Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells

Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 17 - 14
Main Authors Gong, Cheng, Zhang, Cong, Zhuang, Qixin, Li, Haiyun, Yang, Hua, Chen, Jiangzhao, Zang, Zhigang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
AbstractList Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%.
An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
HighlightsAn effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established.The device with KFSI achieves an impressive efficiency of 24.17%.The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl−, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl-, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl-, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
ArticleNumber 17
Author Gong, Cheng
Zang, Zhigang
Zhang, Cong
Zhuang, Qixin
Chen, Jiangzhao
Yang, Hua
Li, Haiyun
Author_xml – sequence: 1
  givenname: Cheng
  surname: Gong
  fullname: Gong, Cheng
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
– sequence: 2
  givenname: Cong
  surname: Zhang
  fullname: Zhang, Cong
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
– sequence: 3
  givenname: Qixin
  surname: Zhuang
  fullname: Zhuang, Qixin
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
– sequence: 4
  givenname: Haiyun
  surname: Li
  fullname: Li, Haiyun
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
– sequence: 5
  givenname: Hua
  surname: Yang
  fullname: Yang, Hua
  organization: Institute of High Energy Physics, Chinese Academy of Sciences (CAS)
– sequence: 6
  givenname: Jiangzhao
  surname: Chen
  fullname: Chen, Jiangzhao
  email: jiangzhaochen@cqu.edu.cn
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
– sequence: 7
  givenname: Zhigang
  surname: Zang
  fullname: Zang, Zhigang
  email: zangzg@cqu.edu.cn
  organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36580128$$D View this record in MEDLINE/PubMed
BookMark eNp9ktFuFCEUhiemxtbaF_DCkHjjzSgwMMPcmOimWzdposnWa8IwZ1YqCyswa9a38I1lOq3aXvQKAt__83POeV4cOe-gKF4S_JZg3LyLDAuKS0xpiXHb0pI_KU4o4bjknJOjvK8IKesG18fFWYymw5yyhjacPSuOq5oLTKg4KX6vk-qMNb-M26CPYzDQo5VLEAalAe2NQuuDg7AxMRmNzocBdEJ-QEs7-mAcIOV6tB7t4N3BouXodDLeKYsugh93EV35nyr0k9BoAy7NfH7TAvoCwe_jd5MArb1VAS3A2viieDooG-Hsdj0tvi7PrxafysvPF6vFh8tS86ZNZdMqRnoNLWWEDUwJoUhXV4KqhuNK6Aa07jPTCKBD_i3GrNIV7zj0Vd1n8rRYzb69V9dyF8xWhYP0ysibAx82UoX8aQuSkpq0qq1yoYEBCNESoLTrVFMTohuWvd7PXrux20JO5VJQ9p7p_RtnvsmN38s2B6vrNhu8uTUI_scIMcmtiTqXQznwY5S5by2tWcUm9PUD9NqPIZc8UzkZFxUmPFOv_k_0N8pd5zMgZkAHH2OAQWqT1NS8HNBYSbCc5kzOcybznMmbOZOTN30gvXN_VFTNophht4HwL_Yjqj9cuOX9
CitedBy_id crossref_primary_10_1002_smll_202207769
crossref_primary_10_1016_j_cej_2023_144056
crossref_primary_10_1021_acsaem_3c03135
crossref_primary_10_1039_D4BM01411A
crossref_primary_10_1002_smtd_202400385
crossref_primary_10_1021_acsami_3c00206
crossref_primary_10_1002_smll_202408593
crossref_primary_10_1002_solr_202300324
crossref_primary_10_1016_j_cej_2024_150970
crossref_primary_10_1007_s11356_023_26497_1
crossref_primary_10_1016_j_cej_2023_145707
crossref_primary_10_1007_s40820_023_01076_8
crossref_primary_10_1021_acsaem_2c03955
crossref_primary_10_1016_j_jechem_2024_07_060
crossref_primary_10_1021_acsenergylett_3c01581
crossref_primary_10_1002_solr_202201129
crossref_primary_10_1007_s10853_024_10073_0
crossref_primary_10_1002_ange_202317185
crossref_primary_10_1002_ange_202304256
crossref_primary_10_1021_acsami_3c13085
crossref_primary_10_1021_acsami_4c07458
crossref_primary_10_1088_1674_4926_44_8_080201
crossref_primary_10_1016_j_jcis_2023_05_058
crossref_primary_10_1088_1361_6528_ad12e7
crossref_primary_10_1016_j_xcrp_2024_101996
crossref_primary_10_1002_adfm_202309910
crossref_primary_10_1016_j_solener_2023_02_003
crossref_primary_10_1007_s40843_023_2832_y
crossref_primary_10_1088_1361_6641_ad0e7f
crossref_primary_10_3390_en16083519
crossref_primary_10_1039_D4TC00219A
crossref_primary_10_1016_j_mssp_2024_108138
crossref_primary_10_1016_j_cej_2023_143862
crossref_primary_10_1002_adma_202416932
crossref_primary_10_1002_adma_202313860
crossref_primary_10_3390_molecules28104103
crossref_primary_10_1021_acs_jpclett_4c03211
crossref_primary_10_1002_smll_202308964
crossref_primary_10_1021_acs_energyfuels_3c02361
crossref_primary_10_1088_2053_1591_ad1d87
crossref_primary_10_1016_j_ceramint_2023_09_057
crossref_primary_10_1016_j_surfin_2024_104007
crossref_primary_10_1002_solr_202300438
crossref_primary_10_1002_smll_202410601
crossref_primary_10_1002_adfm_202415547
crossref_primary_10_1002_anie_202317185
crossref_primary_10_1063_5_0188717
crossref_primary_10_1002_adfm_202311133
crossref_primary_10_1016_j_cej_2024_153945
crossref_primary_10_1088_1402_4896_ad4d25
crossref_primary_10_1063_5_0205615
crossref_primary_10_1002_smll_202308836
crossref_primary_10_3390_nano13081313
crossref_primary_10_1021_acsami_4c03969
crossref_primary_10_1016_j_orgel_2023_106841
crossref_primary_10_1016_j_mtadv_2024_100523
crossref_primary_10_1002_aenm_202402990
crossref_primary_10_1021_acsaelm_4c02116
crossref_primary_10_1016_j_solmat_2023_112562
crossref_primary_10_1002_aenm_202402469
crossref_primary_10_1002_adma_202312679
crossref_primary_10_1002_adfm_202307949
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1002_adfm_202314472
crossref_primary_10_1016_j_mtphys_2023_101187
crossref_primary_10_1149_2162_8777_acd601
crossref_primary_10_1155_2023_1844719
crossref_primary_10_1016_j_cej_2023_147191
crossref_primary_10_1016_j_optmat_2024_115006
crossref_primary_10_1063_5_0206245
crossref_primary_10_1007_s12274_024_6639_9
crossref_primary_10_1002_cjoc_202300651
crossref_primary_10_1002_aelm_202300751
crossref_primary_10_1039_D4RA05219F
crossref_primary_10_1002_cssc_202400038
crossref_primary_10_1002_anie_202304256
crossref_primary_10_1002_smll_202311377
crossref_primary_10_1016_j_mtadv_2024_100501
crossref_primary_10_6023_A24040134
crossref_primary_10_1016_j_cej_2024_151162
crossref_primary_10_1021_acssuschemeng_4c00772
crossref_primary_10_1007_s40820_023_01138_x
crossref_primary_10_1021_acsami_4c08445
crossref_primary_10_1007_s11356_023_26733_8
crossref_primary_10_1039_D4TC01479K
crossref_primary_10_1016_j_nanoen_2024_109544
crossref_primary_10_1016_j_solmat_2024_113071
crossref_primary_10_1002_smll_202307679
crossref_primary_10_1088_1402_4896_acd4ff
crossref_primary_10_26599_EMD_2024_9370029
crossref_primary_10_1002_smll_202310275
crossref_primary_10_1002_adma_202412304
crossref_primary_10_1002_smll_202303060
crossref_primary_10_1002_aenm_202302659
crossref_primary_10_1016_j_matlet_2023_135365
crossref_primary_10_1039_D3NJ00837A
crossref_primary_10_1021_acsaem_3c01209
crossref_primary_10_3390_cryst13060961
crossref_primary_10_1039_D3EE00413A
crossref_primary_10_1039_D3QI00863K
crossref_primary_10_1016_j_cej_2024_156614
crossref_primary_10_1002_smsc_202300020
crossref_primary_10_1088_2053_1591_ace0fe
crossref_primary_10_1002_adma_202411451
crossref_primary_10_1002_aenm_202301332
crossref_primary_10_1016_j_ceramint_2024_05_187
crossref_primary_10_1021_acsami_5c01012
Cites_doi 10.1038/s41586-021-03964-8
10.1002/adma.201902902
10.1039/C7EE02272G
10.1007/s12274-022-4135-7
10.1126/science.abl5676
10.1016/j.orgel.2022.106544
10.1002/adma.202110438
10.1016/j.jechem.2022.02.016
10.1038/s41467-018-06709-w
10.1002/aenm.201900664
10.1016/j.cej.2021.129375
10.1021/acsami.9b11817
10.1126/science.abh1885
10.1021/acsenergylett.1c00794
10.1039/C8CS00853A
10.1002/adfm.201706287
10.1038/s41566-019-0398-2
10.1126/science.aba0893
10.1016/j.joule.2021.07.016
10.1021/ic401215x
10.1002/adma.202007126
10.1002/adma.202003990
10.1007/s40820-022-00854-0
10.1002/adfm.202209516
10.1038/s41586-021-03406-5
10.1016/j.cej.2021.133209
10.1002/adma.201900390
10.1039/C4TA06198E
10.1002/solr.202100893
10.1038/ncomms8747
10.1039/D0TA12612H
10.1002/adma.201606831
10.1007/s40820-021-00763-8
10.1002/smtd.202100311
10.1021/ja809598r
10.1021/acsenergylett.0c01566
10.1002/anie.202206914
10.1021/acsenergylett.0c01240
10.1007/s40820-022-00918-1
10.1002/adma.202106118
10.1002/aenm.202200417
10.1016/j.jechem.2021.07.011
10.1039/C8EE02242A
10.1103/PhysRevLett.88.095501
10.1002/aenm.202100529
10.1039/D1EE01519B
10.1002/solr.201900088
10.1002/aenm.202104030
10.1002/solr.201900220
10.1002/eom2.12158
10.1002/adma.201703852
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00992-5
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed


Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_21619a93009e4ee8891e22bba7611c74
PMC9800669
36580128
10_1007_s40820_022_00992_5
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c579t-79a41dce92414f4a88a1b6382a75038c7eccd9a478e2f5800043c35b5ed36db63
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 00:47:19 EDT 2025
Thu Aug 21 18:40:07 EDT 2025
Fri Jul 11 11:39:22 EDT 2025
Wed Aug 13 03:49:54 EDT 2025
Wed Feb 19 02:24:16 EST 2025
Tue Jul 01 00:55:48 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Fri Feb 21 02:41:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multiple chemical bonds
Buried interface
Defect passivation
Perovskite solar cells
Synergistic effect of functional groups
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-79a41dce92414f4a88a1b6382a75038c7eccd9a478e2f5800043c35b5ed36db63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2889583015?pq-origsite=%requestingapplication%
PMID 36580128
PQID 2889583015
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_21619a93009e4ee8891e22bba7611c74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9800669
proquest_miscellaneous_2759264349
proquest_journals_2889583015
pubmed_primary_36580128
crossref_citationtrail_10_1007_s40820_022_00992_5
crossref_primary_10_1007_s40820_022_00992_5
springer_journals_10_1007_s40820_022_00992_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Gao, Wang, Choy (CR10) 2022; 12
Jiang, Zhao, Zhang, Yang, Chen (CR20) 2019; 13
You, Zeng, Ku, Wang, Wang (CR23) 2020; 32
Bi, Li, Milic, Kubicki, Pellet (CR31) 2018; 9
Dong, Shen, Dong, Bai, Zhao (CR16) 2022; 12
Zhang, Liang, Wang, Zheng, Wu (CR30) 2022; 14
Zhuang, Wang, Zhang, Gong, Li (CR45) 2022; 15
Stoumpos, Malliakas, Kanatzidis (CR48) 2013; 52
Li, Li, Zhuang, He, Liu (CR5) 2022
Kim, Jeong, Lu, Lee, Eickemeyer (CR4) 2022; 375
Aldibaja, Badia, Mas-Marzá, Sánchez, Barea (CR34) 2015; 3
Kim, Park, Li, Yang, Park (CR47) 2017; 29
Choi, Lee, Kim, Park, Kim (CR26) 2018; 11
Levine, Al-Ashouri, Musiienko, Hempel, Magomedov (CR24) 2021; 5
Yuan, Cai, Yang, Zhao, Qian (CR40) 2019; 3
Singh, Öz, Sasinska, Frohnhoven, Mathur (CR43) 2018; 28
Chen, Park (CR8) 2020; 5
Ni, Bao, Liu, Jiang, Wu (CR11) 2020; 367
Chen, Zhao, Kim, Park (CR27) 2019; 31
Bi, Zuo, Liu, He, Bai (CR22) 2021; 9
Li, Zhang, Guo, Lu, Wei (CR1) 2022; 375
Chen, Zhai, Ren, Huo, Yun (CR44) 2022; 107
CR7
Dagar, Hirselandt, Merdasa, Czudek, Munir (CR36) 2019; 3
Bi, Wang, Shao, Yuan, Xiao (CR49) 2015; 6
Gao, Yang, Ma, Shang, Wang (CR17) 2022; 69
Jeong, Kim, Seo, Lu, Ahlawat (CR37) 2021; 592
Liu, Bi, He, Bai, Wang (CR32) 2021; 6
Yuan, Cai, Lv, Gao, Gu (CR3) 2021; 14
Jiang, Ai, Yan, Li, Lin (CR35) 2019; 11
Xu, Liu, Li, Tang, Zheng (CR51) 2019; 31
Kojima, Teshima, Shirai, Miyasaka (CR6) 2009; 131
Ye, Ma, Chen, Wang, Xu (CR19) 2021; 33
Dong, Qiao, Xiong, Yang, Wang (CR46) 2022; 14
Zhu, Zhang, Li, Shang, Lei (CR29) 2021; 11
Wang, Zhou, He, Liu, Bai (CR38) 2022; 6
Zhou, Wang, Zang, Fang (CR2) 2019; 9
Xiong, Chen, Zhang, Odunmbaku, Ou (CR18) 2022; 34
Kılıç, Zunger (CR15) 2002; 88
Zhang, Wang, Li, Zhuang, Gong (CR39) 2021; 63
Jung, Chen, Bertens, Vafaie, Teale (CR25) 2020; 5
Park, Zhu (CR14) 2022; 34
Jiang, Chu, Wang, Yang, Liu (CR50) 2017; 29
Min, Lee, Kim, Kim, Lee (CR21) 2021; 598
Chen, Park (CR33) 2021; 5
Han, Bai, Liu, Du, Li (CR41) 2017; 10
Xu, Cui, Yang, Han, Guo (CR52) 2021; 14
Deng, Zhang, Wei, Xiao, Zhang (CR9) 2022
He, Zhou, Liu, Bai, Wang (CR42) 2022; 4
Bi, Liu, He, Bai, Wang (CR28) 2021; 418
Chen, Rudd, Yang, Yuan, Huang (CR13) 2019; 48
Zuo, Kim, Liu, He, Bai (CR12) 2022; 431
M Kim (992_CR4) 2022; 375
Q Jiang (992_CR20) 2019; 13
EH Jung (992_CR25) 2020; 5
D Gao (992_CR17) 2022; 69
M Li (992_CR5) 2022
J Chen (992_CR27) 2019; 31
992_CR7
W Dong (992_CR46) 2022; 14
Z Ni (992_CR11) 2020; 367
Y Dong (992_CR16) 2022; 12
A Kojima (992_CR6) 2009; 131
J Jeong (992_CR37) 2021; 592
B Liu (992_CR32) 2021; 6
T Zhou (992_CR2) 2019; 9
D He (992_CR42) 2022; 4
J Chen (992_CR8) 2020; 5
F Ye (992_CR19) 2021; 33
CC Stoumpos (992_CR48) 2013; 52
W Wang (992_CR38) 2022; 6
S Yuan (992_CR40) 2019; 3
S You (992_CR23) 2020; 32
J Xu (992_CR52) 2021; 14
Z Zhang (992_CR30) 2022; 14
Z Xiong (992_CR18) 2022; 34
K Choi (992_CR26) 2018; 11
Q Han (992_CR41) 2017; 10
C Bi (992_CR49) 2015; 6
J Dagar (992_CR36) 2019; 3
T Singh (992_CR43) 2018; 28
Ç Kılıç (992_CR15) 2002; 88
E Jiang (992_CR35) 2019; 11
X Zuo (992_CR12) 2022; 431
J Chen (992_CR33) 2021; 5
D Bi (992_CR31) 2018; 9
I Levine (992_CR24) 2021; 5
J Deng (992_CR9) 2022
H Bi (992_CR22) 2021; 9
FK Aldibaja (992_CR34) 2015; 3
Q Jiang (992_CR50) 2017; 29
DH Kim (992_CR47) 2017; 29
L Zhu (992_CR29) 2021; 11
C Zhang (992_CR39) 2021; 63
B Chen (992_CR13) 2019; 48
ZW Gao (992_CR10) 2022; 12
X Li (992_CR1) 2022; 375
Q Zhuang (992_CR45) 2022; 15
SY Park (992_CR14) 2022; 34
Q Chen (992_CR44) 2022; 107
H Min (992_CR21) 2021; 598
Z Xu (992_CR51) 2019; 31
H Bi (992_CR28) 2021; 418
R Yuan (992_CR3) 2021; 14
References_xml – volume: 598
  start-page: 444
  year: 2021
  end-page: 450
  ident: CR21
  article-title: Perovskite solar cells with atomically coherent interlayers on SnO electrodes
  publication-title: Nature
  doi: 10.1038/s41586-021-03964-8
– volume: 31
  start-page: 1902902
  issue: 39
  year: 2019
  ident: CR27
  article-title: Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902902
– volume: 10
  start-page: 2365
  year: 2017
  end-page: 2371
  ident: CR41
  article-title: Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02272G
– volume: 15
  start-page: 5114
  year: 2022
  end-page: 5122
  ident: CR45
  article-title: Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4135-7
– volume: 375
  start-page: 434
  issue: 6579
  year: 2022
  end-page: 437
  ident: CR1
  article-title: Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.abl5676
– volume: 107
  year: 2022
  ident: CR44
  article-title: Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar cells
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2022.106544
– volume: 34
  start-page: 2110438
  issue: 27
  year: 2022
  ident: CR14
  article-title: Advances in SnO for efficient and stable n–i–p perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110438
– volume: 69
  start-page: 659
  year: 2022
  end-page: 666
  ident: CR17
  article-title: Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.02.016
– volume: 9
  start-page: 4482
  year: 2018
  ident: CR31
  article-title: Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06709-w
– volume: 9
  start-page: 1900664
  issue: 29
  year: 2019
  ident: CR2
  article-title: Stable dynamics performance and high efficiency of ABX -type super-alkali perovskites first obtained by introducing H O cation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900664
– volume: 418
  year: 2021
  ident: CR28
  article-title: Interfacial defect passivation and stress release by multifunctional KPF modification for planar perovskite solar cells with enhanced efficiency and stability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129375
– volume: 11
  start-page: 36727
  issue: 40
  year: 2019
  end-page: 36734
  ident: CR35
  article-title: Phosphate-passivated SnO electron transport layer for high-performance perovskite solar cells
  publication-title: ACS Appl. Mater. Interface.
  doi: 10.1021/acsami.9b11817
– volume: 375
  start-page: 302
  issue: 6578
  year: 2022
  end-page: 306
  ident: CR4
  article-title: Conformal quantum dot SnO layers as electron transporters for efficient perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.abh1885
– volume: 6
  start-page: 2526
  issue: 7
  year: 2021
  end-page: 2538
  ident: CR32
  article-title: Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00794
– volume: 48
  start-page: 3842
  year: 2019
  end-page: 3867
  ident: CR13
  article-title: Imperfections and their passivation in halide perovskite solar cells
  publication-title: Chem. Soc Rev.
  doi: 10.1039/C8CS00853A
– volume: 28
  start-page: 1706287
  issue: 14
  year: 2018
  ident: CR43
  article-title: Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO electron-transporting layers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706287
– volume: 13
  start-page: 460
  year: 2019
  end-page: 466
  ident: CR20
  article-title: Surface passivation of perovskite film for efficient solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 367
  start-page: 1352
  issue: 6484
  year: 2020
  end-page: 1358
  ident: CR11
  article-title: Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aba0893
– volume: 5
  start-page: 2915
  year: 2021
  end-page: 2933
  ident: CR24
  article-title: Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2021.07.016
– volume: 52
  start-page: 9019
  year: 2013
  end-page: 9038
  ident: CR48
  article-title: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 33
  start-page: 2007126
  issue: 3
  year: 2021
  ident: CR19
  article-title: Roles of macl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007126
– volume: 32
  start-page: 2003990
  issue: 43
  year: 2020
  ident: CR23
  article-title: Multifunctional polymer-regulated SnO nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003990
– volume: 14
  start-page: 108
  year: 2022
  ident: CR46
  article-title: Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00854-0
– year: 2022
  ident: CR9
  article-title: Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209516
– volume: 592
  start-page: 381
  year: 2021
  end-page: 385
  ident: CR37
  article-title: Pseudo-halide anion engineering for α-FAPbI perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-021-03406-5
– volume: 431
  year: 2022
  ident: CR12
  article-title: Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133209
– volume: 31
  start-page: 1900390
  issue: 24
  year: 2019
  ident: CR51
  article-title: A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900390
– volume: 3
  start-page: 9194
  issue: 17
  year: 2015
  end-page: 9200
  ident: CR34
  article-title: Effect of different lead precursors on perovskite solar cell performance and stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06198E
– volume: 6
  start-page: 2100893
  year: 2022
  ident: CR38
  article-title: Self-formed multifunctional grain boundary passivation layer achieving 22.4% efficient and stable perovskite solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100893
– volume: 6
  start-page: 7747
  year: 2015
  ident: CR49
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8747
– volume: 9
  start-page: 3940
  issue: 7
  year: 2021
  end-page: 3951
  ident: CR22
  article-title: Multifunctional organic ammonium salt-modified SnO nanoparticles toward efficient and stable planar perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA12612H
– volume: 29
  start-page: 1606831
  issue: 23
  year: 2017
  ident: CR47
  article-title: 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606831
– volume: 14
  start-page: 7
  year: 2021
  ident: CR52
  article-title: Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI Br solar cells
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00763-8
– volume: 5
  start-page: 2100311
  issue: 6
  year: 2021
  ident: CR33
  article-title: Nonhalide materials for efficient and stable perovskite solar cells
  publication-title: Small Method.
  doi: 10.1002/smtd.202100311
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  end-page: 6051
  ident: CR6
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 5
  start-page: 2796
  issue: 9
  year: 2020
  end-page: 2801
  ident: CR25
  article-title: Bifunctional surface engineering on SnO reduces energy loss in perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01566
– year: 2022
  ident: CR5
  article-title: Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206914
– volume: 5
  start-page: 2742
  issue: 8
  year: 2020
  end-page: 2786
  ident: CR8
  article-title: Materials and methods for interface engineering toward stable and efficient perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01240
– volume: 14
  start-page: 165
  year: 2022
  ident: CR30
  article-title: Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00918-1
– volume: 34
  start-page: 2106118
  issue: 8
  year: 2022
  ident: CR18
  article-title: Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106118
– volume: 12
  start-page: 2200417
  issue: 20
  year: 2022
  ident: CR16
  article-title: Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200417
– volume: 63
  start-page: 452
  year: 2021
  end-page: 460
  ident: CR39
  article-title: Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.011
– volume: 11
  start-page: 3238
  issue: 11
  year: 2018
  end-page: 3247
  ident: CR26
  article-title: Thermally stable, planar hybrid perovskite solar cells with high efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02242A
– volume: 88
  year: 2002
  ident: CR15
  article-title: Origins of coexistence of conductivity and transparency in SnO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.095501
– volume: 11
  start-page: 2100529
  issue: 20
  year: 2021
  ident: CR29
  article-title: Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100529
– volume: 14
  start-page: 5074
  year: 2021
  end-page: 5083
  ident: CR3
  article-title: Boosted charge extraction of NbO -enveloped SnO nanocrystals enables 24% efficient planar perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01519B
– volume: 3
  start-page: 1900088
  year: 2019
  ident: CR36
  article-title: Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900088
– ident: CR7
– volume: 12
  start-page: 2104030
  issue: 20
  year: 2022
  ident: CR10
  article-title: Buried interface modification in perovskite solar cells: a materials perspective
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202104030
– volume: 3
  start-page: 190
  year: 2019
  ident: CR40
  article-title: Simultaneous cesium and acetate coalloying improves efficiency and stability of FA MA PbI3 perovskite solar cell with an efficiency of 21.95%
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900220
– volume: 4
  year: 2022
  ident: CR42
  article-title: Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence
  publication-title: EcoMat
  doi: 10.1002/eom2.12158
– volume: 29
  start-page: 1703852
  issue: 46
  year: 2017
  ident: CR50
  article-title: Planar-structure perovskite solar cells with efficiency beyond 21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 14
  start-page: 5074
  year: 2021
  ident: 992_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01519B
– volume: 33
  start-page: 2007126
  issue: 3
  year: 2021
  ident: 992_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007126
– volume: 31
  start-page: 1900390
  issue: 24
  year: 2019
  ident: 992_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900390
– volume: 5
  start-page: 2796
  issue: 9
  year: 2020
  ident: 992_CR25
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01566
– volume: 14
  start-page: 7
  year: 2021
  ident: 992_CR52
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00763-8
– volume: 5
  start-page: 2100311
  issue: 6
  year: 2021
  ident: 992_CR33
  publication-title: Small Method.
  doi: 10.1002/smtd.202100311
– volume: 9
  start-page: 1900664
  issue: 29
  year: 2019
  ident: 992_CR2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900664
– volume: 31
  start-page: 1902902
  issue: 39
  year: 2019
  ident: 992_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902902
– volume: 9
  start-page: 3940
  issue: 7
  year: 2021
  ident: 992_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA12612H
– volume: 15
  start-page: 5114
  year: 2022
  ident: 992_CR45
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4135-7
– volume: 375
  start-page: 434
  issue: 6579
  year: 2022
  ident: 992_CR1
  publication-title: Science
  doi: 10.1126/science.abl5676
– volume: 6
  start-page: 2526
  issue: 7
  year: 2021
  ident: 992_CR32
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00794
– volume: 3
  start-page: 9194
  issue: 17
  year: 2015
  ident: 992_CR34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06198E
– volume: 5
  start-page: 2742
  issue: 8
  year: 2020
  ident: 992_CR8
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01240
– volume: 12
  start-page: 2104030
  issue: 20
  year: 2022
  ident: 992_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202104030
– volume: 14
  start-page: 165
  year: 2022
  ident: 992_CR30
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00918-1
– volume: 431
  year: 2022
  ident: 992_CR12
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133209
– year: 2022
  ident: 992_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209516
– volume: 592
  start-page: 381
  year: 2021
  ident: 992_CR37
  publication-title: Nature
  doi: 10.1038/s41586-021-03406-5
– ident: 992_CR7
– volume: 48
  start-page: 3842
  year: 2019
  ident: 992_CR13
  publication-title: Chem. Soc Rev.
  doi: 10.1039/C8CS00853A
– volume: 3
  start-page: 190
  year: 2019
  ident: 992_CR40
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900220
– volume: 5
  start-page: 2915
  year: 2021
  ident: 992_CR24
  publication-title: Joule
  doi: 10.1016/j.joule.2021.07.016
– volume: 367
  start-page: 1352
  issue: 6484
  year: 2020
  ident: 992_CR11
  publication-title: Science
  doi: 10.1126/science.aba0893
– year: 2022
  ident: 992_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206914
– volume: 13
  start-page: 460
  year: 2019
  ident: 992_CR20
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 69
  start-page: 659
  year: 2022
  ident: 992_CR17
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.02.016
– volume: 29
  start-page: 1606831
  issue: 23
  year: 2017
  ident: 992_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606831
– volume: 6
  start-page: 7747
  year: 2015
  ident: 992_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8747
– volume: 375
  start-page: 302
  issue: 6578
  year: 2022
  ident: 992_CR4
  publication-title: Science
  doi: 10.1126/science.abh1885
– volume: 14
  start-page: 108
  year: 2022
  ident: 992_CR46
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00854-0
– volume: 11
  start-page: 2100529
  issue: 20
  year: 2021
  ident: 992_CR29
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100529
– volume: 9
  start-page: 4482
  year: 2018
  ident: 992_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06709-w
– volume: 29
  start-page: 1703852
  issue: 46
  year: 2017
  ident: 992_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 52
  start-page: 9019
  year: 2013
  ident: 992_CR48
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 32
  start-page: 2003990
  issue: 43
  year: 2020
  ident: 992_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003990
– volume: 34
  start-page: 2110438
  issue: 27
  year: 2022
  ident: 992_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110438
– volume: 131
  start-page: 6050
  issue: 17
  year: 2009
  ident: 992_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 12
  start-page: 2200417
  issue: 20
  year: 2022
  ident: 992_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200417
– volume: 6
  start-page: 2100893
  year: 2022
  ident: 992_CR38
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100893
– volume: 11
  start-page: 36727
  issue: 40
  year: 2019
  ident: 992_CR35
  publication-title: ACS Appl. Mater. Interface.
  doi: 10.1021/acsami.9b11817
– volume: 88
  year: 2002
  ident: 992_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.095501
– volume: 598
  start-page: 444
  year: 2021
  ident: 992_CR21
  publication-title: Nature
  doi: 10.1038/s41586-021-03964-8
– volume: 418
  year: 2021
  ident: 992_CR28
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129375
– volume: 10
  start-page: 2365
  year: 2017
  ident: 992_CR41
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02272G
– volume: 63
  start-page: 452
  year: 2021
  ident: 992_CR39
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.011
– volume: 4
  year: 2022
  ident: 992_CR42
  publication-title: EcoMat
  doi: 10.1002/eom2.12158
– volume: 34
  start-page: 2106118
  issue: 8
  year: 2022
  ident: 992_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106118
– volume: 11
  start-page: 3238
  issue: 11
  year: 2018
  ident: 992_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02242A
– volume: 3
  start-page: 1900088
  year: 2019
  ident: 992_CR36
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900088
– volume: 28
  start-page: 1706287
  issue: 14
  year: 2018
  ident: 992_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706287
– volume: 107
  year: 2022
  ident: 992_CR44
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2022.106544
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5981662
Snippet Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The...
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and...
HighlightsAn effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.The...
An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations...
Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Anions
Buried interface
Chemical bonds
Crystal defects
Crystallization
Defect passivation
Energy bands
Engineering
Fluorine
Functional groups
Hydrogen bonds
Interfacial energy
Molecular structure
Multiple chemical bonds
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optimization
Passivity
Perovskite Solar Cells
Perovskites
Photovoltaic cells
Potassium
Potassium salts
Solar cells
Stabilization
Substrates
Synergistic effect
Synergistic effect of functional groups
Tin dioxide
Wettability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQnuAB8U1gTEbiDSxqx47tRzatmpBASN2kvUWO7YhKUYrWdtL2X_Afc2enacvnC49tLq3ju_h-5zv_jpA3XhnhuBfMg7NgMojIDHgGVtnSBmtFyxNZ9afP1dmF_HipLndafWFNWKYHzhP3XgAksc6WgAWijNEYy6MQTeMg_uZeJyZQ8Hk7wRRYktDYkWmbH8S2ynKHpUYip0u5JTJTSFymt_yYSkjw64OjzUBaYwordarjnFV6Ug0ncNI5POzaPGFYGI-IC6K7PS-XmgH8DsH-Woj5UzY2ObnpA3J_QKf0Q56Vh-RO7B-RezuchY_Jd4CnWFB7C5_oMTa8CzRtK7bOR3o9d3R2g-cJEwE0zeTIdNHSabfGWr9IXR_obN21WBJPp-BW824kTbtgS3qe6njxxnk6q5nlV3jCi36JV4vrJe430xmG5PQkdt3yCbmYnp6fnLGhrwPzStsV09ZJDs8MoR-XrXTGON7AOiAcJlWN12BWAWS0iaJVJmUrfakaFUNZBZB8Sg76RR-fE-qjE1WYBImRlWhai2Vb3shgbGhBHwXhGz3UfiA9x94bXT3SNSfd1SBbJ93VqiBvx3u-ZcqPv0ofo3pHSaTrTl-AEdeDEdf_MuKCHG6Mox7WkGUtQEwZWIDhP16Pl-Htx5SO6-NiDTJaWYC0pbQFeZZtaRxJCeAS4UdB9J6V7Q11_0o__5oYxq1BKAq_-W5jj9th_XkqXvyPqXhJ7grAkbli6JAcrK7W8RXgvlVzlF7xH8zoRv4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA96vuiD-O3qKRF804Umm2ySR69YDkERegf3tmSTrBaWXem2B_pf-B87k_266in42O6kTZtJ5jeZmd8Q8tpJzS1zPHVgLFLheUg1WIY0N5nxxvCKRbLqj5_y03Px4UJeDEVh3ZjtPoYk40k9Fbtha-RFitnnCGvAhbpJbknw3VGvlzPnOFfYjWmODWJLZXGFoUYgn0s2k5hJJC1TMzem5AJs-mBkexCtMHwVu9QxluZqkQ_VN9dP68DCxUYA16HXP5Mwf4vERgO3ukfuDsiUvutV6T65EZoH5M4VvsKH5CdAU0ym_QGv6Ak2u_M0XilW1gV6ubF0_R1rCSP5M-2JkWlb0VW9xzy_QG3j6XpfV5gOT1dgUvubSBpvwDp6FnN4ceAm1mn28jus7qKfw7a97PCuma7RHafLUNfdI3K-en-2PE2Hng6pk8rsUmWsYPCbwe1johJWa8tKOAO4xYCqdgpUyoOM0oFXUsdIpctkKYPPcg-Sj8lR0zbhKaEuWJ77hRfoVfGyMpiy5bTw2vgK1iMhbFyHwg2E59h3oy4mqua4dgXIFnHtCpmQN9OYbz3dxz-lT3B5J0mk6o5vtNsvxbDzC1A9ZqzJYEwQIWhtWOC8LK3KGXNKJOR4VI5iOD-6goOY1HD4wne8mh7Dzsdwjm1CuwcZJQ3A2UyYhDzpdWmaSQbAEqFHQtSBlh1M9fBJs_ka2cWNRhgKn_l21Md5Wn__K579n_hzcht2btbnBR2To912H14AutuVL-Nm_gXMfjwv
  priority: 102
  providerName: Springer Nature
Title Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
URI https://link.springer.com/article/10.1007/s40820-022-00992-5
https://www.ncbi.nlm.nih.gov/pubmed/36580128
https://www.proquest.com/docview/2889583015
https://www.proquest.com/docview/2759264349
https://pubmed.ncbi.nlm.nih.gov/PMC9800669
https://doaj.org/article/21619a93009e4ee8891e22bba7611c74
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPiG8CozISbxBRO3ZsP6G1LExITBPdpL1Fru2MSlUy-jEJ_gv-Y-6ctF352EulJufKiX-9O9-df0fIGyc1t8zx1IGxSIXnIdVgGdLcZMYbwysWyaq_nOTH5-LzhbzoAm6LrqxyrROjovaNwxj5e661kRrgKD9cfU-xaxRmV7sWGnukBypYw-arNzw6Of26RhRX2JlpmyfE9sriBluNQG6XbEtoJpHATG15MiUXYN87g9s61ApTWbFjHWNprgZ5dxInnsfD7s2DFAvk0fOCXd6OtYtNAf7lyf5dkPlHVjYau-IBud95qfSwhdVDcifUj8i9G9yFj8kvcFOxsPYnfKNDbHznaQwvVtYFej21dPwDzxVGImjakiTTpqLFbIU1f4Ha2tPxalZhaTwtwLy2UUkao2ELehbreXHgNJ7ZbOWXeNKLnoZ5c73AuDMd49acjsJstnhCzoujs9Fx2vV3SJ1UZpkqYwWDZ4YtIBOVsFpbNgF9wC0mV7VTAC8PMkoHXkkds5YukxMZfJZ7kHxK9uumDs8JdcHy3A-8wB0Wn1QGy7ecFl4bX8F6JISt16F0Hfk59uCYlRva5rh2JciWce1KmZC3mzFXLfXHrdJDXN6NJNJ2xwvN_LLstEAJ0GPGmgzGBBECQJoFzicTq3LGnBIJOViDo-x0yaLcIj8hrze3QQtgasfWoVmBjJIGXNtMmIQ8a7G0mUkGTia6IQlROyjbmerunXr6LTKNG40uKfzmuzUet9P6_6t4cftTvCR3OXiKbU3QAdlfzlfhFXh2y0mf7OniU5_0Docfh0W_-zPD1REX-JmP-jFm8huBeUXv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSLWjh3bB4RoYdnSh5C2lXoLie3ASquk7KOo_Av-CL-RGSfZ7fLorcfdjKMkM54Zz-MbQp5ZqXnOLI8tGItYOO5jDZYhTk1inDG8ZAGsem8_HRyKj0fyaI386nphsKyy04lBUbvaYoz8FdfaSA3iKN8cf4txahRmV7sRGo1Y7PjT73Bkm77efgf8fc55__3B1iBupwrEViozi5XJBXPWw8GDiVLkWuesACnkOab0tFXwUg5olPa8lDrkymwiC-ldkjqghPteIpdFkhjcUbr_oZNfrnAO1DIricOcxRlsHIFIMskSPk0iXJpaonJKLsCbaM17474rTJyF-XiMxanqpW3fT-j-w1nRvRjL8dHPgzPlim0NIwj-5Tf_Xf75Rw44mNb-DXK99Ynp20aIb5I1X90i184gJd4mP8EpxjLeH_CLbuKYPUdDMLPMracno5wOT7GLMcBO0waSmdYl7Y_nWGHoaV45OpyPSyzEp30w5k0MlIbY25QehOphXDgKHaIN_Qz7yugnP6lPphjlpkMMBNAtPx5P75DDC-H7XbJe1ZW_T6j1OU9dzwk8z_GiNFgsZrVw2rgS-BER1vEhsy3UOk78GGcLkOjAuwxos8C7TEbkxWLNcQM0ci71JrJ3QYkg4eGPevIla3VOBqLHTG4SWOOF97CBmOe8KHKVMmaViMhGJxxZq7mm2XKfReTp4jLoHEwk5ZWv50CjpAFHOhEmIvcaWVo8SQIuLTo9EVErUrbyqKtXqtHXgGtuNDrAcM-XnTwuH-v_n-LB-W_xhFwZHOztZrvb-zsPyVUOPmpTjbRB1meTuX8EPuWseBw2MiWfL1pz_AZ0Unv3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeEN90DDASbxCtduzYfmSFaHxNk7pJe4sc2xmVqnTqx6TxX_Afc-ekSQsDicc259SpL77f-e5-R8gbJzW3zPHEgbFIhOch0WAZksykxhvDKxbJqr8dZYen4vOZPNuo4o_Z7uuQZFPTgCxN9XL_wlf7XeEbtkkeJpiJjhAH3Kmb5BZ4KgyT-kY9_zhX2JmpjxNie2WxwVYjkNsl7QnNJBKYqZ4nU3IB9r01uA2gVhjKih3rGEsyNczaSpzrp7Vl7WJTgOuQ7J8Jmb9FZaOxy--Tey1Kpe8btXpAboT6Ibm7wV34iPwEmIqJtT_gEz3AxneexuPFyrpALyeWjq-wrjASQdOGJJnOKppPV5jzF6itPR2vphWmxtMczGtzKknjadiCnsR8Xhw4iTWbjfwSK73ocZjPLhd47kzH6JrTUZhOF4_Jaf7xZHSYtP0dEieVWSbKWMHgmcEFZKISVmvLStgPuMXgqnYK1MuDjNKBV1LHqKVLZSmDTzMPkk_ITj2rwzNCXbA880Mv0MPiZWUwfctp4bXxFazHgLD1OhSuJT_HHhzToqNtjmtXgGwR166QA_K2G3PRUH_8U_oAl7eTRNru-MVsfl60u0ABqseMNSmMCSIErQ0LnJelVRljTokB2VsrR9HuJYuCg5jUsBHDb7zuLsMugKEdW4fZCmSUNABtU2EG5GmjS91MUgCZCEMGRG1p2dZUt6_Uk--RadxohKRwz3drfeyn9fe_Yvf_xF-R28cf8uLrp6Mvz8kdDiCySRfaIzvL-Sq8ANC3LF_G9_oXLzVDYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+Buried+Interface+via+Synergistic+Effect+of+Fluorine+and+Sulfonyl+Functional+Groups+Toward+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Cheng&rft.au=Zhang%2C+Cong&rft.au=Zhuang%2C+Qixin&rft.au=Li%2C+Haiyun&rft.date=2023-12-01&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=17&rft_id=info:doi/10.1007%2Fs40820-022-00992-5&rft_id=info%3Apmid%2F36580128&rft.externalDocID=36580128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon