Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption
Highlights A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable c...
Saved in:
Published in | Nano-micro letters Vol. 14; no. 1; pp. 96 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer Nature B.V Springer Singapore SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm.
The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors.
The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.
Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg
−1
mm
−1
at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. |
---|---|
AbstractList | Highlights
A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm.
The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors.
The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.
Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg
−1
mm
−1
at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. HighlightsA typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm.The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors.The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation.Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg−1 mm−1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1 mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg mm at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The ultrahigh-density distribution of the nanoscale polarized charges (+ / −) along the edges of the pores resulted in nanoscale variable capacitors. The high density of Co–Fe electromagnetic coupling on the carbon matrix, showing the enhanced electromagnetic wave attenuation. Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg −1 mm −1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. Abstract Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co–Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of − 57.7 dB and a specific RL value of − 192 dB mg−1 mm−1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption. |
ArticleNumber | 96 |
Author | Zuo, Shouwei Zhang, Huabin Che, Renchao Bai, Jianan Huang, Wenhuan Qiu, Qiang Pei, Ke Yang, Xiufang |
Author_xml | – sequence: 1 givenname: Wenhuan surname: Huang fullname: Huang, Wenhuan email: huangwenhuan@sust.edu.cn organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 2 givenname: Qiang surname: Qiu fullname: Qiu, Qiang organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 3 givenname: Xiufang surname: Yang fullname: Yang, Xiufang organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 4 givenname: Shouwei surname: Zuo fullname: Zuo, Shouwei organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 5 givenname: Jianan surname: Bai fullname: Bai, Jianan organization: Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 6 givenname: Huabin surname: Zhang fullname: Zhang, Huabin email: huabin.zhang@kaust.edu.sa organization: KAUST Catalysis Center, King Abdullah University of Science and Technology – sequence: 7 givenname: Ke surname: Pei fullname: Pei, Ke organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University – sequence: 8 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35384519$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vEzEQxVeoiJbQL8ABWeLCZcF_d-0LUpSmtFKBA1QcLcc7u3G1sYPtVOTCZ8dJWqA99GTL895PbzzzsjrywUNVvSb4PcG4_ZA4lhTXmNIaY8lwLZ9VJ5QIXAshyFG5M0LqpsXNcXWakltgQXlLW8FfVMdMMMkFUSfV7-sxR7N0wxKdgU8ub1Ho0TSHlbNoFs6hno9gcwwefdt6iMMWOY--BG-Dz85vwiahmYmLUv9scnS_UB8iuii8cYvmfe-sA59LbfCQC_KHuQU07VKI6-yCf1U9782Y4PTunFTX5_Pvs4v66uuny9n0qraiVbm2jQQhW0K4MgvgnTEApDRASccs5p1qpeXEio62C054yxQFTnBPgVBlm55NqssDtwvmRq-jW5m41cE4vX8IcdAmlnwj6B4zJUQjjRSE98ooBlJ2igNXTQuwY308sNabxQo6W_qLZnwAfVjxbqmHcKulko3CtADe3QFi-LmBlPXKJQvjaDyU_9S04W0jBCtTmlRvH0lvwib68lV7FW-YkDvVm_8T_Y1yP-YikAeBjSGlCL22LpvdAEpAN2qC9W6p9GGpdFkqvV8qLYuVPrLe0580sYMpFbEfIP6L_YTrD35Z3tU |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118479 crossref_primary_10_1016_j_jmst_2022_08_016 crossref_primary_10_1007_s40820_022_00905_6 crossref_primary_10_1016_j_compositesb_2022_110268 crossref_primary_10_1002_adma_202403322 crossref_primary_10_1016_j_carbon_2023_03_043 crossref_primary_10_1016_j_carbon_2024_119049 crossref_primary_10_1016_j_jallcom_2022_168523 crossref_primary_10_1002_smll_202402000 crossref_primary_10_1016_j_compscitech_2023_110274 crossref_primary_10_1007_s12274_023_6387_2 crossref_primary_10_1016_j_inoche_2023_110994 crossref_primary_10_1021_acsapm_4c00269 crossref_primary_10_1016_j_jallcom_2023_170016 crossref_primary_10_1016_j_matlet_2022_132863 crossref_primary_10_1016_j_carbon_2022_12_050 crossref_primary_10_1016_j_carbon_2023_118043 crossref_primary_10_1002_adfm_202310475 crossref_primary_10_1021_acsami_4c08107 crossref_primary_10_1002_smll_202302686 crossref_primary_10_1016_j_carbon_2024_119976 crossref_primary_10_1021_acs_cgd_2c00963 crossref_primary_10_1016_j_compositesb_2022_110479 crossref_primary_10_1016_j_nanoen_2025_110642 crossref_primary_10_1002_smll_202308378 crossref_primary_10_1007_s12274_022_4411_6 crossref_primary_10_1016_j_compositesb_2022_110199 crossref_primary_10_1021_acsanm_3c01785 crossref_primary_10_1002_adfm_202305082 crossref_primary_10_1002_adfm_202403508 crossref_primary_10_1016_j_jcis_2024_04_150 crossref_primary_10_1002_adfm_202301351 crossref_primary_10_1016_j_carbon_2023_118506 crossref_primary_10_1002_chem_202300785 crossref_primary_10_1016_j_carbon_2024_118925 crossref_primary_10_1016_j_jpba_2022_114963 crossref_primary_10_1016_j_carbon_2023_04_002 crossref_primary_10_1016_j_cej_2025_161603 crossref_primary_10_1002_adfm_202404484 crossref_primary_10_1002_smll_202303484 crossref_primary_10_1016_j_mtcomm_2024_108344 crossref_primary_10_1016_j_carbon_2023_01_057 crossref_primary_10_1039_D3TA04895K crossref_primary_10_1016_j_surfin_2025_106184 crossref_primary_10_1016_j_jallcom_2024_177792 crossref_primary_10_1016_j_matchar_2023_113328 crossref_primary_10_1002_adfm_202210456 crossref_primary_10_1007_s40820_024_01396_3 crossref_primary_10_1016_j_compositesb_2022_110402 crossref_primary_10_1016_j_carbon_2023_118254 crossref_primary_10_1016_j_diamond_2023_110487 crossref_primary_10_1002_smll_202307473 crossref_primary_10_1016_j_jallcom_2022_166201 crossref_primary_10_1016_j_jallcom_2025_179081 crossref_primary_10_1080_15421406_2024_2348200 crossref_primary_10_1016_j_compositesb_2024_111932 crossref_primary_10_1002_adfm_202423947 crossref_primary_10_1039_D3TC02072J crossref_primary_10_1016_j_carbon_2025_120095 crossref_primary_10_1016_j_mtnano_2024_100520 crossref_primary_10_2139_ssrn_4165214 crossref_primary_10_1088_1361_6463_ace5ba crossref_primary_10_1016_j_cej_2024_157715 crossref_primary_10_1016_j_carbon_2024_119594 crossref_primary_10_1016_j_cej_2022_140277 crossref_primary_10_1007_s40820_023_01112_7 crossref_primary_10_1016_j_carbon_2024_119392 crossref_primary_10_1002_adfm_202313483 crossref_primary_10_1007_s40820_023_01218_y crossref_primary_10_1016_j_jpcs_2023_111395 crossref_primary_10_1007_s42114_023_00629_0 crossref_primary_10_1016_j_ceramint_2023_06_159 crossref_primary_10_1038_s41467_024_52520_1 crossref_primary_10_1016_j_ceramint_2023_10_036 crossref_primary_10_1016_j_ica_2023_121750 crossref_primary_10_1039_D2NR06503G crossref_primary_10_1007_s12274_023_6120_1 crossref_primary_10_1016_j_inoche_2023_111334 crossref_primary_10_1007_s42114_024_01052_9 crossref_primary_10_1039_D2QM00578F crossref_primary_10_1016_j_carbon_2025_120244 crossref_primary_10_1002_smll_202302132 crossref_primary_10_1016_j_apsusc_2022_154337 crossref_primary_10_1016_j_jmst_2023_01_053 crossref_primary_10_1021_acsami_4c07406 crossref_primary_10_1021_acs_iecr_3c02150 crossref_primary_10_1016_j_mtcomm_2023_107893 crossref_primary_10_1002_adfm_202501720 crossref_primary_10_1016_j_jallcom_2024_177770 |
Cites_doi | 10.1002/adma.201305293 10.1021/acsnano.0c02401 10.1038/s41467-021-21103-9 10.3390/micro1010007 10.1002/adfm.201803938 10.1016/j.compositesa.2018.12.012 10.1021/acssuschemeng.9b00191 10.1021/acsnano.0c06971 10.1002/adfm.201403809 10.1016/j.compscitech.2021.108800 10.1021/acsnano.0c03337 10.1002/adma.201706343 10.1021/acsami.9b10168 10.1002/adfm.202102812 10.1021/acsnano.8b05739 10.1016/j.cej.2016.11.089 10.1016/j.cej.2019.123096 10.1002/adfm.202002595 10.1002/adma.201906769 10.1002/aelm.201700565 10.1002/adfm.201907451 10.1007/s40820-020-0398-2 10.1002/adfm.201901448 10.1002/adfm.201702807 10.1002/adfm.202000883 10.1002/adfm.201400079 10.1002/adfm.202011229 10.1021/acsnano.0c08830 10.1002/aelm.202000970 10.1002/adom.202000012 10.1007/s00289-019-02892-y 10.1002/adfm.202100470 10.1002/adfm.201901236 10.1002/advs.201902162 10.1021/acssuschemeng.8b01270 10.1021/acsami.7b11592 10.1002/adma.201701583 10.1021/acsami.7b10067 10.1002/adma.201907499 10.1021/acsnano.1c04526 10.1016/j.matchemphys.2021.124532 10.1021/acsami.8b07107 10.1002/adma.201104483 10.1021/acsnano.1c01552 10.1002/adfm.201803360 10.1007/s40820-021-00678-4 10.1002/smll.202001686 10.1007/s40820-020-00432-2 10.1002/adfm.201703801 10.1007/s40820-021-00727-y 10.1002/adma.201907411 10.1007/s40820-021-00704-5 10.1016/j.cej.2019.123039 10.1002/adfm.202100275 10.1021/acsami.6b12178 10.1002/adfm.201503579 10.1002/adma.202002112 10.1039/d1tc00455g 10.1002/adfm.201800761 10.1039/d0nr04615a 10.1021/acsnano.0c10666 10.1002/adfm.202000475 10.1002/adfm.201806819 10.1002/adfm.201807624 10.1002/adma.201702367 10.1021/acsnano.9b07452 10.1002/adfm.201900163 10.1002/adom.201801318 10.1002/adfm.201707205 10.1021/acsami.9b00356 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-022-00830-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_f0395568a8514f9a93e88d94e4967eef PMC8986902 35384519 10_1007_s40820_022_00830_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-c68e5871149abe4daaee145121d3c04d978c41c5d27b4147392e410f2e129c6f3 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:30:17 EDT 2025 Thu Aug 21 17:55:20 EDT 2025 Fri Jul 11 00:20:07 EDT 2025 Wed Aug 13 04:50:05 EDT 2025 Wed Feb 19 02:24:54 EST 2025 Tue Jul 01 00:55:47 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Fri Feb 21 02:45:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Off-axis electron hologram Electromagnetic wave-absorbing materials Energetic metal organic framework Hierarchical porous structure M–M’ interaction |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-c68e5871149abe4daaee145121d3c04d978c41c5d27b4147392e410f2e129c6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2647463585?pq-origsite=%requestingapplication% |
PMID | 35384519 |
PQID | 2647463585 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0395568a8514f9a93e88d94e4967eef pubmedcentral_primary_oai_pubmedcentral_nih_gov_8986902 proquest_miscellaneous_2647655335 proquest_journals_2647463585 pubmed_primary_35384519 crossref_citationtrail_10_1007_s40820_022_00830_8 crossref_primary_10_1007_s40820_022_00830_8 springer_journals_10_1007_s40820_022_00830_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221200 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Nature B.V Springer Singapore SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer Singapore – name: SpringerOpen |
References | Wan, Xiong, Liu, Feng, Xun (CR10) 2021; 15 Shen, Zhai, Zheng (CR25) 2014; 24 Wei, Pei, Qian, Liu, Liu (CR28) 2020; 32 Song, Zhang, Zhang, Wang, Zhang (CR3) 2020; 7 Wan, Wang, Li, Liao, Lin (CR11) 2020; 14 Chen, Ma, Huang, Zhang, Huang (CR21) 2019; 7 Yao, Hong, Chen, Han, Xu (CR22) 2020; 32 Liu, Duan, Xiong, Su, Zhang (CR54) 2021; 9 Zhang, Liang, Zhang, Kang, Liao (CR6) 2018; 28 Lv, Yang, Wang, Ji, Song (CR41) 2018; 30 Lv, Yang, Ong, Wei, Liao (CR39) 2019; 29 Zhang, Qiao, Zhao, Xu, Wang (CR61) 2019; 11 Iqbal, Sambyal, Koo (CR18) 2020; 30 Liu, Sun, Song, Liu, Yu (CR46) 2021; 7 Wang, Cao, Cao, Yuan (CR9) 2020; 32 Wang, Wang, Ye, Shi, Feng (CR64) 2019; 383 Ganguly, Ghosh, Das, Das, Ghosh (CR5) 2020; 77 Liu, Zhang, Sun, Liu, Liu (CR33) 2017; 29 Zeng, Jin, Chen, Li, Zhou (CR7) 2016; 26 Yun, Kim, Iqbal, Cho, Lee (CR12) 2020; 32 Zhou, Song, Huang, Feng, Lu (CR14) 2021; 15 Gao, Wu, Qiu (CR47) 2018; 4 Yang, Chen, Li, Li, Ma (CR26) 2020; 14 Wang, Ma, Chen, Sun, Cui (CR2) 2021; 31 Zhang, Yang, Li, Yang, Liu (CR63) 2020; 382 Shu, Cao, Cao (CR24) 2021; 31 Ning, Jiang, Ding, Zhu, Tan (CR45) 2021; 31 Yin, Liu, Wei, Li, Nie (CR52) 2017; 9 Yin, Liu, Wei, Yu, Shui (CR51) 2016; 8 Zhu, Liu, Guo, Wang, Tang (CR35) 2021; 15 Bao, Tang, Song, Jiang, Jiang (CR65) 2020; 12 Huynen (CR70) 2021; 1 Li, Yin, Song, Han, Xu (CR30) 2018; 28 Weng, Li, Alhabeb, Karpovich, Wang (CR29) 2018; 28 Deng, Xiang, Xiong, Liu, Yu (CR57) 2020; 12 Huang, Duan, Liu, Zeng, Ma (CR4) 2020; 8 Wu, Pei, Xing, Yu, You (CR67) 2019; 29 Quan, Shi, Ong, Lu, Wang (CR38) 2019; 29 Wang, Liu, Jiao, Ma, Lv (CR44) 2020; 30 Li, Han, Ma, Liu, Wang (CR49) 2018; 6 Song, Ye, Kong, Shen, Han (CR17) 2020; 30 Fan, Peng, Huang, Li, Liu (CR1) 2012; 24 Ravindren, Mondal, Nath, Das (CR16) 2019; 118 Zhang, Zhu, Yin, Guo, Huang (CR43) 2018; 28 Yan, Pang, Li, Vajtai, Xu (CR23) 2015; 25 Xu, Li, Ji, Zhao, Cui (CR19) 2021; 15 Tian, Li, Liu, Ali, Guo (CR69) 2021; 13 Wang, Zhang, Liu, Zhao, Xie (CR31) 2019; 29 Liang, Man, Quan, Zheng, Gu (CR59) 2020; 12 Yousefi, Sun, Lin, Shen, Jia (CR13) 2014; 26 Lv, Yang, Liu, Wu, Lou (CR58) 2021; 12 Ghosh, Das, Ghosh, Remanan, Nath (CR27) 2021; 210 Zhang, Yan, Zhang, Yuan, Zhu (CR66) 2018; 10 Li, Tian, Gao, Jing, Li (CR34) 2020; 30 Wang, Jia, Liu, Dou, Xu (CR50) 2021; 13 Sun, Zhang, Liu, Xie, Yang (CR8) 2017; 27 Ma, Kang, Ma, Shao, Zhang (CR20) 2020; 14 Wu, Chen, Wang, Cao, Zhang (CR56) 2020; 16 Liu, Gao, Zhang, Huang, You (CR68) 2021; 31 Zhao, Zhang, Luo, Wang, Xu (CR36) 2018; 12 Zhang, Wu, Xie, Sun, Dong (CR37) 2017; 9 Liu, Liu, Feng, Shui, Yu (CR55) 2017; 314 Li, Liu, Nie, Yang, Wang (CR32) 2019; 29 Xu, Ran, Fan, Lai, Cheng (CR62) 2019; 11 Kang, Tan, Man, Ning, Chen (CR53) 2021; 266 Zhao, Xu, Du, Jiang, Huang (CR48) 2019; 7 Wang, Sun, Yang, Zhao, Zhang (CR60) 2021; 13 Zeng, Wu, Han, Ren, Siqueira (CR15) 2020; 14 Ye, Song, Zhang, Li, Zhang (CR42) 2018; 28 Song, Ye, Yin, Li, Li (CR40) 2017; 29 P Liu (830_CR68) 2021; 31 X Gao (830_CR47) 2018; 4 Y Yin (830_CR52) 2017; 9 F Ye (830_CR42) 2018; 28 B Deng (830_CR57) 2020; 12 I Huynen (830_CR70) 2021; 1 C Wu (830_CR56) 2020; 16 GM Weng (830_CR29) 2018; 28 X Zhang (830_CR66) 2018; 10 J Xu (830_CR19) 2021; 15 J Liu (830_CR33) 2017; 29 W Liu (830_CR54) 2021; 9 B Quan (830_CR38) 2019; 29 H Lv (830_CR58) 2021; 12 H Lv (830_CR41) 2018; 30 T Yun (830_CR12) 2020; 32 QW Wang (830_CR31) 2019; 29 HY Wang (830_CR60) 2021; 13 J Wang (830_CR44) 2020; 30 WL Song (830_CR3) 2020; 7 Q Song (830_CR40) 2017; 29 B Yao (830_CR22) 2020; 32 B Shen (830_CR25) 2014; 24 X Li (830_CR30) 2018; 28 HL Wang (830_CR2) 2021; 31 S Zhao (830_CR36) 2018; 12 X Wang (830_CR9) 2020; 32 Y Kang (830_CR53) 2021; 266 DX Yan (830_CR23) 2015; 25 Y Liu (830_CR46) 2021; 7 L Huang (830_CR4) 2020; 8 A Iqbal (830_CR18) 2020; 30 Q Song (830_CR17) 2020; 30 Y Zhu (830_CR35) 2021; 15 Y Yin (830_CR51) 2016; 8 Z Zhou (830_CR14) 2021; 15 Z Wu (830_CR67) 2019; 29 M Ning (830_CR45) 2021; 31 N Yousefi (830_CR13) 2014; 26 K Zhang (830_CR37) 2017; 9 Y Zhang (830_CR63) 2020; 382 Y Wan (830_CR11) 2020; 14 Y Li (830_CR34) 2020; 30 Y Wang (830_CR64) 2019; 383 H Lv (830_CR39) 2019; 29 W Tian (830_CR69) 2021; 13 RH Fan (830_CR1) 2012; 24 X Xu (830_CR62) 2019; 11 X Zhang (830_CR43) 2018; 28 Z Li (830_CR49) 2018; 6 S Ganguly (830_CR5) 2020; 77 SK Ghosh (830_CR27) 2021; 210 Z Zeng (830_CR7) 2016; 26 Z Zeng (830_CR15) 2020; 14 Q Liu (830_CR55) 2017; 314 S Bao (830_CR65) 2020; 12 Y Wan (830_CR10) 2021; 15 R Ravindren (830_CR16) 2019; 118 H Chen (830_CR21) 2019; 7 Y Yang (830_CR26) 2020; 14 J Wang (830_CR50) 2021; 13 X Zhang (830_CR61) 2019; 11 Q Zhang (830_CR6) 2018; 28 R Sun (830_CR8) 2017; 27 Q Wei (830_CR28) 2020; 32 Y Li (830_CR32) 2019; 29 Z Ma (830_CR20) 2020; 14 Z Zhao (830_CR48) 2019; 7 X Liang (830_CR59) 2020; 12 J Shu (830_CR24) 2021; 31 |
References_xml | – volume: 26 start-page: 5480 issue: 31 year: 2014 end-page: 5487 ident: CR13 article-title: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201305293 – volume: 14 start-page: 8368 issue: 7 year: 2020 end-page: 8382 ident: CR20 article-title: Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti C T MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding publication-title: ACS Nano doi: 10.1021/acsnano.0c02401 – volume: 12 start-page: 834 year: 2021 ident: CR58 article-title: A flexible electromagnetic wave-electricity harvester publication-title: Nat. Commun. doi: 10.1038/s41467-021-21103-9 – volume: 1 start-page: 86 issue: 1 year: 2021 end-page: 101 ident: CR70 article-title: Investigation of microwave absorption mechanisms in microcellular foamed conductive composites publication-title: Micro doi: 10.3390/micro1010007 – volume: 28 start-page: 1803938 issue: 41 year: 2018 ident: CR30 article-title: Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803938 – volume: 118 start-page: 75 year: 2019 end-page: 89 ident: CR16 article-title: Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.12.012 – volume: 7 start-page: 7183 issue: 7 year: 2019 end-page: 7192 ident: CR48 article-title: Metal-organic framework-based Pb@MoS core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00191 – volume: 14 start-page: 14134 issue: 10 year: 2020 end-page: 14145 ident: CR11 article-title: Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness publication-title: ACS Nano doi: 10.1021/acsnano.0c06971 – volume: 25 start-page: 559 issue: 4 year: 2015 end-page: 566 ident: CR23 article-title: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403809 – volume: 210 start-page: 108800 year: 2021 ident: CR27 article-title: Selective distribution of conductive carbonaceous inclusion in thermoplastic elastomer: a wet chemical approach of promoting dual percolation and inhibiting radiation pollution in X-band publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108800 – volume: 14 start-page: 8754 issue: 7 year: 2020 end-page: 8765 ident: CR26 article-title: Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding publication-title: ACS Nano doi: 10.1021/acsnano.0c03337 – volume: 30 start-page: 1706343 issue: 15 year: 2018 ident: CR41 article-title: A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device publication-title: Adv. Mater. doi: 10.1002/adma.201706343 – volume: 11 start-page: 35959 issue: 39 year: 2019 end-page: 35968 ident: CR61 article-title: High-efficiency electromagnetic wave absorption of cobalt-decorated NH -UIO-66-derived porous ZrO /C publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10168 – volume: 31 start-page: 2102812 issue: 27 year: 2021 ident: CR68 article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 12 start-page: 11193 issue: 11 year: 2018 end-page: 11202 ident: CR36 article-title: Highly electrically conductive three-dimensional Ti C T MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances publication-title: ACS Nano doi: 10.1021/acsnano.8b05739 – volume: 314 start-page: 320 year: 2017 end-page: 327 ident: CR55 article-title: Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.089 – volume: 383 start-page: 123096 year: 2019 ident: CR64 article-title: Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123096 – volume: 30 start-page: 2002595 issue: 45 year: 2020 ident: CR44 article-title: Hierarchical carbon fiber@MXene@MoS core-sheath synergistic microstructure for tunable and efficient microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002595 – volume: 32 start-page: 1906769 issue: 9 year: 2020 ident: CR12 article-title: Electromagnetic shielding of monolayer MXene assemblies publication-title: Adv. Mater. doi: 10.1002/adma.201906769 – volume: 4 start-page: 1700565 issue: 5 year: 2018 ident: CR47 article-title: High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers–carbon nanotubes and Fe O nanoparticles publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700565 – volume: 30 start-page: 1907451 issue: 5 year: 2020 ident: CR34 article-title: Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907451 – volume: 12 start-page: 55 year: 2020 ident: CR57 article-title: Sandwich-like Fe&TiO @C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0398-2 – volume: 29 start-page: 1901448 issue: 28 year: 2019 ident: CR67 article-title: Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901448 – volume: 27 start-page: 1702807 issue: 45 year: 2017 ident: CR8 article-title: Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702807 – volume: 30 start-page: 2000883 issue: 47 year: 2020 ident: CR18 article-title: 2D MXenes for electromagnetic shielding: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 24 start-page: 4542 issue: 28 year: 2014 end-page: 4548 ident: CR25 article-title: Ultrathin flexible graphene film: an excellent thermal conducting material with efficient emi shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400079 – volume: 31 start-page: 2011229 issue: 19 year: 2021 ident: CR45 article-title: Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011229 – volume: 15 start-page: 1465 issue: 1 year: 2021 end-page: 1474 ident: CR35 article-title: Multifunctional Ti C T MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding publication-title: ACS Nano doi: 10.1021/acsnano.0c08830 – volume: 7 start-page: 2000970 issue: 3 year: 2021 ident: CR46 article-title: Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000970 – volume: 8 start-page: 2000012 issue: 12 year: 2020 ident: CR4 article-title: Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000012 – volume: 77 start-page: 2923 issue: 6 year: 2020 end-page: 2943 ident: CR5 article-title: Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution publication-title: Polym. Bull. doi: 10.1007/s00289-019-02892-y – volume: 31 start-page: 2100470 issue: 23 year: 2021 ident: CR24 article-title: Diverse metal–organic framework architectures for electromagnetic absorbers and shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100470 – volume: 29 start-page: 1901236 issue: 28 year: 2019 ident: CR38 article-title: Defect engineering in two common types of dielectric materials for electromagnetic absorption applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901236 – volume: 7 start-page: 1902162 issue: 2 year: 2020 ident: CR3 article-title: Ionic conductive gels for optically manipulatable microwave stealth structures publication-title: Adv. Sci. doi: 10.1002/advs.201902162 – volume: 6 start-page: 8904 issue: 7 year: 2018 end-page: 8913 ident: CR49 article-title: MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01270 – volume: 9 start-page: 33041 issue: 38 year: 2017 end-page: 33048 ident: CR37 article-title: In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11592 – volume: 29 start-page: 1701583 issue: 31 year: 2017 ident: CR40 article-title: Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201701583 – volume: 9 start-page: 30850 issue: 36 year: 2017 end-page: 30861 ident: CR52 article-title: Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10067 – volume: 32 start-page: 1907499 issue: 14 year: 2020 ident: CR22 article-title: Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness publication-title: Adv. Mater. doi: 10.1002/adma.201907499 – volume: 15 start-page: 12405 issue: 7 year: 2021 end-page: 12417 ident: CR14 article-title: Facile fabrication of densely packed Ti C MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance publication-title: ACS Nano doi: 10.1021/acsnano.1c04526 – volume: 266 start-page: 124532 year: 2021 ident: CR53 article-title: A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124532 – volume: 10 start-page: 24920 issue: 29 year: 2018 end-page: 24929 ident: CR66 article-title: Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07107 – volume: 24 start-page: 1980 issue: 15 year: 2012 end-page: 1986 ident: CR1 article-title: Transparent metals for ultrabroadband electromagnetic waves publication-title: Adv. Mater. doi: 10.1002/adma.201104483 – volume: 15 start-page: 8907 issue: 5 year: 2021 end-page: 8918 ident: CR19 article-title: Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications publication-title: ACS Nano doi: 10.1021/acsnano.1c01552 – volume: 28 start-page: 1803360 issue: 44 year: 2018 ident: CR29 article-title: Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803360 – volume: 13 start-page: 161 year: 2021 ident: CR69 article-title: Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al O hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00678-4 – volume: 16 start-page: 2001686 issue: 30 year: 2020 ident: CR56 article-title: Confining tiny MoO clusters into reduced graphene oxide for highly efficient low frequency microwave absorption publication-title: Small doi: 10.1002/smll.202001686 – volume: 12 start-page: 102 year: 2020 ident: CR59 article-title: Environment-stable Co Ni encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00432-2 – volume: 28 start-page: 1703801 issue: 1 year: 2018 ident: CR6 article-title: Electromagnetic shielding hybrid nanogenerator for health monitoring and protection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703801 – volume: 13 start-page: 206 year: 2021 ident: CR60 article-title: 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00727-y – volume: 32 start-page: 1907411 issue: 14 year: 2020 ident: CR28 article-title: Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film publication-title: Adv. Mater. doi: 10.1002/adma.201907411 – volume: 13 start-page: 175 year: 2021 ident: CR50 article-title: Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00704-5 – volume: 382 start-page: 123039 year: 2020 ident: CR63 article-title: Heterostructured CoFe@C@MnO nanocubes for efficient microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123039 – volume: 31 start-page: 2100275 issue: 25 year: 2021 ident: CR2 article-title: A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100275 – volume: 8 start-page: 34686 issue: 50 year: 2016 end-page: 34698 ident: CR51 article-title: Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12178 – volume: 26 start-page: 303 issue: 2 year: 2016 end-page: 310 ident: CR7 article-title: Lightweight and anisotropic porous mwcnt/wpu composites for ultrahigh performance electromagnetic interference shielding publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503579 – volume: 32 start-page: 2002112 issue: 36 year: 2020 ident: CR9 article-title: Assembling nano–microarchitecture for electromagnetic absorbers and smart devices publication-title: Adv. Mater. doi: 10.1002/adma.202002112 – volume: 9 start-page: 5505 issue: 16 year: 2021 end-page: 5514 ident: CR54 article-title: Multicomponent Fe-based composites derived from the oxidation and reduction of prussian blue towards efficient electromagnetic wave absorption publication-title: J. Mater. Chem. C doi: 10.1039/d1tc00455g – volume: 28 start-page: 1800761 issue: 49 year: 2018 ident: CR43 article-title: Tunable high-performance microwave absorption of Co S hollow spheres constructed by nanosheets within ultralow filler loading publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800761 – volume: 12 start-page: 18790 issue: 36 year: 2020 end-page: 18799 ident: CR65 article-title: Synthesis of sandwich-like Co Fe @C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance publication-title: Nanoscale doi: 10.1039/d0nr04615a – volume: 15 start-page: 8439 issue: 5 year: 2021 end-page: 8449 ident: CR10 article-title: Ultrathin, strong, and highly flexible Ti C T MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding publication-title: ACS Nano doi: 10.1021/acsnano.0c10666 – volume: 30 start-page: 2000475 issue: 31 year: 2020 ident: CR17 article-title: Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000475 – volume: 29 start-page: 1806819 issue: 7 year: 2019 ident: CR31 article-title: Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806819 – volume: 29 start-page: 1807624 issue: 10 year: 2019 ident: CR32 article-title: Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807624 – volume: 29 start-page: 1702367 issue: 38 year: 2017 ident: CR33 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 14 start-page: 2927 issue: 3 year: 2020 end-page: 2938 ident: CR15 article-title: Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding publication-title: ACS Nano doi: 10.1021/acsnano.9b07452 – volume: 29 start-page: 1900163 issue: 14 year: 2019 ident: CR39 article-title: A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900163 – volume: 7 start-page: 1801318 issue: 8 year: 2019 ident: CR21 article-title: Graphene-based materials toward microwave and terahertz absorbing stealth technologies publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801318 – volume: 28 start-page: 1707205 issue: 17 year: 2018 ident: CR42 article-title: Direct growth of edge-rich graphene with tunable dielectric properties in porous Si N ceramic for broadband high-performance microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707205 – volume: 11 start-page: 13564 issue: 14 year: 2019 end-page: 13573 ident: CR62 article-title: Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00356 – volume: 16 start-page: 2001686 issue: 30 year: 2020 ident: 830_CR56 publication-title: Small doi: 10.1002/smll.202001686 – volume: 11 start-page: 13564 issue: 14 year: 2019 ident: 830_CR62 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00356 – volume: 30 start-page: 2000475 issue: 31 year: 2020 ident: 830_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000475 – volume: 13 start-page: 206 year: 2021 ident: 830_CR60 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00727-y – volume: 26 start-page: 303 issue: 2 year: 2016 ident: 830_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503579 – volume: 12 start-page: 18790 issue: 36 year: 2020 ident: 830_CR65 publication-title: Nanoscale doi: 10.1039/d0nr04615a – volume: 7 start-page: 2000970 issue: 3 year: 2021 ident: 830_CR46 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000970 – volume: 12 start-page: 55 year: 2020 ident: 830_CR57 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0398-2 – volume: 10 start-page: 24920 issue: 29 year: 2018 ident: 830_CR66 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07107 – volume: 7 start-page: 1801318 issue: 8 year: 2019 ident: 830_CR21 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801318 – volume: 266 start-page: 124532 year: 2021 ident: 830_CR53 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124532 – volume: 9 start-page: 33041 issue: 38 year: 2017 ident: 830_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11592 – volume: 14 start-page: 8754 issue: 7 year: 2020 ident: 830_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.0c03337 – volume: 30 start-page: 1907451 issue: 5 year: 2020 ident: 830_CR34 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907451 – volume: 28 start-page: 1703801 issue: 1 year: 2018 ident: 830_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703801 – volume: 9 start-page: 30850 issue: 36 year: 2017 ident: 830_CR52 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10067 – volume: 7 start-page: 7183 issue: 7 year: 2019 ident: 830_CR48 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00191 – volume: 8 start-page: 2000012 issue: 12 year: 2020 ident: 830_CR4 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000012 – volume: 8 start-page: 34686 issue: 50 year: 2016 ident: 830_CR51 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12178 – volume: 210 start-page: 108800 year: 2021 ident: 830_CR27 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108800 – volume: 26 start-page: 5480 issue: 31 year: 2014 ident: 830_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201305293 – volume: 30 start-page: 2002595 issue: 45 year: 2020 ident: 830_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002595 – volume: 77 start-page: 2923 issue: 6 year: 2020 ident: 830_CR5 publication-title: Polym. Bull. doi: 10.1007/s00289-019-02892-y – volume: 15 start-page: 8907 issue: 5 year: 2021 ident: 830_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.1c01552 – volume: 29 start-page: 1701583 issue: 31 year: 2017 ident: 830_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201701583 – volume: 29 start-page: 1702367 issue: 38 year: 2017 ident: 830_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 32 start-page: 1907411 issue: 14 year: 2020 ident: 830_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201907411 – volume: 11 start-page: 35959 issue: 39 year: 2019 ident: 830_CR61 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10168 – volume: 31 start-page: 2102812 issue: 27 year: 2021 ident: 830_CR68 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 32 start-page: 1906769 issue: 9 year: 2020 ident: 830_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201906769 – volume: 32 start-page: 1907499 issue: 14 year: 2020 ident: 830_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201907499 – volume: 382 start-page: 123039 year: 2020 ident: 830_CR63 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123039 – volume: 29 start-page: 1807624 issue: 10 year: 2019 ident: 830_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807624 – volume: 1 start-page: 86 issue: 1 year: 2021 ident: 830_CR70 publication-title: Micro doi: 10.3390/micro1010007 – volume: 12 start-page: 102 year: 2020 ident: 830_CR59 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00432-2 – volume: 27 start-page: 1702807 issue: 45 year: 2017 ident: 830_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702807 – volume: 314 start-page: 320 year: 2017 ident: 830_CR55 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.089 – volume: 25 start-page: 559 issue: 4 year: 2015 ident: 830_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403809 – volume: 383 start-page: 123096 year: 2019 ident: 830_CR64 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123096 – volume: 32 start-page: 2002112 issue: 36 year: 2020 ident: 830_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.202002112 – volume: 13 start-page: 161 year: 2021 ident: 830_CR69 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00678-4 – volume: 7 start-page: 1902162 issue: 2 year: 2020 ident: 830_CR3 publication-title: Adv. Sci. doi: 10.1002/advs.201902162 – volume: 28 start-page: 1800761 issue: 49 year: 2018 ident: 830_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800761 – volume: 12 start-page: 834 year: 2021 ident: 830_CR58 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21103-9 – volume: 9 start-page: 5505 issue: 16 year: 2021 ident: 830_CR54 publication-title: J. Mater. Chem. C doi: 10.1039/d1tc00455g – volume: 28 start-page: 1803938 issue: 41 year: 2018 ident: 830_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803938 – volume: 15 start-page: 8439 issue: 5 year: 2021 ident: 830_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.0c10666 – volume: 30 start-page: 1706343 issue: 15 year: 2018 ident: 830_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201706343 – volume: 29 start-page: 1806819 issue: 7 year: 2019 ident: 830_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806819 – volume: 15 start-page: 12405 issue: 7 year: 2021 ident: 830_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.1c04526 – volume: 118 start-page: 75 year: 2019 ident: 830_CR16 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.12.012 – volume: 4 start-page: 1700565 issue: 5 year: 2018 ident: 830_CR47 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700565 – volume: 24 start-page: 1980 issue: 15 year: 2012 ident: 830_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201104483 – volume: 28 start-page: 1803360 issue: 44 year: 2018 ident: 830_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803360 – volume: 14 start-page: 14134 issue: 10 year: 2020 ident: 830_CR11 publication-title: ACS Nano doi: 10.1021/acsnano.0c06971 – volume: 30 start-page: 2000883 issue: 47 year: 2020 ident: 830_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 29 start-page: 1901236 issue: 28 year: 2019 ident: 830_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901236 – volume: 14 start-page: 8368 issue: 7 year: 2020 ident: 830_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.0c02401 – volume: 28 start-page: 1707205 issue: 17 year: 2018 ident: 830_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707205 – volume: 31 start-page: 2011229 issue: 19 year: 2021 ident: 830_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011229 – volume: 29 start-page: 1900163 issue: 14 year: 2019 ident: 830_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900163 – volume: 15 start-page: 1465 issue: 1 year: 2021 ident: 830_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.0c08830 – volume: 12 start-page: 11193 issue: 11 year: 2018 ident: 830_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.8b05739 – volume: 13 start-page: 175 year: 2021 ident: 830_CR50 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00704-5 – volume: 31 start-page: 2100275 issue: 25 year: 2021 ident: 830_CR2 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100275 – volume: 31 start-page: 2100470 issue: 23 year: 2021 ident: 830_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100470 – volume: 14 start-page: 2927 issue: 3 year: 2020 ident: 830_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.9b07452 – volume: 24 start-page: 4542 issue: 28 year: 2014 ident: 830_CR25 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400079 – volume: 6 start-page: 8904 issue: 7 year: 2018 ident: 830_CR49 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01270 – volume: 29 start-page: 1901448 issue: 28 year: 2019 ident: 830_CR67 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901448 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5574486 |
Snippet | Highlights
A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of... Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light... Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light... HighlightsA typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15... A typical 3D porous carbon sponge of CoFe@PCS exhibited the continuous distribution of nano-meso-micro-hierarchical pores in the range of 1 nm–15 μm. The... Abstract Improving the atom utilization of metals and clarifying the M–M’ interaction is both greatly significant in assembling high-performance ultra-light... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96 |
SubjectTerms | Capacitors Carbon Cobalt Density distribution Dipoles Electromagnetic coupling Electromagnetic radiation Electromagnetic wave-absorbing materials Energetic metal organic framework Engineering Hierarchical porous structure High temperature Iron Metal clusters Metal-organic frameworks Microwave absorption and EMI shielding M–M’ interaction Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Off-axis electron hologram Pyrolysis Thickness Wave attenuation X ray absorption |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnuCAeBNYkJG4gYWT-HkspdUKafcCFXuLnNiBSlWy6gNtL_vbmXHStOV54Vq7keWZ8XyWZ76PkNcluFFaaohvJTwTVtXMQRZmnHsA98aazGK_8_mFOpuJj5fy8kDqC2vCOnrgbuPe1Ty3yJLlABqI2jqbB2O8FQG-q0Oo8fSFnHdwmQJPyjQqMu3fB1FWWRyw1AjkdMn3RGYSicv0nh9TZgLyep9oOyCt8QkrKtWlKVOaq74DJ_bhoWozZ1gYj5CGM3OU5aIYwO8Q7K-FmD-9xsYkN71H7vbolI66XblPboXmAblzwFn4kNzMFvARZDmmH7D4fb2lbU1Ha-xupuN2GtikV9ahn7axsZDOG3rRNlgUP2827WZFx25Zwvg5ygNcU4DNFMtNFls6iYQWsEwY-9pgfyX94r4HOvKrdhkPt0dkNp18Hp-xXsSBVVLbNauUCRJuZXATc2UQ3rkQUB04S31eceHhFluJtJI-06VIwTA2CyLldRYAiVSqzh-Tk6ZtwlNCvfNK17X23JaiTMEjjOOyLisjtbYuJCTdbXpR9QznKLSxKAZu5mioAgxVREMVJiFvhv9cdfwef539Hm05zERu7vgDeGzRe2zxL49NyOnOE4r-wFgVgEu1APBnZEJeDcMQ6vh-45oAxolzlAR8DnOedI4zrCSHxIVMQQnRRy51tNTjkWb-LdKJQ0Aqy7OEvN05335Zf96KZ_9jK56T2xlGTSwPOiUn6-UmvACQty5fxnj-AVY8QS0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgucAB8SbLgozEDSI5iR3bx1JarZB2L1Cxt8iJ7aVSlazaFNHL_nZm3Dy2sCBxjZ1olJnxfNbMfEPIuxLMKCkl-HfObcx17mMDUThmzAK4V1qlGvudz87z0wX_fCEuuqawTV_t3qckw0k9NLvhaGQWY_U54gYWq7vknsC7O6ZoR87xVOI0pjE3iCOV-Q2GGo58LtlIYiaQtEyO3Jgi5RDTuyC7B9ES01dhSl2SxLlkedd9c7tYBxEuDAK4Db3-WYT5WyY2BLj5I_KwQ6Z0sjelx-SOq5-QBzf4Cp-S68UKPoIMx_QTFr63O9p4Ommxs5lOm7mLZ91UHfplF5oK6bKm502NBfHLettsN3Rq1iWsn-FogJ8UIDPFUpPVjs4CmQWICWuXNfZW0m_mh6MTu2nW4WB7Rhbz2dfpadwNcIgrIXUbV7lyAm5kcAszpePWGOdwMnCa2Kxi3MINtuJJJWwqS56AYnTqeMJ86gCFVLnPnpOjuqndS0Ktsbn0XlqmS14mRgllmPBlpYSU2riIJP1PL6qO3RyHbKyKgZc5KKoARRVBUYWKyPvhnas9t8c_d39EXQ47kZc7PGjWl0Xn5oVnmUZON5Av4V4bnTmlrOYOvEA65yNy0ltC0R0WmwIwqeQA_JSIyNthGdwcczemdqCcsCcXgM1hz4u94QySZBC0kCUoIvLApA5EPVypl98DlTg4Y65ZGpEPvfGNYv39Vxz_3_ZX5H6K_hGKgE7IUbveutcA5dryTfDcX4YbNZk priority: 102 providerName: Springer Nature |
Title | Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption |
URI | https://link.springer.com/article/10.1007/s40820-022-00830-8 https://www.ncbi.nlm.nih.gov/pubmed/35384519 https://www.proquest.com/docview/2647463585 https://www.proquest.com/docview/2647655335 https://pubmed.ncbi.nlm.nih.gov/PMC8986902 https://doaj.org/article/f0395568a8514f9a93e88d94e4967eef |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHxJvAUhmJG0Tk4ecJtd2WFdJWCFixt8iJnaVSlSx9IHrhtzPjuu2Wx156iN3Kzcx4xp6Z7yPkVQlqlJYS7FswGzMt6tiAF46TxEJwr7TKNPY7n03E6Tn7cMEvwoXbIpRVbvdEv1HbtsI78rfguCUD76j4u6vvMbJGYXY1UGgckS5swUp1SHcwmnz8tNWoTCIz0z5PiPTK7BpaDUNsl3wPaMYRwEzucTJ5xsC_B4e7CaglprI8Y12axkImInTi-H48ZG9OYiyQx9AmidWBt_OkAP-KZP8uyPwjK-ud3fgeuRuiVNrfqNV9css1D8ida9iFD8mv8xn8CKId0xMsgl-uaVvT_hK7nOmwHbt4FBh26Oe1bzCk04ZO2gaL46fNql0t6NDMSxg_Q5qAnxTCZ4plJ7M1HXlgC1gmjF022GdJv5ofjvbtop37Te4ROR-PvgxP40DmEFdc6mVcCeU4nM7gRGZKx6wxziFLcJbavEqYhdNsxdKK20yWLAXB6MyxNKkzBxFJJer8Mek0beOeEmqNFbKupU10ycrUKK5MwuuyUlxKbVxE0u1LL6qAdI6EG7Nih9HsBVWAoAovqEJF5PXuO1cbnI8bZw9QlruZiNHtH7TzyyKYfFEnuUZ8N1hfymptdO6Uspo5sAjpXB2R460mFGHjWBR7NY_Iy90wmDzmcUzjQDh-juAQp8OcJxvF2a0kBweGiEERkQcqdbDUw5Fm-s3DioNhCp1kEXmzVb79sv7_Kp7d_C-ek9sZ2oMvADomneV85V5AGLcse-RIjd_3SLc_OBmMe8Fy4ekwY_gphj1_QfIbRGQ_Zw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcQMnECDH5IlHxgmpAkpbXKhGXpzZUtuM5Ox2zyAXPhJ_EZ2FTtpePTWa6R4Nt7VPqLd7yPkVQZmFGQSznfMDeNJXDANUZj5voHkXiUqTHDeuT-Ie0P--UgcbZFfzSwMtlU2PtE5alPl-B_5OwjckkN0VOLD2TlD1ii8XW0oNJZmsW8X36Fkm77f2wX9vg7Dbuew3WM1qwDLhUxmLI-VFVAmQGmgM8uN1tYiXW0YmCj3uYGyKudBLkwoMx5wCQmE5YFfhBZCYx4XETz3GrnOI4jkOJne_dTYbyiRB2p9K4lkzvwCNg5HJJloDZ8mEC5NrlE5Rcghm6jD-zJ9l3hx5vjxgoDF0o_ruR83_Ydc0T7DdnxMpHymNmKroyD4V978d_vnH3fALrR275DbdU5MW0sjvku2bHmP3LqAlHif_ByO4SGIrUx3seV-tqBVQVsznKmm7aprWafm86FfFm6ckY5KOqhKbMUflfNqPqVtPclgvY-kBD8oJOsUm1zGC9pxMBogJqydlDjVSb_qb5a2zLSaOJf6gAyvRMkPyXZZlfYxoUabWBaFNH6S8SzQSijtiyLLlZAy0dYjQfPS07zGVUd6j3G6QoR2ikpBUalTVKo88mb1nbMlqsiluz-iLlc7ERHcfVBNTtLawaSFHyWIJgfyBbxIdBJZpUzCLZw_aW3hkZ3GEtLaTU3T9aHyyMvVMjgYvDXSpQXluD2xgKoA9jxaGs5KkgjCJeITeURumNSGqJsr5ejUgZiDG4gTP_TI28b41mL9_1U8ufxXvCA3eof9g_Rgb7D_lNwM8Wy41qMdsj2bzO0zSCBn2XN3aik5vmo38Rv0BHT5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroTggHgTWMBIcIJo83Bs58Ch9KHdLlshLRV7C07sLJWqZNWmQC_8Jn4iM26SbmFB4rDX2o0sz3jmG83MN4S8TEGN_FTA--ZMuyzmuavAC7uepwHcy1gGMfY7H4_5wYSNTqPTHfKz6YWx1e5NSnLd04AsTUW1f67z_bbxDcckey5WoiOG8FxZl1UemdU3CNoWbw_7IOFXQTAcfOwduPVcATeLRFy5GZcmgkABggOVGqaVMgYH1ga-DjOPaQisMuZnkQ5EynwmAEIY5nt5YMA5ZjwP4bvXyK7k8EI7ZLfbHZ2MGh0OBM6C2mQmcaAzu8CPw5BNJtxQqEVImSY2zJxRwABR1C5-DeEFJs_sjDzfd7nweN37c_lFbPlXO4bgMuz8Zwnob3lg616Ht8mtGhfT7lqR75AdU9wlNy-wJd4jPyYz-AjyK9M-lt1XK1rmtFthXzXtlUPjDuqZPvRkZVsa6bSg47JA2U6LZblc0J6ap7B-jIMJvlMA7BQLXWYrOrBUGnBMWDsrsLOTflJfDe3qRTm3ZvU-mVyJmB-QTlEW5hGhWmku8lxoL05Z6isZSeVFeZrJSIhYGYf4zaUnWc2tjiM-ZknLCm0FlYCgEiuoRDrkdfuf8zWzyD93v0NZtjuRFdz-UM7PktrIJLkXxsgoB-fzWR6rODRS6pgZeIPCmNwhe40mJLWpWiSAiAUD2Ckjh7xol8HIYOZIFQaEY_fwCCID2PNwrTjtSUJwmchR5BCxpVJbR91eKaZfLJE5mAIee4FD3jTKtznW36_i8f9tf06uf-gPk_eH46Mn5EaAT8VWI-2RTjVfmqeAKav0Wf2MKfl81ZbjF0jnd3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+Density+of+Atomic+CoFe-Electron+Synergy+in+Noncontinuous+Carbon+Matrix+for+Highly+Efficient+Magnetic+Wave+Adsorption&rft.jtitle=Nano-micro+letters&rft.au=Huang%2C+Wenhuan&rft.au=Qiu%2C+Qiang&rft.au=Yang%2C+Xiufang&rft.au=Zuo%2C+Shouwei&rft.date=2022-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1007%2Fs40820-022-00830-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |