
– volume: 29
  start-page: 1806819
  issue: 7
  year: 2019
  ident: CR31
  article-title: Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806819
– volume: 29
  start-page: 1807624
  issue: 10
  year: 2019
  ident: CR32
  article-title: Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807624
– volume: 29
  start-page: 1702367
  issue: 38
  year: 2017
  ident: CR33
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 14
  start-page: 2927
  issue: 3
  year: 2020
  end-page: 2938
  ident: CR15
  article-title: Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07452
– volume: 29
  start-page: 1900163
  issue: 14
  year: 2019
  ident: CR39
  article-title: A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900163
– volume: 7
  start-page: 1801318
  issue: 8
  year: 2019
  ident: CR21
  article-title: Graphene-based materials toward microwave and terahertz absorbing stealth technologies
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801318
– volume: 28
  start-page: 1707205
  issue: 17
  year: 2018
  ident: CR42
  article-title: Direct growth of edge-rich graphene with tunable dielectric properties in porous Si N ceramic for broadband high-performance microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707205
– volume: 11
  start-page: 13564
  issue: 14
  year: 2019
  end-page: 13573
  ident: CR62
  article-title: Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00356
– volume: 16
  start-page: 2001686
  issue: 30
  year: 2020
  ident: 830_CR56
  publication-title: Small
  doi: 10.1002/smll.202001686
– volume: 11
  start-page: 13564
  issue: 14
  year: 2019
  ident: 830_CR62
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00356
– volume: 30
  start-page: 2000475
  issue: 31
  year: 2020
  ident: 830_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000475
– volume: 13
  start-page: 206
  year: 2021
  ident: 830_CR60
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00727-y
– volume: 26
  start-page: 303
  issue: 2
  year: 2016
  ident: 830_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503579
– volume: 12
  start-page: 18790
  issue: 36
  year: 2020
  ident: 830_CR65
  publication-title: Nanoscale
  doi: 10.1039/d0nr04615a
– volume: 7
  start-page: 2000970
  issue: 3
  year: 2021
  ident: 830_CR46
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000970
– volume: 12
  start-page: 55
  year: 2020
  ident: 830_CR57
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-0398-2
– volume: 10
  start-page: 24920
  issue: 29
  year: 2018
  ident: 830_CR66
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07107
– volume: 7
  start-page: 1801318
  issue: 8
  year: 2019
  ident: 830_CR21
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801318
– volume: 266
  start-page: 124532
  year: 2021
  ident: 830_CR53
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124532
– volume: 9
  start-page: 33041
  issue: 38
  year: 2017
  ident: 830_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11592
– volume: 14
  start-page: 8754
  issue: 7
  year: 2020
  ident: 830_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03337
– volume: 30
  start-page: 1907451
  issue: 5
  year: 2020
  ident: 830_CR34
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907451
– volume: 28
  start-page: 1703801
  issue: 1
  year: 2018
  ident: 830_CR6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703801
– volume: 9
  start-page: 30850
  issue: 36
  year: 2017
  ident: 830_CR52
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10067
– volume: 7
  start-page: 7183
  issue: 7
  year: 2019
  ident: 830_CR48
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00191
– volume: 8
  start-page: 2000012
  issue: 12
  year: 2020
  ident: 830_CR4
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000012
– volume: 8
  start-page: 34686
  issue: 50
  year: 2016
  ident: 830_CR51
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12178
– volume: 210
  start-page: 108800
  year: 2021
  ident: 830_CR27
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108800
– volume: 26
  start-page: 5480
  issue: 31
  year: 2014
  ident: 830_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305293
– volume: 30
  start-page: 2002595
  issue: 45
  year: 2020
  ident: 830_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002595
– volume: 77
  start-page: 2923
  issue: 6
  year: 2020
  ident: 830_CR5
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02892-y
– volume: 15
  start-page: 8907
  issue: 5
  year: 2021
  ident: 830_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01552
– volume: 29
  start-page: 1701583
  issue: 31
  year: 2017
  ident: 830_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701583
– volume: 29
  start-page: 1702367
  issue: 38
  year: 2017
  ident: 830_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 32
  start-page: 1907411
  issue: 14
  year: 2020
  ident: 830_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907411
– volume: 11
  start-page: 35959
  issue: 39
  year: 2019
  ident: 830_CR61
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10168
– volume: 31
  start-page: 2102812
  issue: 27
  year: 2021
  ident: 830_CR68
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 32
  start-page: 1906769
  issue: 9
  year: 2020
  ident: 830_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906769
– volume: 32
  start-page: 1907499
  issue: 14
  year: 2020
  ident: 830_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907499
– volume: 382
  start-page: 123039
  year: 2020
  ident: 830_CR63
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123039
– volume: 29
  start-page: 1807624
  issue: 10
  year: 2019
  ident: 830_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807624
– volume: 1
  start-page: 86
  issue: 1
  year: 2021
  ident: 830_CR70
  publication-title: Micro
  doi: 10.3390/micro1010007
– volume: 12
  start-page: 102
  year: 2020
  ident: 830_CR59
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00432-2
– volume: 27
  start-page: 1702807
  issue: 45
  year: 2017
  ident: 830_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702807
– volume: 314
  start-page: 320
  year: 2017
  ident: 830_CR55
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.089
– volume: 25
  start-page: 559
  issue: 4
  year: 2015
  ident: 830_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403809
– volume: 383
  start-page: 123096
  year: 2019
  ident: 830_CR64
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123096
– volume: 32
  start-page: 2002112
  issue: 36
  year: 2020
  ident: 830_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002112
– volume: 13
  start-page: 161
  year: 2021
  ident: 830_CR69
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00678-4
– volume: 7
  start-page: 1902162
  issue: 2
  year: 2020
  ident: 830_CR3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902162
– volume: 28
  start-page: 1800761
  issue: 49
  year: 2018
  ident: 830_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800761
– volume: 12
  start-page: 834
  year: 2021
  ident: 830_CR58
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21103-9
– volume: 9
  start-page: 5505
  issue: 16
  year: 2021
  ident: 830_CR54
  publication-title: J. Mater. Chem. C
  doi: 10.1039/d1tc00455g
– volume: 28
  start-page: 1803938
  issue: 41
  year: 2018
  ident: 830_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803938
– volume: 15
  start-page: 8439
  issue: 5
  year: 2021
  ident: 830_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10666
– volume: 30
  start-page: 1706343
  issue: 15
  year: 2018
  ident: 830_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706343
– volume: 29
  start-page: 1806819
  issue: 7
  year: 2019
  ident: 830_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806819
– volume: 15
  start-page: 12405
  issue: 7
  year: 2021
  ident: 830_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04526
– volume: 118
  start-page: 75
  year: 2019
  ident: 830_CR16
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.12.012
– volume: 4
  start-page: 1700565
  issue: 5
  year: 2018
  ident: 830_CR47
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700565
– volume: 24
  start-page: 1980
  issue: 15
  year: 2012
  ident: 830_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104483
– volume: 28
  start-page: 1803360
  issue: 44
  year: 2018
  ident: 830_CR29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803360
– volume: 14
  start-page: 14134
  issue: 10
  year: 2020
  ident: 830_CR11
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06971
– volume: 30
  start-page: 2000883
  issue: 47
  year: 2020
  ident: 830_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 29
  start-page: 1901236
  issue: 28
  year: 2019
  ident: 830_CR38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901236
– volume: 14
  start-page: 8368
  issue: 7
  year: 2020
  ident: 830_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02401
– volume: 28
  start-page: 1707205
  issue: 17
  year: 2018
  ident: 830_CR42
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707205
– volume: 31
  start-page: 2011229
  issue: 19
  year: 2021
  ident: 830_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011229
– volume: 29
  start-page: 1900163
  issue: 14
  year: 2019
  ident: 830_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900163
– volume: 15
  start-page: 1465
  issue: 1
  year: 2021
  ident: 830_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08830
– volume: 12
  start-page: 11193
  issue: 11
  year: 2018
  ident: 830_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05739
– volume: 13
  start-page: 175
  year: 2021
  ident: 830_CR50
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00704-5
– volume: 31
  start-page: 2100275
  issue: 25
  year: 2021
  ident: 830_CR2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100275
– volume: 31
  start-page: 2100470
  issue: 23
  year: 2021
  ident: 830_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100470
– volume: 14
  start-page: 2927
  issue: 3
  year: 2020
  ident: 830_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07452
– volume: 24
  start-page: 4542
  issue: 28
  year: 2014
  ident: 830_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400079
– volume: 6
  start-page: 8904
  issue: 7
  year: 2018
  ident: 830_CR49
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01270
– volume: 29
  start-page: 1901448
  issue: 28
  year: 2019
  ident: 830_CR67
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901448
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5574486
Snippet Highlights A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of...
Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light...
Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light...
HighlightsA typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15...
A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The...
Abstract Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Capacitors
Carbon
Cobalt
Density distribution
Dipoles
Electromagnetic coupling
Electromagnetic radiation
Electromagnetic wave-absorbing materials
Energetic metal organic framework
Engineering
Hierarchical porous structure
High temperature
Iron
Metal clusters
Metal-organic frameworks
Microwave absorption and EMI shielding
M–M’ interaction
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Off-axis electron hologram
Pyrolysis
Thickness
Wave attenuation
X ray absorption
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnuCAeBNYkJG4gYWT-HkspdUKafcCFXuLnNiBSlWy6gNtL_vbmXHStOV54Vq7keWZ8XyWZ76PkNcluFFaaohvJTwTVtXMQRZmnHsA98aazGK_8_mFOpuJj5fy8kDqC2vCOnrgbuPe1Ty3yJLlABqI2jqbB2O8FQG-q0Oo8fSFnHdwmQJPyjQqMu3fB1FWWRyw1AjkdMn3RGYSicv0nh9TZgLyep9oOyCt8QkrKtWlKVOaq74DJ_bhoWozZ1gYj5CGM3OU5aIYwO8Q7K-FmD-9xsYkN71H7vbolI66XblPboXmAblzwFn4kNzMFvARZDmmH7D4fb2lbU1Ha-xupuN2GtikV9ahn7axsZDOG3rRNlgUP2827WZFx25Zwvg5ygNcU4DNFMtNFls6iYQWsEwY-9pgfyX94r4HOvKrdhkPt0dkNp18Hp-xXsSBVVLbNauUCRJuZXATc2UQ3rkQUB04S31eceHhFluJtJI-06VIwTA2CyLldRYAiVSqzh-Tk6ZtwlNCvfNK17X23JaiTMEjjOOyLisjtbYuJCTdbXpR9QznKLSxKAZu5mioAgxVREMVJiFvhv9cdfwef539Hm05zERu7vgDeGzRe2zxL49NyOnOE4r-wFgVgEu1APBnZEJeDcMQ6vh-45oAxolzlAR8DnOedI4zrCSHxIVMQQnRRy51tNTjkWb-LdKJQ0Aqy7OEvN05335Zf96KZ_9jK56T2xlGTSwPOiUn6-UmvACQty5fxnj-AVY8QS0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgucAB8SbLgozEDSI5iR3bx1JarZB2L1Cxt8iJ7aVSlazaFNHL_nZm3Dy2sCBxjZ1olJnxfNbMfEPIuxLMKCkl-HfObcx17mMDUThmzAK4V1qlGvudz87z0wX_fCEuuqawTV_t3qckw0k9NLvhaGQWY_U54gYWq7vknsC7O6ZoR87xVOI0pjE3iCOV-Q2GGo58LtlIYiaQtEyO3Jgi5RDTuyC7B9ES01dhSl2SxLlkedd9c7tYBxEuDAK4Db3-WYT5WyY2BLj5I_KwQ6Z0sjelx-SOq5-QBzf4Cp-S68UKPoIMx_QTFr63O9p4Ommxs5lOm7mLZ91UHfplF5oK6bKm502NBfHLettsN3Rq1iWsn-FogJ8UIDPFUpPVjs4CmQWICWuXNfZW0m_mh6MTu2nW4WB7Rhbz2dfpadwNcIgrIXUbV7lyAm5kcAszpePWGOdwMnCa2Kxi3MINtuJJJWwqS56AYnTqeMJ86gCFVLnPnpOjuqndS0Ktsbn0XlqmS14mRgllmPBlpYSU2riIJP1PL6qO3RyHbKyKgZc5KKoARRVBUYWKyPvhnas9t8c_d39EXQ47kZc7PGjWl0Xn5oVnmUZON5Av4V4bnTmlrOYOvEA65yNy0ltC0R0WmwIwqeQA_JSIyNthGdwcczemdqCcsCcXgM1hz4u94QySZBC0kCUoIvLApA5EPVypl98DlTg4Y65ZGpEPvfGNYv39Vxz_3_ZX5H6K_hGKgE7IUbveutcA5dryTfDcX4YbNZk
  priority: 102
  providerName: Springer Nature
Title Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption
URI https://link.springer.com/article/10.1007/s40820-022-00830-8
https://www.ncbi.nlm.nih.gov/pubmed/35384519
https://www.proquest.com/docview/2647463585
https://www.proquest.com/docview/2647655335
https://pubmed.ncbi.nlm.nih.gov/PMC8986902
https://doaj.org/article/f0395568a8514f9a93e88d94e4967eef
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHxJvAUhmJG0Tk4ecJtd2WFdJWCFixt8iJnaVSlSx9IHrhtzPjuu2Wx156iN3Kzcx4xp6Z7yPkVQlqlJYS7FswGzMt6tiAF46TxEJwr7TKNPY7n03E6Tn7cMEvwoXbIpRVbvdEv1HbtsI78rfguCUD76j4u6vvMbJGYXY1UGgckS5swUp1SHcwmnz8tNWoTCIz0z5PiPTK7BpaDUNsl3wPaMYRwEzucTJ5xsC_B4e7CaglprI8Y12axkImInTi-H48ZG9OYiyQx9AmidWBt_OkAP-KZP8uyPwjK-ud3fgeuRuiVNrfqNV9css1D8ida9iFD8mv8xn8CKId0xMsgl-uaVvT_hK7nOmwHbt4FBh26Oe1bzCk04ZO2gaL46fNql0t6NDMSxg_Q5qAnxTCZ4plJ7M1HXlgC1gmjF022GdJv5ofjvbtop37Te4ROR-PvgxP40DmEFdc6mVcCeU4nM7gRGZKx6wxziFLcJbavEqYhdNsxdKK20yWLAXB6MyxNKkzBxFJJer8Mek0beOeEmqNFbKupU10ycrUKK5MwuuyUlxKbVxE0u1LL6qAdI6EG7Nih9HsBVWAoAovqEJF5PXuO1cbnI8bZw9QlruZiNHtH7TzyyKYfFEnuUZ8N1hfymptdO6Uspo5sAjpXB2R460mFGHjWBR7NY_Iy90wmDzmcUzjQDh-juAQp8OcJxvF2a0kBweGiEERkQcqdbDUw5Fm-s3DioNhCp1kEXmzVb79sv7_Kp7d_C-ek9sZ2oMvADomneV85V5AGLcse-RIjd_3SLc_OBmMe8Fy4ekwY_gphj1_QfIbRGQ_Zw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcQMnECDH5IlHxgmpAkpbXKhGXpzZUtuM5Ox2zyAXPhJ_EZ2FTtpePTWa6R4Nt7VPqLd7yPkVQZmFGQSznfMDeNJXDANUZj5voHkXiUqTHDeuT-Ie0P--UgcbZFfzSwMtlU2PtE5alPl-B_5OwjckkN0VOLD2TlD1ii8XW0oNJZmsW8X36Fkm77f2wX9vg7Dbuew3WM1qwDLhUxmLI-VFVAmQGmgM8uN1tYiXW0YmCj3uYGyKudBLkwoMx5wCQmE5YFfhBZCYx4XETz3GrnOI4jkOJne_dTYbyiRB2p9K4lkzvwCNg5HJJloDZ8mEC5NrlE5Rcghm6jD-zJ9l3hx5vjxgoDF0o_ruR83_Ydc0T7DdnxMpHymNmKroyD4V978d_vnH3fALrR275DbdU5MW0sjvku2bHmP3LqAlHif_ByO4SGIrUx3seV-tqBVQVsznKmm7aprWafm86FfFm6ckY5KOqhKbMUflfNqPqVtPclgvY-kBD8oJOsUm1zGC9pxMBogJqydlDjVSb_qb5a2zLSaOJf6gAyvRMkPyXZZlfYxoUabWBaFNH6S8SzQSijtiyLLlZAy0dYjQfPS07zGVUd6j3G6QoR2ikpBUalTVKo88mb1nbMlqsiluz-iLlc7ERHcfVBNTtLawaSFHyWIJgfyBbxIdBJZpUzCLZw_aW3hkZ3GEtLaTU3T9aHyyMvVMjgYvDXSpQXluD2xgKoA9jxaGs5KkgjCJeITeURumNSGqJsr5ejUgZiDG4gTP_TI28b41mL9_1U8ufxXvCA3eof9g_Rgb7D_lNwM8Wy41qMdsj2bzO0zSCBn2XN3aik5vmo38Rv0BHT5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHgTWMBIcIJo83Bs58Ch9KHdLlshLRV7C07sLJWqZNWmQC_8Jn4iM26SbmFB4rDX2o0sz3jmG83MN4S8TEGN_FTA--ZMuyzmuavAC7uepwHcy1gGMfY7H4_5wYSNTqPTHfKz6YWx1e5NSnLd04AsTUW1f67z_bbxDcckey5WoiOG8FxZl1UemdU3CNoWbw_7IOFXQTAcfOwduPVcATeLRFy5GZcmgkABggOVGqaVMgYH1ga-DjOPaQisMuZnkQ5EynwmAEIY5nt5YMA5ZjwP4bvXyK7k8EI7ZLfbHZ2MGh0OBM6C2mQmcaAzu8CPw5BNJtxQqEVImSY2zJxRwABR1C5-DeEFJs_sjDzfd7nweN37c_lFbPlXO4bgMuz8Zwnob3lg616Ht8mtGhfT7lqR75AdU9wlNy-wJd4jPyYz-AjyK9M-lt1XK1rmtFthXzXtlUPjDuqZPvRkZVsa6bSg47JA2U6LZblc0J6ap7B-jIMJvlMA7BQLXWYrOrBUGnBMWDsrsLOTflJfDe3qRTm3ZvU-mVyJmB-QTlEW5hGhWmku8lxoL05Z6isZSeVFeZrJSIhYGYf4zaUnWc2tjiM-ZknLCm0FlYCgEiuoRDrkdfuf8zWzyD93v0NZtjuRFdz-UM7PktrIJLkXxsgoB-fzWR6rODRS6pgZeIPCmNwhe40mJLWpWiSAiAUD2Ckjh7xol8HIYOZIFQaEY_fwCCID2PNwrTjtSUJwmchR5BCxpVJbR91eKaZfLJE5mAIee4FD3jTKtznW36_i8f9tf06uf-gPk_eH46Mn5EaAT8VWI-2RTjVfmqeAKav0Wf2MKfl81ZbjF0jnd3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Density+of+Atomic+CoFe-Electron+Synergy+in+Noncontinuous+Carbon+Matrix+for+Highly+Efficient+Magnetic+Wave+Adsorption&rft.jtitle=Nano-micro+letters&rft.au=Huang%2C+Wenhuan&rft.au=Qiu%2C+Qiang&rft.au=Yang%2C+Xiufang&rft.au=Zuo%2C+Shouwei&rft.date=2022-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1007%2Fs40820-022-00830-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon