Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years

A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 488; no. 7409; pp. 70 - 72
Main Authors Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., White, J. W. C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.08.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on a global scale. Carbon sinks hold firm The current state of land and ocean carbon sinks has been the subject of intense debate, because it has implications for how the carbon cycle might respond to climate change. About half of the current carbon dioxide emissions are taken up by land and ocean carbon sinks. Model studies predict a decline in future carbon sinks, resulting in a positive carbon-climate feedback, and several recent studies have suggested that land and ocean carbon sinks are beginning to wane. These authors use a global mass balance approach to audit the global carbon cycle, focusing on well-constrained observations of atmospheric carbon dioxide and estimates of anthropogenic emissions and a rigorous analysis of uncertainties. They find that carbon sinks have actually doubled during the past 50 years and continue to increase significantly. There were no signs, as of 2010, that carbon uptake has started to diminish on the global scale One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change 1 . Although approximately one-half of total CO 2 emissions is at present taken up by combined land and ocean carbon reservoirs 2 , models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon–climate feedback 3 . Several recent studies suggest that rates of carbon uptake by the land 4 , 5 , 6 and ocean 7 , 8 , 9 , 10 have remained constant or declined in recent decades. Other work, however, has called into question the reported decline 11 , 12 , 13 . Here we use global-scale atmospheric CO 2 measurements, CO 2 emission inventories and their full range of uncertainties to calculate changes in global CO 2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon–climate interactions.
AbstractList One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change1. Although approximately one-half of totalCO2emissions is at present taken up by combined land and ocean carbon reservoirs2, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback3. Several recent studies suggest that rates of carbon uptake by the land4-6 and ocean7-10 have remained constant or declined in recent decades. Other work, however, has called into question the reporteddecline11-13.Hereweuseglobal-scale atmosphericCO2measurements,CO2 emission inventories and their full range of uncertainties to calculate changes in global CO2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.460.8 to 5.060.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions. [PUBLICATION ABSTRACT]
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO sub(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO sub(2) measurements, CO sub(2) emission inventories and their full range of uncertainties to calculate changes in global CO sub(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 plus or minus 0.8 to 5.0 plus or minus 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.
A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on a global scale. Carbon sinks hold firm The current state of land and ocean carbon sinks has been the subject of intense debate, because it has implications for how the carbon cycle might respond to climate change. About half of the current carbon dioxide emissions are taken up by land and ocean carbon sinks. Model studies predict a decline in future carbon sinks, resulting in a positive carbon-climate feedback, and several recent studies have suggested that land and ocean carbon sinks are beginning to wane. These authors use a global mass balance approach to audit the global carbon cycle, focusing on well-constrained observations of atmospheric carbon dioxide and estimates of anthropogenic emissions and a rigorous analysis of uncertainties. They find that carbon sinks have actually doubled during the past 50 years and continue to increase significantly. There were no signs, as of 2010, that carbon uptake has started to diminish on the global scale One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change 1 . Although approximately one-half of total CO 2 emissions is at present taken up by combined land and ocean carbon reservoirs 2 , models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon–climate feedback 3 . Several recent studies suggest that rates of carbon uptake by the land 4 , 5 , 6 and ocean 7 , 8 , 9 , 10 have remained constant or declined in recent decades. Other work, however, has called into question the reported decline 11 , 12 , 13 . Here we use global-scale atmospheric CO 2 measurements, CO 2 emission inventories and their full range of uncertainties to calculate changes in global CO 2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon–climate interactions.
Audience Academic
Author Alden, C. B.
White, J. W. C.
Miller, J. B.
Ballantyne, A. P.
Tans, P. P.
Author_xml – sequence: 1
  givenname: A. P.
  surname: Ballantyne
  fullname: Ballantyne, A. P.
  email: apballantyne@gmail.com
  organization: Department of Geology, University of Colorado, Present address: Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA
– sequence: 2
  givenname: C. B.
  surname: Alden
  fullname: Alden, C. B.
  organization: Institute of Arctic and Alpine Research, University of Colorado
– sequence: 3
  givenname: J. B.
  surname: Miller
  fullname: Miller, J. B.
  organization: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Earth System Research Laboratory, National Oceanographic and Atmospheric Administration
– sequence: 4
  givenname: P. P.
  surname: Tans
  fullname: Tans, P. P.
  organization: Earth System Research Laboratory, National Oceanographic and Atmospheric Administration
– sequence: 5
  givenname: J. W. C.
  surname: White
  fullname: White, J. W. C.
  organization: Department of Geology, University of Colorado, Institute of Arctic and Alpine Research, University of Colorado
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26201452$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22859203$$D View this record in MEDLINE/PubMed
BookMark eNqF0t2L1DAQAPAgJ97e6ZPvEhRB0Z75aps-HocfCweCHy--lGk6XXN2016Syu1_b5Zdvd1zRUIIhN8Mk8yckCM3OCTkMWdnnEn9xkGcPHIuquoemXFVFpkqdHlEZowJnTEti2NyEsIVYyznpXpAjoXQeSWYnJFvc2c8QkBqHR2agP4nttRhpAZ8Mzja2uHGtkinMcIPpM2K9uBaut6DQXCBtpO3bkHjd6QjhEhzRlcIPjwk9zvoAz7anqfk67u3Xy4-ZJcf388vzi8zk5dVzEBq1CVI1TItlOm45gZzhl0HXSHKhmmolOAoBeNgWjCV6hBEq_OCFSbn8pS82OQd_XA9YYj10gaDfaoThynUXEnFRKFy-X_KJOe5lqpI9NkdejVM3qWHrJXiTHOtb9UCeqyt64bowayT1uepH5XWpa6Syg6oBTr00KdmdjZd7_mnB7wZ7XW9i84OoLRaXFpzMOvLvYBkIt7EBUwh1PPPn_btk-3rp2aJbT16uwS_qn8PTgLPtwCCgb7z4IwNt65I3VK5SO7Vxhk_hOCx-0M4W3-krnfGN2l-RxsbIdpUqQfb_yPm9SYmjOs5RL_bqL_5LwZH_ME
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_ccst_2022_100063
crossref_primary_10_1029_2020WR028046
crossref_primary_10_1007_s11356_016_8143_6
crossref_primary_10_1038_s41467_018_05948_1
crossref_primary_10_11922_11_6035_nesdc_2024_0174_zh
crossref_primary_10_1111_gcb_14884
crossref_primary_10_3389_fmars_2022_990559
crossref_primary_10_7717_peerj_15593
crossref_primary_10_3390_rs14122948
crossref_primary_10_5194_essd_17_965_2025
crossref_primary_10_1038_nclimate2879
crossref_primary_10_4155_cmt_13_15
crossref_primary_10_1007_s00442_016_3805_0
crossref_primary_10_1029_2018GL078131
crossref_primary_10_1038_s41558_023_01761_x
crossref_primary_10_1007_s10584_020_02903_2
crossref_primary_10_1088_1748_9326_ac3b17
crossref_primary_10_3390_f14091880
crossref_primary_10_1007_s11581_024_05468_7
crossref_primary_10_4155_cmt_13_31
crossref_primary_10_1029_2021RG000736
crossref_primary_10_5194_acp_23_851_2023
crossref_primary_10_1002_2013JC009514
crossref_primary_10_1016_j_cej_2024_152633
crossref_primary_10_1016_j_foreco_2024_121742
crossref_primary_10_1002_eco_2420
crossref_primary_10_1111_gcb_13217
crossref_primary_10_1016_j_fuel_2014_10_070
crossref_primary_10_5194_bg_18_5639_2021
crossref_primary_10_1016_j_atmosenv_2018_03_010
crossref_primary_10_1098_rsta_2022_0063
crossref_primary_10_5194_essd_7_47_2015
crossref_primary_10_1038_nature12291
crossref_primary_10_5194_soil_2_565_2016
crossref_primary_10_1177_0309133320966741
crossref_primary_10_1038_nature13376
crossref_primary_10_1029_2024JD041540
crossref_primary_10_1007_s10872_016_0350_8
crossref_primary_10_1111_brv_12343
crossref_primary_10_1002_jgrg_20039
crossref_primary_10_1002_joc_6463
crossref_primary_10_1002_2013JG002381
crossref_primary_10_5194_esd_13_1505_2022
crossref_primary_10_1016_j_jmsy_2024_11_005
crossref_primary_10_1016_j_rser_2017_05_197
crossref_primary_10_1016_j_atmosenv_2015_05_026
crossref_primary_10_1016_j_accre_2023_01_001
crossref_primary_10_1680_nme_13_00023
crossref_primary_10_2139_ssrn_2827927
crossref_primary_10_1016_j_agrformet_2015_12_059
crossref_primary_10_7498_aps_64_239201
crossref_primary_10_1016_j_seares_2015_01_005
crossref_primary_10_1016_j_xcrp_2024_102227
crossref_primary_10_3390_f15081292
crossref_primary_10_1016_j_agrformet_2021_108480
crossref_primary_10_1016_j_ccst_2023_100127
crossref_primary_10_1017_RDC_2024_133
crossref_primary_10_1016_j_ecolind_2019_105880
crossref_primary_10_1016_j_esd_2023_03_012
crossref_primary_10_1016_j_jcat_2019_09_025
crossref_primary_10_1111_gcb_13876
crossref_primary_10_1088_1748_9326_ac0b68
crossref_primary_10_1038_488035a
crossref_primary_10_5194_essd_8_605_2016
crossref_primary_10_1016_j_jag_2017_10_002
crossref_primary_10_1038_s41467_021_22392_w
crossref_primary_10_1002_joc_6633
crossref_primary_10_1007_s11430_022_1036_7
crossref_primary_10_1016_j_agrformet_2016_05_008
crossref_primary_10_1016_j_algal_2016_03_028
crossref_primary_10_1016_j_rhisph_2025_101042
crossref_primary_10_1038_nclimate2323
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_1109_ACCESS_2022_3155722
crossref_primary_10_1016_j_gloplacha_2016_06_002
crossref_primary_10_1080_07350015_2015_1038545
crossref_primary_10_1134_S1019331613010140
crossref_primary_10_1016_j_electacta_2016_07_051
crossref_primary_10_5194_essd_14_1917_2022
crossref_primary_10_1007_s11368_022_03282_0
crossref_primary_10_1007_s00024_013_0708_4
crossref_primary_10_1038_s41586_024_07714_4
crossref_primary_10_1029_2021JD035299
crossref_primary_10_1016_j_scitotenv_2024_175177
crossref_primary_10_1038_nature14283
crossref_primary_10_1007_s10021_016_0035_6
crossref_primary_10_1007_s10661_021_09541_w
crossref_primary_10_1080_16742834_2019_1548246
crossref_primary_10_1038_s41586_019_1078_6
crossref_primary_10_1039_c4pp90036g
crossref_primary_10_1016_j_jenvman_2017_12_043
crossref_primary_10_1088_1748_9326_abe9ed
crossref_primary_10_1111_jvs_12399
crossref_primary_10_3390_rs12152498
crossref_primary_10_1002_2013JG002312
crossref_primary_10_1002_2014GB004853
crossref_primary_10_1016_j_scitotenv_2023_162907
crossref_primary_10_1111_gcb_12564
crossref_primary_10_1007_s40641_016_0031_0
crossref_primary_10_1016_j_rse_2016_05_015
crossref_primary_10_1016_j_scitotenv_2020_141688
crossref_primary_10_1111_gcb_16806
crossref_primary_10_1038_s41467_024_45957_x
crossref_primary_10_1007_s11434_015_0736_9
crossref_primary_10_1016_j_atmosenv_2017_03_055
crossref_primary_10_3390_urbansci7020054
crossref_primary_10_1038_s43247_023_00885_4
crossref_primary_10_1007_s11270_022_05841_0
crossref_primary_10_1016_j_ecolind_2024_112439
crossref_primary_10_1002_jgrg_20114
crossref_primary_10_1016_j_biombioe_2016_03_040
crossref_primary_10_1029_2019GL085311
crossref_primary_10_5194_acp_15_13739_2015
crossref_primary_10_1098_rstb_2017_0409
crossref_primary_10_5194_acp_14_2541_2014
crossref_primary_10_1111_gcb_12678
crossref_primary_10_1038_s41467_020_17966_z
crossref_primary_10_1098_rstb_2017_0407
crossref_primary_10_2139_ssrn_2297457
crossref_primary_10_1039_D0CS01405B
crossref_primary_10_5194_bg_15_2481_2018
crossref_primary_10_1007_s11104_022_05836_0
crossref_primary_10_1134_S102833581307001X
crossref_primary_10_1016_j_biocon_2020_108849
crossref_primary_10_1073_pnas_1314047110
crossref_primary_10_5194_bg_14_3781_2017
crossref_primary_10_1002_grl_50563
crossref_primary_10_5194_essd_15_5301_2023
crossref_primary_10_15252_embr_201744260
crossref_primary_10_1016_j_ecolind_2024_112017
crossref_primary_10_1016_j_accre_2024_04_001
crossref_primary_10_1016_j_agrformet_2016_06_010
crossref_primary_10_5194_esd_6_731_2015
crossref_primary_10_1038_ngeo2413
crossref_primary_10_1111_aec_12756
crossref_primary_10_5194_gmd_9_2639_2016
crossref_primary_10_1002_2017GL075808
crossref_primary_10_1007_s11356_021_13721_z
crossref_primary_10_1093_nsr_nwae365
crossref_primary_10_1002_wea_2715
crossref_primary_10_1002_2013GB004644
crossref_primary_10_1016_j_scs_2024_105304
crossref_primary_10_1002_2016GL071035
crossref_primary_10_1111_nph_19355
crossref_primary_10_1111_gcb_15207
crossref_primary_10_1016_j_cej_2019_05_116
crossref_primary_10_1016_j_scitotenv_2024_171297
crossref_primary_10_1098_rstb_2012_0376
crossref_primary_10_1016_j_rser_2019_109340
crossref_primary_10_1038_nclimate3204
crossref_primary_10_1038_s41597_024_03243_x
crossref_primary_10_1016_j_agrformet_2022_109095
crossref_primary_10_1080_15481603_2023_2275421
crossref_primary_10_1038_s41612_021_00182_x
crossref_primary_10_5194_essd_12_3269_2020
crossref_primary_10_1016_j_dib_2018_06_020
crossref_primary_10_1016_j_catena_2024_108697
crossref_primary_10_1029_2019GL085121
crossref_primary_10_1109_JSTARS_2017_2725825
crossref_primary_10_1016_j_scitotenv_2019_03_025
crossref_primary_10_1088_1748_9326_ada814
crossref_primary_10_1016_j_scitotenv_2024_170053
crossref_primary_10_1016_j_mimet_2018_04_010
crossref_primary_10_1038_s41467_024_52728_1
crossref_primary_10_1109_JSTARS_2024_3432581
crossref_primary_10_5194_acp_23_6525_2023
crossref_primary_10_5194_bg_15_597_2018
crossref_primary_10_1002_2013GL058857
crossref_primary_10_1038_519295a
crossref_primary_10_3389_fenvs_2023_1289142
crossref_primary_10_1007_s11356_021_16986_6
crossref_primary_10_5194_acp_16_5665_2016
crossref_primary_10_5194_essd_14_3013_2022
crossref_primary_10_1016_j_engfracmech_2022_108749
crossref_primary_10_1016_j_oneear_2023_11_013
crossref_primary_10_5194_acp_13_10243_2013
crossref_primary_10_1029_2020JG005734
crossref_primary_10_3390_en17020299
crossref_primary_10_1016_j_agrformet_2024_110300
crossref_primary_10_3389_fdata_2020_00029
crossref_primary_10_1016_j_jclepro_2024_141340
crossref_primary_10_1073_pnas_1813951115
crossref_primary_10_1038_nclimate2253
crossref_primary_10_1088_1742_6596_2267_1_012130
crossref_primary_10_1021_acs_jpcc_3c03392
crossref_primary_10_1126_sciadv_abf9415
crossref_primary_10_1002_2013GB004679
crossref_primary_10_1175_BAMS_D_13_00109_1
crossref_primary_10_1029_2018GB005922
crossref_primary_10_5194_bg_16_117_2019
crossref_primary_10_1016_j_agrformet_2022_109070
crossref_primary_10_1029_2023GL105493
crossref_primary_10_1016_j_atmosenv_2014_10_020
crossref_primary_10_1016_j_carbpol_2017_08_031
crossref_primary_10_1088_1748_9326_aa6e8e
crossref_primary_10_1029_2019JG005403
crossref_primary_10_1038_s41598_017_03818_2
crossref_primary_10_3389_fmars_2024_1272415
crossref_primary_10_1002_esp_3857
crossref_primary_10_1038_ngeo2972
crossref_primary_10_3390_atmos14121830
crossref_primary_10_5194_essd_11_1783_2019
crossref_primary_10_1175_JPO_D_20_0272_1
crossref_primary_10_2113_JEEG23_4_443
crossref_primary_10_3390_catal11060735
crossref_primary_10_3390_rs14205224
crossref_primary_10_1016_j_catena_2024_108266
crossref_primary_10_1016_j_jhydrol_2023_130081
crossref_primary_10_1038_s41586_021_04376_4
crossref_primary_10_3390_atmos14121835
crossref_primary_10_1029_2018GB006086
crossref_primary_10_1080_1755876X_2018_1489208
crossref_primary_10_1007_s11629_016_3867_9
crossref_primary_10_1088_1755_1315_708_1_012104
crossref_primary_10_1111_gcb_13224
crossref_primary_10_1111_gcb_14677
crossref_primary_10_1016_j_agrformet_2016_01_086
crossref_primary_10_5194_gmd_13_3119_2020
crossref_primary_10_1093_jue_juae005
crossref_primary_10_1371_journal_pone_0290437
crossref_primary_10_1002_jpln_201300189
crossref_primary_10_1038_s41558_020_0797_x
crossref_primary_10_3390_su13031514
crossref_primary_10_5194_acp_16_14421_2016
crossref_primary_10_3197_096327115X14497392134964
crossref_primary_10_1088_1748_9326_ab66cc
crossref_primary_10_1111_nph_12400
crossref_primary_10_1021_acs_iecr_5b01684
crossref_primary_10_1016_j_agrformet_2023_109594
crossref_primary_10_1175_JCLI_D_14_00528_1
crossref_primary_10_1126_science_aam5782
crossref_primary_10_1002_2015JD024715
crossref_primary_10_1038_nclimate2184
crossref_primary_10_1038_srep42281
crossref_primary_10_1088_1748_9326_8_1_011006
crossref_primary_10_1111_gcb_16646
crossref_primary_10_1007_s40726_019_0103_6
crossref_primary_10_3389_feart_2021_620513
crossref_primary_10_1029_2022JD036919
crossref_primary_10_1038_s41558_019_0465_1
crossref_primary_10_1016_j_scitotenv_2024_170093
crossref_primary_10_1007_s10533_014_0060_5
crossref_primary_10_5194_essd_5_165_2013
crossref_primary_10_2139_ssrn_3033001
crossref_primary_10_1007_s11802_024_5528_x
crossref_primary_10_1371_journal_pone_0089364
crossref_primary_10_5194_acp_18_7189_2018
crossref_primary_10_1029_2020GB006800
crossref_primary_10_1111_gcb_14585
crossref_primary_10_1007_s11631_015_0047_5
crossref_primary_10_1007_s00704_014_1204_1
crossref_primary_10_1038_nature12915
crossref_primary_10_5194_essd_14_4811_2022
crossref_primary_10_3390_rs10122039
crossref_primary_10_1016_j_aquabot_2017_12_002
crossref_primary_10_1111_geb_12633
crossref_primary_10_1007_s11270_022_05581_1
crossref_primary_10_5194_bg_11_3453_2014
crossref_primary_10_1007_s11783_014_0742_1
crossref_primary_10_3917_ecop_208_0105
crossref_primary_10_1088_1748_9326_acca35
crossref_primary_10_5194_esd_14_101_2023
crossref_primary_10_1002_eco_1592
crossref_primary_10_1111_gcb_16751
crossref_primary_10_1146_annurev_environ_012220_125406
crossref_primary_10_1111_1365_2745_14082
crossref_primary_10_5194_essd_10_87_2018
crossref_primary_10_1038_s41598_018_32602_z
crossref_primary_10_1029_2022GB007520
crossref_primary_10_1002_cssc_202400517
crossref_primary_10_1038_s41586_021_04096_9
crossref_primary_10_1073_pnas_1521479112
crossref_primary_10_1029_2020JD033623
crossref_primary_10_5194_esd_5_41_2014
crossref_primary_10_1016_j_jag_2019_102015
crossref_primary_10_1525_abt_2023_85_8_425
crossref_primary_10_1038_d41586_021_01871_6
crossref_primary_10_1016_j_biortech_2015_01_029
crossref_primary_10_5194_acp_18_17355_2018
crossref_primary_10_7167_2013_297973
crossref_primary_10_1016_j_atmosenv_2016_11_032
crossref_primary_10_1111_gcb_15050
crossref_primary_10_1111_gcb_15292
crossref_primary_10_1029_2023AV001145
crossref_primary_10_1038_ncomms10724
crossref_primary_10_1007_s12517_018_3547_x
crossref_primary_10_1029_2019GB006368
crossref_primary_10_1051_e3sconf_202447301012
crossref_primary_10_2136_sssaj2012_0004br
crossref_primary_10_1038_s41561_023_01274_4
crossref_primary_10_1007_s00704_014_1239_3
crossref_primary_10_1029_2018JD029533
crossref_primary_10_3402_tellusb_v65i0_20334
crossref_primary_10_1016_j_atmosenv_2015_09_074
crossref_primary_10_1111_gcb_15162
crossref_primary_10_1111_gcb_16012
crossref_primary_10_3390_f14102051
crossref_primary_10_1038_s41467_023_36727_2
crossref_primary_10_1007_s12601_018_0023_1
crossref_primary_10_1016_j_dynatmoce_2018_08_002
crossref_primary_10_1007_s11427_021_2045_5
crossref_primary_10_1088_1748_9326_abb32f
crossref_primary_10_1016_j_srs_2020_100009
crossref_primary_10_1016_j_fuel_2022_124975
crossref_primary_10_1038_s41612_023_00532_x
crossref_primary_10_1080_10643389_2014_1000749
crossref_primary_10_1111_geb_12441
crossref_primary_10_1016_j_scitotenv_2024_173852
crossref_primary_10_5194_acp_23_4993_2023
crossref_primary_10_1002_2014JD022411
crossref_primary_10_1029_2018GL077633
crossref_primary_10_1088_1748_9326_ac507d
crossref_primary_10_1016_j_scitotenv_2023_165932
crossref_primary_10_1126_science_abb7772
crossref_primary_10_3390_rs15245680
crossref_primary_10_1029_2023GL107030
crossref_primary_10_1007_s00382_018_4388_8
crossref_primary_10_1186_s13021_015_0018_5
crossref_primary_10_1029_2023GB007780
crossref_primary_10_1111_gcb_16396
crossref_primary_10_3390_cli11100205
crossref_primary_10_1371_journal_pone_0247910
crossref_primary_10_5194_bg_11_3421_2014
crossref_primary_10_1016_j_ensm_2020_06_009
crossref_primary_10_1088_1748_9326_aa5685
crossref_primary_10_1002_ldr_4900
crossref_primary_10_1007_s10021_015_9841_5
crossref_primary_10_5194_bg_17_405_2020
crossref_primary_10_3390_atmos14081295
crossref_primary_10_1029_2019GL082987
crossref_primary_10_1016_j_jclepro_2016_09_098
crossref_primary_10_1016_j_asr_2024_07_007
crossref_primary_10_1038_s41467_024_54907_6
crossref_primary_10_1002_2013GB004686
crossref_primary_10_1029_2017JD027881
crossref_primary_10_1051_rees_2023016
crossref_primary_10_3389_fpubh_2022_858615
crossref_primary_10_5194_acp_21_9609_2021
crossref_primary_10_1111_gcb_14038
crossref_primary_10_1080_02664763_2018_1542667
crossref_primary_10_1016_j_isci_2021_103628
crossref_primary_10_1007_s00442_023_05360_7
crossref_primary_10_1016_j_scitotenv_2019_01_324
crossref_primary_10_2139_ssrn_2072323
crossref_primary_10_1016_j_gloplacha_2014_04_003
crossref_primary_10_1038_s41612_024_00824_w
crossref_primary_10_1371_journal_pone_0196248
crossref_primary_10_1016_j_rse_2016_12_018
crossref_primary_10_1016_j_jclepro_2019_119346
crossref_primary_10_1007_s11273_018_9619_6
crossref_primary_10_1016_j_scitotenv_2024_173887
crossref_primary_10_1029_2022EF003293
crossref_primary_10_1890_14_0330_1
crossref_primary_10_1016_j_jenvman_2023_117655
crossref_primary_10_5194_acp_24_1249_2024
crossref_primary_10_1007_s11027_019_09877_2
crossref_primary_10_1177_0003702817722820
crossref_primary_10_1073_pnas_1407302112
crossref_primary_10_5194_esurf_6_1101_2018
crossref_primary_10_5194_bg_13_4877_2016
crossref_primary_10_1038_s41598_021_00334_2
crossref_primary_10_1016_j_jgsce_2024_205367
crossref_primary_10_1111_gcb_15036
crossref_primary_10_1038_s41467_022_28824_5
crossref_primary_10_1002_2013GB004585
crossref_primary_10_1029_2021JD034545
crossref_primary_10_1016_j_jclepro_2024_140612
crossref_primary_10_1890_ES15_00203_1
crossref_primary_10_1038_nclimate1910
crossref_primary_10_1146_annurev_environ_102017_030204
crossref_primary_10_5194_essd_10_405_2018
crossref_primary_10_1126_science_adf5041
crossref_primary_10_1111_gcb_15145
crossref_primary_10_3389_fmars_2020_571720
crossref_primary_10_3390_en13061365
crossref_primary_10_3389_feart_2019_00073
crossref_primary_10_1007_s10021_013_9715_7
crossref_primary_10_1007_s40641_018_0099_9
crossref_primary_10_1111_gcb_12860
crossref_primary_10_1155_2022_1677084
crossref_primary_10_1016_j_ecolind_2021_107982
crossref_primary_10_1016_j_xinn_2021_100180
crossref_primary_10_3390_en15207571
crossref_primary_10_5194_acp_18_14851_2018
crossref_primary_10_1016_j_uclim_2021_100855
crossref_primary_10_1016_j_atmosenv_2019_117097
crossref_primary_10_5194_amt_14_6601_2021
crossref_primary_10_1111_gcb_14807
crossref_primary_10_1029_2022JG006842
crossref_primary_10_5194_essd_6_235_2014
crossref_primary_10_1016_j_watres_2017_12_002
crossref_primary_10_1029_2018JD029005
crossref_primary_10_5194_esd_10_9_2019
crossref_primary_10_1111_1365_2435_12836
crossref_primary_10_3390_app142411518
crossref_primary_10_1016_j_envres_2021_111208
crossref_primary_10_1002_jgrg_20100
crossref_primary_10_1134_S1028334X14050390
crossref_primary_10_3390_su12229397
crossref_primary_10_1098_rsta_2021_0148
crossref_primary_10_3390_atmos13010109
crossref_primary_10_1360_N072022_0123
crossref_primary_10_1016_j_scitotenv_2018_05_245
crossref_primary_10_1016_j_marpol_2013_06_014
crossref_primary_10_1016_j_apr_2025_102458
crossref_primary_10_5194_acp_19_9797_2019
crossref_primary_10_1002_asl_876
crossref_primary_10_1007_s00376_015_5090_y
crossref_primary_10_5194_essd_7_349_2015
crossref_primary_10_1038_nclimate1817
crossref_primary_10_1111_geb_12175
crossref_primary_10_1111_gcb_12766
crossref_primary_10_1016_j_jag_2022_103063
crossref_primary_10_1007_s10457_016_0049_2
crossref_primary_10_1016_j_solener_2019_01_064
crossref_primary_10_1088_1748_9326_ab3012
crossref_primary_10_1126_sciadv_adl6155
crossref_primary_10_1088_0026_1394_53_1_R26
crossref_primary_10_5194_bg_14_3685_2017
crossref_primary_10_5194_acp_21_14385_2021
crossref_primary_10_1038_s41467_022_33293_x
crossref_primary_10_1029_2021JD035035
crossref_primary_10_1038_s41597_020_00653_5
crossref_primary_10_1175_JCLI_D_12_00831_1
crossref_primary_10_1007_s11430_016_9066_3
crossref_primary_10_1007_s00382_015_2830_8
crossref_primary_10_1007_s10584_013_0862_9
crossref_primary_10_3390_ijerph19116948
crossref_primary_10_1002_2016JF004004
crossref_primary_10_1186_s12302_024_01000_w
crossref_primary_10_3390_agriculture15060613
crossref_primary_10_1088_1748_9326_ad7d21
crossref_primary_10_3390_soilsystems8040105
crossref_primary_10_1111_gcb_12703
crossref_primary_10_1016_j_catena_2022_106089
crossref_primary_10_1016_j_jclepro_2022_130713
crossref_primary_10_3390_chemengineering3040078
crossref_primary_10_1007_s10584_012_0682_3
crossref_primary_10_1016_j_jmarsys_2016_02_011
crossref_primary_10_1002_celc_201801716
crossref_primary_10_1016_j_scitotenv_2024_171635
crossref_primary_10_1029_2021GB007019
crossref_primary_10_1029_2021EF002556
crossref_primary_10_1016_j_agee_2022_108175
crossref_primary_10_3390_rs12121927
crossref_primary_10_3390_rs16234417
crossref_primary_10_5194_gmd_16_4883_2023
crossref_primary_10_1016_j_jag_2023_103437
crossref_primary_10_1186_s13021_016_0069_2
crossref_primary_10_1111_gcb_12938
crossref_primary_10_1002_2016GL068965
crossref_primary_10_1029_2023JG007760
crossref_primary_10_1002_2015GL064222
crossref_primary_10_1002_2016RG000550
crossref_primary_10_1002_2014GB004907
crossref_primary_10_3390_molecules29020309
crossref_primary_10_1021_acs_energyfuels_8b03152
crossref_primary_10_1038_nature13341
crossref_primary_10_1029_2022JD036472
crossref_primary_10_5194_essd_15_963_2023
crossref_primary_10_1016_j_chemgeo_2013_08_048
crossref_primary_10_3390_en13226048
crossref_primary_10_12688_f1000research_8962_1
crossref_primary_10_1016_j_algal_2020_101818
crossref_primary_10_1007_s41742_024_00586_6
crossref_primary_10_1007_s40502_013_0016_0
crossref_primary_10_1016_j_rsma_2019_100707
crossref_primary_10_1038_s41598_018_21172_9
crossref_primary_10_5572_KOSAE_2024_40_6_601
crossref_primary_10_5194_essd_10_2141_2018
crossref_primary_10_1029_2020JD033362
crossref_primary_10_1002_grl_50957
crossref_primary_10_1029_2020GL091496
crossref_primary_10_1016_j_ecolmodel_2022_110185
crossref_primary_10_1029_2021GB007034
crossref_primary_10_1016_j_ecolind_2020_106223
crossref_primary_10_5194_acp_17_13903_2017
crossref_primary_10_1016_j_pocean_2015_02_004
crossref_primary_10_5194_bg_17_3797_2020
crossref_primary_10_1088_1748_9326_11_6_064001
crossref_primary_10_5194_bg_12_2565_2015
crossref_primary_10_1007_s13762_018_1722_y
crossref_primary_10_1016_j_agrformet_2014_09_013
crossref_primary_10_1016_j_eve_2025_100058
crossref_primary_10_1038_544039a
crossref_primary_10_1016_j_renene_2023_01_079
crossref_primary_10_2139_ssrn_2193945
crossref_primary_10_6000_1929_6037_2016_05_01_1
crossref_primary_10_5194_bg_12_653_2015
crossref_primary_10_1038_ncomms13428
crossref_primary_10_1038_nature12350
crossref_primary_10_3390_rs17020273
crossref_primary_10_1016_j_geoderma_2019_113915
crossref_primary_10_3390_rs14163899
crossref_primary_10_1016_j_scitotenv_2017_11_248
crossref_primary_10_1029_2019JD031165
crossref_primary_10_1016_j_scitotenv_2024_173922
crossref_primary_10_1088_1748_9326_8_3_034034
Cites_doi 10.1029/2009GB003599
10.1038/ngeo1193
10.1111/j.1530-9290.2009.00108.x
10.1029/95JD00859
10.1126/science.1201609
10.1175/JCLI3800.1
10.5194/bg-7-3041-2010
10.5194/bg-7-2351-2010
10.1029/2006JC003941
10.1126/science.1136188
10.5194/acp-10-7739-2010
10.1029/2000JD900703
10.1126/science.1192666
10.3402/tellusa.v34i4.10825
10.1038/ngeo1022
10.3334/CDIAC/00001_2010
10.5194/bgd-7-921-2010
10.1073/pnas.0702737104
10.1029/2009GL040613
10.1038/nature06444
10.1038/ngeo689
10.1038/35102500
ContentType Journal Article
Copyright Springer Nature Limited 2012
2015 INIST-CNRS
COPYRIGHT 2012 Nature Publishing Group
Copyright Nature Publishing Group Aug 2, 2012
Copyright_xml – notice: Springer Nature Limited 2012
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 2, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
7TN
7U6
F1W
H96
L.G
DOI 10.1038/nature11299
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Oceanic Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 72
ExternalDocumentID 2738918541
A299988789
22859203
26201452
10_1038_nature11299
Genre Historical Article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AGQPQ
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AFBBN
AFFDN
AFHIU
AFHKK
AGCDD
AHWEU
AJUXI
BES
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
7TN
7U6
F1W
H96
L.G
ID FETCH-LOGICAL-c579t-a38e87a34d0824cf181ce50effaf627b08a9421e3201acdac94fea2d85606c513
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 12:33:57 EDT 2025
Tue Aug 05 09:31:51 EDT 2025
Fri Jul 25 08:54:38 EDT 2025
Tue Jun 17 21:26:25 EDT 2025
Thu Jun 12 23:37:10 EDT 2025
Tue Jun 10 15:31:13 EDT 2025
Tue Jun 10 20:36:56 EDT 2025
Fri Jun 27 03:59:23 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Mon Jul 21 09:15:00 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Tue Jul 01 02:56:53 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7409
Keywords 1970-1980
time series analysis
trend-surface analysis
mass balance
Carbon dioxide
climate warming
1960-1970
Source sink relationship
Carbon sequestration
greenhouse gas
Carbon sinks
1990-2000
global change
2000-2010
1980-1990
climate change
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-a38e87a34d0824cf181ce50effaf627b08a9421e3201acdac94fea2d85606c513
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22859203
PQID 1034108188
PQPubID 40569
PageCount 3
ParticipantIDs proquest_miscellaneous_1434026453
proquest_miscellaneous_1031158346
proquest_journals_1034108188
gale_infotracmisc_A299988789
gale_infotracgeneralonefile_A299988789
gale_infotraccpiq_299988789
gale_infotracacademiconefile_A299988789
gale_incontextgauss_ISR_A299988789
pubmed_primary_22859203
pascalfrancis_primary_26201452
crossref_primary_10_1038_nature11299
crossref_citationtrail_10_1038_nature11299
springer_journals_10_1038_nature11299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-02
PublicationDateYYYYMMDD 2012-08-02
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References StockerBStrassmannKJoosFSensitivity of Holocene atmospheric CO2Biogeosciences2011792195210.5194/bgd-7-921-2010
SchusterUWatsonAJA variable and decreasing sink for atmospheric CO2 in the North AtlanticJ. Geophys. Res.2007112C110062007JGRC..11211006S10.1029/2006JC003941
PanYA large and persistent carbon sink in the world’s forestsScience20113339889932011Sci...333..988P1:CAS:528:DC%2BC3MXhtVWrtr%2FE10.1126/science.1201609
KnorrWIs the airborne fraction of anthropogenic CO2 emissions increasing?Geophys. Res. Lett.200936L217102009GeoRL..3621710K10.1029/2009GL040613
GriffithDWTKeelingCDAdamsJAGuentherPRBacastowRBCalculations of carrier gas effects in non-dispersive infrared analyzers. II. Comparisons with experimentTellus1982343853971982Tell...34..385G1:CAS:528:DyaL38Xlslequ7g%3D
ZhaoMRunningSWDrought-induced reduction in global terrestrial net primary production from 2000 through 2009Science20103299409432010Sci...329..940Z1:CAS:528:DC%2BC3cXhtVaqur%2FE10.1126/science.1192666
FriedlingsteinPUpdate on CO2 emissionsNature Geosci.201038118122010NatGe...3..811F1:CAS:528:DC%2BC3cXhsVyhs7bP10.1038/ngeo1022
SchimelDSRecent patterns and mechanisms of carbon exchange by terrestrial ecosystemsNature20014141691722001Natur.414..169S1:CAS:528:DC%2BD3MXosFaisLo%3D10.1038/35102500
BP. Statistical Review of World Energyhttp://www.bp.com/sectionbodycopy.do?categoryId = 7500&contentId = 7068481 (2011)
MasarieKATansPPExtension and integration of atmospheric carbon dioxide data into a globally consistent measurement recordJ. Geophys. Res.199510011593116101995JGR...10011593M1:CAS:528:DyaK2MXotlWjs74%3D10.1029/95JD00859
Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 792–802 (Cambridge Univ. Press, 2007)
SarmientoJLTrends and regional distributions of land and ocean carbon sinksBiogeosciences20107235123672010BGeo....7.2351S1:CAS:528:DC%2BC3MXit1ens7Y%3D10.5194/bg-7-2351-2010
KeelingCDA three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational dataGeophys. Monogr.198955165236
YangXRichardsonTKJainAKContributions of secondary forest and nitrogen dynamics to terrestrial carbon uptakeBiogeosciences20107304130502010BGeo....7.3041Y1:CAS:528:DC%2BC3cXhsF2ru7fM10.5194/bg-7-3041-2010
McKinleyGAFayARTakahashiTMetzlNConvergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescalesNature Geosci.201146066102011NatGe...4..606M1:CAS:528:DC%2BC3MXhtFSmtLjN10.1038/ngeo1193
Le QuéréCSaturation of the Southern Ocean CO2 sink due to recent climate changeScience2007316173517382007Sci...316.1735L10.1126/science.1136188
HoughtonRARevised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000Tellus B2003553783902003TellB..55..378H
CanadellJGContributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinksProc. Natl Acad. Sci. USA200710418866188702007PNAS..10418866C1:CAS:528:DC%2BD2sXhtl2ks7%2FO10.1073/pnas.0702737104
GloorMSarmientoJLGruberNWhat can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?Atmos. Chem. Phys.201010773977512010ACP....10.7739G1:CAS:528:DC%2BC3cXhtlWls7jP10.5194/acp-10-7739-2010
MarlandGHamalKJonasMHow uncertain are estimates of CO2 emissions?J. Ind. Ecol.2009134710.1111/j.1530-9290.2009.00108.x
Le QuéréCTakahashiTBuitenhuisETRödenbeckCSutherlandSCImpact of climate change and variability on the global oceanic sink of CO2Glob. Biogeochem. Cycles201024GB40072010GBioC..24.4007L10.1029/2009GB003599
Le QuéréCTrends in the sources and sinks of carbon dioxideNature Geosci.200928318362009NatGe...2..831L10.1038/ngeo689
European Commission. Emissions Database for Global Atmospheric Research (EDGAR). Europa - EDGAR Overviewhttp://edgar.jrc.ec.europa.eu/overview.php?v = 40 (2009)
FriedlingsteinPClimate-carbon cycle feedback analysis: results from the C4MIP model intercomparisonJ. Clim.200619333733532006JCli...19.3337F10.1175/JCLI3800.1
Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Centerhttp://cdiac.ornl.gov/trends/emis/overview.html (2010)
PiaoSNet carbon dioxide losses of northern ecosystems in response to autumn warmingNature200845149522008Natur.451...49P1:CAS:528:DC%2BD1cXhtlSksw%3D%3D10.1038/nature06444
AndrewsAEEmpirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier to horizontal transportJ. Geophys. Res.200110610257102742001JGR...10610257A1:CAS:528:DC%2BD3MXks1Kkt7s%3D10.1029/2000JD900703
Y Pan (BFnature11299_CR4) 2011; 333
JG Canadell (BFnature11299_CR21) 2007; 104
CD Keeling (BFnature11299_CR24) 1989; 55
M Zhao (BFnature11299_CR6) 2010; 329
RA Houghton (BFnature11299_CR27) 2003; 55
KA Masarie (BFnature11299_CR23) 1995; 100
S Piao (BFnature11299_CR5) 2008; 451
W Knorr (BFnature11299_CR12) 2009; 36
G Marland (BFnature11299_CR20) 2009; 13
GA McKinley (BFnature11299_CR7) 2011; 4
C Le Quéré (BFnature11299_CR22) 2009; 2
BFnature11299_CR1
DS Schimel (BFnature11299_CR2) 2001; 414
U Schuster (BFnature11299_CR9) 2007; 112
C Le Quéré (BFnature11299_CR8) 2007; 316
AE Andrews (BFnature11299_CR26) 2001; 106
M Gloor (BFnature11299_CR13) 2010; 10
X Yang (BFnature11299_CR19) 2010; 7
BFnature11299_CR15
BFnature11299_CR14
JL Sarmiento (BFnature11299_CR11) 2010; 7
BFnature11299_CR16
P Friedlingstein (BFnature11299_CR17) 2010; 3
C Le Quéré (BFnature11299_CR10) 2010; 24
P Friedlingstein (BFnature11299_CR3) 2006; 19
B Stocker (BFnature11299_CR18) 2011; 7
DWT Griffith (BFnature11299_CR25) 1982; 34
17510327 - Science. 2007 Jun 22;316(5832):1735-8
17962418 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18866-70
11700548 - Nature. 2001 Nov 8;414(6860):169-72
21764754 - Science. 2011 Aug 19;333(6045):988-93
20724633 - Science. 2010 Aug 20;329(5994):940-3
18172494 - Nature. 2008 Jan 3;451(7174):49-52
22859196 - Nature. 2012 Aug 2;488(7409):35-6
References_xml – reference: PanYA large and persistent carbon sink in the world’s forestsScience20113339889932011Sci...333..988P1:CAS:528:DC%2BC3MXhtVWrtr%2FE10.1126/science.1201609
– reference: AndrewsAEEmpirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier to horizontal transportJ. Geophys. Res.200110610257102742001JGR...10610257A1:CAS:528:DC%2BD3MXks1Kkt7s%3D10.1029/2000JD900703
– reference: PiaoSNet carbon dioxide losses of northern ecosystems in response to autumn warmingNature200845149522008Natur.451...49P1:CAS:528:DC%2BD1cXhtlSksw%3D%3D10.1038/nature06444
– reference: GloorMSarmientoJLGruberNWhat can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?Atmos. Chem. Phys.201010773977512010ACP....10.7739G1:CAS:528:DC%2BC3cXhtlWls7jP10.5194/acp-10-7739-2010
– reference: ZhaoMRunningSWDrought-induced reduction in global terrestrial net primary production from 2000 through 2009Science20103299409432010Sci...329..940Z1:CAS:528:DC%2BC3cXhtVaqur%2FE10.1126/science.1192666
– reference: McKinleyGAFayARTakahashiTMetzlNConvergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescalesNature Geosci.201146066102011NatGe...4..606M1:CAS:528:DC%2BC3MXhtFSmtLjN10.1038/ngeo1193
– reference: Le QuéréCTrends in the sources and sinks of carbon dioxideNature Geosci.200928318362009NatGe...2..831L10.1038/ngeo689
– reference: SchusterUWatsonAJA variable and decreasing sink for atmospheric CO2 in the North AtlanticJ. Geophys. Res.2007112C110062007JGRC..11211006S10.1029/2006JC003941
– reference: MasarieKATansPPExtension and integration of atmospheric carbon dioxide data into a globally consistent measurement recordJ. Geophys. Res.199510011593116101995JGR...10011593M1:CAS:528:DyaK2MXotlWjs74%3D10.1029/95JD00859
– reference: GriffithDWTKeelingCDAdamsJAGuentherPRBacastowRBCalculations of carrier gas effects in non-dispersive infrared analyzers. II. Comparisons with experimentTellus1982343853971982Tell...34..385G1:CAS:528:DyaL38Xlslequ7g%3D
– reference: FriedlingsteinPUpdate on CO2 emissionsNature Geosci.201038118122010NatGe...3..811F1:CAS:528:DC%2BC3cXhsVyhs7bP10.1038/ngeo1022
– reference: CanadellJGContributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinksProc. Natl Acad. Sci. USA200710418866188702007PNAS..10418866C1:CAS:528:DC%2BD2sXhtl2ks7%2FO10.1073/pnas.0702737104
– reference: StockerBStrassmannKJoosFSensitivity of Holocene atmospheric CO2Biogeosciences2011792195210.5194/bgd-7-921-2010
– reference: YangXRichardsonTKJainAKContributions of secondary forest and nitrogen dynamics to terrestrial carbon uptakeBiogeosciences20107304130502010BGeo....7.3041Y1:CAS:528:DC%2BC3cXhsF2ru7fM10.5194/bg-7-3041-2010
– reference: Le QuéréCTakahashiTBuitenhuisETRödenbeckCSutherlandSCImpact of climate change and variability on the global oceanic sink of CO2Glob. Biogeochem. Cycles201024GB40072010GBioC..24.4007L10.1029/2009GB003599
– reference: SarmientoJLTrends and regional distributions of land and ocean carbon sinksBiogeosciences20107235123672010BGeo....7.2351S1:CAS:528:DC%2BC3MXit1ens7Y%3D10.5194/bg-7-2351-2010
– reference: Le QuéréCSaturation of the Southern Ocean CO2 sink due to recent climate changeScience2007316173517382007Sci...316.1735L10.1126/science.1136188
– reference: Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Centerhttp://cdiac.ornl.gov/trends/emis/overview.html (2010)
– reference: BP. Statistical Review of World Energyhttp://www.bp.com/sectionbodycopy.do?categoryId = 7500&contentId = 7068481 (2011)
– reference: KnorrWIs the airborne fraction of anthropogenic CO2 emissions increasing?Geophys. Res. Lett.200936L217102009GeoRL..3621710K10.1029/2009GL040613
– reference: European Commission. Emissions Database for Global Atmospheric Research (EDGAR). Europa - EDGAR Overviewhttp://edgar.jrc.ec.europa.eu/overview.php?v = 40 (2009)
– reference: MarlandGHamalKJonasMHow uncertain are estimates of CO2 emissions?J. Ind. Ecol.2009134710.1111/j.1530-9290.2009.00108.x
– reference: SchimelDSRecent patterns and mechanisms of carbon exchange by terrestrial ecosystemsNature20014141691722001Natur.414..169S1:CAS:528:DC%2BD3MXosFaisLo%3D10.1038/35102500
– reference: Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 792–802 (Cambridge Univ. Press, 2007)
– reference: KeelingCDA three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational dataGeophys. Monogr.198955165236
– reference: HoughtonRARevised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000Tellus B2003553783902003TellB..55..378H
– reference: FriedlingsteinPClimate-carbon cycle feedback analysis: results from the C4MIP model intercomparisonJ. Clim.200619333733532006JCli...19.3337F10.1175/JCLI3800.1
– volume: 24
  start-page: GB4007
  year: 2010
  ident: BFnature11299_CR10
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003599
– ident: BFnature11299_CR15
– volume: 55
  start-page: 165
  year: 1989
  ident: BFnature11299_CR24
  publication-title: Geophys. Monogr.
– volume: 4
  start-page: 606
  year: 2011
  ident: BFnature11299_CR7
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo1193
– volume: 13
  start-page: 4
  year: 2009
  ident: BFnature11299_CR20
  publication-title: J. Ind. Ecol.
  doi: 10.1111/j.1530-9290.2009.00108.x
– volume: 100
  start-page: 11593
  year: 1995
  ident: BFnature11299_CR23
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JD00859
– volume: 333
  start-page: 988
  year: 2011
  ident: BFnature11299_CR4
  publication-title: Science
  doi: 10.1126/science.1201609
– volume: 19
  start-page: 3337
  year: 2006
  ident: BFnature11299_CR3
  publication-title: J. Clim.
  doi: 10.1175/JCLI3800.1
– volume: 7
  start-page: 3041
  year: 2010
  ident: BFnature11299_CR19
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-3041-2010
– volume: 55
  start-page: 378
  year: 2003
  ident: BFnature11299_CR27
  publication-title: Tellus B
– volume: 7
  start-page: 2351
  year: 2010
  ident: BFnature11299_CR11
  publication-title: Biogeosciences
  doi: 10.5194/bg-7-2351-2010
– volume: 112
  start-page: C11006
  year: 2007
  ident: BFnature11299_CR9
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JC003941
– volume: 316
  start-page: 1735
  year: 2007
  ident: BFnature11299_CR8
  publication-title: Science
  doi: 10.1126/science.1136188
– volume: 10
  start-page: 7739
  year: 2010
  ident: BFnature11299_CR13
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-7739-2010
– ident: BFnature11299_CR16
– volume: 106
  start-page: 10257
  year: 2001
  ident: BFnature11299_CR26
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JD900703
– volume: 329
  start-page: 940
  year: 2010
  ident: BFnature11299_CR6
  publication-title: Science
  doi: 10.1126/science.1192666
– volume: 34
  start-page: 385
  year: 1982
  ident: BFnature11299_CR25
  publication-title: Tellus
  doi: 10.3402/tellusa.v34i4.10825
– volume: 3
  start-page: 811
  year: 2010
  ident: BFnature11299_CR17
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo1022
– ident: BFnature11299_CR14
  doi: 10.3334/CDIAC/00001_2010
– volume: 7
  start-page: 921
  year: 2011
  ident: BFnature11299_CR18
  publication-title: Biogeosciences
  doi: 10.5194/bgd-7-921-2010
– volume: 104
  start-page: 18866
  year: 2007
  ident: BFnature11299_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0702737104
– volume: 36
  start-page: L21710
  year: 2009
  ident: BFnature11299_CR12
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL040613
– volume: 451
  start-page: 49
  year: 2008
  ident: BFnature11299_CR5
  publication-title: Nature
  doi: 10.1038/nature06444
– ident: BFnature11299_CR1
– volume: 2
  start-page: 831
  year: 2009
  ident: BFnature11299_CR22
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo689
– volume: 414
  start-page: 169
  year: 2001
  ident: BFnature11299_CR2
  publication-title: Nature
  doi: 10.1038/35102500
– reference: 11700548 - Nature. 2001 Nov 8;414(6860):169-72
– reference: 18172494 - Nature. 2008 Jan 3;451(7174):49-52
– reference: 17962418 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18866-70
– reference: 21764754 - Science. 2011 Aug 19;333(6045):988-93
– reference: 17510327 - Science. 2007 Jun 22;316(5832):1735-8
– reference: 20724633 - Science. 2010 Aug 20;329(5994):940-3
– reference: 22859196 - Nature. 2012 Aug 2;488(7409):35-6
SSID ssj0005174
Score 2.580025
Snippet A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50...
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately...
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change1. Although approximately...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 70
SubjectTerms 704/106/694
704/172/169
Atmosphere
Atmosphere - chemistry
Budgets
Carbon - analysis
Carbon cycle
Carbon cycle (Biogeochemistry)
Carbon dioxide
Carbon Dioxide - analysis
Carbon Dioxide - history
Carbon dioxide emissions
Carbon Sequestration
Carbon sinks
Climate change
Climate Change - statistics & numerical data
Climate prediction
Climatic changes
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Emission inventories
Emissions
Environmental aspects
Estimates
Exact sciences and technology
External geophysics
Growth rate
History, 20th Century
History, 21st Century
Human Activities
Humanities and Social Sciences
Industrialized nations
Land use
letter
Meteorology
Models, Theoretical
multidisciplinary
Oceans
Oceans and Seas
Reservoirs
Science
Science (multidisciplinary)
Seawater - chemistry
Studies
Time Factors
Trends
Uncertainty
Title Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
URI https://link.springer.com/article/10.1038/nature11299
https://www.ncbi.nlm.nih.gov/pubmed/22859203
https://www.proquest.com/docview/1034108188
https://www.proquest.com/docview/1031158346
https://www.proquest.com/docview/1434026453
Volume 488
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF-0RRBEbH2dPY9V6hOCuewm2XySWnpWwSLVwuGXsJnslkNJ0iYH9r93Jtl7xB79kHyZIdnMzuOX3dkZxvYjEwHIRHkQGEstzKSnQpt4vgghA8CQq-iA87eT6PhMfp2GU7fgVru0yoVPbB11XgKtkaN1o7-l-mvqY3XhUdco2l11LTRus20qXUYpXfE0XqV4_FeF2Z3P84X60JXNJLCR9CKS88v3Kl2jjGzX3GIT-ry2c9oGpMkDdt8hSX7QTf0Ou2WKXXanzeiEepftOKut-VtXWvrdQ_YL3QFloRs-K3iZ0YqsyXlhGg76MisLns_Kv7Pc8HnV6N-GZ1ecMh85XRjoMKzx7lwjR9zIcfQND31-hdZSP2Jnk6Ofh8ee667gQRgnjaeFMirWQuaIAiRYDPVgQt9Yq20UxJmvdCKDsREIETTkGhJpjQ5yhRgpgnAsHrOtoizMU8YThG2JNCIXgZaRDwhxwA8syh8QAGbBgL1fSDgFV3qcOmD8SdstcKHStekYsP0lc9VV3NjM9pKmKqUaFgUlyZzreV2nX36cpgdITtB5KmR645hsiS8E7c4c4LCp7FWPc6_HCdXsIl2jvu5Rz7t52_SYYY8RbRV65FFPsZYfSG0BxjJESQ0XmpY6Z1KnK9UfsBdLMj2aEuQKU85bHsT2SsjoBh4pJP5yy1AM2JNOi1cDoEKGgY-UVwu1Xh_ANfE_u3mge-wuflDQZkoGQ7bVXM7Nc0RvTTZqTRTv6nBM98nnEdv-dHTy_fQfZ6FEFg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9NA7DSGEEgIsfFVVsaBNgZIEendJb08IDQBU8s-HmCTKl7CxblMFSjpllTQP8VvxM7H2rBqb3vIk62LY_tsX84fjG351gdQgXZA2IRGmClHe0nguNKDCABdrqYC58Mjf3Civoy80Qr729TCUFplYxNLQx1nQP_IcXejvaX-a_rD5MyhqVF0u9qM0KjUYt_OfuORLX8__ITy3RZi7_Pxx4FTTxVwwOsHhWOktrpvpIrR-ylI0MWB9VybJCbxRT9ytQmU6FmJrtFAbCBQiTUi1hgb-OD1JK57g91Ex-vSjuqP-vOUkv-6Ptf1gK7U76o2nRTcBC0PWPuBuxOTo0ySapjGsmj30k1t6QD37rN7deTKdytVW2MrNl1nt8oMUsjX2VptJXL-um5l_eYB-47mh7LeLR-nPIvoD7CNeWoLDuY8ylIej7M_49jy6aQwPy2PZpwyLTk96FjRjfKqjpJjnMqR-oJ7Lp-hGPKH7ORa-P6IraZZap8wHmCYGCgrYymM8l3AkApckSD_AQPOSHTY24bDIdStzmnixq-wvHKXOlwQR4dtXSBPqg4fy9FekqhC6pmRUlLOqZnmeTj89jXcRXCAxloj0k6NlGT4QjB1jQOSTW22WpgbLUyYjM_CBeirFvS0ktuyZbotRLQN0AJvthTr4gNpDEFPecipbqNpYW288nC-1TrsxQWYlqaEvNRm0xIHzxJaKv8KHCUVHvGVJzvscaXFcwKocaJwEbLdqPUiAZfY__RqQp-z24Pjw4PwYHi0v8Hu4MeJMktTdNlqcT61zzByLKLNcrty9uO67cM_mHl-GA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDICSE2PgqK8OgjY9J0VLbSZwHhCZGtTKYEGNSxUvmXJypAiXdkgr61_h1nBOnbVi1tz1UinQn93J3vjvH90HIlq99ABFKB5hOzQgz4UgvDR2XexADoMuVpsD5y5F_cCI-Db3hCvnb1MKYtMrGJlaGOsnBfCPH3Y321vRfk7upTYv4ut9_Pz53zAQpc9PajNOoVeRQT3_j8a14N9hHWW8z1v_4_cOBYycMOOAFYekoLrUMFBcJekIBKbo70J6r01SlPgtiV6pQsJ7m6CYVJApCkWrFEolxgg9ej-O6N8jNgOMj7qVgGMzTS_7rAG1rA10ud-uWnSbQCVve0PqEu2NVoHzSerDGssj30q1t5Qz798k9G8XSvVrt1siKztbJrSqbFIp1smYtRkHf2LbWbx-QH2iKTAa8pqOM5rH5GqwTmumSgrqI84wmo_zPKNF0Mi7VT03jKTVZl9T80MmiS6V1TSXFmJUi9SX1XDpFMRQPycm18P0RWc3yTD8hNMSQMRSaJ5wp4buA4RW4LEX-AwafMeuQnYbDEdi252b6xq-oun7nMloQR4dszZDHdbeP5Wgvjagi0z8jM5p4piZFEQ2Ov0V7CA7RcEtEem2R0hz_EJStd0CyTcutFuZGCxPGo_NoAfqqBT2r5bZsmW4LEe0EtMCbLcWavaAZSdATHnKq22haZA1ZEc23XYe8mIHN0iY5L9P5pMLBc4Xkwr8CR3CBx33h8Q55XGvxnADTRJG5CNlu1HqRgEvsf3o1oc_JbbQM0efB0eEGuYPvxqqETdYlq-XFRD_DILKMN6vdSsnpdZuHf6VXgk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increase+in+observed+net+carbon+dioxide+uptake+by+land+and+oceans+during+the+past+50+years&rft.jtitle=Nature+%28London%29&rft.au=Ballantyne%2C+A.+P.&rft.au=Alden%2C+C.+B.&rft.au=Miller%2C+J.+B.&rft.au=Tans%2C+P.+P.&rft.date=2012-08-02&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=488&rft.issue=7409&rft.spage=70&rft.epage=72&rft_id=info:doi/10.1038%2Fnature11299&rft.externalDocID=10_1038_nature11299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon