Catheter Ablation of Atrial Fibrillation: State of the Art and Future Perspectives
Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins p...
Saved in:
Published in | Cardiology and Therapy Vol. 9; no. 1; pp. 45 - 58 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cheshire
Springer Healthcare
01.06.2020
Springer Adis, Springer Healthcare |
Subjects | |
Online Access | Get full text |
ISSN | 2193-8261 2193-6544 |
DOI | 10.1007/s40119-019-00158-2 |
Cover
Loading…
Abstract | Purpose of Review
Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives.
Recent Findings
Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the “gold standard”, the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence.
Conclusions
Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. |
---|---|
AbstractList | Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives. Recent Findings Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the "gold standard", the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence. Conclusions Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives. Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the "gold standard", the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence. Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. Abstract Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives. Recent Findings Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the “gold standard”, the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence. Conclusions Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives.PURPOSE OF REVIEWAtrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives.Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the "gold standard", the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence.RECENT FINDINGSCatheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the "gold standard", the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence.Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques.CONCLUSIONSPulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives. Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives. Recent Findings Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the “gold standard”, the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence. Conclusions Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques. |
Audience | Academic |
Author | Reissmann, Bruno Rottner, Laura Metzner, Andreas Münkler, Paula Meyer, Christian Rillig, Andreas Nies, Moritz Dinshaw, Leon Dickow, Jannis Bellmann, Barbara Lin, Tina Tönnis, Tobias Klatt, Niklas Jungen, Christiane Schleberger, Ruben |
Author_xml | – sequence: 1 givenname: Laura orcidid: 0000-0002-1389-8564 surname: Rottner fullname: Rottner, Laura email: laurarottner@aol.de organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 2 givenname: Barbara surname: Bellmann fullname: Bellmann, Barbara organization: MEDIAN Klinik AGZ Düsseldorf – sequence: 3 givenname: Tina surname: Lin fullname: Lin, Tina organization: GenesisCare – sequence: 4 givenname: Bruno surname: Reissmann fullname: Reissmann, Bruno organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 5 givenname: Tobias surname: Tönnis fullname: Tönnis, Tobias organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 6 givenname: Ruben surname: Schleberger fullname: Schleberger, Ruben organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 7 givenname: Moritz surname: Nies fullname: Nies, Moritz organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 8 givenname: Christiane surname: Jungen fullname: Jungen, Christiane organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 9 givenname: Leon surname: Dinshaw fullname: Dinshaw, Leon organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 10 givenname: Niklas surname: Klatt fullname: Klatt, Niklas organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 11 givenname: Jannis surname: Dickow fullname: Dickow, Jannis organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 12 givenname: Paula surname: Münkler fullname: Münkler, Paula organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 13 givenname: Christian surname: Meyer fullname: Meyer, Christian organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 14 givenname: Andreas surname: Metzner fullname: Metzner, Andreas organization: Universitäres Herzzentrum Hamburg-Eppendorf – sequence: 15 givenname: Andreas surname: Rillig fullname: Rillig, Andreas organization: Universitäres Herzzentrum Hamburg-Eppendorf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31898209$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhgep2Fr7B7yQAW-8mZrvDy-EZXG1UFD8uA6ZzJltyuxkTTIF_72ZzlZckTKECSfv-3CS8z6vTsYwQlW9xOgSIyTfJoYw1g2aF8JcNeRJdUawpo3gjJ0c9ooIfFpdpORbxJikhAv0rDqlWGlFkD6rvq5tvoEMsV61g80-jHXo61WO3g71xrfRD0v5Xf0t2wzzaTHUq5hrO3b1ZspThPoLxLQHl_0dpBfV094OCS4O__Pqx-bD9_Wn5vrzx6v16rpxXOrcWAcWuJQdklSD6hjiTGgmJbe4A9BAhbJIOkV6jBVmGlGBSOtIyy0XltDz6mrhdsHemn30Oxt_mWC9uS-EuDU2Zu8GMIw51-nybphQRolWGjPU0x472tqe8cJ6v7D2U7uDzsGYox2OoMcno78x23BnJKFSIFoAbw6AGH5OkLLZ-eSgPN4IYUqGUEoFRkLJIn29SLe2tObHPhSim-VmJXjpsAx2vt3lf1Tl62DnXclC70v9yPDq7yv86f1h1kWgFoGLIaUIvXE-38-2kP1gMDJzssySLIPmNSfLzGzyj_WB_qiJLqZUxOMWorkNUxxLJB5z_QYx0tzi |
CitedBy_id | crossref_primary_10_3390_healthcare12151508 crossref_primary_10_1016_j_hrcr_2021_05_018 crossref_primary_10_2217_fca_2020_0066 crossref_primary_10_7759_cureus_59407 crossref_primary_10_61189_061485jysfwu crossref_primary_10_1186_s12872_022_02657_y crossref_primary_10_1016_j_tcm_2022_04_002 crossref_primary_10_1080_14779072_2021_1902307 crossref_primary_10_1002_joa3_12742 crossref_primary_10_26599_1671_5411_2023_11_006 crossref_primary_10_1111_jce_15072 crossref_primary_10_1007_s10840_023_01690_x crossref_primary_10_1007_s10840_022_01308_8 crossref_primary_10_1111_pace_14324 crossref_primary_10_1007_s12551_020_00735_z crossref_primary_10_1038_s42005_022_00978_0 crossref_primary_10_7759_cureus_65835 crossref_primary_10_1007_s12195_021_00703_x crossref_primary_10_17925_EJAE_2021_7_1_26 crossref_primary_10_1155_2021_5511267 crossref_primary_10_1371_journal_pone_0259999 crossref_primary_10_1002_advs_202307427 crossref_primary_10_1080_00015385_2021_1939512 crossref_primary_10_1016_j_cpcardiol_2022_101161 crossref_primary_10_36660_abc_20240246i crossref_primary_10_1002_joa3_12856 crossref_primary_10_3389_fcvm_2024_1327639 crossref_primary_10_1111_eci_13499 crossref_primary_10_38025_2078_1962_2023_22_2_120_128 crossref_primary_10_1161_CIRCEP_120_009219 crossref_primary_10_3390_jcm13164958 crossref_primary_10_1097_HCO_0000000000001182 crossref_primary_10_18087_cardio_2023_1_n2124 crossref_primary_10_2147_CIA_S376091 crossref_primary_10_1088_1361_6579_acbc08 crossref_primary_10_1161_CIRCEP_121_010174 crossref_primary_10_2174_1573403X17666210729101752 crossref_primary_10_26565_2313_6693_2021_43_02 crossref_primary_10_7759_cureus_72437 crossref_primary_10_1007_s00399_022_00843_1 crossref_primary_10_1007_s10840_022_01212_1 crossref_primary_10_1186_s12872_020_01670_3 crossref_primary_10_23736_S2724_5683_20_05217_2 crossref_primary_10_1007_s40430_024_04702_7 crossref_primary_10_1093_eurheartj_ehae618 crossref_primary_10_1016_j_jvc_2023_07_001 crossref_primary_10_1016_j_hrthm_2022_06_016 crossref_primary_10_36660_abc_20240246 crossref_primary_10_3390_jcm13041029 crossref_primary_10_1093_ehjcr_ytae303 crossref_primary_10_1016_j_bspc_2020_102354 crossref_primary_10_3390_s24051699 crossref_primary_10_3390_ijms242015248 crossref_primary_10_1007_s00392_021_01874_3 crossref_primary_10_1007_s10554_021_02493_9 crossref_primary_10_1016_j_ijcard_2022_06_019 crossref_primary_10_3389_fpsyt_2025_1467876 crossref_primary_10_1186_s43044_025_00605_7 crossref_primary_10_3389_fphys_2021_733449 crossref_primary_10_3390_ijms22115937 crossref_primary_10_1007_s00399_022_00902_7 crossref_primary_10_1002_prp2_880 crossref_primary_10_1007_s00392_020_01763_1 crossref_primary_10_1038_s41598_023_49475_6 |
Cites_doi | 10.1056/NEJMoa1602014 10.1093/eurheartj/ehn453 10.1136/heartjnl-2011-301107 10.1111/jce.13310 10.1016/j.hrthm.2015.03.011 10.1093/europace/euw295 10.1111/j.1540-8167.2009.01454.x 10.1161/CIRCEP.119.007233 10.1001/jama.2014.3 10.1111/j.1540-8167.2007.00760.x 10.1161/CIRCEP.117.005114 10.1111/jce.12075 10.1001/jama.2019.0693 10.1161/CIRCEP.113.000374 10.1111/jce.13472 10.1007/s10840-014-9947-2 10.1111/jce.13401 10.1161/CIRCULATIONAHA.110.946806 10.1001/archinte.168.6.581 10.1016/j.hrthm.2016.11.008 10.1056/NEJMoa1408288 10.1007/s10840-018-0322-6 10.2217/fca.15.68 10.1161/JAHA.114.000877 10.1056/NEJM199809033391003 10.1093/europace/euy239 10.1001/jamacardio.2018.1176 10.1016/j.ahj.2018.05.021 10.1111/jce.12820 10.1161/CIRCEP.116.004672 10.1161/CIRCEP.117.005861 10.1016/j.hrthm.2017.05.012 10.1161/CIRCEP.113.000556 10.1016/j.hrthm.2015.12.028 10.1093/europace/euv092 10.1016/j.ijcard.2019.02.006 10.1016/j.jacep.2018.06.005 10.1016/j.jacc.2015.09.088 10.1161/CIRCULATIONAHA.105.561183 10.1016/j.hrthm.2015.05.019 10.1161/CIRCEP.115.002962 10.1016/j.ijcard.2013.08.083 10.1093/europace/eux219 10.1093/europace/euv057 10.1093/europace/euw168 10.1161/CIRCEP.113.000431 10.1016/j.jacep.2017.11.018 10.1016/j.hrthm.2012.07.016 10.1161/CIRCULATIONAHA.118.037451 10.1016/j.ccep.2014.11.007 10.1111/j.1540-8167.2012.02427.x 10.1016/j.jacc.2012.05.022 10.1016/j.jacc.2016.07.770 10.1016/j.jacc.2007.10.044 10.1007/s00392-017-1199-6 10.1007/s00392-018-1274-7 10.1161/CIRCEP.117.005250 10.1016/j.jacep.2017.01.024 10.1111/jce.13160 10.1093/eurheartj/ehq041 10.1007/s10840-012-9733-y 10.1093/europace/eup192 10.1161/CIRCEP.118.006576 10.1161/JAHA.118.010777 10.1093/europace/eux005 10.1001/archinte.1995.00430050045005 10.1007/s00392-015-0892-6 10.1161/CIRCEP.109.859116 10.1001/jama.2019.0335 10.1007/s10840-017-0261-7 10.1007/s00392-016-1008-7 10.1016/j.jelectrocard.2010.09.007 10.1161/CIRCEP.115.003461 10.1161/CIRCEP.117.005767 10.1016/j.jacep.2019.04.009 10.1016/j.jacep.2018.07.007 10.1007/s00392-019-01428-8 10.1111/jce.13989 10.1016/j.jacep.2019.06.020 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1007/s40119-019-00158-2 |
DatabaseName | WRHA-SpringerOpen Free CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2193-6544 |
EndPage | 58 |
ExternalDocumentID | oai_doaj_org_article_44ccd9100123432989140f3f1c3baf45 PMC7237603 A651230112 31898209 10_1007_s40119_019_00158_2 |
Genre | Journal Article Review |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | -A0 0R~ 3V. 4.4 5VS 7X7 8AO 8FI 8FJ AAKKN ABDBF ABEEZ ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADINQ ADRAZ AFGXO AFKRA AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAPOH BAWUL BCNDV BENPR BPHCQ BVXVI C24 C6C CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ H13 HMCUK HYE HZ~ IAO IHR ITC KQ8 M48 M~E O9- OK1 PGMZT PIMPY PQQKQ PROAC RPM RSV SISQX SMD SOJ UKHRP ~JE AAYXX CITATION PHGZM PHGZT NPM 7X8 5PM |
ID | FETCH-LOGICAL-c579t-aceae577d0739e8d4054694775a1dee9e368a07c82f11814903602bc2b5a56a23 |
IEDL.DBID | C24 |
ISSN | 2193-8261 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Thu Aug 21 13:55:02 EDT 2025 Thu Jul 10 22:43:18 EDT 2025 Wed Mar 19 02:14:47 EDT 2025 Sat Mar 08 18:56:29 EST 2025 Thu Jan 02 22:27:56 EST 2025 Tue Jul 01 02:20:57 EDT 2025 Thu Apr 24 23:13:16 EDT 2025 Fri Feb 21 02:40:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rotor ablation AF sources Dielectric mapping Atrial fibrillation Catheter ablation KODEX Ablation techniques EPD Radiofrequency Cryoballoon |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-aceae577d0739e8d4054694775a1dee9e368a07c82f11814903602bc2b5a56a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1389-8564 |
OpenAccessLink | https://link.springer.com/10.1007/s40119-019-00158-2 |
PMID | 31898209 |
PQID | 2333610687 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44ccd9100123432989140f3f1c3baf45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7237603 proquest_miscellaneous_2333610687 gale_infotracmisc_A651230112 gale_infotracacademiconefile_A651230112 pubmed_primary_31898209 crossref_citationtrail_10_1007_s40119_019_00158_2 crossref_primary_10_1007_s40119_019_00158_2 springer_journals_10_1007_s40119_019_00158_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cheshire |
PublicationPlace_xml | – name: Cheshire – name: England |
PublicationTitle | Cardiology and Therapy |
PublicationTitleAbbrev | Cardiol Ther |
PublicationTitleAlternate | Cardiol Ther |
PublicationYear | 2020 |
Publisher | Springer Healthcare Springer Adis, Springer Healthcare |
Publisher_xml | – name: Springer Healthcare – name: Springer – name: Adis, Springer Healthcare |
References | Brooks, Metzner, Wohlmuth (CR12) 2018; 29 Thomas, Katus, Voss (CR46) 2011; 44 Schmidt, Neuzil, Luik (CR53) 2017; 10 Sohns, Saguner, Lemes (CR32) 2016; 105 Fink, Schluter, Heeger (CR16) 2017; 10 Knecht, Sohal, Deisenhofer (CR68) 2017; 19 Kottkamp, Moser, Rieger, Schreiber, Ponisch, Trofin (CR57) 2017; 28 Yorgun, Canpolat, Kocyigit, Coteli, Evranos, Aytemir (CR72) 2017; 19 Verma, Jiang, Betts (CR17) 2015; 372 Calkins, Hindricks, Cappato (CR8) 2017; 14 Rottner, Fink, Heeger (CR45) 2017; 20 Nagashima, Okumura, Watanabe (CR55) 2018; 11 Reddy, Shah, Kautzner (CR39) 2012; 9 Narayan, Krummen, Shivkumar, Clopton, Rappel, Miller (CR61) 2012; 60 Leshem, Zilberman, Tschabrunn (CR79) 2018; 4 Powell, Packer (CR24) 2009; 11 Stabile, Solimene, Calo (CR41) 2015; 42 Maille, Das, Hussein (CR30) 2018; 29 Cheema, Dong, Dalal (CR38) 2007; 18 Ouyang, Ernst, Chun (CR23) 2005; 112 Tokutake, Tokuda, Ogawa, Matsuo, Yoshimura, Yamane (CR47) 2017; 3 Dukkipati, Kuck, Neuzil (CR52) 2013; 6 Steinberg, Shah, Bhatt, Sichrovsky, Arshad, Hansinger (CR64) 2017; 14 Haissaguerre, Jais, Shah (CR15) 1998; 339 Mun, Joung, Shim (CR21) 2012; 98 Anter, Tschabrunn, Contreras-Valdes, Li, Josephson (CR33) 2015; 12 Reissmann, Budelmann, Wissner (CR7) 2018; 107 Metzner, Wissner, Schmidt (CR51) 2013; 24 Bhaskaran, Chik, Pouliopoulos (CR78) 2017; 19 Kuck, Brugada, Furnkranz (CR6) 2016; 374 Mortsell, Arbelo, Dagres (CR49) 2019; 21 Willems, Verma, Betts, Murray, Neuzil, Ince (CR83) 2019; 12 Mohanty, Gianni, Trivedi (CR62) 2018; 205 Rillig, Lin, Schmidt (CR26) 2016; 105 CR48 Kistler, Rajappan, Harris (CR25) 2008; 29 Di Biase, Burkhardt, Mohanty (CR71) 2016; 68 Neuzil, Reddy, Kautzner (CR37) 2013; 6 Makimoto, Lin, Rillig (CR40) 2014; 7 CR43 Noheria, Kumar, Wylie, Josephson (CR9) 2008; 168 Kuck, Brugada, Schluter (CR14) 2018; 7 CR82 Weerasooriya, Jais, Wright (CR29) 2009; 20 Ouyang, Tilz, Chun (CR11) 2010; 122 Cappato, Calkins, Chen (CR22) 2010; 3 Heeger, Rillig, Geisler (CR73) 2019; 139 Heeger, Rillig, Lin (CR75) 2015; 12 Go, Reynolds, Yang (CR13) 2018; 3 Neven, van Es, van Driel (CR77) 2017; 10 Winkle, Moskovitz, Hardwin Mead (CR80) 2018; 52 Rottner, Metzner, Ouyang (CR35) 2017; 28 Marrouche, Wilber, Hindricks (CR69) 2014; 311 Packer, Mark, Robb (CR3) 2019; 321 Haissaguerre, Hocini, Shah (CR67) 2013; 24 Kautzner, Neuzil, Lambert (CR36) 2015; 17 Ptaszek, Chalhoub, Perna (CR31) 2013; 36 Wissner, Deiss, Kuck (CR50) 2015; 11 CR56 Tilz, Heeger, Wick (CR10) 2018; 11 Verma, Mantovan, Macle (CR19) 2010; 31 Wittkampf, van Es, Neven (CR76) 2018; 4 Wu, Jiang, Gu (CR60) 2013; 169 Blomstrom-Lundqvist, Gizurarson, Schwieler (CR5) 2019; 321 Maurer, Sohns, Deiss (CR28) 2017; 49 Reddy, Grimaldi, De Potter (CR81) 2019; 5 Hussein, Das, Riva (CR44) 2018; 11 Ernst, Saenen, Rydman (CR34) 2015; 7 Vogler, Willems, Sultan (CR18) 2015; 66 Feinberg, Blackshear, Laupacis, Kronmal, Hart (CR1) 1995; 155 Kirchhof, Benussi, Kotecha (CR2) 2016; 18 Das, Loveday, Wynn (CR42) 2017; 19 Bellmann, Lin, Ruppersberg (CR65) 2018; 107 Nademanee, Schwab, Kosar (CR59) 2008; 51 Rillig, Tilz, Lin (CR74) 2016; 9 Bellmann, Zettwitz, Lin (CR66) 2019; 286 Arbelo, Guiu, Ramos (CR20) 2014; 3 Gianni, Mohanty, Di Biase (CR63) 2016; 13 Jadidi, Lehrmann, Keyl (CR70) 2016; 9 Marrouche, Kheirkhahan, Brachmann (CR4) 2018; 379 Yamaguchi, Sohara, Takeda (CR54) 2015; 26 Rillig, Schmidt, Di Biase (CR27) 2017; 3 Lemes, Wissner, Lin (CR58) 2016; 18 P Kirchhof (158_CR2) 2016; 18 C Blomstrom-Lundqvist (158_CR5) 2019; 321 JS Steinberg (158_CR64) 2017; 14 L Di Biase (158_CR71) 2016; 68 VY Reddy (158_CR81) 2019; 5 Y Yamaguchi (158_CR54) 2015; 26 A Rillig (158_CR74) 2016; 9 A Rillig (158_CR27) 2017; 3 M Haissaguerre (158_CR67) 2013; 24 A Hussein (158_CR44) 2018; 11 S Ernst (158_CR34) 2015; 7 DL Packer (158_CR3) 2019; 321 M Haissaguerre (158_CR15) 1998; 339 NF Marrouche (158_CR69) 2014; 311 B Schmidt (158_CR53) 2017; 10 E Leshem (158_CR79) 2018; 4 SH Wu (158_CR60) 2013; 169 A Bhaskaran (158_CR78) 2017; 19 T Maurer (158_CR28) 2017; 49 A Verma (158_CR17) 2015; 372 NF Marrouche (158_CR4) 2018; 379 P Neuzil (158_CR37) 2013; 6 F Ouyang (158_CR11) 2010; 122 K Nagashima (158_CR55) 2018; 11 A Verma (158_CR19) 2010; 31 L Rottner (158_CR35) 2017; 28 S Brooks (158_CR12) 2018; 29 A Cheema (158_CR38) 2007; 18 K Nademanee (158_CR59) 2008; 51 A Metzner (158_CR51) 2013; 24 LM Ptaszek (158_CR31) 2013; 36 K Tokutake (158_CR47) 2017; 3 SR Dukkipati (158_CR52) 2013; 6 S Willems (158_CR83) 2019; 12 G Stabile (158_CR41) 2015; 42 F Ouyang (158_CR23) 2005; 112 K Neven (158_CR77) 2017; 10 J Vogler (158_CR18) 2015; 66 KH Kuck (158_CR14) 2018; 7 C Sohns (158_CR32) 2016; 105 158_CR56 A Noheria (158_CR9) 2008; 168 BD Powell (158_CR24) 2009; 11 A Rillig (158_CR26) 2016; 105 H Kottkamp (158_CR57) 2017; 28 D Thomas (158_CR46) 2011; 44 AS Go (158_CR13) 2018; 3 E Anter (158_CR33) 2015; 12 C Lemes (158_CR58) 2016; 18 S Mohanty (158_CR62) 2018; 205 WM Feinberg (158_CR1) 1995; 155 M Das (158_CR42) 2017; 19 HS Mun (158_CR21) 2012; 98 S Knecht (158_CR68) 2017; 19 C Gianni (158_CR63) 2016; 13 L Rottner (158_CR45) 2017; 20 SM Narayan (158_CR61) 2012; 60 B Maille (158_CR30) 2018; 29 KH Kuck (158_CR6) 2016; 374 H Calkins (158_CR8) 2017; 14 J Kautzner (158_CR36) 2015; 17 158_CR48 158_CR43 E Wissner (158_CR50) 2015; 11 AS Jadidi (158_CR70) 2016; 9 158_CR82 CH Heeger (158_CR75) 2015; 12 H Yorgun (158_CR72) 2017; 19 D Mortsell (158_CR49) 2019; 21 B Reissmann (158_CR7) 2018; 107 R Cappato (158_CR22) 2010; 3 E Arbelo (158_CR20) 2014; 3 B Bellmann (158_CR66) 2019; 286 T Fink (158_CR16) 2017; 10 B Bellmann (158_CR65) 2018; 107 VY Reddy (158_CR39) 2012; 9 FHM Wittkampf (158_CR76) 2018; 4 RR Tilz (158_CR10) 2018; 11 H Makimoto (158_CR40) 2014; 7 RA Winkle (158_CR80) 2018; 52 R Weerasooriya (158_CR29) 2009; 20 PM Kistler (158_CR25) 2008; 29 CH Heeger (158_CR73) 2019; 139 |
References_xml | – volume: 379 start-page: 492 issue: 5 year: 2018 ident: CR4 article-title: Catheter ablation for atrial fibrillation with heart failure publication-title: N Engl J Med – volume: 374 start-page: 2235 issue: 23 year: 2016 end-page: 2245 ident: CR6 article-title: Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa1602014 – volume: 29 start-page: 3029 issue: 24 year: 2008 end-page: 3036 ident: CR25 article-title: The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study publication-title: Eur Heart J doi: 10.1093/eurheartj/ehn453 – volume: 98 start-page: 480 issue: 6 year: 2012 end-page: 484 ident: CR21 article-title: Does additional linear ablation after circumferential pulmonary vein isolation improve clinical outcome in patients with paroxysmal atrial fibrillation? Prospective randomised study publication-title: Heart doi: 10.1136/heartjnl-2011-301107 – volume: 28 start-page: 1247 issue: 11 year: 2017 end-page: 1256 ident: CR57 article-title: Global multielectrode contact mapping plus ablation with a single catheter: preclinical and preliminary experience in humans with atrial fibrillation publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13310 – volume: 12 start-page: 1524 issue: 7 year: 2015 end-page: 1531 ident: CR75 article-title: Feasibility and clinical efficacy of left atrial ablation for the treatment of atrial tachyarrhythmias in patients with left atrial appendage closure devices publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.03.011 – volume: 18 start-page: 1609 issue: 11 year: 2016 end-page: 1678 ident: CR2 article-title: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS publication-title: Europace doi: 10.1093/europace/euw295 – volume: 20 start-page: 833 issue: 7 year: 2009 end-page: 838 ident: CR29 article-title: Catheter ablation of atrial tachycardia following atrial fibrillation ablation publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2009.01454.x – volume: 12 start-page: e007233 year: 2019 ident: CR83 article-title: Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping (UNCOVER-AF trial) publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.119.007233 – volume: 311 start-page: 498 issue: 5 year: 2014 end-page: 506 ident: CR69 article-title: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study publication-title: JAMA doi: 10.1001/jama.2014.3 – volume: 18 start-page: 387 issue: 4 year: 2007 end-page: 391 ident: CR38 article-title: Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2007.00760.x – volume: 10 start-page: e005114 issue: 7 year: 2017 ident: CR16 article-title: Stand-alone pulmonary vein isolation versus pulmonary vein isolation with additional substrate modification as index ablation procedures in patients with persistent and long-standing persistent atrial fibrillation: the randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation) publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.117.005114 – volume: 24 start-page: 711 issue: 6 year: 2013 end-page: 717 ident: CR67 article-title: Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12075 – volume: 321 start-page: 1261 year: 2019 end-page: 1274 ident: CR3 article-title: Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2019.0693 – volume: 6 start-page: 327 issue: 2 year: 2013 end-page: 333 ident: CR37 article-title: Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000374 – volume: 29 start-page: 881 issue: 6 year: 2018 end-page: 888 ident: CR30 article-title: Accuracy of left atrial bipolar voltages obtained by ConfiDENSE multielectrode mapping in patients with persistent atrial fibrillation publication-title: J Cardiovasc Eelectrophysiol doi: 10.1111/jce.13472 – volume: 42 start-page: 21 issue: 1 year: 2015 end-page: 26 ident: CR41 article-title: Catheter-tissue contact force values do not impact mid-term clinical outcome following pulmonary vein isolation in patients with paroxysmal atrial fibrillation publication-title: J Interv Card Electrophysiol doi: 10.1007/s10840-014-9947-2 – volume: 29 start-page: 257 issue: 2 year: 2018 end-page: 263 ident: CR12 article-title: Insights into ablation of persistent atrial fibrillation: lessons from 6-year clinical outcomes publication-title: J Cardiovasc Elektrophysiol doi: 10.1111/jce.13401 – volume: 122 start-page: 2368 issue: 23 year: 2010 end-page: 2377 ident: CR11 article-title: Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.946806 – volume: 168 start-page: 581 issue: 6 year: 2008 end-page: 586 ident: CR9 article-title: Catheter ablation vs antiarrhythmic drug therapy for atrial fibrillation: a systematic review publication-title: Arch Int Med doi: 10.1001/archinte.168.6.581 – volume: 14 start-page: 192 issue: 2 year: 2017 end-page: 197 ident: CR64 article-title: Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2016.11.008 – volume: 372 start-page: 1812 issue: 19 year: 2015 end-page: 1822 ident: CR17 article-title: Approaches to catheter ablation for persistent atrial fibrillation publication-title: N Engl J Med doi: 10.1056/NEJMoa1408288 – volume: 52 start-page: 1 issue: 1 year: 2018 end-page: 8 ident: CR80 article-title: Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters publication-title: J Interv Card Electrophysiol doi: 10.1007/s10840-018-0322-6 – volume: 11 start-page: 663 issue: 6 year: 2015 end-page: 671 ident: CR50 article-title: Balloon-based pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation (cryoballoon and laserballoon) publication-title: Fut Cardiol doi: 10.2217/fca.15.68 – volume: 3 start-page: e000877 issue: 5 year: 2014 ident: CR20 article-title: Benefit of left atrial roof linear ablation in paroxysmal atrial fibrillation: a prospective, randomized study publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.000877 – volume: 339 start-page: 659 issue: 10 year: 1998 end-page: 666 ident: CR15 article-title: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins publication-title: N Engl J Med doi: 10.1056/NEJM199809033391003 – volume: 21 start-page: 581 issue: 4 year: 2019 end-page: 589 ident: CR49 article-title: Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry publication-title: Europace doi: 10.1093/europace/euy239 – volume: 3 start-page: 601 issue: 7 year: 2018 end-page: 608 ident: CR13 article-title: Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: the KP-RHYTHM study publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2018.1176 – volume: 205 start-page: 145 year: 2018 end-page: 148 ident: CR62 article-title: Impact of rotor ablation in non-paroxysmal AF patients: findings from the per-protocol population of the OASIS trial at long-term follow-up publication-title: Am Heart J doi: 10.1016/j.ahj.2018.05.021 – volume: 26 start-page: 1298 issue: 12 year: 2015 end-page: 1306 ident: CR54 article-title: Long-term results of radiofrequency hot balloon ablation in patients with paroxysmal atrial fibrillation: safety and rhythm outcomes publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12820 – volume: 10 start-page: e004672 issue: 5 year: 2017 ident: CR77 article-title: Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.116.004672 – volume: 11 start-page: e005861 issue: 5 year: 2018 ident: CR55 article-title: Hot balloon versus cryoballoon ablation for atrial fibrillation: lesion characteristics and middle-term outcomes publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.117.005861 – volume: 14 start-page: e275 issue: 10 year: 2017 end-page: e444 ident: CR8 article-title: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2017.05.012 – volume: 7 start-page: 46 issue: 1 year: 2014 end-page: 54 ident: CR40 article-title: In vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000556 – volume: 13 start-page: 830 issue: 4 year: 2016 end-page: 835 ident: CR63 article-title: Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.12.028 – volume: 18 start-page: 201 issue: 2 year: 2016 end-page: 205 ident: CR58 article-title: One-year clinical outcome after pulmonary vein isolation in persistent atrial fibrillation using the second-generation 28 mm cryoballoon: a retrospective analysis publication-title: Europace doi: 10.1093/europace/euv092 – volume: 286 start-page: 56 year: 2019 end-page: 60 ident: CR66 article-title: Velocity characteristics of atrial fibrillation sources determined by electrographic flow mapping before and after catheter ablation publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2019.02.006 – volume: 4 start-page: 977 issue: 8 year: 2018 end-page: 986 ident: CR76 article-title: Electroporation and its relevance for cardiac catheter ablation publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2018.06.005 – volume: 66 start-page: 2743 issue: 24 year: 2015 end-page: 2752 ident: CR18 article-title: Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.09.088 – volume: 112 start-page: 3038 issue: 20 year: 2005 end-page: 3048 ident: CR23 article-title: Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.561183 – volume: 12 start-page: 1927 issue: 9 year: 2015 end-page: 1934 ident: CR33 article-title: Pulmonary vein isolation using the Rhythmia mapping system: verification of intracardiac signals using the Orion mini-basket catheter publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.05.019 – volume: 19 start-page: 775 issue: 5 year: 2017 end-page: 783 ident: CR42 article-title: Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values publication-title: Europace – ident: CR43 – volume: 9 start-page: e002962 issue: 3 year: 2016 ident: CR70 article-title: Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.115.002962 – volume: 169 start-page: 35 issue: 1 year: 2013 end-page: 43 ident: CR60 article-title: Benefits and risks of additional ablation of complex fractionated atrial electrograms for patients with atrial fibrillation: a systematic review and meta-analysis publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2013.08.083 – volume: 20 start-page: 1459 year: 2017 end-page: 1467 ident: CR45 article-title: Is less more? Impact of different ablation protocols on periprocedural complications in second-generation cryoballoon based pulmonary vein isolation publication-title: Europace doi: 10.1093/europace/eux219 – volume: 17 start-page: 1229 issue: 8 year: 2015 end-page: 1235 ident: CR36 article-title: EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation publication-title: Europace doi: 10.1093/europace/euv057 – volume: 19 start-page: 1302 issue: 8 year: 2017 end-page: 1309 ident: CR68 article-title: Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study publication-title: Europace doi: 10.1093/europace/euw168 – volume: 19 start-page: 874 issue: 5 year: 2017 end-page: 880 ident: CR78 article-title: Five seconds of 50-60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation publication-title: Europace – volume: 6 start-page: 467 issue: 3 year: 2013 end-page: 472 ident: CR52 article-title: Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000431 – volume: 4 start-page: 467 issue: 4 year: 2018 end-page: 479 ident: CR79 article-title: High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2017.11.018 – volume: 9 start-page: 1789 issue: 11 year: 2012 end-page: 1795 ident: CR39 article-title: The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2012.07.016 – volume: 139 start-page: 712 issue: 5 year: 2019 end-page: 715 ident: CR73 article-title: Left atrial appendage isolation in patients not responding to pulmonary vein isolation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037451 – volume: 7 start-page: 117 issue: 1 year: 2015 end-page: 123 ident: CR34 article-title: Utility of noninvasive arrhythmia mapping in patients with adult congenital heart disease publication-title: Card Electrophysiol Clin doi: 10.1016/j.ccep.2014.11.007 – volume: 24 start-page: 7 issue: 1 year: 2013 end-page: 13 ident: CR51 article-title: Acute and long-term clinical outcome after endoscopic pulmonary vein isolation: results from the first prospective, multicenter study publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2012.02427.x – volume: 60 start-page: 628 issue: 7 year: 2012 end-page: 636 ident: CR61 article-title: Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2012.05.022 – volume: 68 start-page: 1929 issue: 18 year: 2016 end-page: 1940 ident: CR71 article-title: Left atrial appendage isolation in patients with longstanding persistent af undergoing catheter ablation: BELIEF trial publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.07.770 – ident: CR82 – volume: 51 start-page: 843 issue: 8 year: 2008 end-page: 849 ident: CR59 article-title: Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.10.044 – ident: CR56 – volume: 107 start-page: 405 issue: 5 year: 2018 end-page: 412 ident: CR7 article-title: Five-year clinical outcomes of visually guided laser balloon pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation publication-title: Clin Res Cardiol doi: 10.1007/s00392-017-1199-6 – volume: 107 start-page: 1021 issue: 11 year: 2018 end-page: 1032 ident: CR65 article-title: Identification of active atrial fibrillation sources and their discrimination from passive rotors using electrographical flow mapping publication-title: Clin Res Cardiol doi: 10.1007/s00392-018-1274-7 – volume: 11 start-page: e005250 issue: 2 year: 2018 ident: CR10 article-title: Ten-year clinical outcome after circumferential pulmonary vein isolation utilizing the Hamburg approach in patients with symptomatic drug-refractory paroxysmal atrial fibrillation publication-title: Circ Arrhythm Electrophysiol. doi: 10.1161/CIRCEP.117.005250 – volume: 3 start-page: 875 issue: 8 year: 2017 end-page: 883 ident: CR27 article-title: Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2017.01.024 – volume: 28 start-page: 289 issue: 3 year: 2017 end-page: 297 ident: CR35 article-title: Direct comparison of point-by-point and rapid ultra-high-resolution electroanatomical mapping in patients scheduled for ablation of atrial fibrillation publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13160 – volume: 31 start-page: 1344 issue: 11 year: 2010 end-page: 1356 ident: CR19 article-title: Substrate and trigger ablation for reduction of atrial fibrillation (STAR AF): a randomized, multicentre, international trial publication-title: Eur Heart J doi: 10.1093/eurheartj/ehq041 – volume: 36 start-page: 233 issue: 3 year: 2013 end-page: 242 ident: CR31 article-title: Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system publication-title: J Interven Cardiac Electrophysiol doi: 10.1007/s10840-012-9733-y – volume: 11 start-page: 973 issue: 8 year: 2009 end-page: 974 ident: CR24 article-title: Does image integration improve atrial fibrillation ablation outcomes, or are other aspects of the ablation the key to success? publication-title: Europace doi: 10.1093/europace/eup192 – volume: 11 start-page: e006576 issue: 9 year: 2018 ident: CR44 article-title: Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.118.006576 – ident: CR48 – volume: 3 start-page: 36 issue: 1 year: 2017 end-page: 39 ident: CR47 article-title: Pulmonary vein stenosis after second-generation cryoballoon ablation for atrial fibrillation publication-title: Heart Rhythm Case Rep – volume: 7 start-page: e010777 issue: 24 year: 2018 ident: CR14 article-title: The FIRE AND ICE trial: what we know, what we can still learn, and what we need to address in the future publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.010777 – volume: 19 start-page: 758 issue: 5 year: 2017 end-page: 768 ident: CR72 article-title: Left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation: one-year clinical outcome after cryoballoon-based ablation publication-title: Europace doi: 10.1093/europace/eux005 – volume: 155 start-page: 469 issue: 5 year: 1995 end-page: 473 ident: CR1 article-title: Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications publication-title: Arch intern Med. doi: 10.1001/archinte.1995.00430050045005 – volume: 105 start-page: 106 issue: 2 year: 2016 end-page: 116 ident: CR26 article-title: Experience matters: long-term results of pulmonary vein isolation using a robotic navigation system for the treatment of paroxysmal atrial fibrillation publication-title: Clin Res Cardiol doi: 10.1007/s00392-015-0892-6 – volume: 3 start-page: 32 issue: 1 year: 2010 end-page: 38 ident: CR22 article-title: Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.109.859116 – volume: 321 start-page: 1059 issue: 11 year: 2019 end-page: 1068 ident: CR5 article-title: Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2019.0335 – volume: 49 start-page: 219 issue: 3 year: 2017 end-page: 226 ident: CR28 article-title: Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system publication-title: J Interv Cardiac Electrophysiol doi: 10.1007/s10840-017-0261-7 – volume: 105 start-page: 992 year: 2016 end-page: 1002 ident: CR32 article-title: First clinical experience using a novel high-resolution electroanatomical mapping system for left atrial ablation procedures publication-title: Clin Res Cardiol doi: 10.1007/s00392-016-1008-7 – volume: 44 start-page: 473 issue: 4 year: 2011 end-page: 476 ident: CR46 article-title: Asymptomatic pulmonary vein stenosis after cryoballoon catheter ablation of paroxysmal atrial fibrillation publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2010.09.007 – volume: 9 start-page: e003461 issue: 5 year: 2016 ident: CR74 article-title: Unexpectedly high incidence of stroke and left atrial appendage thrombus formation after electrical isolation of the left atrial appendage for the treatment of atrial tachyarrhythmias publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.115.003461 – volume: 10 start-page: e005767 issue: 12 year: 2017 ident: CR53 article-title: Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study publication-title: Circ Arrhythm Ectrophysiol doi: 10.1161/CIRCEP.117.005767 – volume: 5 start-page: 778 issue: 7 year: 2019 end-page: 786 ident: CR81 article-title: Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2019.04.009 – volume: 107 start-page: 405 issue: 5 year: 2018 ident: 158_CR7 publication-title: Clin Res Cardiol doi: 10.1007/s00392-017-1199-6 – volume: 6 start-page: 327 issue: 2 year: 2013 ident: 158_CR37 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000374 – volume: 7 start-page: 117 issue: 1 year: 2015 ident: 158_CR34 publication-title: Card Electrophysiol Clin doi: 10.1016/j.ccep.2014.11.007 – volume: 10 start-page: e005767 issue: 12 year: 2017 ident: 158_CR53 publication-title: Circ Arrhythm Ectrophysiol doi: 10.1161/CIRCEP.117.005767 – volume: 5 start-page: 778 issue: 7 year: 2019 ident: 158_CR81 publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2019.04.009 – volume: 66 start-page: 2743 issue: 24 year: 2015 ident: 158_CR18 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.09.088 – volume: 4 start-page: 467 issue: 4 year: 2018 ident: 158_CR79 publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2017.11.018 – volume: 3 start-page: 601 issue: 7 year: 2018 ident: 158_CR13 publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2018.1176 – volume: 9 start-page: e003461 issue: 5 year: 2016 ident: 158_CR74 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.115.003461 – volume: 372 start-page: 1812 issue: 19 year: 2015 ident: 158_CR17 publication-title: N Engl J Med doi: 10.1056/NEJMoa1408288 – ident: 158_CR48 doi: 10.1016/j.jacep.2018.07.007 – volume: 11 start-page: e006576 issue: 9 year: 2018 ident: 158_CR44 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.118.006576 – volume: 20 start-page: 1459 year: 2017 ident: 158_CR45 publication-title: Europace doi: 10.1093/europace/eux219 – volume: 98 start-page: 480 issue: 6 year: 2012 ident: 158_CR21 publication-title: Heart doi: 10.1136/heartjnl-2011-301107 – volume: 11 start-page: e005861 issue: 5 year: 2018 ident: 158_CR55 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.117.005861 – volume: 19 start-page: 758 issue: 5 year: 2017 ident: 158_CR72 publication-title: Europace doi: 10.1093/europace/eux005 – volume: 10 start-page: e005114 issue: 7 year: 2017 ident: 158_CR16 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.117.005114 – volume: 3 start-page: 32 issue: 1 year: 2010 ident: 158_CR22 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.109.859116 – volume: 12 start-page: 1927 issue: 9 year: 2015 ident: 158_CR33 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.05.019 – volume: 107 start-page: 1021 issue: 11 year: 2018 ident: 158_CR65 publication-title: Clin Res Cardiol doi: 10.1007/s00392-018-1274-7 – volume: 3 start-page: e000877 issue: 5 year: 2014 ident: 158_CR20 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.000877 – volume: 3 start-page: 36 issue: 1 year: 2017 ident: 158_CR47 publication-title: Heart Rhythm Case Rep – volume: 19 start-page: 775 issue: 5 year: 2017 ident: 158_CR42 publication-title: Europace – volume: 11 start-page: e005250 issue: 2 year: 2018 ident: 158_CR10 publication-title: Circ Arrhythm Electrophysiol. doi: 10.1161/CIRCEP.117.005250 – volume: 18 start-page: 201 issue: 2 year: 2016 ident: 158_CR58 publication-title: Europace doi: 10.1093/europace/euv092 – volume: 12 start-page: 1524 issue: 7 year: 2015 ident: 158_CR75 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.03.011 – volume: 3 start-page: 875 issue: 8 year: 2017 ident: 158_CR27 publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2017.01.024 – volume: 24 start-page: 7 issue: 1 year: 2013 ident: 158_CR51 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2012.02427.x – volume: 10 start-page: e004672 issue: 5 year: 2017 ident: 158_CR77 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.116.004672 – volume: 379 start-page: 492 issue: 5 year: 2018 ident: 158_CR4 publication-title: N Engl J Med – volume: 17 start-page: 1229 issue: 8 year: 2015 ident: 158_CR36 publication-title: Europace doi: 10.1093/europace/euv057 – volume: 24 start-page: 711 issue: 6 year: 2013 ident: 158_CR67 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12075 – volume: 28 start-page: 289 issue: 3 year: 2017 ident: 158_CR35 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13160 – volume: 7 start-page: 46 issue: 1 year: 2014 ident: 158_CR40 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000556 – volume: 14 start-page: e275 issue: 10 year: 2017 ident: 158_CR8 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2017.05.012 – volume: 286 start-page: 56 year: 2019 ident: 158_CR66 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2019.02.006 – ident: 158_CR43 doi: 10.1007/s00392-019-01428-8 – volume: 311 start-page: 498 issue: 5 year: 2014 ident: 158_CR69 publication-title: JAMA doi: 10.1001/jama.2014.3 – volume: 11 start-page: 663 issue: 6 year: 2015 ident: 158_CR50 publication-title: Fut Cardiol doi: 10.2217/fca.15.68 – volume: 49 start-page: 219 issue: 3 year: 2017 ident: 158_CR28 publication-title: J Interv Cardiac Electrophysiol doi: 10.1007/s10840-017-0261-7 – volume: 168 start-page: 581 issue: 6 year: 2008 ident: 158_CR9 publication-title: Arch Int Med doi: 10.1001/archinte.168.6.581 – volume: 112 start-page: 3038 issue: 20 year: 2005 ident: 158_CR23 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.561183 – volume: 52 start-page: 1 issue: 1 year: 2018 ident: 158_CR80 publication-title: J Interv Card Electrophysiol doi: 10.1007/s10840-018-0322-6 – volume: 321 start-page: 1059 issue: 11 year: 2019 ident: 158_CR5 publication-title: JAMA doi: 10.1001/jama.2019.0335 – volume: 339 start-page: 659 issue: 10 year: 1998 ident: 158_CR15 publication-title: N Engl J Med doi: 10.1056/NEJM199809033391003 – volume: 374 start-page: 2235 issue: 23 year: 2016 ident: 158_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMoa1602014 – volume: 29 start-page: 3029 issue: 24 year: 2008 ident: 158_CR25 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehn453 – volume: 21 start-page: 581 issue: 4 year: 2019 ident: 158_CR49 publication-title: Europace doi: 10.1093/europace/euy239 – volume: 9 start-page: 1789 issue: 11 year: 2012 ident: 158_CR39 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2012.07.016 – volume: 205 start-page: 145 year: 2018 ident: 158_CR62 publication-title: Am Heart J doi: 10.1016/j.ahj.2018.05.021 – volume: 139 start-page: 712 issue: 5 year: 2019 ident: 158_CR73 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037451 – volume: 321 start-page: 1261 year: 2019 ident: 158_CR3 publication-title: JAMA doi: 10.1001/jama.2019.0693 – volume: 105 start-page: 992 year: 2016 ident: 158_CR32 publication-title: Clin Res Cardiol doi: 10.1007/s00392-016-1008-7 – volume: 18 start-page: 387 issue: 4 year: 2007 ident: 158_CR38 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2007.00760.x – volume: 19 start-page: 1302 issue: 8 year: 2017 ident: 158_CR68 publication-title: Europace doi: 10.1093/europace/euw168 – volume: 9 start-page: e002962 issue: 3 year: 2016 ident: 158_CR70 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.115.002962 – volume: 4 start-page: 977 issue: 8 year: 2018 ident: 158_CR76 publication-title: JACC Clin Electrophysiol doi: 10.1016/j.jacep.2018.06.005 – volume: 155 start-page: 469 issue: 5 year: 1995 ident: 158_CR1 publication-title: Arch intern Med. doi: 10.1001/archinte.1995.00430050045005 – volume: 122 start-page: 2368 issue: 23 year: 2010 ident: 158_CR11 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.946806 – volume: 7 start-page: e010777 issue: 24 year: 2018 ident: 158_CR14 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.010777 – volume: 19 start-page: 874 issue: 5 year: 2017 ident: 158_CR78 publication-title: Europace – volume: 42 start-page: 21 issue: 1 year: 2015 ident: 158_CR41 publication-title: J Interv Card Electrophysiol doi: 10.1007/s10840-014-9947-2 – volume: 28 start-page: 1247 issue: 11 year: 2017 ident: 158_CR57 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.13310 – volume: 13 start-page: 830 issue: 4 year: 2016 ident: 158_CR63 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2015.12.028 – volume: 14 start-page: 192 issue: 2 year: 2017 ident: 158_CR64 publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2016.11.008 – ident: 158_CR56 doi: 10.1111/jce.13989 – volume: 26 start-page: 1298 issue: 12 year: 2015 ident: 158_CR54 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/jce.12820 – volume: 18 start-page: 1609 issue: 11 year: 2016 ident: 158_CR2 publication-title: Europace doi: 10.1093/europace/euw295 – volume: 105 start-page: 106 issue: 2 year: 2016 ident: 158_CR26 publication-title: Clin Res Cardiol doi: 10.1007/s00392-015-0892-6 – volume: 20 start-page: 833 issue: 7 year: 2009 ident: 158_CR29 publication-title: J Cardiovasc Electrophysiol doi: 10.1111/j.1540-8167.2009.01454.x – volume: 36 start-page: 233 issue: 3 year: 2013 ident: 158_CR31 publication-title: J Interven Cardiac Electrophysiol doi: 10.1007/s10840-012-9733-y – volume: 51 start-page: 843 issue: 8 year: 2008 ident: 158_CR59 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.10.044 – volume: 29 start-page: 881 issue: 6 year: 2018 ident: 158_CR30 publication-title: J Cardiovasc Eelectrophysiol doi: 10.1111/jce.13472 – ident: 158_CR82 doi: 10.1016/j.jacep.2019.06.020 – volume: 31 start-page: 1344 issue: 11 year: 2010 ident: 158_CR19 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehq041 – volume: 44 start-page: 473 issue: 4 year: 2011 ident: 158_CR46 publication-title: J Electrocardiol doi: 10.1016/j.jelectrocard.2010.09.007 – volume: 12 start-page: e007233 year: 2019 ident: 158_CR83 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.119.007233 – volume: 68 start-page: 1929 issue: 18 year: 2016 ident: 158_CR71 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.07.770 – volume: 6 start-page: 467 issue: 3 year: 2013 ident: 158_CR52 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.113.000431 – volume: 60 start-page: 628 issue: 7 year: 2012 ident: 158_CR61 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2012.05.022 – volume: 11 start-page: 973 issue: 8 year: 2009 ident: 158_CR24 publication-title: Europace doi: 10.1093/europace/eup192 – volume: 29 start-page: 257 issue: 2 year: 2018 ident: 158_CR12 publication-title: J Cardiovasc Elektrophysiol doi: 10.1111/jce.13401 – volume: 169 start-page: 35 issue: 1 year: 2013 ident: 158_CR60 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2013.08.083 |
SSID | ssib044732560 ssj0001285943 |
Score | 2.3884873 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of... Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm... Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of... Abstract Purpose of Review Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | Ablation techniques AF sources Anti-arrhythmia drugs Atrial fibrillation Cardiology Catheter ablation Cryoballoon Dielectric mapping Dosage and administration Drug therapy Internal Medicine Medicine Medicine & Public Health Patient outcomes Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDqWXkD6SuE2LCoUcEpO1JFtSb9vSJRRaSkggNyHLEgkEb-hu_n9nJO9mnUBy6cEXS35oNJr5JM18AviCxjBGdHWlroIopeG-NAhbS29a13IvTPQpyvd3c3ohf17WlxtHfVFMWKYHzoI7kdL7zlTJ90tBfOE4JYgiVl60LsrEXoo-b2MyhZokpRJ8BfzzaouucwgdjlBRIqauhgyalEcnifkMZ9V4oXtE1Rl5qUTm_9hkb_ish_GUDzZVk6-a7cD2ADLZNDfuNbwI_Rt4-WvYRn8LZynvDyXKpm2OhWPzyKbpBA82oySAm3z7K0tglErxAXohc33HZomIhP25T9RcvIOL2Y_z76flcLhC6WtllqXzwYVaqY626oLuELjhTFkqVbuqC8EE0Wg3UV7zSLmp0qCrm_DW87Z2deO42IWtft6HfWAuEGryRJYWZNRCx0nbdNogeFfOuVBAtRKm9QPzOB2AcWPXnMmpA-yELuoAyws4Wj9zm3k3nqz9jfpoXZM4s9MN1CQ7aJJ9TpMKOKQetjSy8fe8GxIUsJHEkWWnDYIjsof4uYNRTRyRflT8eaUjlooojK0P87uF5UIIxKuNVgXsZZ1Z_zMaV4NwzBSgRto0atS4pL--SoTgKoU2iQKOV3pnB0u0eEJo7_-H0D7AK04rEGld6gC2ln_vwkeEacv2UxqR_wC8Yi61 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8QX8dvqKREEH7SyTdImEURWcTmEExEX7i2kaXIKS1d390D_e2fSj7PnceBDX5q0TZOZzG-SmV8AnuFkGCOaulwXQeTScJ8bhK25N7WruRcm-hTl-6k6XMqPx-XxHgzHHfUduL3QtaPzpJab1atfP3-_RYV_M6bBSSIuQ6cYL7RuOPJX4CpaJkWKenQG96VUgg_uQLcGo8susA71VuSItIs-r-bi105sV6L4_3ci_8uSnY-yPLfVmizY4ibc6KEnm3eycgv2Qnsbrh31m-t34EvKBsR-ZvO6i5Bj68jm6VwPtqDUgFV3-zVLEJVK8QF6IXNtwxaJnoR9Pkvf3N6F5eLD1_eHeX_kQu5LZXa588GFUqmGNvCCbhDOof8slSpd0YRggqi0mymveaSMVWnQAM547XldurJyXNyD_XbdhgfAXCAs5YlCLciohY6zumq0QUivnHMhg2LoTOt7PnI6FmNlRyblNAB2RhcNgOUZvBif-dGxcVxa-x2N0ViTmLTTjfXmxPaKaaX0vjFFwpZSEB89upxRxMKL2kVZZvCcRtiSBGLzvOvTFvAniTnLziuETDRL4ucOJjVRT_2k-OkgI5aKKLitDevTreVCCESxlVYZ3O9kZmwzTrkGQZrJQE2kafJT05L2-7dEE65SwJPI4OUgd3ZQr0s67eH_VX8E1zmtQKR1qQPY321Ow2OEabv6SdK9Py2nLqg priority: 102 providerName: Scholars Portal |
Title | Catheter Ablation of Atrial Fibrillation: State of the Art and Future Perspectives |
URI | https://link.springer.com/article/10.1007/s40119-019-00158-2 https://www.ncbi.nlm.nih.gov/pubmed/31898209 https://www.proquest.com/docview/2333610687 https://pubmed.ncbi.nlm.nih.gov/PMC7237603 https://doaj.org/article/44ccd9100123432989140f3f1c3baf45 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB90BfEifltdlwiCBy285qNJvD0f-1iEFREX9hbSNNGFpU_2vb36tzuTfqxdZcFDc2jSNk0mM78kM78AvEFlmBKautJUUZTS8lBahK1lsI1veBA2hezl-7k-OpGfTtXpEBS2Hb3dxy3JrKmnYDdJ9GQ49cULbRj27224o3DuTnK9uuIcl1ILPoL-fqXFqN59DkenKBFPV0P0zL9fO7NQmcj_b3X9h7267kt5bUM126n1A7g_AEy27CXiIdyK3SO4ezxsoT-GrznmD1uTLZveD45tElvm0zvYmgIAzvvbH1gGopSLD9ALme9ats4kJOzLVZDm9gmcrA-_rY7K4WCFMihtd6UP0UeldUvbdNG0CNpwliy1Vr5qY7RR1MYvdDA8UVyqtGjmFrwJvFFe1Z6Lp7DXbbr4HJiPhJgCEaVFmYwwadHUrbEI3LX3PhZQjY3pwsA6TodfnLuJLzl3gFvQRR3geAHvpmd-9pwbN5b-SH00lSS-7Hxjc_HdDcPPSRlCa6uMIKUg1nmcWCaRqiAan6Qq4C31sKNRjdULfghOwJ8kfiy3rBEYkS7Ez-3PSuJoDLPs16OMOMoiF7Yubi63jgshEKvWRhfwrJeZqc6oWC1CMVuAnknT7KfmOd3Zj0wGrrNbkyjg_Sh3btBC2xsa7cX_FX8J9zitM-TVp33Y211cxlcIxnbNQR57lNarg7yggemxNJT-OvwNSSIn3Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkaCXiu-GFjASEgeI2NhOHPe2rFgt0FYItVJvluPYAqnKInb7_5lxnKVZUCUOucRO4nhmPM_2zDPAaxwMQ0BXl9eFF7nU3OUaYWvudGMb7oQOLkb5nlaLc_n5orxINDmUC7O1f_9-JYmUDCe8eKHnQqnehjsSZ8oUvjerZoPuSKkEH6B-v75Sl33QHNqkyBFFFyln5t-vHfmlSN__9yB9zUttR1BubaNG7zS_D3sJVrJprwcP4JbvHsLdk7Rx_gi-xUw_7EM2bfroN7YMbBrP7GBzCvu_7G8fsQg_qRQfoBcy27VsHqlH2Nc_qZmrx3A-_3g2W-TpOIXclUqvc-u89aVSLW3O-bpFqIZzY6lUaYvWe-1FVduJcjUPlI0qNTq3CW8cb0pbVpaLJ7DTLTu_D8x6wkmO6NG8DLWow6Sp2lojXFfWWp9BMXSmcYlrnI68uDQbluQoADOhiwRgeAZvN8_87Jk2bqz9gWS0qUks2fEGKo9JRmekdK7VRcSNUhDXPE4ngwiFE40NsszgDUnYkC1j85xNKQn4k8SKZaYVwiEaAfFzh6OaaINuVPxq0BFDRRS41vnl1cpwIQQi1KpWGTztdWbTZhxONQIwnYEaadPop8Yl3Y_vkQJcxWAmkcG7Qe9MGntWN3Tas_-r_hLuLc5Ojs3xp9MvB7DLaaUhrj8dws7615V_jnBs3byIdvgbRzQjEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouFeWZUsBISBwg6sZ24pjbdiEqr6pCVOrNchybVqqyVXf7_5lxHjQFVeKQS-wkjmfG89me-QzwBgfDENDVpWXmRSo1d6lG2Jo6XduaO6GDi1G-h8XBsfxykp9cy-KP0e7DlmSX00AsTe1676IJe2PimySqMpwG44X-DGV9F-7hTCVu1C6KxaBRUirBhwlAt-pS5l0oHVqqSBFbZ30mzb9fO_FWkdT_76H7mu-6GVd5Y3M1-qzqAWz1YJPNO-3Yhju-fQib3_vt9EfwI-b_Yc-yed3FxLFlYPN4kgerKBngvLv9gUVQSqX4AL2Q2bZhVSQkYUd_EjZXj-G4-vRzcZD2hyykLld6nVrnrc-VamjLzpcNAjicMUulcps13msvitLOlCt5oBxVqdHlzXjteJ3bvLBcPIGNdtn6Z8CsJ_TkiDTNy1CKMszqoik1gnhlrfUJZENnGtczkNNBGOdm5E6OAjAzukgAhifwbnzmouPfuLX2PslorEnc2fHG8vKX6U3RSOlco7OIJqUgBnqcZAYRMidqG2SewFuSsCELx-Y52ycq4E8SV5aZFwiSaFzEz-1OaqJluknx60FHDBVROFvrl1crw4UQiFuLUiXwtNOZsc04yGqEZToBNdGmyU9NS9qz00gMrmKIk0jg_aB3ph-RVrd02s7_VX8Fm0cfK_Pt8-HX53Cf0_JDXJTahY315ZV_gRhtXb-MZvgb7WUrWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catheter+Ablation+of+Atrial+Fibrillation%3A+State+of+the+Art+and+Future+Perspectives&rft.jtitle=Cardiology+and+therapy&rft.au=Rottner%2C+Laura&rft.au=Bellmann%2C+Barbara&rft.au=Lin%2C+Tina&rft.au=Reissmann%2C+Bruno&rft.date=2020-06-01&rft.pub=Springer+Healthcare&rft.issn=2193-8261&rft.eissn=2193-6544&rft.volume=9&rft.issue=1&rft.spage=45&rft.epage=58&rft_id=info:doi/10.1007%2Fs40119-019-00158-2&rft.externalDocID=10_1007_s40119_019_00158_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-8261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-8261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-8261&client=summon |