A single-sample microarray normalization method to facilitate personalized-medicine workflows
Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing...
Saved in:
Published in | Genomics (San Diego, Calif.) Vol. 100; no. 6; pp. 337 - 344 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.
► The first completely intrinsic single-sample microarray normalization approach ► Designed for personalized medicine workflows where samples must be processed serially ► Outperforms existing methods on spike-in experiments and ‘real-world’ data sets ► Amplifies signal-to‐noise ratio by correcting for probe-level biases ► Supports combining data across different Affymetrix microarray platforms |
---|---|
AbstractList | Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform. Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform. ► The first completely intrinsic single-sample microarray normalization approach ► Designed for personalized medicine workflows where samples must be processed serially ► Outperforms existing methods on spike-in experiments and ‘real-world’ data sets ► Amplifies signal-to‐noise ratio by correcting for probe-level biases ► Supports combining data across different Affymetrix microarray platforms Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each sample's output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform. |
Author | Sun, Ying Lenburg, Marc E. Piccolo, Stephen R. Bild, Andrea H. Campbell, Joshua D. Johnson, W. Evan |
AuthorAffiliation | 1 Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112 USA 3 Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112-5550 USA 2 Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA |
AuthorAffiliation_xml | – name: 3 Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112-5550 USA – name: 1 Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112 USA – name: 2 Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA |
Author_xml | – sequence: 1 givenname: Stephen R. surname: Piccolo fullname: Piccolo, Stephen R. organization: Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112, USA – sequence: 2 givenname: Ying surname: Sun fullname: Sun, Ying organization: Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT 84112‐5550, USA – sequence: 3 givenname: Joshua D. surname: Campbell fullname: Campbell, Joshua D. organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA – sequence: 4 givenname: Marc E. surname: Lenburg fullname: Lenburg, Marc E. organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA – sequence: 5 givenname: Andrea H. surname: Bild fullname: Bild, Andrea H. email: andreab@genetics.utah.edu organization: Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, UT 84112, USA – sequence: 6 givenname: W. Evan surname: Johnson fullname: Johnson, W. Evan email: wej@bu.edu organization: Division of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26764504$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22959562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNURB_wC5AgGyQ2Ga5fibOgUlXxkiqxgC6Rdce5mXpI7MHOtBp-PR5mKI8Fs7EX_s59-JzT4sgHT0XxlMGMAatfLWebBfkw48D4DPQMQDwoThjottK1rI-KE9BaV42S4rg4TWkJAK3Q_FFxzHmrWlXzk-LLRZmcXwxUJRxXA5WjszFgjLgpfYgjDu47Ti74cqTpJnTlFMoerRvchBOVK4op-C1EXTVS56zzVN6F-LUfwl16XDzscUj0ZH-fFddv33y-fF9dfXz34fLiqrKqaacKQUNroWtBSpKAmqMSUjbzOdFc1rpjtZCsU9hKy-cdl9ij7BCblgToXoqz4nxXd7We5yks-SniYFbRjRg3JqAzf794d2MW4dYIBZq1Ihd4uS8Qw7c1pcmMLlkaBvQU1smwuuHQSC3YYVRwrVg-5WGUcxC1kopn9NmfG9yP_supDLzYA5gsDn1Eb136zdVNLRVse4odl21MKVJ_jzAw29yYpfmZG7PNjQFtcm6yqv1HZbcGZ9_zd7nhgPb5TttjMLiIearrTxlQOW-SswYy8XpHUM7AraNoknXkbc5LJDuZLrj_dvgB95rp9A |
CitedBy_id | crossref_primary_10_1002_cncr_34790 crossref_primary_10_1200_JCO_2014_59_0026 crossref_primary_10_3389_fonc_2020_00803 crossref_primary_10_1371_journal_pone_0222812 crossref_primary_10_1016_j_ijrobp_2014_04_052 crossref_primary_10_1016_j_urology_2017_10_016 crossref_primary_10_1038_sdata_2018_136 crossref_primary_10_1038_s41598_018_33323_z crossref_primary_10_1164_rccm_201612_2572ED crossref_primary_10_1186_s12931_021_01862_1 crossref_primary_10_1186_s13046_017_0651_9 crossref_primary_10_1016_j_urolonc_2021_06_011 crossref_primary_10_1038_nm_3909 crossref_primary_10_1111_cgf_12386 crossref_primary_10_15252_msb_20156506 crossref_primary_10_1038_s41591_022_01819_x crossref_primary_10_18632_oncotarget_15125 crossref_primary_10_3390_life11020163 crossref_primary_10_3389_fgene_2016_00207 crossref_primary_10_1002_acr2_11081 crossref_primary_10_1002_jcsm_12099 crossref_primary_10_1016_j_jmoldx_2024_08_005 crossref_primary_10_1016_j_taap_2015_02_025 crossref_primary_10_1007_s00213_013_3384_2 crossref_primary_10_1158_1078_0432_CCR_15_0744 crossref_primary_10_1158_1078_0432_CCR_20_2925 crossref_primary_10_1111_jcpp_12119 crossref_primary_10_1093_database_bay011 crossref_primary_10_1002_cpz1_444 crossref_primary_10_1126_scitranslmed_abp9675 crossref_primary_10_1007_s11306_018_1328_x crossref_primary_10_1016_j_eururo_2018_05_014 crossref_primary_10_3390_cancers14112734 crossref_primary_10_1038_s41598_018_21201_7 crossref_primary_10_1093_gigascience_giy050 crossref_primary_10_1038_modpathol_2016_60 crossref_primary_10_1186_s12920_016_0171_z crossref_primary_10_1158_0008_5472_CAN_17_0150 crossref_primary_10_1158_1078_0432_CCR_16_2414 crossref_primary_10_1038_s41598_017_06355_0 crossref_primary_10_1016_j_xpro_2022_101208 crossref_primary_10_1002_mnfr_201900101 crossref_primary_10_1093_bioinformatics_btab105 crossref_primary_10_1186_s12877_019_1156_5 crossref_primary_10_1002_pros_23151 crossref_primary_10_1002_stem_1880 crossref_primary_10_1158_1078_0432_CCR_19_1038 crossref_primary_10_1007_s00701_024_05922_5 crossref_primary_10_1016_j_isci_2021_102848 crossref_primary_10_1111_ics_12725 crossref_primary_10_1126_sciadv_abf9394 crossref_primary_10_1038_s42003_021_02140_y crossref_primary_10_1371_journal_pone_0212669 crossref_primary_10_1158_1535_7163_MCT_20_0095 crossref_primary_10_1038_s41391_019_0197_3 crossref_primary_10_1016_j_eururo_2017_03_036 crossref_primary_10_1371_journal_pcbi_1011880 crossref_primary_10_1016_j_ydbio_2019_06_008 crossref_primary_10_7554_eLife_71069 crossref_primary_10_1073_pnas_1305823110 crossref_primary_10_1038_s42003_023_04588_6 crossref_primary_10_1186_s12859_022_04908_3 crossref_primary_10_1158_1078_0432_CCR_18_1106 crossref_primary_10_1016_j_eururo_2017_03_030 crossref_primary_10_1016_j_eururo_2015_05_042 crossref_primary_10_1186_s13073_022_01105_y crossref_primary_10_1038_s41698_022_00274_8 crossref_primary_10_18632_oncotarget_3974 crossref_primary_10_1186_s12920_020_0712_3 crossref_primary_10_1007_s13365_016_0445_4 crossref_primary_10_1016_j_jocs_2022_101879 crossref_primary_10_1038_s41467_018_05850_w crossref_primary_10_1182_blood_2017_05_783191 crossref_primary_10_3390_cells12030388 crossref_primary_10_1001_jamaoncol_2020_7671 crossref_primary_10_1016_j_eururo_2017_05_009 crossref_primary_10_18632_oncotarget_8220 crossref_primary_10_1038_pcan_2016_15 crossref_primary_10_1186_s12885_025_13703_1 crossref_primary_10_1007_s13402_014_0190_8 crossref_primary_10_18632_oncotarget_10523 crossref_primary_10_1016_j_urolonc_2019_11_004 crossref_primary_10_1186_s13062_019_0257_6 crossref_primary_10_1016_j_juro_2018_06_041 crossref_primary_10_1038_s41467_017_00147_w crossref_primary_10_1007_s00432_018_2615_7 crossref_primary_10_1038_cr_2017_135 crossref_primary_10_1093_bioinformatics_btv377 crossref_primary_10_3390_genes16030258 crossref_primary_10_1038_s41467_020_19328_1 crossref_primary_10_1016_j_ijrobp_2018_08_030 crossref_primary_10_1002_1878_0261_12640 crossref_primary_10_1002_acn3_174 crossref_primary_10_1038_s41416_021_01630_4 crossref_primary_10_1186_s12883_015_0495_x crossref_primary_10_3389_fimmu_2022_920669 crossref_primary_10_3389_fonc_2023_1251297 crossref_primary_10_1038_s41467_022_29441_y crossref_primary_10_1002_cnr2_1153 crossref_primary_10_1038_s41391_018_0101_6 crossref_primary_10_1158_1541_7786_MCR_21_0388 crossref_primary_10_1186_s13058_019_1157_5 crossref_primary_10_1002_ctm2_883 crossref_primary_10_1158_1541_7786_MCR_17_0539 crossref_primary_10_1142_S0219720020500328 crossref_primary_10_3389_fgene_2016_00127 crossref_primary_10_1136_jitc_2023_007354 crossref_primary_10_1158_0008_5472_CAN_16_0902 crossref_primary_10_3390_biomedicines10092318 crossref_primary_10_1172_JCI135821 crossref_primary_10_1002_ijc_32430 crossref_primary_10_1158_1078_0432_CCR_16_2845 crossref_primary_10_1002_ijc_32792 crossref_primary_10_1038_s41388_019_0768_8 crossref_primary_10_1016_j_kint_2024_08_021 crossref_primary_10_1002_jcsm_12568 crossref_primary_10_1007_s12035_020_02085_z crossref_primary_10_1016_j_ijrobp_2019_06_2510 crossref_primary_10_1016_j_juro_2015_11_044 crossref_primary_10_1016_j_jmoldx_2015_12_006 crossref_primary_10_1158_1078_0432_CCR_17_0413 crossref_primary_10_1016_j_tiv_2019_05_006 crossref_primary_10_1111_boc_201400097 crossref_primary_10_1126_scitranslmed_abb8969 crossref_primary_10_1152_ajpgi_00335_2014 crossref_primary_10_1016_j_euo_2018_12_007 crossref_primary_10_3389_fimmu_2024_1326922 crossref_primary_10_1093_ajcp_aqab047 crossref_primary_10_1186_s12859_016_1440_8 crossref_primary_10_1093_bioinformatics_btv157 crossref_primary_10_1016_j_neuroscience_2017_09_018 crossref_primary_10_1016_j_tiv_2017_09_029 crossref_primary_10_1111_bju_13779 crossref_primary_10_1158_1078_0432_CCR_16_2540 crossref_primary_10_1183_23120541_00128_2020 crossref_primary_10_1183_23120541_00705_2020 crossref_primary_10_1371_journal_pone_0118808 crossref_primary_10_1073_pnas_1402352111 crossref_primary_10_4111_icu_2016_57_4_286 crossref_primary_10_1016_j_lssr_2016_05_004 crossref_primary_10_1164_rccm_201712_2526OC crossref_primary_10_1001_jamaoncol_2021_1463 crossref_primary_10_1371_journal_pcbi_1009926 crossref_primary_10_1111_bju_14740 crossref_primary_10_3389_fcimb_2020_00487 crossref_primary_10_1002_bit_26347 crossref_primary_10_1016_j_cels_2019_04_003 crossref_primary_10_1038_pcan_2016_49 crossref_primary_10_1093_bioinformatics_btv031 crossref_primary_10_1186_s12920_015_0145_6 crossref_primary_10_1200_JCO_2016_69_9918 crossref_primary_10_1016_j_euo_2019_05_001 crossref_primary_10_1038_sdata_2018_66 crossref_primary_10_1038_srep42713 crossref_primary_10_3390_cancers15010153 crossref_primary_10_1111_age_13242 crossref_primary_10_3389_fimmu_2021_638066 crossref_primary_10_1002_1878_0261_13426 crossref_primary_10_1016_j_tiv_2018_01_021 crossref_primary_10_1158_1078_0432_CCR_19_1587 crossref_primary_10_3390_cancers15194801 crossref_primary_10_1186_s12920_020_00761_6 crossref_primary_10_1038_s41467_022_30257_z crossref_primary_10_1016_j_eururo_2014_10_036 crossref_primary_10_1038_s41467_021_21245_w crossref_primary_10_1016_j_urolonc_2024_01_027 crossref_primary_10_1039_c3mt00149k crossref_primary_10_1002_path_5315 crossref_primary_10_1016_j_juro_2016_05_092 crossref_primary_10_1080_01621459_2018_1497494 crossref_primary_10_1111_cmi_12993 crossref_primary_10_1186_s13073_024_01361_0 crossref_primary_10_1186_1471_2229_14_3 crossref_primary_10_3390_biology11071019 crossref_primary_10_1016_j_amjmed_2018_03_008 crossref_primary_10_1158_1078_0432_CCR_18_3558 crossref_primary_10_1016_j_euf_2017_01_005 crossref_primary_10_1016_j_annonc_2023_04_515 crossref_primary_10_1186_s12931_016_0474_9 |
Cites_doi | 10.1186/gb-2007-8-5-r82 10.1038/415530a 10.1093/nar/gkq1184 10.1093/nar/gni179 10.1073/pnas.0601180103 10.1093/bioinformatics/btg405 10.1093/bioinformatics/18.12.1585 10.1038/nature10166 10.1093/bioinformatics/btm201 10.1056/NEJMoa041588 10.1126/science.1132939 10.1200/JCO.2008.20.2119 10.1093/biostatistics/kxp059 10.1056/NEJMra0907178 10.1038/nrg2825 10.1111/j.2517-6161.1977.tb01600.x 10.1198/016214504000000683 10.1038/msb.2011.47 10.1186/1471-2105-11-553 10.1073/pnas.201162998 10.1158/0008-5472.CAN-09-3788 10.1038/nrc1976 10.1038/nature10523 10.1093/nar/gng015 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. 2014 INIST-CNRS Copyright © 2012 Elsevier Inc. All rights reserved. 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
DBID | 6I. AAFTH FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 RC3 7S9 L.6 5PM |
DOI | 10.1016/j.ygeno.2012.08.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1089-8646 |
EndPage | 344 |
ExternalDocumentID | PMC3508193 22959562 26764504 10_1016_j_ygeno_2012_08_003 US201500042170 S0888754312001632 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG005692 – fundername: NCI NIH HHS grantid: T32 CA093247 – fundername: NCI NIH HHS grantid: 5T32CA093247 – fundername: NHGRI NIH HHS grantid: 1R01HG00569 – fundername: NIGMS NIH HHS grantid: R01 GM085601 – fundername: National Human Genome Research Institute : NHGRI grantid: R01 HG005692 || HG |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAFWJ AAYWO AAYXX ACVFH ADCNI AEUPX AFPKN AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c579t-a0809c0d9044e40a82a53447bbeeb468d16341d5a94c2bd24afa4daa79e308f43 |
IEDL.DBID | .~1 |
ISSN | 0888-7543 1089-8646 |
IngestDate | Thu Aug 21 13:43:53 EDT 2025 Fri Jul 11 05:38:17 EDT 2025 Fri Jul 11 15:33:16 EDT 2025 Fri Jul 11 12:09:33 EDT 2025 Thu Apr 03 07:03:31 EDT 2025 Mon Jul 21 09:16:28 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Tue Jul 01 01:48:16 EDT 2025 Thu Apr 03 09:45:54 EDT 2025 Fri Feb 23 02:26:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Single-sample technique Mixture model Normalization Method Microarray Linear model Medicine Genomics Models Technique |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-a0809c0d9044e40a82a53447bbeeb468d16341d5a94c2bd24afa4daa79e308f43 |
Notes | http://dx.doi.org/10.1016/j.ygeno.2012.08.003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to the work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0888754312001632 |
PMID | 22959562 |
PQID | 1220365452 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3508193 proquest_miscellaneous_1672074831 proquest_miscellaneous_1328511324 proquest_miscellaneous_1220365452 pubmed_primary_22959562 pascalfrancis_primary_26764504 crossref_primary_10_1016_j_ygeno_2012_08_003 crossref_citationtrail_10_1016_j_ygeno_2012_08_003 fao_agris_US201500042170 elsevier_sciencedirect_doi_10_1016_j_ygeno_2012_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Genomics (San Diego, Calif.) |
PublicationTitleAlternate | Genomics |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Hubbell, Liu, Mei (bb0035) 2002; 18 Dempster, Laird, Rubin (bb0105) 1977; 39 The Cancer Genome Atlas Research Network (bb0095) 2011; 474 McCall, Bolstad, Irizarry (bb0045) 2010; 11 Johnson, Li, Meyer, Gottardo, Carroll, Brown, Liu (bb0060) 2006; 103 Leek, Scharpf, Bravo, Simcha, Langmead, Johnson, Geman, Baggerly, Irizarry (bb0055) 2010; 11 Cohen, Soldi, Zhang, Gustafson, Wilcox, Welm, Chang, Johnson, Spira, Jeffrey, Bild (bb0075) 2011; 7 Sing, Sander, Beerenwinkel, Lengauer (bb0115) 2009 Irizarry, Bolstad, Collin, Cope, Hobbs, Speed (bb0025) 2003; 31 Paik, Shak, Tang, Kim, Baker, Cronin, Baehner, Walker, Watson, Park, Hiller, Fisher, Wickerham, Bryant, Wolmark (bb0010) 2004; 351 Lo, Mumby, Norton, Rychlik, Smerage, Kash, Chew, Gaynor, Hayes, Epstein, Albain (bb0020) 2010; 28 Lamb, Crawford, Peck, Modell, Blat, Wrobel, Lerner, Brunet, Subramanian, Ross, Reich, Hieronymus, Wei, Armstrong, Haggarty, Clemons, Wei, Carr, Lander, Golub (bb0050) 2006; 313 Kapur, Xing, Ouyang, Wong (bb0065) 2007; 8 West, Blanchette, Dressman, Huang, Ishida, Spang, Zuzan, Olson, Marks, Nevins (bb0080) 2001; 98 Giorgi, Bolger, Lohse, Usadel (bb0100) 2010; 11 Lim, Wang, Lefebvre, Califano (bb0040) 2007; 23 van 't Veer, Dai, van de Vijver, He, Hart, Mao, Peterse, van der Kooy, Marton, Witteveen, Schreiber, Kerkhoven, Roberts, Linsley, Bernards, Friend (bb0005) 2002; 415 Kang, Kawasawa, Cheng, Zhu, Xu, Li, Sousa, Pletikos, Meyer, Sedmak, Guennel, Shin, Johnson, Krsnik, Mayer, Fertuzinhos, Umlauf, Lisgo, Vortmeyer, Weinberger, Mane, Hyde, Huttner, Reimers, Kleinman, Sestan (bb0130) 2011; 478 Gautier, Cope, Bolstad, Irizarry (bb0120) 2004; 20 Dai, Wang, Boyd, Kostov, Athey, Jones, Bunney, Myers, Speed, Akil, Watson, Meng (bb0125) 2005; 33 Greshock, Bachman, Degenhardt, Jing, Wen, Eastman, McNeil, Moy, Wegrzyn, Auger, Hardwicke, Wooster (bb0085) 2010; 70 McDermott, Downing, Stratton (bb0015) 2011; 364 Wu, Irizarry, Gentleman, Martinez-Murillo, Spencer (bb0030) 2004; 99 R Development Core Team (bb0110) 2011 Bild, Potti, Nevins (bb0090) 2006; 6 Barrett, Troup, Wilhite, Ledoux, Evangelista, Kim, Tomashevsky, Marshall, Phillippy, Sherman, Muertter, Holko, Ayanbule, Yefanov, Soboleva (bb0070) 2011; 39 Dai (10.1016/j.ygeno.2012.08.003_bb0125) 2005; 33 McDermott (10.1016/j.ygeno.2012.08.003_bb0015) 2011; 364 Barrett (10.1016/j.ygeno.2012.08.003_bb0070) 2011; 39 Wu (10.1016/j.ygeno.2012.08.003_bb0030) 2004; 99 West (10.1016/j.ygeno.2012.08.003_bb0080) 2001; 98 Giorgi (10.1016/j.ygeno.2012.08.003_bb0100) 2010; 11 Lim (10.1016/j.ygeno.2012.08.003_bb0040) 2007; 23 Bild (10.1016/j.ygeno.2012.08.003_bb0090) 2006; 6 Leek (10.1016/j.ygeno.2012.08.003_bb0055) 2010; 11 The Cancer Genome Atlas Research Network (10.1016/j.ygeno.2012.08.003_bb0095) 2011; 474 Sing (10.1016/j.ygeno.2012.08.003_bb0115) Cohen (10.1016/j.ygeno.2012.08.003_bb0075) 2011; 7 van 't Veer (10.1016/j.ygeno.2012.08.003_bb0005) 2002; 415 McCall (10.1016/j.ygeno.2012.08.003_bb0045) 2010; 11 Johnson (10.1016/j.ygeno.2012.08.003_bb0060) 2006; 103 R Development Core Team (10.1016/j.ygeno.2012.08.003_bb0110) Gautier (10.1016/j.ygeno.2012.08.003_bb0120) 2004; 20 Kapur (10.1016/j.ygeno.2012.08.003_bb0065) 2007; 8 Lo (10.1016/j.ygeno.2012.08.003_bb0020) 2010; 28 Dempster (10.1016/j.ygeno.2012.08.003_bb0105) 1977; 39 Greshock (10.1016/j.ygeno.2012.08.003_bb0085) 2010; 70 Hubbell (10.1016/j.ygeno.2012.08.003_bb0035) 2002; 18 Kang (10.1016/j.ygeno.2012.08.003_bb0130) 2011; 478 Irizarry (10.1016/j.ygeno.2012.08.003_bb0025) 2003; 31 Paik (10.1016/j.ygeno.2012.08.003_bb0010) 2004; 351 Lamb (10.1016/j.ygeno.2012.08.003_bb0050) 2006; 313 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 20097884 - Biostatistics. 2010 Apr;11(2):242-53 22031440 - Nature. 2011 Oct 27;478(7370):483-9 16915294 - Nat Rev Cancer. 2006 Sep;6(9):735-41 21070630 - BMC Bioinformatics. 2010;11:553 16284200 - Nucleic Acids Res. 2005;33(20):e175 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50 11562467 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7 17646307 - Bioinformatics. 2007 Jul 1;23(13):i282-8 17008526 - Science. 2006 Sep 29;313(5795):1929-35 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 20406975 - Cancer Res. 2010 May 1;70(9):3677-86 11823860 - Nature. 2002 Jan 31;415(6871):530-6 21097893 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1005-10 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62 17504534 - Genome Biol. 2007;8(5):R82 21720365 - Nature. 2011 Jun 30;474(7353):609-15 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26 21772261 - Mol Syst Biol. 2011;7:513 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 20065191 - J Clin Oncol. 2010 Apr 1;28(10):1671-6 |
References_xml | – volume: 7 start-page: 513 year: 2011 ident: bb0075 article-title: A pharmacogenomic method for individualized prediction of drug sensitivity publication-title: Mol. Syst. Biol. – volume: 98 start-page: 11462 year: 2001 end-page: 11467 ident: bb0080 article-title: Predicting the clinical status of human breast cancer by using gene expression profiles publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 733 year: 2010 end-page: 739 ident: bb0055 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nat. Rev. Genet. – volume: 11 start-page: 553 year: 2010 ident: bb0100 article-title: Algorithm-driven artifacts in median polish summarization of microarray data publication-title: BMC Bioinform. – year: 2011 ident: bb0110 article-title: R: A language and environment for statistical computing [computer program] – year: 2009 ident: bb0115 article-title: ROCR: visualizing the performance of scoring classifiers [computer program] – volume: 33 start-page: e175 year: 2005 ident: bb0125 article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data publication-title: Nucleic Acids Res. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bb0105 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B Methodol. – volume: 415 start-page: 530 year: 2002 end-page: 536 ident: bb0005 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature – volume: 39 start-page: D1005 year: 2011 end-page: D1010 ident: bb0070 article-title: NCBI GEO: archive for functional genomics data sets–10 years on publication-title: Nucleic Acids Res. – volume: 364 start-page: 340 year: 2011 end-page: 350 ident: bb0015 article-title: Genomics and the continuum of cancer care publication-title: N. Engl. J. Med. – volume: 8 start-page: R82 year: 2007 ident: bb0065 article-title: Exon arrays provide accurate assessments of gene expression publication-title: Genome Biol. – volume: 11 start-page: 242 year: 2010 end-page: 253 ident: bb0045 article-title: Frozen robust multiarray analysis (fRMA) publication-title: Biostatistics – volume: 313 start-page: 1929 year: 2006 end-page: 1935 ident: bb0050 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science – volume: 99 start-page: 909 year: 2004 end-page: 917 ident: bb0030 article-title: A model-based background adjustment for oligonucleotide expression arrays publication-title: J. Am. Stat. Assoc. – volume: 18 start-page: 1585 year: 2002 end-page: 1592 ident: bb0035 article-title: Robust estimators for expression analysis publication-title: Bioinformatics – volume: 351 start-page: 2817 year: 2004 end-page: 2826 ident: bb0010 article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer publication-title: N. Engl. J. Med. – volume: 70 start-page: 3677 year: 2010 end-page: 3686 ident: bb0085 article-title: Molecular target class is predictive of in vitro response profile publication-title: Cancer Res. – volume: 6 start-page: 735 year: 2006 end-page: 741 ident: bb0090 article-title: Linking oncogenic pathways with therapeutic opportunities publication-title: Nat. Rev. Cancer – volume: 474 start-page: 609 year: 2011 end-page: 615 ident: bb0095 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature – volume: 23 start-page: i282 year: 2007 end-page: i288 ident: bb0040 article-title: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks publication-title: Bioinformatics – volume: 28 start-page: 1671 year: 2010 end-page: 1676 ident: bb0020 article-title: Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection publication-title: J. Clin. Oncol. – volume: 31 start-page: e15 year: 2003 ident: bb0025 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res. – volume: 20 start-page: 307 year: 2004 end-page: 315 ident: bb0120 article-title: Affy–analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics – volume: 478 start-page: 483 year: 2011 end-page: 489 ident: bb0130 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature – volume: 103 start-page: 12457 year: 2006 end-page: 12462 ident: bb0060 article-title: Model-based analysis of tiling-arrays for ChIP-chip publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: R82 year: 2007 ident: 10.1016/j.ygeno.2012.08.003_bb0065 article-title: Exon arrays provide accurate assessments of gene expression publication-title: Genome Biol. doi: 10.1186/gb-2007-8-5-r82 – volume: 415 start-page: 530 year: 2002 ident: 10.1016/j.ygeno.2012.08.003_bb0005 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 39 start-page: D1005 year: 2011 ident: 10.1016/j.ygeno.2012.08.003_bb0070 article-title: NCBI GEO: archive for functional genomics data sets–10 years on publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1184 – ident: 10.1016/j.ygeno.2012.08.003_bb0110 – volume: 33 start-page: e175 year: 2005 ident: 10.1016/j.ygeno.2012.08.003_bb0125 article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni179 – volume: 103 start-page: 12457 year: 2006 ident: 10.1016/j.ygeno.2012.08.003_bb0060 article-title: Model-based analysis of tiling-arrays for ChIP-chip publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601180103 – volume: 20 start-page: 307 year: 2004 ident: 10.1016/j.ygeno.2012.08.003_bb0120 article-title: Affy–analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 18 start-page: 1585 year: 2002 ident: 10.1016/j.ygeno.2012.08.003_bb0035 article-title: Robust estimators for expression analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.12.1585 – volume: 474 start-page: 609 year: 2011 ident: 10.1016/j.ygeno.2012.08.003_bb0095 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature doi: 10.1038/nature10166 – volume: 23 start-page: i282 year: 2007 ident: 10.1016/j.ygeno.2012.08.003_bb0040 article-title: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm201 – volume: 351 start-page: 2817 year: 2004 ident: 10.1016/j.ygeno.2012.08.003_bb0010 article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa041588 – volume: 313 start-page: 1929 year: 2006 ident: 10.1016/j.ygeno.2012.08.003_bb0050 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 – volume: 28 start-page: 1671 year: 2010 ident: 10.1016/j.ygeno.2012.08.003_bb0020 article-title: Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.20.2119 – volume: 11 start-page: 242 year: 2010 ident: 10.1016/j.ygeno.2012.08.003_bb0045 article-title: Frozen robust multiarray analysis (fRMA) publication-title: Biostatistics doi: 10.1093/biostatistics/kxp059 – volume: 364 start-page: 340 year: 2011 ident: 10.1016/j.ygeno.2012.08.003_bb0015 article-title: Genomics and the continuum of cancer care publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0907178 – volume: 11 start-page: 733 year: 2010 ident: 10.1016/j.ygeno.2012.08.003_bb0055 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2825 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.ygeno.2012.08.003_bb0105 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 99 start-page: 909 year: 2004 ident: 10.1016/j.ygeno.2012.08.003_bb0030 article-title: A model-based background adjustment for oligonucleotide expression arrays publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000000683 – volume: 7 start-page: 513 year: 2011 ident: 10.1016/j.ygeno.2012.08.003_bb0075 article-title: A pharmacogenomic method for individualized prediction of drug sensitivity publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.47 – volume: 11 start-page: 553 year: 2010 ident: 10.1016/j.ygeno.2012.08.003_bb0100 article-title: Algorithm-driven artifacts in median polish summarization of microarray data publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-553 – volume: 98 start-page: 11462 year: 2001 ident: 10.1016/j.ygeno.2012.08.003_bb0080 article-title: Predicting the clinical status of human breast cancer by using gene expression profiles publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.201162998 – volume: 70 start-page: 3677 year: 2010 ident: 10.1016/j.ygeno.2012.08.003_bb0085 article-title: Molecular target class is predictive of in vitro response profile publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3788 – volume: 6 start-page: 735 year: 2006 ident: 10.1016/j.ygeno.2012.08.003_bb0090 article-title: Linking oncogenic pathways with therapeutic opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1976 – ident: 10.1016/j.ygeno.2012.08.003_bb0115 – volume: 478 start-page: 483 year: 2011 ident: 10.1016/j.ygeno.2012.08.003_bb0130 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature doi: 10.1038/nature10523 – volume: 31 start-page: e15 year: 2003 ident: 10.1016/j.ygeno.2012.08.003_bb0025 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gng015 – reference: 20065191 - J Clin Oncol. 2010 Apr 1;28(10):1671-6 – reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 – reference: 20097884 - Biostatistics. 2010 Apr;11(2):242-53 – reference: 16895995 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62 – reference: 21070630 - BMC Bioinformatics. 2010;11:553 – reference: 22031440 - Nature. 2011 Oct 27;478(7370):483-9 – reference: 16915294 - Nat Rev Cancer. 2006 Sep;6(9):735-41 – reference: 17646307 - Bioinformatics. 2007 Jul 1;23(13):i282-8 – reference: 21268726 - N Engl J Med. 2011 Jan 27;364(4):340-50 – reference: 17504534 - Genome Biol. 2007;8(5):R82 – reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 – reference: 16284200 - Nucleic Acids Res. 2005;33(20):e175 – reference: 21097893 - Nucleic Acids Res. 2011 Jan;39(Database issue):D1005-10 – reference: 21772261 - Mol Syst Biol. 2011;7:513 – reference: 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 – reference: 15591335 - N Engl J Med. 2004 Dec 30;351(27):2817-26 – reference: 17008526 - Science. 2006 Sep 29;313(5795):1929-35 – reference: 20406975 - Cancer Res. 2010 May 1;70(9):3677-86 – reference: 11562467 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7 – reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 – reference: 21720365 - Nature. 2011 Jun 30;474(7353):609-15 |
SSID | ssj0009382 |
Score | 2.4768732 |
Snippet | Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 337 |
SubjectTerms | Analysis of Variance Biological and medical sciences biological properties and phenomena Diverse techniques Fluorescence Fundamental and applied biological sciences. Psychology gene expression Gene Expression Profiling Gene Expression Profiling - methods Genes. Genome Genetics of eukaryotes. Biological and molecular evolution High-Throughput Screening Assays High-Throughput Screening Assays - methods Humans Linear model Method methods Microarray microarray technology Mixture model Molecular and cellular biology Molecular genetics Normalization Oligonucleotide Array Sequence Analysis Oligonucleotide Array Sequence Analysis - methods Precision Medicine Precision Medicine - methods researchers Sample Size Selection Bias Signal-To-Noise Ratio Single-sample technique Workflow |
Title | A single-sample microarray normalization method to facilitate personalized-medicine workflows |
URI | https://dx.doi.org/10.1016/j.ygeno.2012.08.003 https://www.ncbi.nlm.nih.gov/pubmed/22959562 https://www.proquest.com/docview/1220365452 https://www.proquest.com/docview/1328511324 https://www.proquest.com/docview/1672074831 https://pubmed.ncbi.nlm.nih.gov/PMC3508193 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tixBwQFAeGx6VkTgS6tiTh4-lYtUFsZelUi_IchIHikpatV2hcuC340ni7hZQD1wqpR0r6cxk_CX-_A3AKxK-RUwxLDDLQ0wwDxVyGRYlpjmvotQibXD-eJ6MJ_h-Gk-PYOT3whCtsqv9bU1vqnX3zaDz5mA5mw0u3P3hwLabAIkWlEiqw-6slOVvfl3RPJRsGkaRcUjWXnmo4XhtSQiV-F2i0fH0nbP-np1uVGZBtEmzdp6r2pYX_8Kkf1Irr81Vp_fhXgcy2bD9Hw_gyNY9uNW2ndz24PbId3nrwd1rgoQP4fOQ0buDuQ3XhmSD2Xfi65nVymxZTeh23m3bZG3nabZZsMoUrdK3ZUuP7H_aMvSr9oyoX9V88WP9CCan7z6NxmHXgCEs4lRtQuPgpCp4qTiiRW4yYWJSCMxza3NMstK5HaMyNgoLkZcCTWWwNCZVVvKsQvkYjutFbU-A8TzKCnocielDolFxZlWFWSkTdMMDEN7xuujUyalJxlx7Gto33URLU7Q0tc7kMoDXu0HLVpzjsHniI6r3cky76ePwwBMXf22-uLqrJxeC3hJRtYtSHkB_Lyl21yGSNMGYYwAvfZZoF1pajjG1XVyudSRoEZh6vB-wkYIgsUO9B2ySVDggmMkogCdt9l1dhVCxewJ2Z0j38nJnQOri-7_Us6-NyriMCS3Kp__rtGdwh45a6s9zON6sLu0LB-A2eb-5Q_twc3j2YXzujs6mb38DwkdFQg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL1qi1BhgWB4NDyKkWBHOol98_CCRVWopvSxaUfqBhkncWDQkIwmU1XDgp_iB_HNY9oBNAukbrJI7MTyda6Pk-NzAF6T8C1ihG6KceJiiIkr0RNummGUeLkfGaQNzscn4WCIH8-D8zX41e2FIVplm_ubnF5n6_ZMv-3N_mQ06p_a98OCbTsBEi0oFLxlVh6a-aVdt1XvDt7bIL_hfP_D2d7Aba0F3DSI5MzVFijJ1Mukh2jQ0zHXAWnfJYkxCYZxZm-IfhZoiSlPMo4615hpHUkjvDhHYe-7DrfQpguyTdj5ecUrkaJ2qKLWudS8TuqoJpXNSXmVCGW8Fg7trLr-ng7Xc10ST1NXNlR547HxLxD8J5fz2uS4fx_utaiW7TYd9wDWTNGD243P5bwHm3udrVwP7l5TQHwIn3YZfawYG7fSpFPMvhNBUE-nes4KgtPjdp8oa6yu2axkuU4baXHDJt1S4ofJ3I4mwIhrlo_Ly-oRDG8kLI9hoygLswXMS_w4pfVPQAeBWgaxkTnGmQjRVneAdx2v0lYOnVw5xqrjvX1TdbQURUuRV6cnHHi7qDRp1EBWFw-7iKqlQa3sfLW64paNv9JfbKJXw1NOn6UovfqR58D20qBYtIOHUYiBhw686kaJsqGl_z-6MOVFpXxOf53JVH5FGcEJg1uYvaJMGHGLPGPhO_CkGX1XreAysEtu-4RoaVwuCpCc-fKVYvS1ljUXAcFT8fR_O-0lbA7Ojo_U0cHJ4TO4Q1ca3tFz2JhNL8wLix5nyXb9tjL4fNPp4TdyK3_q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single-sample+microarray+normalization+method+to+facilitate+personalized-medicine+workflows&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Piccolo%2C+Stephen+R&rft.au=Sun%2C+Ying&rft.au=Campbell%2C+Joshua+D&rft.au=Lenburg%2C+Marc+E&rft.date=2012-12-01&rft.issn=0888-7543&rft.volume=100&rft.issue=6+p.337-344&rft.spage=337&rft.epage=344&rft_id=info:doi/10.1016%2Fj.ygeno.2012.08.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |