Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on...
Saved in:
Published in | Nature (London) Vol. 488; no. 7409; pp. 70 - 72 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.08.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on a global scale.
Carbon sinks hold firm
The current state of land and ocean carbon sinks has been the subject of intense debate, because it has implications for how the carbon cycle might respond to climate change. About half of the current carbon dioxide emissions are taken up by land and ocean carbon sinks. Model studies predict a decline in future carbon sinks, resulting in a positive carbon-climate feedback, and several recent studies have suggested that land and ocean carbon sinks are beginning to wane. These authors use a global mass balance approach to audit the global carbon cycle, focusing on well-constrained observations of atmospheric carbon dioxide and estimates of anthropogenic emissions and a rigorous analysis of uncertainties. They find that carbon sinks have actually doubled during the past 50 years and continue to increase significantly. There were no signs, as of 2010, that carbon uptake has started to diminish on the global scale
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change
1
. Although approximately one-half of total CO
2
emissions is at present taken up by combined land and ocean carbon reservoirs
2
, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon–climate feedback
3
. Several recent studies suggest that rates of carbon uptake by the land
4
,
5
,
6
and ocean
7
,
8
,
9
,
10
have remained constant or declined in recent decades. Other work, however, has called into question the reported decline
11
,
12
,
13
. Here we use global-scale atmospheric CO
2
measurements, CO
2
emission inventories and their full range of uncertainties to calculate changes in global CO
2
sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon–climate interactions. |
---|---|
AbstractList | One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change1. Although approximately one-half of totalCO2emissions is at present taken up by combined land and ocean carbon reservoirs2, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback3. Several recent studies suggest that rates of carbon uptake by the land4-6 and ocean7-10 have remained constant or declined in recent decades. Other work, however, has called into question the reporteddecline11-13.Hereweuseglobal-scale atmosphericCO2measurements,CO2 emission inventories and their full range of uncertainties to calculate changes in global CO2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.460.8 to 5.060.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions. [PUBLICATION ABSTRACT] One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO sub(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO sub(2) measurements, CO sub(2) emission inventories and their full range of uncertainties to calculate changes in global CO sub(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 plus or minus 0.8 to 5.0 plus or minus 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions. One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions. One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions. A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50 years and that in that time the global carbon uptake has almost doubled, making it unlikely that land and ocean carbon sinks have decreased on a global scale. Carbon sinks hold firm The current state of land and ocean carbon sinks has been the subject of intense debate, because it has implications for how the carbon cycle might respond to climate change. About half of the current carbon dioxide emissions are taken up by land and ocean carbon sinks. Model studies predict a decline in future carbon sinks, resulting in a positive carbon-climate feedback, and several recent studies have suggested that land and ocean carbon sinks are beginning to wane. These authors use a global mass balance approach to audit the global carbon cycle, focusing on well-constrained observations of atmospheric carbon dioxide and estimates of anthropogenic emissions and a rigorous analysis of uncertainties. They find that carbon sinks have actually doubled during the past 50 years and continue to increase significantly. There were no signs, as of 2010, that carbon uptake has started to diminish on the global scale One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change 1 . Although approximately one-half of total CO 2 emissions is at present taken up by combined land and ocean carbon reservoirs 2 , models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon–climate feedback 3 . Several recent studies suggest that rates of carbon uptake by the land 4 , 5 , 6 and ocean 7 , 8 , 9 , 10 have remained constant or declined in recent decades. Other work, however, has called into question the reported decline 11 , 12 , 13 . Here we use global-scale atmospheric CO 2 measurements, CO 2 emission inventories and their full range of uncertainties to calculate changes in global CO 2 sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon–climate interactions. |
Audience | Academic |
Author | Alden, C. B. White, J. W. C. Miller, J. B. Ballantyne, A. P. Tans, P. P. |
Author_xml | – sequence: 1 givenname: A. P. surname: Ballantyne fullname: Ballantyne, A. P. email: apballantyne@gmail.com organization: Department of Geology, University of Colorado, Present address: Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, USA – sequence: 2 givenname: C. B. surname: Alden fullname: Alden, C. B. organization: Institute of Arctic and Alpine Research, University of Colorado – sequence: 3 givenname: J. B. surname: Miller fullname: Miller, J. B. organization: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Earth System Research Laboratory, National Oceanographic and Atmospheric Administration – sequence: 4 givenname: P. P. surname: Tans fullname: Tans, P. P. organization: Earth System Research Laboratory, National Oceanographic and Atmospheric Administration – sequence: 5 givenname: J. W. C. surname: White fullname: White, J. W. C. organization: Department of Geology, University of Colorado, Institute of Arctic and Alpine Research, University of Colorado |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26201452$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22859203$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t2L1DAQAPAgJ97e6ZPvEhRB0Z75aps-HocfCweCHy--lGk6XXN2016Syu1_b5Zdvd1zRUIIhN8Mk8yckCM3OCTkMWdnnEn9xkGcPHIuquoemXFVFpkqdHlEZowJnTEti2NyEsIVYyznpXpAjoXQeSWYnJFvc2c8QkBqHR2agP4nttRhpAZ8Mzja2uHGtkinMcIPpM2K9uBaut6DQXCBtpO3bkHjd6QjhEhzRlcIPjwk9zvoAz7anqfk67u3Xy4-ZJcf388vzi8zk5dVzEBq1CVI1TItlOm45gZzhl0HXSHKhmmolOAoBeNgWjCV6hBEq_OCFSbn8pS82OQd_XA9YYj10gaDfaoThynUXEnFRKFy-X_KJOe5lqpI9NkdejVM3qWHrJXiTHOtb9UCeqyt64bowayT1uepH5XWpa6Syg6oBTr00KdmdjZd7_mnB7wZ7XW9i84OoLRaXFpzMOvLvYBkIt7EBUwh1PPPn_btk-3rp2aJbT16uwS_qn8PTgLPtwCCgb7z4IwNt65I3VK5SO7Vxhk_hOCx-0M4W3-krnfGN2l-RxsbIdpUqQfb_yPm9SYmjOs5RL_bqL_5LwZH_ME |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_ccst_2022_100063 crossref_primary_10_1029_2020WR028046 crossref_primary_10_1007_s11356_016_8143_6 crossref_primary_10_1038_s41467_018_05948_1 crossref_primary_10_11922_11_6035_nesdc_2024_0174_zh crossref_primary_10_1111_gcb_14884 crossref_primary_10_3389_fmars_2022_990559 crossref_primary_10_7717_peerj_15593 crossref_primary_10_3390_rs14122948 crossref_primary_10_5194_essd_17_965_2025 crossref_primary_10_1038_nclimate2879 crossref_primary_10_4155_cmt_13_15 crossref_primary_10_1007_s00442_016_3805_0 crossref_primary_10_1029_2018GL078131 crossref_primary_10_1038_s41558_023_01761_x crossref_primary_10_1007_s10584_020_02903_2 crossref_primary_10_1088_1748_9326_ac3b17 crossref_primary_10_3390_f14091880 crossref_primary_10_1007_s11581_024_05468_7 crossref_primary_10_4155_cmt_13_31 crossref_primary_10_1029_2021RG000736 crossref_primary_10_5194_acp_23_851_2023 crossref_primary_10_1002_2013JC009514 crossref_primary_10_1016_j_cej_2024_152633 crossref_primary_10_1016_j_foreco_2024_121742 crossref_primary_10_1002_eco_2420 crossref_primary_10_1111_gcb_13217 crossref_primary_10_1016_j_fuel_2014_10_070 crossref_primary_10_5194_bg_18_5639_2021 crossref_primary_10_1016_j_atmosenv_2018_03_010 crossref_primary_10_1098_rsta_2022_0063 crossref_primary_10_5194_essd_7_47_2015 crossref_primary_10_1038_nature12291 crossref_primary_10_5194_soil_2_565_2016 crossref_primary_10_1177_0309133320966741 crossref_primary_10_1038_nature13376 crossref_primary_10_1029_2024JD041540 crossref_primary_10_1007_s10872_016_0350_8 crossref_primary_10_1111_brv_12343 crossref_primary_10_1002_jgrg_20039 crossref_primary_10_1002_joc_6463 crossref_primary_10_1002_2013JG002381 crossref_primary_10_5194_esd_13_1505_2022 crossref_primary_10_1016_j_jmsy_2024_11_005 crossref_primary_10_1016_j_rser_2017_05_197 crossref_primary_10_1016_j_atmosenv_2015_05_026 crossref_primary_10_1016_j_accre_2023_01_001 crossref_primary_10_1680_nme_13_00023 crossref_primary_10_2139_ssrn_2827927 crossref_primary_10_1016_j_agrformet_2015_12_059 crossref_primary_10_7498_aps_64_239201 crossref_primary_10_1016_j_seares_2015_01_005 crossref_primary_10_1016_j_xcrp_2024_102227 crossref_primary_10_3390_f15081292 crossref_primary_10_1016_j_agrformet_2021_108480 crossref_primary_10_1016_j_ccst_2023_100127 crossref_primary_10_1017_RDC_2024_133 crossref_primary_10_1016_j_ecolind_2019_105880 crossref_primary_10_1016_j_esd_2023_03_012 crossref_primary_10_1016_j_jcat_2019_09_025 crossref_primary_10_1111_gcb_13876 crossref_primary_10_1088_1748_9326_ac0b68 crossref_primary_10_1038_488035a crossref_primary_10_5194_essd_8_605_2016 crossref_primary_10_1016_j_jag_2017_10_002 crossref_primary_10_1038_s41467_021_22392_w crossref_primary_10_1002_joc_6633 crossref_primary_10_1007_s11430_022_1036_7 crossref_primary_10_1016_j_agrformet_2016_05_008 crossref_primary_10_1016_j_algal_2016_03_028 crossref_primary_10_1016_j_rhisph_2025_101042 crossref_primary_10_1038_nclimate2323 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_1109_ACCESS_2022_3155722 crossref_primary_10_1016_j_gloplacha_2016_06_002 crossref_primary_10_1080_07350015_2015_1038545 crossref_primary_10_1134_S1019331613010140 crossref_primary_10_1016_j_electacta_2016_07_051 crossref_primary_10_5194_essd_14_1917_2022 crossref_primary_10_1007_s11368_022_03282_0 crossref_primary_10_1007_s00024_013_0708_4 crossref_primary_10_1038_s41586_024_07714_4 crossref_primary_10_1029_2021JD035299 crossref_primary_10_1016_j_scitotenv_2024_175177 crossref_primary_10_1038_nature14283 crossref_primary_10_1007_s10021_016_0035_6 crossref_primary_10_1007_s10661_021_09541_w crossref_primary_10_1080_16742834_2019_1548246 crossref_primary_10_1038_s41586_019_1078_6 crossref_primary_10_1039_c4pp90036g crossref_primary_10_1016_j_jenvman_2017_12_043 crossref_primary_10_1088_1748_9326_abe9ed crossref_primary_10_1111_jvs_12399 crossref_primary_10_3390_rs12152498 crossref_primary_10_1002_2013JG002312 crossref_primary_10_1002_2014GB004853 crossref_primary_10_1016_j_scitotenv_2023_162907 crossref_primary_10_1111_gcb_12564 crossref_primary_10_1007_s40641_016_0031_0 crossref_primary_10_1016_j_rse_2016_05_015 crossref_primary_10_1016_j_scitotenv_2020_141688 crossref_primary_10_1111_gcb_16806 crossref_primary_10_1038_s41467_024_45957_x crossref_primary_10_1007_s11434_015_0736_9 crossref_primary_10_1016_j_atmosenv_2017_03_055 crossref_primary_10_3390_urbansci7020054 crossref_primary_10_1038_s43247_023_00885_4 crossref_primary_10_1007_s11270_022_05841_0 crossref_primary_10_1016_j_ecolind_2024_112439 crossref_primary_10_1002_jgrg_20114 crossref_primary_10_1016_j_biombioe_2016_03_040 crossref_primary_10_1029_2019GL085311 crossref_primary_10_5194_acp_15_13739_2015 crossref_primary_10_1098_rstb_2017_0409 crossref_primary_10_5194_acp_14_2541_2014 crossref_primary_10_1111_gcb_12678 crossref_primary_10_1038_s41467_020_17966_z crossref_primary_10_1098_rstb_2017_0407 crossref_primary_10_2139_ssrn_2297457 crossref_primary_10_1039_D0CS01405B crossref_primary_10_5194_bg_15_2481_2018 crossref_primary_10_1007_s11104_022_05836_0 crossref_primary_10_1134_S102833581307001X crossref_primary_10_1016_j_biocon_2020_108849 crossref_primary_10_1073_pnas_1314047110 crossref_primary_10_5194_bg_14_3781_2017 crossref_primary_10_1002_grl_50563 crossref_primary_10_5194_essd_15_5301_2023 crossref_primary_10_15252_embr_201744260 crossref_primary_10_1016_j_ecolind_2024_112017 crossref_primary_10_1016_j_accre_2024_04_001 crossref_primary_10_1016_j_agrformet_2016_06_010 crossref_primary_10_5194_esd_6_731_2015 crossref_primary_10_1038_ngeo2413 crossref_primary_10_1111_aec_12756 crossref_primary_10_5194_gmd_9_2639_2016 crossref_primary_10_1002_2017GL075808 crossref_primary_10_1007_s11356_021_13721_z crossref_primary_10_1093_nsr_nwae365 crossref_primary_10_1002_wea_2715 crossref_primary_10_1002_2013GB004644 crossref_primary_10_1016_j_scs_2024_105304 crossref_primary_10_1002_2016GL071035 crossref_primary_10_1111_nph_19355 crossref_primary_10_1111_gcb_15207 crossref_primary_10_1016_j_cej_2019_05_116 crossref_primary_10_1016_j_scitotenv_2024_171297 crossref_primary_10_1098_rstb_2012_0376 crossref_primary_10_1016_j_rser_2019_109340 crossref_primary_10_1038_nclimate3204 crossref_primary_10_1038_s41597_024_03243_x crossref_primary_10_1016_j_agrformet_2022_109095 crossref_primary_10_1080_15481603_2023_2275421 crossref_primary_10_1038_s41612_021_00182_x crossref_primary_10_5194_essd_12_3269_2020 crossref_primary_10_1016_j_dib_2018_06_020 crossref_primary_10_1016_j_catena_2024_108697 crossref_primary_10_1029_2019GL085121 crossref_primary_10_1109_JSTARS_2017_2725825 crossref_primary_10_1016_j_scitotenv_2019_03_025 crossref_primary_10_1088_1748_9326_ada814 crossref_primary_10_1016_j_scitotenv_2024_170053 crossref_primary_10_1016_j_mimet_2018_04_010 crossref_primary_10_1038_s41467_024_52728_1 crossref_primary_10_1109_JSTARS_2024_3432581 crossref_primary_10_5194_acp_23_6525_2023 crossref_primary_10_5194_bg_15_597_2018 crossref_primary_10_1002_2013GL058857 crossref_primary_10_1038_519295a crossref_primary_10_3389_fenvs_2023_1289142 crossref_primary_10_1007_s11356_021_16986_6 crossref_primary_10_5194_acp_16_5665_2016 crossref_primary_10_5194_essd_14_3013_2022 crossref_primary_10_1016_j_engfracmech_2022_108749 crossref_primary_10_1016_j_oneear_2023_11_013 crossref_primary_10_5194_acp_13_10243_2013 crossref_primary_10_1029_2020JG005734 crossref_primary_10_3390_en17020299 crossref_primary_10_1016_j_agrformet_2024_110300 crossref_primary_10_3389_fdata_2020_00029 crossref_primary_10_1016_j_jclepro_2024_141340 crossref_primary_10_1073_pnas_1813951115 crossref_primary_10_1038_nclimate2253 crossref_primary_10_1088_1742_6596_2267_1_012130 crossref_primary_10_1021_acs_jpcc_3c03392 crossref_primary_10_1126_sciadv_abf9415 crossref_primary_10_1002_2013GB004679 crossref_primary_10_1175_BAMS_D_13_00109_1 crossref_primary_10_1029_2018GB005922 crossref_primary_10_5194_bg_16_117_2019 crossref_primary_10_1016_j_agrformet_2022_109070 crossref_primary_10_1029_2023GL105493 crossref_primary_10_1016_j_atmosenv_2014_10_020 crossref_primary_10_1016_j_carbpol_2017_08_031 crossref_primary_10_1088_1748_9326_aa6e8e crossref_primary_10_1029_2019JG005403 crossref_primary_10_1038_s41598_017_03818_2 crossref_primary_10_3389_fmars_2024_1272415 crossref_primary_10_1002_esp_3857 crossref_primary_10_1038_ngeo2972 crossref_primary_10_3390_atmos14121830 crossref_primary_10_5194_essd_11_1783_2019 crossref_primary_10_1175_JPO_D_20_0272_1 crossref_primary_10_2113_JEEG23_4_443 crossref_primary_10_3390_catal11060735 crossref_primary_10_3390_rs14205224 crossref_primary_10_1016_j_catena_2024_108266 crossref_primary_10_1016_j_jhydrol_2023_130081 crossref_primary_10_1038_s41586_021_04376_4 crossref_primary_10_3390_atmos14121835 crossref_primary_10_1029_2018GB006086 crossref_primary_10_1080_1755876X_2018_1489208 crossref_primary_10_1007_s11629_016_3867_9 crossref_primary_10_1088_1755_1315_708_1_012104 crossref_primary_10_1111_gcb_13224 crossref_primary_10_1111_gcb_14677 crossref_primary_10_1016_j_agrformet_2016_01_086 crossref_primary_10_5194_gmd_13_3119_2020 crossref_primary_10_1093_jue_juae005 crossref_primary_10_1371_journal_pone_0290437 crossref_primary_10_1002_jpln_201300189 crossref_primary_10_1038_s41558_020_0797_x crossref_primary_10_3390_su13031514 crossref_primary_10_5194_acp_16_14421_2016 crossref_primary_10_3197_096327115X14497392134964 crossref_primary_10_1088_1748_9326_ab66cc crossref_primary_10_1111_nph_12400 crossref_primary_10_1021_acs_iecr_5b01684 crossref_primary_10_1016_j_agrformet_2023_109594 crossref_primary_10_1175_JCLI_D_14_00528_1 crossref_primary_10_1126_science_aam5782 crossref_primary_10_1002_2015JD024715 crossref_primary_10_1038_nclimate2184 crossref_primary_10_1038_srep42281 crossref_primary_10_1088_1748_9326_8_1_011006 crossref_primary_10_1111_gcb_16646 crossref_primary_10_1007_s40726_019_0103_6 crossref_primary_10_3389_feart_2021_620513 crossref_primary_10_1029_2022JD036919 crossref_primary_10_1038_s41558_019_0465_1 crossref_primary_10_1016_j_scitotenv_2024_170093 crossref_primary_10_1007_s10533_014_0060_5 crossref_primary_10_5194_essd_5_165_2013 crossref_primary_10_2139_ssrn_3033001 crossref_primary_10_1007_s11802_024_5528_x crossref_primary_10_1371_journal_pone_0089364 crossref_primary_10_5194_acp_18_7189_2018 crossref_primary_10_1029_2020GB006800 crossref_primary_10_1111_gcb_14585 crossref_primary_10_1007_s11631_015_0047_5 crossref_primary_10_1007_s00704_014_1204_1 crossref_primary_10_1038_nature12915 crossref_primary_10_5194_essd_14_4811_2022 crossref_primary_10_3390_rs10122039 crossref_primary_10_1016_j_aquabot_2017_12_002 crossref_primary_10_1111_geb_12633 crossref_primary_10_1007_s11270_022_05581_1 crossref_primary_10_5194_bg_11_3453_2014 crossref_primary_10_1007_s11783_014_0742_1 crossref_primary_10_3917_ecop_208_0105 crossref_primary_10_1088_1748_9326_acca35 crossref_primary_10_5194_esd_14_101_2023 crossref_primary_10_1002_eco_1592 crossref_primary_10_1111_gcb_16751 crossref_primary_10_1146_annurev_environ_012220_125406 crossref_primary_10_1111_1365_2745_14082 crossref_primary_10_5194_essd_10_87_2018 crossref_primary_10_1038_s41598_018_32602_z crossref_primary_10_1029_2022GB007520 crossref_primary_10_1002_cssc_202400517 crossref_primary_10_1038_s41586_021_04096_9 crossref_primary_10_1073_pnas_1521479112 crossref_primary_10_1029_2020JD033623 crossref_primary_10_5194_esd_5_41_2014 crossref_primary_10_1016_j_jag_2019_102015 crossref_primary_10_1525_abt_2023_85_8_425 crossref_primary_10_1038_d41586_021_01871_6 crossref_primary_10_1016_j_biortech_2015_01_029 crossref_primary_10_5194_acp_18_17355_2018 crossref_primary_10_7167_2013_297973 crossref_primary_10_1016_j_atmosenv_2016_11_032 crossref_primary_10_1111_gcb_15050 crossref_primary_10_1111_gcb_15292 crossref_primary_10_1029_2023AV001145 crossref_primary_10_1038_ncomms10724 crossref_primary_10_1007_s12517_018_3547_x crossref_primary_10_1029_2019GB006368 crossref_primary_10_1051_e3sconf_202447301012 crossref_primary_10_2136_sssaj2012_0004br crossref_primary_10_1038_s41561_023_01274_4 crossref_primary_10_1007_s00704_014_1239_3 crossref_primary_10_1029_2018JD029533 crossref_primary_10_3402_tellusb_v65i0_20334 crossref_primary_10_1016_j_atmosenv_2015_09_074 crossref_primary_10_1111_gcb_15162 crossref_primary_10_1111_gcb_16012 crossref_primary_10_3390_f14102051 crossref_primary_10_1038_s41467_023_36727_2 crossref_primary_10_1007_s12601_018_0023_1 crossref_primary_10_1016_j_dynatmoce_2018_08_002 crossref_primary_10_1007_s11427_021_2045_5 crossref_primary_10_1088_1748_9326_abb32f crossref_primary_10_1016_j_srs_2020_100009 crossref_primary_10_1016_j_fuel_2022_124975 crossref_primary_10_1038_s41612_023_00532_x crossref_primary_10_1080_10643389_2014_1000749 crossref_primary_10_1111_geb_12441 crossref_primary_10_1016_j_scitotenv_2024_173852 crossref_primary_10_5194_acp_23_4993_2023 crossref_primary_10_1002_2014JD022411 crossref_primary_10_1029_2018GL077633 crossref_primary_10_1088_1748_9326_ac507d crossref_primary_10_1016_j_scitotenv_2023_165932 crossref_primary_10_1126_science_abb7772 crossref_primary_10_3390_rs15245680 crossref_primary_10_1029_2023GL107030 crossref_primary_10_1007_s00382_018_4388_8 crossref_primary_10_1186_s13021_015_0018_5 crossref_primary_10_1029_2023GB007780 crossref_primary_10_1111_gcb_16396 crossref_primary_10_3390_cli11100205 crossref_primary_10_1371_journal_pone_0247910 crossref_primary_10_5194_bg_11_3421_2014 crossref_primary_10_1016_j_ensm_2020_06_009 crossref_primary_10_1088_1748_9326_aa5685 crossref_primary_10_1002_ldr_4900 crossref_primary_10_1007_s10021_015_9841_5 crossref_primary_10_5194_bg_17_405_2020 crossref_primary_10_3390_atmos14081295 crossref_primary_10_1029_2019GL082987 crossref_primary_10_1016_j_jclepro_2016_09_098 crossref_primary_10_1016_j_asr_2024_07_007 crossref_primary_10_1038_s41467_024_54907_6 crossref_primary_10_1002_2013GB004686 crossref_primary_10_1029_2017JD027881 crossref_primary_10_1051_rees_2023016 crossref_primary_10_3389_fpubh_2022_858615 crossref_primary_10_5194_acp_21_9609_2021 crossref_primary_10_1111_gcb_14038 crossref_primary_10_1080_02664763_2018_1542667 crossref_primary_10_1016_j_isci_2021_103628 crossref_primary_10_1007_s00442_023_05360_7 crossref_primary_10_1016_j_scitotenv_2019_01_324 crossref_primary_10_2139_ssrn_2072323 crossref_primary_10_1016_j_gloplacha_2014_04_003 crossref_primary_10_1038_s41612_024_00824_w crossref_primary_10_1371_journal_pone_0196248 crossref_primary_10_1016_j_rse_2016_12_018 crossref_primary_10_1016_j_jclepro_2019_119346 crossref_primary_10_1007_s11273_018_9619_6 crossref_primary_10_1016_j_scitotenv_2024_173887 crossref_primary_10_1029_2022EF003293 crossref_primary_10_1890_14_0330_1 crossref_primary_10_1016_j_jenvman_2023_117655 crossref_primary_10_5194_acp_24_1249_2024 crossref_primary_10_1007_s11027_019_09877_2 crossref_primary_10_1177_0003702817722820 crossref_primary_10_1073_pnas_1407302112 crossref_primary_10_5194_esurf_6_1101_2018 crossref_primary_10_5194_bg_13_4877_2016 crossref_primary_10_1038_s41598_021_00334_2 crossref_primary_10_1016_j_jgsce_2024_205367 crossref_primary_10_1111_gcb_15036 crossref_primary_10_1038_s41467_022_28824_5 crossref_primary_10_1002_2013GB004585 crossref_primary_10_1029_2021JD034545 crossref_primary_10_1016_j_jclepro_2024_140612 crossref_primary_10_1890_ES15_00203_1 crossref_primary_10_1038_nclimate1910 crossref_primary_10_1146_annurev_environ_102017_030204 crossref_primary_10_5194_essd_10_405_2018 crossref_primary_10_1126_science_adf5041 crossref_primary_10_1111_gcb_15145 crossref_primary_10_3389_fmars_2020_571720 crossref_primary_10_3390_en13061365 crossref_primary_10_3389_feart_2019_00073 crossref_primary_10_1007_s10021_013_9715_7 crossref_primary_10_1007_s40641_018_0099_9 crossref_primary_10_1111_gcb_12860 crossref_primary_10_1155_2022_1677084 crossref_primary_10_1016_j_ecolind_2021_107982 crossref_primary_10_1016_j_xinn_2021_100180 crossref_primary_10_3390_en15207571 crossref_primary_10_5194_acp_18_14851_2018 crossref_primary_10_1016_j_uclim_2021_100855 crossref_primary_10_1016_j_atmosenv_2019_117097 crossref_primary_10_5194_amt_14_6601_2021 crossref_primary_10_1111_gcb_14807 crossref_primary_10_1029_2022JG006842 crossref_primary_10_5194_essd_6_235_2014 crossref_primary_10_1016_j_watres_2017_12_002 crossref_primary_10_1029_2018JD029005 crossref_primary_10_5194_esd_10_9_2019 crossref_primary_10_1111_1365_2435_12836 crossref_primary_10_3390_app142411518 crossref_primary_10_1016_j_envres_2021_111208 crossref_primary_10_1002_jgrg_20100 crossref_primary_10_1134_S1028334X14050390 crossref_primary_10_3390_su12229397 crossref_primary_10_1098_rsta_2021_0148 crossref_primary_10_3390_atmos13010109 crossref_primary_10_1360_N072022_0123 crossref_primary_10_1016_j_scitotenv_2018_05_245 crossref_primary_10_1016_j_marpol_2013_06_014 crossref_primary_10_1016_j_apr_2025_102458 crossref_primary_10_5194_acp_19_9797_2019 crossref_primary_10_1002_asl_876 crossref_primary_10_1007_s00376_015_5090_y crossref_primary_10_5194_essd_7_349_2015 crossref_primary_10_1038_nclimate1817 crossref_primary_10_1111_geb_12175 crossref_primary_10_1111_gcb_12766 crossref_primary_10_1016_j_jag_2022_103063 crossref_primary_10_1007_s10457_016_0049_2 crossref_primary_10_1016_j_solener_2019_01_064 crossref_primary_10_1088_1748_9326_ab3012 crossref_primary_10_1126_sciadv_adl6155 crossref_primary_10_1088_0026_1394_53_1_R26 crossref_primary_10_5194_bg_14_3685_2017 crossref_primary_10_5194_acp_21_14385_2021 crossref_primary_10_1038_s41467_022_33293_x crossref_primary_10_1029_2021JD035035 crossref_primary_10_1038_s41597_020_00653_5 crossref_primary_10_1175_JCLI_D_12_00831_1 crossref_primary_10_1007_s11430_016_9066_3 crossref_primary_10_1007_s00382_015_2830_8 crossref_primary_10_1007_s10584_013_0862_9 crossref_primary_10_3390_ijerph19116948 crossref_primary_10_1002_2016JF004004 crossref_primary_10_1186_s12302_024_01000_w crossref_primary_10_3390_agriculture15060613 crossref_primary_10_1088_1748_9326_ad7d21 crossref_primary_10_3390_soilsystems8040105 crossref_primary_10_1111_gcb_12703 crossref_primary_10_1016_j_catena_2022_106089 crossref_primary_10_1016_j_jclepro_2022_130713 crossref_primary_10_3390_chemengineering3040078 crossref_primary_10_1007_s10584_012_0682_3 crossref_primary_10_1016_j_jmarsys_2016_02_011 crossref_primary_10_1002_celc_201801716 crossref_primary_10_1016_j_scitotenv_2024_171635 crossref_primary_10_1029_2021GB007019 crossref_primary_10_1029_2021EF002556 crossref_primary_10_1016_j_agee_2022_108175 crossref_primary_10_3390_rs12121927 crossref_primary_10_3390_rs16234417 crossref_primary_10_5194_gmd_16_4883_2023 crossref_primary_10_1016_j_jag_2023_103437 crossref_primary_10_1186_s13021_016_0069_2 crossref_primary_10_1111_gcb_12938 crossref_primary_10_1002_2016GL068965 crossref_primary_10_1029_2023JG007760 crossref_primary_10_1002_2015GL064222 crossref_primary_10_1002_2016RG000550 crossref_primary_10_1002_2014GB004907 crossref_primary_10_3390_molecules29020309 crossref_primary_10_1021_acs_energyfuels_8b03152 crossref_primary_10_1038_nature13341 crossref_primary_10_1029_2022JD036472 crossref_primary_10_5194_essd_15_963_2023 crossref_primary_10_1016_j_chemgeo_2013_08_048 crossref_primary_10_3390_en13226048 crossref_primary_10_12688_f1000research_8962_1 crossref_primary_10_1016_j_algal_2020_101818 crossref_primary_10_1007_s41742_024_00586_6 crossref_primary_10_1007_s40502_013_0016_0 crossref_primary_10_1016_j_rsma_2019_100707 crossref_primary_10_1038_s41598_018_21172_9 crossref_primary_10_5572_KOSAE_2024_40_6_601 crossref_primary_10_5194_essd_10_2141_2018 crossref_primary_10_1029_2020JD033362 crossref_primary_10_1002_grl_50957 crossref_primary_10_1029_2020GL091496 crossref_primary_10_1016_j_ecolmodel_2022_110185 crossref_primary_10_1029_2021GB007034 crossref_primary_10_1016_j_ecolind_2020_106223 crossref_primary_10_5194_acp_17_13903_2017 crossref_primary_10_1016_j_pocean_2015_02_004 crossref_primary_10_5194_bg_17_3797_2020 crossref_primary_10_1088_1748_9326_11_6_064001 crossref_primary_10_5194_bg_12_2565_2015 crossref_primary_10_1007_s13762_018_1722_y crossref_primary_10_1016_j_agrformet_2014_09_013 crossref_primary_10_1016_j_eve_2025_100058 crossref_primary_10_1038_544039a crossref_primary_10_1016_j_renene_2023_01_079 crossref_primary_10_2139_ssrn_2193945 crossref_primary_10_6000_1929_6037_2016_05_01_1 crossref_primary_10_5194_bg_12_653_2015 crossref_primary_10_1038_ncomms13428 crossref_primary_10_1038_nature12350 crossref_primary_10_3390_rs17020273 crossref_primary_10_1016_j_geoderma_2019_113915 crossref_primary_10_3390_rs14163899 crossref_primary_10_1016_j_scitotenv_2017_11_248 crossref_primary_10_1029_2019JD031165 crossref_primary_10_1016_j_scitotenv_2024_173922 crossref_primary_10_1088_1748_9326_8_3_034034 |
Cites_doi | 10.1029/2009GB003599 10.1038/ngeo1193 10.1111/j.1530-9290.2009.00108.x 10.1029/95JD00859 10.1126/science.1201609 10.1175/JCLI3800.1 10.5194/bg-7-3041-2010 10.5194/bg-7-2351-2010 10.1029/2006JC003941 10.1126/science.1136188 10.5194/acp-10-7739-2010 10.1029/2000JD900703 10.1126/science.1192666 10.3402/tellusa.v34i4.10825 10.1038/ngeo1022 10.3334/CDIAC/00001_2010 10.5194/bgd-7-921-2010 10.1073/pnas.0702737104 10.1029/2009GL040613 10.1038/nature06444 10.1038/ngeo689 10.1038/35102500 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Aug 2, 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 2, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 7TN 7U6 F1W H96 L.G |
DOI | 10.1038/nature11299 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Oceanic Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 72 |
ExternalDocumentID | 2738918541 A299988789 22859203 26201452 10_1038_nature11299 |
Genre | Historical Article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AGQPQ AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AFBBN AFFDN AFHIU AFHKK AGCDD AHWEU AJUXI BES BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 7TN 7U6 F1W H96 L.G |
ID | FETCH-LOGICAL-c579t-a38e87a34d0824cf181ce50effaf627b08a9421e3201acdac94fea2d85606c513 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 12:33:57 EDT 2025 Tue Aug 05 09:31:51 EDT 2025 Fri Jul 25 08:54:38 EDT 2025 Tue Jun 17 21:26:25 EDT 2025 Thu Jun 12 23:37:10 EDT 2025 Tue Jun 10 15:31:13 EDT 2025 Tue Jun 10 20:36:56 EDT 2025 Fri Jun 27 03:59:23 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Mon Jul 21 09:15:00 EDT 2025 Thu Apr 24 23:06:25 EDT 2025 Tue Jul 01 02:56:53 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7409 |
Keywords | 1970-1980 time series analysis trend-surface analysis mass balance Carbon dioxide climate warming 1960-1970 Source sink relationship Carbon sequestration greenhouse gas Carbon sinks 1990-2000 global change 2000-2010 1980-1990 climate change |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-a38e87a34d0824cf181ce50effaf627b08a9421e3201acdac94fea2d85606c513 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22859203 |
PQID | 1034108188 |
PQPubID | 40569 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_1434026453 proquest_miscellaneous_1031158346 proquest_journals_1034108188 gale_infotracmisc_A299988789 gale_infotracgeneralonefile_A299988789 gale_infotraccpiq_299988789 gale_infotracacademiconefile_A299988789 gale_incontextgauss_ISR_A299988789 pubmed_primary_22859203 pascalfrancis_primary_26201452 crossref_primary_10_1038_nature11299 crossref_citationtrail_10_1038_nature11299 springer_journals_10_1038_nature11299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-02 |
PublicationDateYYYYMMDD | 2012-08-02 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | StockerBStrassmannKJoosFSensitivity of Holocene atmospheric CO2Biogeosciences2011792195210.5194/bgd-7-921-2010 SchusterUWatsonAJA variable and decreasing sink for atmospheric CO2 in the North AtlanticJ. Geophys. Res.2007112C110062007JGRC..11211006S10.1029/2006JC003941 PanYA large and persistent carbon sink in the world’s forestsScience20113339889932011Sci...333..988P1:CAS:528:DC%2BC3MXhtVWrtr%2FE10.1126/science.1201609 KnorrWIs the airborne fraction of anthropogenic CO2 emissions increasing?Geophys. Res. Lett.200936L217102009GeoRL..3621710K10.1029/2009GL040613 GriffithDWTKeelingCDAdamsJAGuentherPRBacastowRBCalculations of carrier gas effects in non-dispersive infrared analyzers. II. Comparisons with experimentTellus1982343853971982Tell...34..385G1:CAS:528:DyaL38Xlslequ7g%3D ZhaoMRunningSWDrought-induced reduction in global terrestrial net primary production from 2000 through 2009Science20103299409432010Sci...329..940Z1:CAS:528:DC%2BC3cXhtVaqur%2FE10.1126/science.1192666 FriedlingsteinPUpdate on CO2 emissionsNature Geosci.201038118122010NatGe...3..811F1:CAS:528:DC%2BC3cXhsVyhs7bP10.1038/ngeo1022 SchimelDSRecent patterns and mechanisms of carbon exchange by terrestrial ecosystemsNature20014141691722001Natur.414..169S1:CAS:528:DC%2BD3MXosFaisLo%3D10.1038/35102500 BP. Statistical Review of World Energyhttp://www.bp.com/sectionbodycopy.do?categoryId = 7500&contentId = 7068481 (2011) MasarieKATansPPExtension and integration of atmospheric carbon dioxide data into a globally consistent measurement recordJ. Geophys. Res.199510011593116101995JGR...10011593M1:CAS:528:DyaK2MXotlWjs74%3D10.1029/95JD00859 Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 792–802 (Cambridge Univ. Press, 2007) SarmientoJLTrends and regional distributions of land and ocean carbon sinksBiogeosciences20107235123672010BGeo....7.2351S1:CAS:528:DC%2BC3MXit1ens7Y%3D10.5194/bg-7-2351-2010 KeelingCDA three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational dataGeophys. Monogr.198955165236 YangXRichardsonTKJainAKContributions of secondary forest and nitrogen dynamics to terrestrial carbon uptakeBiogeosciences20107304130502010BGeo....7.3041Y1:CAS:528:DC%2BC3cXhsF2ru7fM10.5194/bg-7-3041-2010 McKinleyGAFayARTakahashiTMetzlNConvergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescalesNature Geosci.201146066102011NatGe...4..606M1:CAS:528:DC%2BC3MXhtFSmtLjN10.1038/ngeo1193 Le QuéréCSaturation of the Southern Ocean CO2 sink due to recent climate changeScience2007316173517382007Sci...316.1735L10.1126/science.1136188 HoughtonRARevised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000Tellus B2003553783902003TellB..55..378H CanadellJGContributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinksProc. Natl Acad. Sci. USA200710418866188702007PNAS..10418866C1:CAS:528:DC%2BD2sXhtl2ks7%2FO10.1073/pnas.0702737104 GloorMSarmientoJLGruberNWhat can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?Atmos. Chem. Phys.201010773977512010ACP....10.7739G1:CAS:528:DC%2BC3cXhtlWls7jP10.5194/acp-10-7739-2010 MarlandGHamalKJonasMHow uncertain are estimates of CO2 emissions?J. Ind. Ecol.2009134710.1111/j.1530-9290.2009.00108.x Le QuéréCTakahashiTBuitenhuisETRödenbeckCSutherlandSCImpact of climate change and variability on the global oceanic sink of CO2Glob. Biogeochem. Cycles201024GB40072010GBioC..24.4007L10.1029/2009GB003599 Le QuéréCTrends in the sources and sinks of carbon dioxideNature Geosci.200928318362009NatGe...2..831L10.1038/ngeo689 European Commission. Emissions Database for Global Atmospheric Research (EDGAR). Europa - EDGAR Overviewhttp://edgar.jrc.ec.europa.eu/overview.php?v = 40 (2009) FriedlingsteinPClimate-carbon cycle feedback analysis: results from the C4MIP model intercomparisonJ. Clim.200619333733532006JCli...19.3337F10.1175/JCLI3800.1 Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Centerhttp://cdiac.ornl.gov/trends/emis/overview.html (2010) PiaoSNet carbon dioxide losses of northern ecosystems in response to autumn warmingNature200845149522008Natur.451...49P1:CAS:528:DC%2BD1cXhtlSksw%3D%3D10.1038/nature06444 AndrewsAEEmpirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier to horizontal transportJ. Geophys. Res.200110610257102742001JGR...10610257A1:CAS:528:DC%2BD3MXks1Kkt7s%3D10.1029/2000JD900703 Y Pan (BFnature11299_CR4) 2011; 333 JG Canadell (BFnature11299_CR21) 2007; 104 CD Keeling (BFnature11299_CR24) 1989; 55 M Zhao (BFnature11299_CR6) 2010; 329 RA Houghton (BFnature11299_CR27) 2003; 55 KA Masarie (BFnature11299_CR23) 1995; 100 S Piao (BFnature11299_CR5) 2008; 451 W Knorr (BFnature11299_CR12) 2009; 36 G Marland (BFnature11299_CR20) 2009; 13 GA McKinley (BFnature11299_CR7) 2011; 4 C Le Quéré (BFnature11299_CR22) 2009; 2 BFnature11299_CR1 DS Schimel (BFnature11299_CR2) 2001; 414 U Schuster (BFnature11299_CR9) 2007; 112 C Le Quéré (BFnature11299_CR8) 2007; 316 AE Andrews (BFnature11299_CR26) 2001; 106 M Gloor (BFnature11299_CR13) 2010; 10 X Yang (BFnature11299_CR19) 2010; 7 BFnature11299_CR15 BFnature11299_CR14 JL Sarmiento (BFnature11299_CR11) 2010; 7 BFnature11299_CR16 P Friedlingstein (BFnature11299_CR17) 2010; 3 C Le Quéré (BFnature11299_CR10) 2010; 24 P Friedlingstein (BFnature11299_CR3) 2006; 19 B Stocker (BFnature11299_CR18) 2011; 7 DWT Griffith (BFnature11299_CR25) 1982; 34 17510327 - Science. 2007 Jun 22;316(5832):1735-8 17962418 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18866-70 11700548 - Nature. 2001 Nov 8;414(6860):169-72 21764754 - Science. 2011 Aug 19;333(6045):988-93 20724633 - Science. 2010 Aug 20;329(5994):940-3 18172494 - Nature. 2008 Jan 3;451(7174):49-52 22859196 - Nature. 2012 Aug 2;488(7409):35-6 |
References_xml | – reference: PanYA large and persistent carbon sink in the world’s forestsScience20113339889932011Sci...333..988P1:CAS:528:DC%2BC3MXhtVWrtr%2FE10.1126/science.1201609 – reference: AndrewsAEEmpirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical barrier to horizontal transportJ. Geophys. Res.200110610257102742001JGR...10610257A1:CAS:528:DC%2BD3MXks1Kkt7s%3D10.1029/2000JD900703 – reference: PiaoSNet carbon dioxide losses of northern ecosystems in response to autumn warmingNature200845149522008Natur.451...49P1:CAS:528:DC%2BD1cXhtlSksw%3D%3D10.1038/nature06444 – reference: GloorMSarmientoJLGruberNWhat can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?Atmos. Chem. Phys.201010773977512010ACP....10.7739G1:CAS:528:DC%2BC3cXhtlWls7jP10.5194/acp-10-7739-2010 – reference: ZhaoMRunningSWDrought-induced reduction in global terrestrial net primary production from 2000 through 2009Science20103299409432010Sci...329..940Z1:CAS:528:DC%2BC3cXhtVaqur%2FE10.1126/science.1192666 – reference: McKinleyGAFayARTakahashiTMetzlNConvergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescalesNature Geosci.201146066102011NatGe...4..606M1:CAS:528:DC%2BC3MXhtFSmtLjN10.1038/ngeo1193 – reference: Le QuéréCTrends in the sources and sinks of carbon dioxideNature Geosci.200928318362009NatGe...2..831L10.1038/ngeo689 – reference: SchusterUWatsonAJA variable and decreasing sink for atmospheric CO2 in the North AtlanticJ. Geophys. Res.2007112C110062007JGRC..11211006S10.1029/2006JC003941 – reference: MasarieKATansPPExtension and integration of atmospheric carbon dioxide data into a globally consistent measurement recordJ. Geophys. Res.199510011593116101995JGR...10011593M1:CAS:528:DyaK2MXotlWjs74%3D10.1029/95JD00859 – reference: GriffithDWTKeelingCDAdamsJAGuentherPRBacastowRBCalculations of carrier gas effects in non-dispersive infrared analyzers. II. Comparisons with experimentTellus1982343853971982Tell...34..385G1:CAS:528:DyaL38Xlslequ7g%3D – reference: FriedlingsteinPUpdate on CO2 emissionsNature Geosci.201038118122010NatGe...3..811F1:CAS:528:DC%2BC3cXhsVyhs7bP10.1038/ngeo1022 – reference: CanadellJGContributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinksProc. Natl Acad. Sci. USA200710418866188702007PNAS..10418866C1:CAS:528:DC%2BD2sXhtl2ks7%2FO10.1073/pnas.0702737104 – reference: StockerBStrassmannKJoosFSensitivity of Holocene atmospheric CO2Biogeosciences2011792195210.5194/bgd-7-921-2010 – reference: YangXRichardsonTKJainAKContributions of secondary forest and nitrogen dynamics to terrestrial carbon uptakeBiogeosciences20107304130502010BGeo....7.3041Y1:CAS:528:DC%2BC3cXhsF2ru7fM10.5194/bg-7-3041-2010 – reference: Le QuéréCTakahashiTBuitenhuisETRödenbeckCSutherlandSCImpact of climate change and variability on the global oceanic sink of CO2Glob. Biogeochem. Cycles201024GB40072010GBioC..24.4007L10.1029/2009GB003599 – reference: SarmientoJLTrends and regional distributions of land and ocean carbon sinksBiogeosciences20107235123672010BGeo....7.2351S1:CAS:528:DC%2BC3MXit1ens7Y%3D10.5194/bg-7-2351-2010 – reference: Le QuéréCSaturation of the Southern Ocean CO2 sink due to recent climate changeScience2007316173517382007Sci...316.1735L10.1126/science.1136188 – reference: Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Centerhttp://cdiac.ornl.gov/trends/emis/overview.html (2010) – reference: BP. Statistical Review of World Energyhttp://www.bp.com/sectionbodycopy.do?categoryId = 7500&contentId = 7068481 (2011) – reference: KnorrWIs the airborne fraction of anthropogenic CO2 emissions increasing?Geophys. Res. Lett.200936L217102009GeoRL..3621710K10.1029/2009GL040613 – reference: European Commission. Emissions Database for Global Atmospheric Research (EDGAR). Europa - EDGAR Overviewhttp://edgar.jrc.ec.europa.eu/overview.php?v = 40 (2009) – reference: MarlandGHamalKJonasMHow uncertain are estimates of CO2 emissions?J. Ind. Ecol.2009134710.1111/j.1530-9290.2009.00108.x – reference: SchimelDSRecent patterns and mechanisms of carbon exchange by terrestrial ecosystemsNature20014141691722001Natur.414..169S1:CAS:528:DC%2BD3MXosFaisLo%3D10.1038/35102500 – reference: Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 792–802 (Cambridge Univ. Press, 2007) – reference: KeelingCDA three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational dataGeophys. Monogr.198955165236 – reference: HoughtonRARevised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000Tellus B2003553783902003TellB..55..378H – reference: FriedlingsteinPClimate-carbon cycle feedback analysis: results from the C4MIP model intercomparisonJ. Clim.200619333733532006JCli...19.3337F10.1175/JCLI3800.1 – volume: 24 start-page: GB4007 year: 2010 ident: BFnature11299_CR10 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2009GB003599 – ident: BFnature11299_CR15 – volume: 55 start-page: 165 year: 1989 ident: BFnature11299_CR24 publication-title: Geophys. Monogr. – volume: 4 start-page: 606 year: 2011 ident: BFnature11299_CR7 publication-title: Nature Geosci. doi: 10.1038/ngeo1193 – volume: 13 start-page: 4 year: 2009 ident: BFnature11299_CR20 publication-title: J. Ind. Ecol. doi: 10.1111/j.1530-9290.2009.00108.x – volume: 100 start-page: 11593 year: 1995 ident: BFnature11299_CR23 publication-title: J. Geophys. Res. doi: 10.1029/95JD00859 – volume: 333 start-page: 988 year: 2011 ident: BFnature11299_CR4 publication-title: Science doi: 10.1126/science.1201609 – volume: 19 start-page: 3337 year: 2006 ident: BFnature11299_CR3 publication-title: J. Clim. doi: 10.1175/JCLI3800.1 – volume: 7 start-page: 3041 year: 2010 ident: BFnature11299_CR19 publication-title: Biogeosciences doi: 10.5194/bg-7-3041-2010 – volume: 55 start-page: 378 year: 2003 ident: BFnature11299_CR27 publication-title: Tellus B – volume: 7 start-page: 2351 year: 2010 ident: BFnature11299_CR11 publication-title: Biogeosciences doi: 10.5194/bg-7-2351-2010 – volume: 112 start-page: C11006 year: 2007 ident: BFnature11299_CR9 publication-title: J. Geophys. Res. doi: 10.1029/2006JC003941 – volume: 316 start-page: 1735 year: 2007 ident: BFnature11299_CR8 publication-title: Science doi: 10.1126/science.1136188 – volume: 10 start-page: 7739 year: 2010 ident: BFnature11299_CR13 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-7739-2010 – ident: BFnature11299_CR16 – volume: 106 start-page: 10257 year: 2001 ident: BFnature11299_CR26 publication-title: J. Geophys. Res. doi: 10.1029/2000JD900703 – volume: 329 start-page: 940 year: 2010 ident: BFnature11299_CR6 publication-title: Science doi: 10.1126/science.1192666 – volume: 34 start-page: 385 year: 1982 ident: BFnature11299_CR25 publication-title: Tellus doi: 10.3402/tellusa.v34i4.10825 – volume: 3 start-page: 811 year: 2010 ident: BFnature11299_CR17 publication-title: Nature Geosci. doi: 10.1038/ngeo1022 – ident: BFnature11299_CR14 doi: 10.3334/CDIAC/00001_2010 – volume: 7 start-page: 921 year: 2011 ident: BFnature11299_CR18 publication-title: Biogeosciences doi: 10.5194/bgd-7-921-2010 – volume: 104 start-page: 18866 year: 2007 ident: BFnature11299_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0702737104 – volume: 36 start-page: L21710 year: 2009 ident: BFnature11299_CR12 publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL040613 – volume: 451 start-page: 49 year: 2008 ident: BFnature11299_CR5 publication-title: Nature doi: 10.1038/nature06444 – ident: BFnature11299_CR1 – volume: 2 start-page: 831 year: 2009 ident: BFnature11299_CR22 publication-title: Nature Geosci. doi: 10.1038/ngeo689 – volume: 414 start-page: 169 year: 2001 ident: BFnature11299_CR2 publication-title: Nature doi: 10.1038/35102500 – reference: 11700548 - Nature. 2001 Nov 8;414(6860):169-72 – reference: 18172494 - Nature. 2008 Jan 3;451(7174):49-52 – reference: 17962418 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18866-70 – reference: 21764754 - Science. 2011 Aug 19;333(6045):988-93 – reference: 17510327 - Science. 2007 Jun 22;316(5832):1735-8 – reference: 20724633 - Science. 2010 Aug 20;329(5994):940-3 – reference: 22859196 - Nature. 2012 Aug 2;488(7409):35-6 |
SSID | ssj0005174 |
Score | 2.580025 |
Snippet | A comprehensive carbon dioxide mass balance analysis shows that net global carbon uptake has increased by about 0.05 billion tonnes per year over the past 50... One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately... One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change1. Although approximately... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 70 |
SubjectTerms | 704/106/694 704/172/169 Atmosphere Atmosphere - chemistry Budgets Carbon - analysis Carbon cycle Carbon cycle (Biogeochemistry) Carbon dioxide Carbon Dioxide - analysis Carbon Dioxide - history Carbon dioxide emissions Carbon Sequestration Carbon sinks Climate change Climate Change - statistics & numerical data Climate prediction Climatic changes Climatology. Bioclimatology. Climate change Earth, ocean, space Emission inventories Emissions Environmental aspects Estimates Exact sciences and technology External geophysics Growth rate History, 20th Century History, 21st Century Human Activities Humanities and Social Sciences Industrialized nations Land use letter Meteorology Models, Theoretical multidisciplinary Oceans Oceans and Seas Reservoirs Science Science (multidisciplinary) Seawater - chemistry Studies Time Factors Trends Uncertainty |
Title | Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years |
URI | https://link.springer.com/article/10.1038/nature11299 https://www.ncbi.nlm.nih.gov/pubmed/22859203 https://www.proquest.com/docview/1034108188 https://www.proquest.com/docview/1031158346 https://www.proquest.com/docview/1434026453 |
Volume | 488 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF-0RRBEbH2dPY9V6hOCuewm2XySWnpWwSLVwuGXsJnslkNJ0iYH9r93Jtl7xB79kHyZIdnMzuOX3dkZxvYjEwHIRHkQGEstzKSnQpt4vgghA8CQq-iA87eT6PhMfp2GU7fgVru0yoVPbB11XgKtkaN1o7-l-mvqY3XhUdco2l11LTRus20qXUYpXfE0XqV4_FeF2Z3P84X60JXNJLCR9CKS88v3Kl2jjGzX3GIT-ry2c9oGpMkDdt8hSX7QTf0Ou2WKXXanzeiEepftOKut-VtXWvrdQ_YL3QFloRs-K3iZ0YqsyXlhGg76MisLns_Kv7Pc8HnV6N-GZ1ecMh85XRjoMKzx7lwjR9zIcfQND31-hdZSP2Jnk6Ofh8ee667gQRgnjaeFMirWQuaIAiRYDPVgQt9Yq20UxJmvdCKDsREIETTkGhJpjQ5yhRgpgnAsHrOtoizMU8YThG2JNCIXgZaRDwhxwA8syh8QAGbBgL1fSDgFV3qcOmD8SdstcKHStekYsP0lc9VV3NjM9pKmKqUaFgUlyZzreV2nX36cpgdITtB5KmR645hsiS8E7c4c4LCp7FWPc6_HCdXsIl2jvu5Rz7t52_SYYY8RbRV65FFPsZYfSG0BxjJESQ0XmpY6Z1KnK9UfsBdLMj2aEuQKU85bHsT2SsjoBh4pJP5yy1AM2JNOi1cDoEKGgY-UVwu1Xh_ANfE_u3mge-wuflDQZkoGQ7bVXM7Nc0RvTTZqTRTv6nBM98nnEdv-dHTy_fQfZ6FEFg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9NA7DSGEEgIsfFVVsaBNgZIEendJb08IDQBU8s-HmCTKl7CxblMFSjpllTQP8VvxM7H2rBqb3vIk62LY_tsX84fjG351gdQgXZA2IRGmClHe0nguNKDCABdrqYC58Mjf3Civoy80Qr729TCUFplYxNLQx1nQP_IcXejvaX-a_rD5MyhqVF0u9qM0KjUYt_OfuORLX8__ITy3RZi7_Pxx4FTTxVwwOsHhWOktrpvpIrR-ylI0MWB9VybJCbxRT9ytQmU6FmJrtFAbCBQiTUi1hgb-OD1JK57g91Ex-vSjuqP-vOUkv-6Ptf1gK7U76o2nRTcBC0PWPuBuxOTo0ySapjGsmj30k1t6QD37rN7deTKdytVW2MrNl1nt8oMUsjX2VptJXL-um5l_eYB-47mh7LeLR-nPIvoD7CNeWoLDuY8ylIej7M_49jy6aQwPy2PZpwyLTk96FjRjfKqjpJjnMqR-oJ7Lp-hGPKH7ORa-P6IraZZap8wHmCYGCgrYymM8l3AkApckSD_AQPOSHTY24bDIdStzmnixq-wvHKXOlwQR4dtXSBPqg4fy9FekqhC6pmRUlLOqZnmeTj89jXcRXCAxloj0k6NlGT4QjB1jQOSTW22WpgbLUyYjM_CBeirFvS0ktuyZbotRLQN0AJvthTr4gNpDEFPecipbqNpYW288nC-1TrsxQWYlqaEvNRm0xIHzxJaKv8KHCUVHvGVJzvscaXFcwKocaJwEbLdqPUiAZfY__RqQp-z24Pjw4PwYHi0v8Hu4MeJMktTdNlqcT61zzByLKLNcrty9uO67cM_mHl-GA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDICSE2PgqK8OgjY9J0VLbSZwHhCZGtTKYEGNSxUvmXJypAiXdkgr61_h1nBOnbVi1tz1UinQn93J3vjvH90HIlq99ABFKB5hOzQgz4UgvDR2XexADoMuVpsD5y5F_cCI-Db3hCvnb1MKYtMrGJlaGOsnBfCPH3Y321vRfk7upTYv4ut9_Pz53zAQpc9PajNOoVeRQT3_j8a14N9hHWW8z1v_4_cOBYycMOOAFYekoLrUMFBcJekIBKbo70J6r01SlPgtiV6pQsJ7m6CYVJApCkWrFEolxgg9ej-O6N8jNgOMj7qVgGMzTS_7rAG1rA10ud-uWnSbQCVve0PqEu2NVoHzSerDGssj30q1t5Qz798k9G8XSvVrt1siKztbJrSqbFIp1smYtRkHf2LbWbx-QH2iKTAa8pqOM5rH5GqwTmumSgrqI84wmo_zPKNF0Mi7VT03jKTVZl9T80MmiS6V1TSXFmJUi9SX1XDpFMRQPycm18P0RWc3yTD8hNMSQMRSaJ5wp4buA4RW4LEX-AwafMeuQnYbDEdi252b6xq-oun7nMloQR4dszZDHdbeP5Wgvjagi0z8jM5p4piZFEQ2Ov0V7CA7RcEtEem2R0hz_EJStd0CyTcutFuZGCxPGo_NoAfqqBT2r5bZsmW4LEe0EtMCbLcWavaAZSdATHnKq22haZA1ZEc23XYe8mIHN0iY5L9P5pMLBc4Xkwr8CR3CBx33h8Q55XGvxnADTRJG5CNlu1HqRgEvsf3o1oc_JbbQM0efB0eEGuYPvxqqETdYlq-XFRD_DILKMN6vdSsnpdZuHf6VXgk4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increase+in+observed+net+carbon+dioxide+uptake+by+land+and+oceans+during+the+past+50+years&rft.jtitle=Nature+%28London%29&rft.au=Ballantyne%2C+A.+P.&rft.au=Alden%2C+C.+B.&rft.au=Miller%2C+J.+B.&rft.au=Tans%2C+P.+P.&rft.date=2012-08-02&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=488&rft.issue=7409&rft.spage=70&rft.epage=72&rft_id=info:doi/10.1038%2Fnature11299&rft.externalDocID=10_1038_nature11299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |