A single-sample microarray normalization method to facilitate personalized-medicine workflows

Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing...

Full description

Saved in:
Bibliographic Details
Published inGenomics (San Diego, Calif.) Vol. 100; no. 6; pp. 337 - 344
Main Authors Piccolo, Stephen R., Sun, Ying, Campbell, Joshua D., Lenburg, Marc E., Bild, Andrea H., Johnson, W. Evan
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform. ► The first completely intrinsic single-sample microarray normalization approach ► Designed for personalized medicine workflows where samples must be processed serially ► Outperforms existing methods on spike-in experiments and ‘real-world’ data sets ► Amplifies signal-to‐noise ratio by correcting for probe-level biases ► Supports combining data across different Affymetrix microarray platforms
AbstractList Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.
Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform. ► The first completely intrinsic single-sample microarray normalization approach ► Designed for personalized medicine workflows where samples must be processed serially ► Outperforms existing methods on spike-in experiments and ‘real-world’ data sets ► Amplifies signal-to‐noise ratio by correcting for probe-level biases ► Supports combining data across different Affymetrix microarray platforms
Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.
Author Sun, Ying
Lenburg, Marc E.
Piccolo, Stephen R.
Bild, Andrea H.
Campbell, Joshua D.
Johnson, W. Evan
AuthorAffiliation 1 Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112 USA
3 Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112-5550 USA
2 Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
AuthorAffiliation_xml – name: 3 Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112-5550 USA
– name: 1 Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112 USA
– name: 2 Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
Author_xml – sequence: 1
  givenname: Stephen R.
  surname: Piccolo
  fullname: Piccolo, Stephen R.
  organization: Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112, USA
– sequence: 2
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112‐5550, USA
– sequence: 3
  givenname: Joshua D.
  surname: Campbell
  fullname: Campbell, Joshua D.
  organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
– sequence: 4
  givenname: Marc E.
  surname: Lenburg
  fullname: Lenburg, Marc E.
  organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
– sequence: 5
  givenname: Andrea H.
  surname: Bild
  fullname: Bild, Andrea H.
  email: andreab@genetics.utah.edu
  organization: Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112, USA
– sequence: 6
  givenname: W. Evan
  surname: Johnson
  fullname: Johnson, W. Evan
  email: wej@bu.edu
  organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26764504$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22959562$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB_wC5AgGyQ2Ga5fibOgUlXxkiqxgC6Rdce5mXpI7MHOtBp-PR5mKI8Fs7EX_s59-JzT4sgHT0XxlMGMAatfLWebBfkw48D4DPQMQDwoThjottK1rI-KE9BaV42S4rg4TWkJAK3Q_FFxzHmrWlXzk-LLRZmcXwxUJRxXA5WjszFgjLgpfYgjDu47Ti74cqTpJnTlFMoerRvchBOVK4op-C1EXTVS56zzVN6F-LUfwl16XDzscUj0ZH-fFddv33y-fF9dfXz34fLiqrKqaacKQUNroWtBSpKAmqMSUjbzOdFc1rpjtZCsU9hKy-cdl9ij7BCblgToXoqz4nxXd7We5yks-SniYFbRjRg3JqAzf794d2MW4dYIBZq1Ihd4uS8Qw7c1pcmMLlkaBvQU1smwuuHQSC3YYVRwrVg-5WGUcxC1kopn9NmfG9yP_supDLzYA5gsDn1Eb136zdVNLRVse4odl21MKVJ_jzAw29yYpfmZG7PNjQFtcm6yqv1HZbcGZ9_zd7nhgPb5TttjMLiIearrTxlQOW-SswYy8XpHUM7AraNoknXkbc5LJDuZLrj_dvgB95rp9A
CitedBy_id crossref_primary_10_1002_cncr_34790
crossref_primary_10_1200_JCO_2014_59_0026
crossref_primary_10_3389_fonc_2020_00803
crossref_primary_10_1371_journal_pone_0222812
crossref_primary_10_1016_j_ijrobp_2014_04_052
crossref_primary_10_1016_j_urology_2017_10_016
crossref_primary_10_1038_sdata_2018_136
crossref_primary_10_1038_s41598_018_33323_z
crossref_primary_10_1164_rccm_201612_2572ED
crossref_primary_10_1186_s12931_021_01862_1
crossref_primary_10_1186_s13046_017_0651_9
crossref_primary_10_1016_j_urolonc_2021_06_011
crossref_primary_10_1038_nm_3909
crossref_primary_10_1111_cgf_12386
crossref_primary_10_15252_msb_20156506
crossref_primary_10_1038_s41591_022_01819_x
crossref_primary_10_18632_oncotarget_15125
crossref_primary_10_3390_life11020163
crossref_primary_10_3389_fgene_2016_00207
crossref_primary_10_1002_acr2_11081
crossref_primary_10_1002_jcsm_12099
crossref_primary_10_1016_j_jmoldx_2024_08_005
crossref_primary_10_1016_j_taap_2015_02_025
crossref_primary_10_1007_s00213_013_3384_2
crossref_primary_10_1158_1078_0432_CCR_15_0744
crossref_primary_10_1158_1078_0432_CCR_20_2925
crossref_primary_10_1111_jcpp_12119
crossref_primary_10_1093_database_bay011
crossref_primary_10_1002_cpz1_444
crossref_primary_10_1126_scitranslmed_abp9675
crossref_primary_10_1007_s11306_018_1328_x
crossref_primary_10_1016_j_eururo_2018_05_014
crossref_primary_10_3390_cancers14112734
crossref_primary_10_1038_s41598_018_21201_7
crossref_primary_10_1093_gigascience_giy050
crossref_primary_10_1038_modpathol_2016_60
crossref_primary_10_1186_s12920_016_0171_z
crossref_primary_10_1158_0008_5472_CAN_17_0150
crossref_primary_10_1158_1078_0432_CCR_16_2414
crossref_primary_10_1038_s41598_017_06355_0
crossref_primary_10_1016_j_xpro_2022_101208
crossref_primary_10_1002_mnfr_201900101
crossref_primary_10_1093_bioinformatics_btab105
crossref_primary_10_1186_s12877_019_1156_5
crossref_primary_10_1002_pros_23151
crossref_primary_10_1002_stem_1880
crossref_primary_10_1158_1078_0432_CCR_19_1038
crossref_primary_10_1007_s00701_024_05922_5
crossref_primary_10_1016_j_isci_2021_102848
crossref_primary_10_1111_ics_12725
crossref_primary_10_1126_sciadv_abf9394
crossref_primary_10_1038_s42003_021_02140_y
crossref_primary_10_1371_journal_pone_0212669
crossref_primary_10_1158_1535_7163_MCT_20_0095
crossref_primary_10_1038_s41391_019_0197_3
crossref_primary_10_1016_j_eururo_2017_03_036
crossref_primary_10_1371_journal_pcbi_1011880
crossref_primary_10_1016_j_ydbio_2019_06_008
crossref_primary_10_7554_eLife_71069
crossref_primary_10_1073_pnas_1305823110
crossref_primary_10_1038_s42003_023_04588_6
crossref_primary_10_1186_s12859_022_04908_3
crossref_primary_10_1158_1078_0432_CCR_18_1106
crossref_primary_10_1016_j_eururo_2017_03_030
crossref_primary_10_1016_j_eururo_2015_05_042
crossref_primary_10_1186_s13073_022_01105_y
crossref_primary_10_1038_s41698_022_00274_8
crossref_primary_10_18632_oncotarget_3974
crossref_primary_10_1186_s12920_020_0712_3
crossref_primary_10_1007_s13365_016_0445_4
crossref_primary_10_1016_j_jocs_2022_101879
crossref_primary_10_1038_s41467_018_05850_w
crossref_primary_10_1182_blood_2017_05_783191
crossref_primary_10_3390_cells12030388
crossref_primary_10_1001_jamaoncol_2020_7671
crossref_primary_10_1016_j_eururo_2017_05_009
crossref_primary_10_18632_oncotarget_8220
crossref_primary_10_1038_pcan_2016_15
crossref_primary_10_1186_s12885_025_13703_1
crossref_primary_10_1007_s13402_014_0190_8
crossref_primary_10_18632_oncotarget_10523
crossref_primary_10_1016_j_urolonc_2019_11_004
crossref_primary_10_1186_s13062_019_0257_6
crossref_primary_10_1016_j_juro_2018_06_041
crossref_primary_10_1038_s41467_017_00147_w
crossref_primary_10_1007_s00432_018_2615_7
crossref_primary_10_1038_cr_2017_135
crossref_primary_10_1093_bioinformatics_btv377
crossref_primary_10_3390_genes16030258
crossref_primary_10_1038_s41467_020_19328_1
crossref_primary_10_1016_j_ijrobp_2018_08_030
crossref_primary_10_1002_1878_0261_12640
crossref_primary_10_1002_acn3_174
crossref_primary_10_1038_s41416_021_01630_4
crossref_primary_10_1186_s12883_015_0495_x
crossref_primary_10_3389_fimmu_2022_920669
crossref_primary_10_3389_fonc_2023_1251297
crossref_primary_10_1038_s41467_022_29441_y
crossref_primary_10_1002_cnr2_1153
crossref_primary_10_1038_s41391_018_0101_6
crossref_primary_10_1158_1541_7786_MCR_21_0388
crossref_primary_10_1186_s13058_019_1157_5
crossref_primary_10_1002_ctm2_883
crossref_primary_10_1158_1541_7786_MCR_17_0539
crossref_primary_10_1142_S0219720020500328
crossref_primary_10_3389_fgene_2016_00127
crossref_primary_10_1136_jitc_2023_007354
crossref_primary_10_1158_0008_5472_CAN_16_0902
crossref_primary_10_3390_biomedicines10092318
crossref_primary_10_1172_JCI135821
crossref_primary_10_1002_ijc_32430
crossref_primary_10_1158_1078_0432_CCR_16_2845
crossref_primary_10_1002_ijc_32792
crossref_primary_10_1038_s41388_019_0768_8
crossref_primary_10_1016_j_kint_2024_08_021
crossref_primary_10_1002_jcsm_12568
crossref_primary_10_1007_s12035_020_02085_z
crossref_primary_10_1016_j_ijrobp_2019_06_2510
crossref_primary_10_1016_j_juro_2015_11_044
crossref_primary_10_1016_j_jmoldx_2015_12_006
crossref_primary_10_1158_1078_0432_CCR_17_0413
crossref_primary_10_1016_j_tiv_2019_05_006
crossref_primary_10_1111_boc_201400097
crossref_primary_10_1126_scitranslmed_abb8969
crossref_primary_10_1152_ajpgi_00335_2014
crossref_primary_10_1016_j_euo_2018_12_007
crossref_primary_10_3389_fimmu_2024_1326922
crossref_primary_10_1093_ajcp_aqab047
crossref_primary_10_1186_s12859_016_1440_8
crossref_primary_10_1093_bioinformatics_btv157
crossref_primary_10_1016_j_neuroscience_2017_09_018
crossref_primary_10_1016_j_tiv_2017_09_029
crossref_primary_10_1111_bju_13779
crossref_primary_10_1158_1078_0432_CCR_16_2540
crossref_primary_10_1183_23120541_00128_2020
crossref_primary_10_1183_23120541_00705_2020
crossref_primary_10_1371_journal_pone_0118808
crossref_primary_10_1073_pnas_1402352111
crossref_primary_10_4111_icu_2016_57_4_286
crossref_primary_10_1016_j_lssr_2016_05_004
crossref_primary_10_1164_rccm_201712_2526OC
crossref_primary_10_1001_jamaoncol_2021_1463
crossref_primary_10_1371_journal_pcbi_1009926
crossref_primary_10_1111_bju_14740
crossref_primary_10_3389_fcimb_2020_00487
crossref_primary_10_1002_bit_26347
crossref_primary_10_1016_j_cels_2019_04_003
crossref_primary_10_1038_pcan_2016_49
crossref_primary_10_1093_bioinformatics_btv031
crossref_primary_10_1186_s12920_015_0145_6
crossref_primary_10_1200_JCO_2016_69_9918
crossref_primary_10_1016_j_euo_2019_05_001
crossref_primary_10_1038_sdata_2018_66
crossref_primary_10_1038_srep42713
crossref_primary_10_3390_cancers15010153
crossref_primary_10_1111_age_13242
crossref_primary_10_3389_fimmu_2021_638066
crossref_primary_10_1002_1878_0261_13426
crossref_primary_10_1016_j_tiv_2018_01_021
crossref_primary_10_1158_1078_0432_CCR_19_1587
crossref_primary_10_3390_cancers15194801
crossref_primary_10_1186_s12920_020_00761_6
crossref_primary_10_1038_s41467_022_30257_z
crossref_primary_10_1016_j_eururo_2014_10_036
crossref_primary_10_1038_s41467_021_21245_w
crossref_primary_10_1016_j_urolonc_2024_01_027
crossref_primary_10_1039_c3mt00149k
crossref_primary_10_1002_path_5315
crossref_primary_10_1016_j_juro_2016_05_092
crossref_primary_10_1080_01621459_2018_1497494
crossref_primary_10_1111_cmi_12993
crossref_primary_10_1186_s13073_024_01361_0
crossref_primary_10_1186_1471_2229_14_3
crossref_primary_10_3390_biology11071019
crossref_primary_10_1016_j_amjmed_2018_03_008
crossref_primary_10_1158_1078_0432_CCR_18_3558
crossref_primary_10_1016_j_euf_2017_01_005
crossref_primary_10_1016_j_annonc_2023_04_515
crossref_primary_10_1186_s12931_016_0474_9
Cites_doi 10.1186/gb-2007-8-5-r82
10.1038/415530a
10.1093/nar/gkq1184
10.1093/nar/gni179
10.1073/pnas.0601180103
10.1093/bioinformatics/btg405
10.1093/bioinformatics/18.12.1585
10.1038/nature10166
10.1093/bioinformatics/btm201
10.1056/NEJMoa041588
10.1126/science.1132939
10.1200/JCO.2008.20.2119
10.1093/biostatistics/kxp059
10.1056/NEJMra0907178
10.1038/nrg2825
10.1111/j.2517-6161.1977.tb01600.x
10.1198/016214504000000683
10.1038/msb.2011.47
10.1186/1471-2105-11-553
10.1073/pnas.201162998
10.1158/0008-5472.CAN-09-3788
10.1038/nrc1976
10.1038/nature10523
10.1093/nar/gng015
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
RC3
7S9
L.6
5PM
DOI 10.1016/j.ygeno.2012.08.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 344
ExternalDocumentID PMC3508193
22959562
26764504
10_1016_j_ygeno_2012_08_003
US201500042170
S0888754312001632
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG005692
– fundername: NCI NIH HHS
  grantid: T32 CA093247
– fundername: NCI NIH HHS
  grantid: 5T32CA093247
– fundername: NHGRI NIH HHS
  grantid: 1R01HG00569
– fundername: NIGMS NIH HHS
  grantid: R01 GM085601
– fundername: National Human Genome Research Institute : NHGRI
  grantid: R01 HG005692 || HG
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c579t-a0809c0d9044e40a82a53447bbeeb468d16341d5a94c2bd24afa4daa79e308f43
IEDL.DBID .~1
ISSN 0888-7543
1089-8646
IngestDate Thu Aug 21 13:43:53 EDT 2025
Fri Jul 11 05:38:17 EDT 2025
Fri Jul 11 15:33:16 EDT 2025
Fri Jul 11 12:09:33 EDT 2025
Thu Apr 03 07:03:31 EDT 2025
Mon Jul 21 09:16:28 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 01:48:16 EDT 2025
Thu Apr 03 09:45:54 EDT 2025
Fri Feb 23 02:26:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Single-sample technique
Mixture model
Normalization
Method
Microarray
Linear model
Medicine
Genomics
Models
Technique
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-a0809c0d9044e40a82a53447bbeeb468d16341d5a94c2bd24afa4daa79e308f43
Notes http://dx.doi.org/10.1016/j.ygeno.2012.08.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to the work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0888754312001632
PMID 22959562
PQID 1220365452
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508193
proquest_miscellaneous_1672074831
proquest_miscellaneous_1328511324
proquest_miscellaneous_1220365452
pubmed_primary_22959562
pascalfrancis_primary_26764504
crossref_primary_10_1016_j_ygeno_2012_08_003
crossref_citationtrail_10_1016_j_ygeno_2012_08_003
fao_agris_US201500042170
elsevier_sciencedirect_doi_10_1016_j_ygeno_2012_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hubbell, Liu, Mei (bb0035) 2002; 18
Dempster, Laird, Rubin (bb0105) 1977; 39
The Cancer Genome Atlas Research Network (bb0095) 2011; 474
McCall, Bolstad, Irizarry (bb0045) 2010; 11
Johnson, Li, Meyer, Gottardo, Carroll, Brown, Liu (bb0060) 2006; 103
Leek, Scharpf, Bravo, Simcha, Langmead, Johnson, Geman, Baggerly, Irizarry (bb0055) 2010; 11
Cohen, Soldi, Zhang, Gustafson, Wilcox, Welm, Chang, Johnson, Spira, Jeffrey, Bild (bb0075) 2011; 7
Sing, Sander, Beerenwinkel, Lengauer (bb0115) 2009
Irizarry, Bolstad, Collin, Cope, Hobbs, Speed (bb0025) 2003; 31
Paik, Shak, Tang, Kim, Baker, Cronin, Baehner, Walker, Watson, Park, Hiller, Fisher, Wickerham, Bryant, Wolmark (bb0010) 2004; 351
Lo, Mumby, Norton, Rychlik, Smerage, Kash, Chew, Gaynor, Hayes, Epstein, Albain (bb0020) 2010; 28
Lamb, Crawford, Peck, Modell, Blat, Wrobel, Lerner, Brunet, Subramanian, Ross, Reich, Hieronymus, Wei, Armstrong, Haggarty, Clemons, Wei, Carr, Lander, Golub (bb0050) 2006; 313
Kapur, Xing, Ouyang, Wong (bb0065) 2007; 8
West, Blanchette, Dressman, Huang, Ishida, Spang, Zuzan, Olson, Marks, Nevins (bb0080) 2001; 98
Giorgi, Bolger, Lohse, Usadel (bb0100) 2010; 11
Lim, Wang, Lefebvre, Califano (bb0040) 2007; 23
van 't Veer, Dai, van de Vijver, He, Hart, Mao, Peterse, van der Kooy, Marton, Witteveen, Schreiber, Kerkhoven, Roberts, Linsley, Bernards, Friend (bb0005) 2002; 415
Kang, Kawasawa, Cheng, Zhu, Xu, Li, Sousa, Pletikos, Meyer, Sedmak, Guennel, Shin, Johnson, Krsnik, Mayer, Fertuzinhos, Umlauf, Lisgo, Vortmeyer, Weinberger, Mane, Hyde, Huttner, Reimers, Kleinman, Sestan (bb0130) 2011; 478
Gautier, Cope, Bolstad, Irizarry (bb0120) 2004; 20
Dai, Wang, Boyd, Kostov, Athey, Jones, Bunney, Myers, Speed, Akil, Watson, Meng (bb0125) 2005; 33
Greshock, Bachman, Degenhardt, Jing, Wen, Eastman, McNeil, Moy, Wegrzyn, Auger, Hardwicke, Wooster (bb0085) 2010; 70
McDermott, Downing, Stratton (bb0015) 2011; 364
Wu, Irizarry, Gentleman, Martinez-Murillo, Spencer (bb0030) 2004; 99
R Development Core Team (bb0110) 2011
Bild, Potti, Nevins (bb0090) 2006; 6
Barrett, Troup, Wilhite, Ledoux, Evangelista, Kim, Tomashevsky, Marshall, Phillippy, Sherman, Muertter, Holko, Ayanbule, Yefanov, Soboleva (bb0070) 2011; 39
Dai (10.1016/j.ygeno.2012.08.003_bb0125) 2005; 33
McDermott (10.1016/j.ygeno.2012.08.003_bb0015) 2011; 364
Barrett (10.1016/j.ygeno.2012.08.003_bb0070) 2011; 39
Wu (10.1016/j.ygeno.2012.08.003_bb0030) 2004; 99
West (10.1016/j.ygeno.2012.08.003_bb0080) 2001; 98
Giorgi (10.1016/j.ygeno.2012.08.003_bb0100) 2010; 11
Lim (10.1016/j.ygeno.2012.08.003_bb0040) 2007; 23
Bild (10.1016/j.ygeno.2012.08.003_bb0090) 2006; 6
Leek (10.1016/j.ygeno.2012.08.003_bb0055) 2010; 11
The Cancer Genome Atlas Research Network (10.1016/j.ygeno.2012.08.003_bb0095) 2011; 474
Sing (10.1016/j.ygeno.2012.08.003_bb0115)
Cohen (10.1016/j.ygeno.2012.08.003_bb0075) 2011; 7
van 't Veer (10.1016/j.ygeno.2012.08.003_bb0005) 2002; 415
McCall (10.1016/j.ygeno.2012.08.003_bb0045) 2010; 11
Johnson (10.1016/j.ygeno.2012.08.003_bb0060) 2006; 103
R Development Core Team (10.1016/j.ygeno.2012.08.003_bb0110)
Gautier (10.1016/j.ygeno.2012.08.003_bb0120) 2004; 20
Kapur (10.1016/j.ygeno.2012.08.003_bb0065) 2007; 8
Lo (10.1016/j.ygeno.2012.08.003_bb0020) 2010; 28
Dempster (10.1016/j.ygeno.2012.08.003_bb0105) 1977; 39
Greshock (10.1016/j.ygeno.2012.08.003_bb0085) 2010; 70
Hubbell (10.1016/j.ygeno.2012.08.003_bb0035) 2002; 18
Kang (10.1016/j.ygeno.2012.08.003_bb0130) 2011; 478
Irizarry (10.1016/j.ygeno.2012.08.003_bb0025) 2003; 31
Paik (10.1016/j.ygeno.2012.08.003_bb0010) 2004; 351
Lamb (10.1016/j.ygeno.2012.08.003_bb0050) 2006; 313
12490442 - Bioinformatics. 2002 Dec;18(12):1585-92
20097884 - Biostatistics. 2010 Apr;11(2):242-53
22031440 - Nature. 2011 Oct 27;478(7370):483-9
16915294 - Nat Rev Cancer. 2006 Sep;6(9):735-41
21070630 - BMC Bioinformatics. 2010;11:553
16284200 - Nucleic Acids Res. 2005;33(20):e175
21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50
11562467 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7
17646307 - Bioinformatics. 2007 Jul 1;23(13):i282-8
17008526 - Science. 2006 Sep 29;313(5795):1929-35
20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
20406975 - Cancer Res. 2010 May 1;70(9):3677-86
11823860 - Nature. 2002 Jan 31;415(6871):530-6
21097893 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1005-10
16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62
17504534 - Genome Biol. 2007;8(5):R82
21720365 - Nature. 2011 Jun 30;474(7353):609-15
15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26
21772261 - Mol Syst Biol. 2011;7:513
14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
20065191 - J Clin Oncol. 2010 Apr 1;28(10):1671-6
References_xml – volume: 7
  start-page: 513
  year: 2011
  ident: bb0075
  article-title: A pharmacogenomic method for individualized prediction of drug sensitivity
  publication-title: Mol. Syst. Biol.
– volume: 98
  start-page: 11462
  year: 2001
  end-page: 11467
  ident: bb0080
  article-title: Predicting the clinical status of human breast cancer by using gene expression profiles
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 733
  year: 2010
  end-page: 739
  ident: bb0055
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nat. Rev. Genet.
– volume: 11
  start-page: 553
  year: 2010
  ident: bb0100
  article-title: Algorithm-driven artifacts in median polish summarization of microarray data
  publication-title: BMC Bioinform.
– year: 2011
  ident: bb0110
  article-title: R: A language and environment for statistical computing [computer program]
– year: 2009
  ident: bb0115
  article-title: ROCR: visualizing the performance of scoring classifiers [computer program]
– volume: 33
  start-page: e175
  year: 2005
  ident: bb0125
  article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bb0105
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B Methodol.
– volume: 415
  start-page: 530
  year: 2002
  end-page: 536
  ident: bb0005
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
– volume: 39
  start-page: D1005
  year: 2011
  end-page: D1010
  ident: bb0070
  article-title: NCBI GEO: archive for functional genomics data sets–10 years on
  publication-title: Nucleic Acids Res.
– volume: 364
  start-page: 340
  year: 2011
  end-page: 350
  ident: bb0015
  article-title: Genomics and the continuum of cancer care
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: R82
  year: 2007
  ident: bb0065
  article-title: Exon arrays provide accurate assessments of gene expression
  publication-title: Genome Biol.
– volume: 11
  start-page: 242
  year: 2010
  end-page: 253
  ident: bb0045
  article-title: Frozen robust multiarray analysis (fRMA)
  publication-title: Biostatistics
– volume: 313
  start-page: 1929
  year: 2006
  end-page: 1935
  ident: bb0050
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
– volume: 99
  start-page: 909
  year: 2004
  end-page: 917
  ident: bb0030
  article-title: A model-based background adjustment for oligonucleotide expression arrays
  publication-title: J. Am. Stat. Assoc.
– volume: 18
  start-page: 1585
  year: 2002
  end-page: 1592
  ident: bb0035
  article-title: Robust estimators for expression analysis
  publication-title: Bioinformatics
– volume: 351
  start-page: 2817
  year: 2004
  end-page: 2826
  ident: bb0010
  article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
  publication-title: N. Engl. J. Med.
– volume: 70
  start-page: 3677
  year: 2010
  end-page: 3686
  ident: bb0085
  article-title: Molecular target class is predictive of in vitro response profile
  publication-title: Cancer Res.
– volume: 6
  start-page: 735
  year: 2006
  end-page: 741
  ident: bb0090
  article-title: Linking oncogenic pathways with therapeutic opportunities
  publication-title: Nat. Rev. Cancer
– volume: 474
  start-page: 609
  year: 2011
  end-page: 615
  ident: bb0095
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
– volume: 23
  start-page: i282
  year: 2007
  end-page: i288
  ident: bb0040
  article-title: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks
  publication-title: Bioinformatics
– volume: 28
  start-page: 1671
  year: 2010
  end-page: 1676
  ident: bb0020
  article-title: Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection
  publication-title: J. Clin. Oncol.
– volume: 31
  start-page: e15
  year: 2003
  ident: bb0025
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 307
  year: 2004
  end-page: 315
  ident: bb0120
  article-title: Affy–analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
– volume: 478
  start-page: 483
  year: 2011
  end-page: 489
  ident: bb0130
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
– volume: 103
  start-page: 12457
  year: 2006
  end-page: 12462
  ident: bb0060
  article-title: Model-based analysis of tiling-arrays for ChIP-chip
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: R82
  year: 2007
  ident: 10.1016/j.ygeno.2012.08.003_bb0065
  article-title: Exon arrays provide accurate assessments of gene expression
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-5-r82
– volume: 415
  start-page: 530
  year: 2002
  ident: 10.1016/j.ygeno.2012.08.003_bb0005
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 39
  start-page: D1005
  year: 2011
  ident: 10.1016/j.ygeno.2012.08.003_bb0070
  article-title: NCBI GEO: archive for functional genomics data sets–10 years on
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1184
– ident: 10.1016/j.ygeno.2012.08.003_bb0110
– volume: 33
  start-page: e175
  year: 2005
  ident: 10.1016/j.ygeno.2012.08.003_bb0125
  article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gni179
– volume: 103
  start-page: 12457
  year: 2006
  ident: 10.1016/j.ygeno.2012.08.003_bb0060
  article-title: Model-based analysis of tiling-arrays for ChIP-chip
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0601180103
– volume: 20
  start-page: 307
  year: 2004
  ident: 10.1016/j.ygeno.2012.08.003_bb0120
  article-title: Affy–analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– volume: 18
  start-page: 1585
  year: 2002
  ident: 10.1016/j.ygeno.2012.08.003_bb0035
  article-title: Robust estimators for expression analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.12.1585
– volume: 474
  start-page: 609
  year: 2011
  ident: 10.1016/j.ygeno.2012.08.003_bb0095
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 23
  start-page: i282
  year: 2007
  ident: 10.1016/j.ygeno.2012.08.003_bb0040
  article-title: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm201
– volume: 351
  start-page: 2817
  year: 2004
  ident: 10.1016/j.ygeno.2012.08.003_bb0010
  article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa041588
– volume: 313
  start-page: 1929
  year: 2006
  ident: 10.1016/j.ygeno.2012.08.003_bb0050
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
– volume: 28
  start-page: 1671
  year: 2010
  ident: 10.1016/j.ygeno.2012.08.003_bb0020
  article-title: Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.20.2119
– volume: 11
  start-page: 242
  year: 2010
  ident: 10.1016/j.ygeno.2012.08.003_bb0045
  article-title: Frozen robust multiarray analysis (fRMA)
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp059
– volume: 364
  start-page: 340
  year: 2011
  ident: 10.1016/j.ygeno.2012.08.003_bb0015
  article-title: Genomics and the continuum of cancer care
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0907178
– volume: 11
  start-page: 733
  year: 2010
  ident: 10.1016/j.ygeno.2012.08.003_bb0055
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2825
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.ygeno.2012.08.003_bb0105
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 99
  start-page: 909
  year: 2004
  ident: 10.1016/j.ygeno.2012.08.003_bb0030
  article-title: A model-based background adjustment for oligonucleotide expression arrays
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000000683
– volume: 7
  start-page: 513
  year: 2011
  ident: 10.1016/j.ygeno.2012.08.003_bb0075
  article-title: A pharmacogenomic method for individualized prediction of drug sensitivity
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.47
– volume: 11
  start-page: 553
  year: 2010
  ident: 10.1016/j.ygeno.2012.08.003_bb0100
  article-title: Algorithm-driven artifacts in median polish summarization of microarray data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-553
– volume: 98
  start-page: 11462
  year: 2001
  ident: 10.1016/j.ygeno.2012.08.003_bb0080
  article-title: Predicting the clinical status of human breast cancer by using gene expression profiles
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.201162998
– volume: 70
  start-page: 3677
  year: 2010
  ident: 10.1016/j.ygeno.2012.08.003_bb0085
  article-title: Molecular target class is predictive of in vitro response profile
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3788
– volume: 6
  start-page: 735
  year: 2006
  ident: 10.1016/j.ygeno.2012.08.003_bb0090
  article-title: Linking oncogenic pathways with therapeutic opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1976
– ident: 10.1016/j.ygeno.2012.08.003_bb0115
– volume: 478
  start-page: 483
  year: 2011
  ident: 10.1016/j.ygeno.2012.08.003_bb0130
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
  doi: 10.1038/nature10523
– volume: 31
  start-page: e15
  year: 2003
  ident: 10.1016/j.ygeno.2012.08.003_bb0025
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gng015
– reference: 20065191 - J Clin Oncol. 2010 Apr 1;28(10):1671-6
– reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
– reference: 20097884 - Biostatistics. 2010 Apr;11(2):242-53
– reference: 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62
– reference: 21070630 - BMC Bioinformatics. 2010;11:553
– reference: 22031440 - Nature. 2011 Oct 27;478(7370):483-9
– reference: 16915294 - Nat Rev Cancer. 2006 Sep;6(9):735-41
– reference: 17646307 - Bioinformatics. 2007 Jul 1;23(13):i282-8
– reference: 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50
– reference: 17504534 - Genome Biol. 2007;8(5):R82
– reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
– reference: 16284200 - Nucleic Acids Res. 2005;33(20):e175
– reference: 21097893 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1005-10
– reference: 21772261 - Mol Syst Biol. 2011;7:513
– reference: 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92
– reference: 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26
– reference: 17008526 - Science. 2006 Sep 29;313(5795):1929-35
– reference: 20406975 - Cancer Res. 2010 May 1;70(9):3677-86
– reference: 11562467 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7
– reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6
– reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15
– reference: 21720365 - Nature. 2011 Jun 30;474(7353):609-15
SSID ssj0009382
Score 2.4768732
Snippet Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms Analysis of Variance
Biological and medical sciences
biological properties and phenomena
Diverse techniques
Fluorescence
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Profiling
Gene Expression Profiling - methods
Genes. Genome
Genetics of eukaryotes. Biological and molecular evolution
High-Throughput Screening Assays
High-Throughput Screening Assays - methods
Humans
Linear model
Method
methods
Microarray
microarray technology
Mixture model
Molecular and cellular biology
Molecular genetics
Normalization
Oligonucleotide Array Sequence Analysis
Oligonucleotide Array Sequence Analysis - methods
Precision Medicine
Precision Medicine - methods
researchers
Sample Size
Selection Bias
Signal-To-Noise Ratio
Single-sample technique
Workflow
Title A single-sample microarray normalization method to facilitate personalized-medicine workflows
URI https://dx.doi.org/10.1016/j.ygeno.2012.08.003
https://www.ncbi.nlm.nih.gov/pubmed/22959562
https://www.proquest.com/docview/1220365452
https://www.proquest.com/docview/1328511324
https://www.proquest.com/docview/1672074831
https://pubmed.ncbi.nlm.nih.gov/PMC3508193
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tixBwQFAeGx6VkTgS6tiTh4-lYtUFsZelUi_IchIHikpatV2hcuC340ni7hZQD1wqpR0r6cxk_CX-_A3AKxK-RUwxLDDLQ0wwDxVyGRYlpjmvotQibXD-eJ6MJ_h-Gk-PYOT3whCtsqv9bU1vqnX3zaDz5mA5mw0u3P3hwLabAIkWlEiqw-6slOVvfl3RPJRsGkaRcUjWXnmo4XhtSQiV-F2i0fH0nbP-np1uVGZBtEmzdp6r2pYX_8Kkf1Irr81Vp_fhXgcy2bD9Hw_gyNY9uNW2ndz24PbId3nrwd1rgoQP4fOQ0buDuQ3XhmSD2Xfi65nVymxZTeh23m3bZG3nabZZsMoUrdK3ZUuP7H_aMvSr9oyoX9V88WP9CCan7z6NxmHXgCEs4lRtQuPgpCp4qTiiRW4yYWJSCMxza3NMstK5HaMyNgoLkZcCTWWwNCZVVvKsQvkYjutFbU-A8TzKCnocielDolFxZlWFWSkTdMMDEN7xuujUyalJxlx7Gto33URLU7Q0tc7kMoDXu0HLVpzjsHniI6r3cky76ePwwBMXf22-uLqrJxeC3hJRtYtSHkB_Lyl21yGSNMGYYwAvfZZoF1pajjG1XVyudSRoEZh6vB-wkYIgsUO9B2ySVDggmMkogCdt9l1dhVCxewJ2Z0j38nJnQOri-7_Us6-NyriMCS3Kp__rtGdwh45a6s9zON6sLu0LB-A2eb-5Q_twc3j2YXzujs6mb38DwkdFQg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL1qi1BhgWB4NDyKkWBHOol98_CCRVWopvSxaUfqBhkncWDQkIwmU1XDgp_iB_HNY9oBNAukbrJI7MTyda6Pk-NzAF6T8C1ihG6KceJiiIkr0RNummGUeLkfGaQNzscn4WCIH8-D8zX41e2FIVplm_ubnF5n6_ZMv-3N_mQ06p_a98OCbTsBEi0oFLxlVh6a-aVdt1XvDt7bIL_hfP_D2d7Aba0F3DSI5MzVFijJ1Mukh2jQ0zHXAWnfJYkxCYZxZm-IfhZoiSlPMo4615hpHUkjvDhHYe-7DrfQpguyTdj5ecUrkaJ2qKLWudS8TuqoJpXNSXmVCGW8Fg7trLr-ng7Xc10ST1NXNlR547HxLxD8J5fz2uS4fx_utaiW7TYd9wDWTNGD243P5bwHm3udrVwP7l5TQHwIn3YZfawYG7fSpFPMvhNBUE-nes4KgtPjdp8oa6yu2axkuU4baXHDJt1S4ofJ3I4mwIhrlo_Ly-oRDG8kLI9hoygLswXMS_w4pfVPQAeBWgaxkTnGmQjRVneAdx2v0lYOnVw5xqrjvX1TdbQURUuRV6cnHHi7qDRp1EBWFw-7iKqlQa3sfLW64paNv9JfbKJXw1NOn6UovfqR58D20qBYtIOHUYiBhw686kaJsqGl_z-6MOVFpXxOf53JVH5FGcEJg1uYvaJMGHGLPGPhO_CkGX1XreAysEtu-4RoaVwuCpCc-fKVYvS1ljUXAcFT8fR_O-0lbA7Ojo_U0cHJ4TO4Q1ca3tFz2JhNL8wLix5nyXb9tjL4fNPp4TdyK3_q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-sample+microarray+normalization+method+to+facilitate+personalized-medicine+workflows&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Piccolo%2C+Stephen+R&rft.au=Sun%2C+Ying&rft.au=Campbell%2C+Joshua+D&rft.au=Lenburg%2C+Marc+E&rft.date=2012-12-01&rft.issn=0888-7543&rft.volume=100&rft.issue=6+p.337-344&rft.spage=337&rft.epage=344&rft_id=info:doi/10.1016%2Fj.ygeno.2012.08.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon