Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance...
Saved in:
Published in | Nano-micro letters Vol. 15; no. 1; pp. 17 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.
The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established.
The device with KFSI achieves an impressive efficiency of 24.17%.
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI
2
to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO
2
/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO
2
heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO
2
gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl
−
, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. |
---|---|
AbstractList | Highlights
An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.
The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established.
The device with KFSI achieves an impressive efficiency of 24.17%.
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI
2
to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO
2
/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO
2
heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO
2
gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl
−
, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%. An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established. The device with KFSI achieves an impressive efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. HighlightsAn effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established.The device with KFSI achieves an impressive efficiency of 24.17%.The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl−, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI 2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO 2 /perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO 2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO 2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl − , all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl-, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl-, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%. |
ArticleNumber | 17 |
Author | Gong, Cheng Zang, Zhigang Zhang, Cong Zhuang, Qixin Chen, Jiangzhao Yang, Hua Li, Haiyun |
Author_xml | – sequence: 1 givenname: Cheng surname: Gong fullname: Gong, Cheng organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University – sequence: 2 givenname: Cong surname: Zhang fullname: Zhang, Cong organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University – sequence: 3 givenname: Qixin surname: Zhuang fullname: Zhuang, Qixin organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University – sequence: 4 givenname: Haiyun surname: Li fullname: Li, Haiyun organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University – sequence: 5 givenname: Hua surname: Yang fullname: Yang, Hua organization: Institute of High Energy Physics, Chinese Academy of Sciences (CAS) – sequence: 6 givenname: Jiangzhao surname: Chen fullname: Chen, Jiangzhao email: jiangzhaochen@cqu.edu.cn organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University – sequence: 7 givenname: Zhigang surname: Zang fullname: Zang, Zhigang email: zangzg@cqu.edu.cn organization: Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36580128$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ktFuFCEUhiemxtbaF_DCkHjjzSgwMMPcmOimWzdposnWa8IwZ1YqCyswa9a38I1lOq3aXvQKAt__83POeV4cOe-gKF4S_JZg3LyLDAuKS0xpiXHb0pI_KU4o4bjknJOjvK8IKesG18fFWYymw5yyhjacPSuOq5oLTKg4KX6vk-qMNb-M26CPYzDQo5VLEAalAe2NQuuDg7AxMRmNzocBdEJ-QEs7-mAcIOV6tB7t4N3BouXodDLeKYsugh93EV35nyr0k9BoAy7NfH7TAvoCwe_jd5MArb1VAS3A2viieDooG-Hsdj0tvi7PrxafysvPF6vFh8tS86ZNZdMqRnoNLWWEDUwJoUhXV4KqhuNK6Aa07jPTCKBD_i3GrNIV7zj0Vd1n8rRYzb69V9dyF8xWhYP0ysibAx82UoX8aQuSkpq0qq1yoYEBCNESoLTrVFMTohuWvd7PXrux20JO5VJQ9p7p_RtnvsmN38s2B6vrNhu8uTUI_scIMcmtiTqXQznwY5S5by2tWcUm9PUD9NqPIZc8UzkZFxUmPFOv_k_0N8pd5zMgZkAHH2OAQWqT1NS8HNBYSbCc5kzOcybznMmbOZOTN30gvXN_VFTNophht4HwL_Yjqj9cuOX9 |
CitedBy_id | crossref_primary_10_1002_smll_202207769 crossref_primary_10_1016_j_cej_2023_144056 crossref_primary_10_1021_acsaem_3c03135 crossref_primary_10_1039_D4BM01411A crossref_primary_10_1002_smtd_202400385 crossref_primary_10_1021_acsami_3c00206 crossref_primary_10_1002_smll_202408593 crossref_primary_10_1002_solr_202300324 crossref_primary_10_1016_j_cej_2024_150970 crossref_primary_10_1007_s11356_023_26497_1 crossref_primary_10_1016_j_cej_2023_145707 crossref_primary_10_1007_s40820_023_01076_8 crossref_primary_10_1021_acsaem_2c03955 crossref_primary_10_1016_j_jechem_2024_07_060 crossref_primary_10_1021_acsenergylett_3c01581 crossref_primary_10_1002_solr_202201129 crossref_primary_10_1007_s10853_024_10073_0 crossref_primary_10_1002_ange_202317185 crossref_primary_10_1002_ange_202304256 crossref_primary_10_1021_acsami_3c13085 crossref_primary_10_1021_acsami_4c07458 crossref_primary_10_1088_1674_4926_44_8_080201 crossref_primary_10_1016_j_jcis_2023_05_058 crossref_primary_10_1088_1361_6528_ad12e7 crossref_primary_10_1016_j_xcrp_2024_101996 crossref_primary_10_1002_adfm_202309910 crossref_primary_10_1016_j_solener_2023_02_003 crossref_primary_10_1007_s40843_023_2832_y crossref_primary_10_1088_1361_6641_ad0e7f crossref_primary_10_3390_en16083519 crossref_primary_10_1039_D4TC00219A crossref_primary_10_1016_j_mssp_2024_108138 crossref_primary_10_1016_j_cej_2023_143862 crossref_primary_10_1002_adma_202416932 crossref_primary_10_1002_adma_202313860 crossref_primary_10_3390_molecules28104103 crossref_primary_10_1021_acs_jpclett_4c03211 crossref_primary_10_1002_smll_202308964 crossref_primary_10_1021_acs_energyfuels_3c02361 crossref_primary_10_1088_2053_1591_ad1d87 crossref_primary_10_1016_j_ceramint_2023_09_057 crossref_primary_10_1016_j_surfin_2024_104007 crossref_primary_10_1002_solr_202300438 crossref_primary_10_1002_smll_202410601 crossref_primary_10_1002_adfm_202415547 crossref_primary_10_1002_anie_202317185 crossref_primary_10_1063_5_0188717 crossref_primary_10_1002_adfm_202311133 crossref_primary_10_1016_j_cej_2024_153945 crossref_primary_10_1088_1402_4896_ad4d25 crossref_primary_10_1063_5_0205615 crossref_primary_10_1002_smll_202308836 crossref_primary_10_3390_nano13081313 crossref_primary_10_1021_acsami_4c03969 crossref_primary_10_1016_j_orgel_2023_106841 crossref_primary_10_1016_j_mtadv_2024_100523 crossref_primary_10_1002_aenm_202402990 crossref_primary_10_1021_acsaelm_4c02116 crossref_primary_10_1016_j_solmat_2023_112562 crossref_primary_10_1002_aenm_202402469 crossref_primary_10_1002_adma_202312679 crossref_primary_10_1002_adfm_202307949 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1002_adfm_202314472 crossref_primary_10_1016_j_mtphys_2023_101187 crossref_primary_10_1149_2162_8777_acd601 crossref_primary_10_1155_2023_1844719 crossref_primary_10_1016_j_cej_2023_147191 crossref_primary_10_1016_j_optmat_2024_115006 crossref_primary_10_1063_5_0206245 crossref_primary_10_1007_s12274_024_6639_9 crossref_primary_10_1002_cjoc_202300651 crossref_primary_10_1002_aelm_202300751 crossref_primary_10_1039_D4RA05219F crossref_primary_10_1002_cssc_202400038 crossref_primary_10_1002_anie_202304256 crossref_primary_10_1002_smll_202311377 crossref_primary_10_1016_j_mtadv_2024_100501 crossref_primary_10_6023_A24040134 crossref_primary_10_1016_j_cej_2024_151162 crossref_primary_10_1021_acssuschemeng_4c00772 crossref_primary_10_1007_s40820_023_01138_x crossref_primary_10_1021_acsami_4c08445 crossref_primary_10_1007_s11356_023_26733_8 crossref_primary_10_1039_D4TC01479K crossref_primary_10_1016_j_nanoen_2024_109544 crossref_primary_10_1016_j_solmat_2024_113071 crossref_primary_10_1002_smll_202307679 crossref_primary_10_1088_1402_4896_acd4ff crossref_primary_10_26599_EMD_2024_9370029 crossref_primary_10_1002_smll_202310275 crossref_primary_10_1002_adma_202412304 crossref_primary_10_1002_smll_202303060 crossref_primary_10_1002_aenm_202302659 crossref_primary_10_1016_j_matlet_2023_135365 crossref_primary_10_1039_D3NJ00837A crossref_primary_10_1021_acsaem_3c01209 crossref_primary_10_3390_cryst13060961 crossref_primary_10_1039_D3EE00413A crossref_primary_10_1039_D3QI00863K crossref_primary_10_1016_j_cej_2024_156614 crossref_primary_10_1002_smsc_202300020 crossref_primary_10_1088_2053_1591_ace0fe crossref_primary_10_1002_adma_202411451 crossref_primary_10_1002_aenm_202301332 crossref_primary_10_1016_j_ceramint_2024_05_187 crossref_primary_10_1021_acsami_5c01012 |
Cites_doi | 10.1038/s41586-021-03964-8 10.1002/adma.201902902 10.1039/C7EE02272G 10.1007/s12274-022-4135-7 10.1126/science.abl5676 10.1016/j.orgel.2022.106544 10.1002/adma.202110438 10.1016/j.jechem.2022.02.016 10.1038/s41467-018-06709-w 10.1002/aenm.201900664 10.1016/j.cej.2021.129375 10.1021/acsami.9b11817 10.1126/science.abh1885 10.1021/acsenergylett.1c00794 10.1039/C8CS00853A 10.1002/adfm.201706287 10.1038/s41566-019-0398-2 10.1126/science.aba0893 10.1016/j.joule.2021.07.016 10.1021/ic401215x 10.1002/adma.202007126 10.1002/adma.202003990 10.1007/s40820-022-00854-0 10.1002/adfm.202209516 10.1038/s41586-021-03406-5 10.1016/j.cej.2021.133209 10.1002/adma.201900390 10.1039/C4TA06198E 10.1002/solr.202100893 10.1038/ncomms8747 10.1039/D0TA12612H 10.1002/adma.201606831 10.1007/s40820-021-00763-8 10.1002/smtd.202100311 10.1021/ja809598r 10.1021/acsenergylett.0c01566 10.1002/anie.202206914 10.1021/acsenergylett.0c01240 10.1007/s40820-022-00918-1 10.1002/adma.202106118 10.1002/aenm.202200417 10.1016/j.jechem.2021.07.011 10.1039/C8EE02242A 10.1103/PhysRevLett.88.095501 10.1002/aenm.202100529 10.1039/D1EE01519B 10.1002/solr.201900088 10.1002/aenm.202104030 10.1002/solr.201900220 10.1002/eom2.12158 10.1002/adma.201703852 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-022-00992-5 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_21619a93009e4ee8891e22bba7611c74 PMC9800669 36580128 10_1007_s40820_022_00992_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-79a41dce92414f4a88a1b6382a75038c7eccd9a478e2f5800043c35b5ed36db63 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 00:47:19 EDT 2025 Thu Aug 21 18:40:07 EDT 2025 Fri Jul 11 11:39:22 EDT 2025 Wed Aug 13 03:49:54 EDT 2025 Wed Feb 19 02:24:16 EST 2025 Tue Jul 01 00:55:48 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Fri Feb 21 02:41:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multiple chemical bonds Buried interface Defect passivation Perovskite solar cells Synergistic effect of functional groups |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-79a41dce92414f4a88a1b6382a75038c7eccd9a478e2f5800043c35b5ed36db63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2889583015?pq-origsite=%requestingapplication% |
PMID | 36580128 |
PQID | 2889583015 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21619a93009e4ee8891e22bba7611c74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9800669 proquest_miscellaneous_2759264349 proquest_journals_2889583015 pubmed_primary_36580128 crossref_citationtrail_10_1007_s40820_022_00992_5 crossref_primary_10_1007_s40820_022_00992_5 springer_journals_10_1007_s40820_022_00992_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Gao, Wang, Choy (CR10) 2022; 12 Jiang, Zhao, Zhang, Yang, Chen (CR20) 2019; 13 You, Zeng, Ku, Wang, Wang (CR23) 2020; 32 Bi, Li, Milic, Kubicki, Pellet (CR31) 2018; 9 Dong, Shen, Dong, Bai, Zhao (CR16) 2022; 12 Zhang, Liang, Wang, Zheng, Wu (CR30) 2022; 14 Zhuang, Wang, Zhang, Gong, Li (CR45) 2022; 15 Stoumpos, Malliakas, Kanatzidis (CR48) 2013; 52 Li, Li, Zhuang, He, Liu (CR5) 2022 Kim, Jeong, Lu, Lee, Eickemeyer (CR4) 2022; 375 Aldibaja, Badia, Mas-Marzá, Sánchez, Barea (CR34) 2015; 3 Kim, Park, Li, Yang, Park (CR47) 2017; 29 Choi, Lee, Kim, Park, Kim (CR26) 2018; 11 Levine, Al-Ashouri, Musiienko, Hempel, Magomedov (CR24) 2021; 5 Yuan, Cai, Yang, Zhao, Qian (CR40) 2019; 3 Singh, Öz, Sasinska, Frohnhoven, Mathur (CR43) 2018; 28 Chen, Park (CR8) 2020; 5 Ni, Bao, Liu, Jiang, Wu (CR11) 2020; 367 Chen, Zhao, Kim, Park (CR27) 2019; 31 Bi, Zuo, Liu, He, Bai (CR22) 2021; 9 Li, Zhang, Guo, Lu, Wei (CR1) 2022; 375 Chen, Zhai, Ren, Huo, Yun (CR44) 2022; 107 CR7 Dagar, Hirselandt, Merdasa, Czudek, Munir (CR36) 2019; 3 Bi, Wang, Shao, Yuan, Xiao (CR49) 2015; 6 Gao, Yang, Ma, Shang, Wang (CR17) 2022; 69 Jeong, Kim, Seo, Lu, Ahlawat (CR37) 2021; 592 Liu, Bi, He, Bai, Wang (CR32) 2021; 6 Yuan, Cai, Lv, Gao, Gu (CR3) 2021; 14 Jiang, Ai, Yan, Li, Lin (CR35) 2019; 11 Xu, Liu, Li, Tang, Zheng (CR51) 2019; 31 Kojima, Teshima, Shirai, Miyasaka (CR6) 2009; 131 Ye, Ma, Chen, Wang, Xu (CR19) 2021; 33 Dong, Qiao, Xiong, Yang, Wang (CR46) 2022; 14 Zhu, Zhang, Li, Shang, Lei (CR29) 2021; 11 Wang, Zhou, He, Liu, Bai (CR38) 2022; 6 Zhou, Wang, Zang, Fang (CR2) 2019; 9 Xiong, Chen, Zhang, Odunmbaku, Ou (CR18) 2022; 34 Kılıç, Zunger (CR15) 2002; 88 Zhang, Wang, Li, Zhuang, Gong (CR39) 2021; 63 Jung, Chen, Bertens, Vafaie, Teale (CR25) 2020; 5 Park, Zhu (CR14) 2022; 34 Jiang, Chu, Wang, Yang, Liu (CR50) 2017; 29 Min, Lee, Kim, Kim, Lee (CR21) 2021; 598 Chen, Park (CR33) 2021; 5 Han, Bai, Liu, Du, Li (CR41) 2017; 10 Xu, Cui, Yang, Han, Guo (CR52) 2021; 14 Deng, Zhang, Wei, Xiao, Zhang (CR9) 2022 He, Zhou, Liu, Bai, Wang (CR42) 2022; 4 Bi, Liu, He, Bai, Wang (CR28) 2021; 418 Chen, Rudd, Yang, Yuan, Huang (CR13) 2019; 48 Zuo, Kim, Liu, He, Bai (CR12) 2022; 431 M Kim (992_CR4) 2022; 375 Q Jiang (992_CR20) 2019; 13 EH Jung (992_CR25) 2020; 5 D Gao (992_CR17) 2022; 69 M Li (992_CR5) 2022 J Chen (992_CR27) 2019; 31 992_CR7 W Dong (992_CR46) 2022; 14 Z Ni (992_CR11) 2020; 367 Y Dong (992_CR16) 2022; 12 A Kojima (992_CR6) 2009; 131 J Jeong (992_CR37) 2021; 592 B Liu (992_CR32) 2021; 6 T Zhou (992_CR2) 2019; 9 D He (992_CR42) 2022; 4 J Chen (992_CR8) 2020; 5 F Ye (992_CR19) 2021; 33 CC Stoumpos (992_CR48) 2013; 52 W Wang (992_CR38) 2022; 6 S Yuan (992_CR40) 2019; 3 S You (992_CR23) 2020; 32 J Xu (992_CR52) 2021; 14 Z Zhang (992_CR30) 2022; 14 Z Xiong (992_CR18) 2022; 34 K Choi (992_CR26) 2018; 11 Q Han (992_CR41) 2017; 10 C Bi (992_CR49) 2015; 6 J Dagar (992_CR36) 2019; 3 T Singh (992_CR43) 2018; 28 Ç Kılıç (992_CR15) 2002; 88 E Jiang (992_CR35) 2019; 11 X Zuo (992_CR12) 2022; 431 J Chen (992_CR33) 2021; 5 D Bi (992_CR31) 2018; 9 I Levine (992_CR24) 2021; 5 J Deng (992_CR9) 2022 H Bi (992_CR22) 2021; 9 FK Aldibaja (992_CR34) 2015; 3 Q Jiang (992_CR50) 2017; 29 DH Kim (992_CR47) 2017; 29 L Zhu (992_CR29) 2021; 11 C Zhang (992_CR39) 2021; 63 B Chen (992_CR13) 2019; 48 ZW Gao (992_CR10) 2022; 12 X Li (992_CR1) 2022; 375 Q Zhuang (992_CR45) 2022; 15 SY Park (992_CR14) 2022; 34 Q Chen (992_CR44) 2022; 107 H Min (992_CR21) 2021; 598 Z Xu (992_CR51) 2019; 31 H Bi (992_CR28) 2021; 418 R Yuan (992_CR3) 2021; 14 |
References_xml | – volume: 598 start-page: 444 year: 2021 end-page: 450 ident: CR21 article-title: Perovskite solar cells with atomically coherent interlayers on SnO electrodes publication-title: Nature doi: 10.1038/s41586-021-03964-8 – volume: 31 start-page: 1902902 issue: 39 year: 2019 ident: CR27 article-title: Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201902902 – volume: 10 start-page: 2365 year: 2017 end-page: 2371 ident: CR41 article-title: Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02272G – volume: 15 start-page: 5114 year: 2022 end-page: 5122 ident: CR45 article-title: Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells publication-title: Nano Res. doi: 10.1007/s12274-022-4135-7 – volume: 375 start-page: 434 issue: 6579 year: 2022 end-page: 437 ident: CR1 article-title: Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells publication-title: Science doi: 10.1126/science.abl5676 – volume: 107 year: 2022 ident: CR44 article-title: Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar cells publication-title: Org. Electron. doi: 10.1016/j.orgel.2022.106544 – volume: 34 start-page: 2110438 issue: 27 year: 2022 ident: CR14 article-title: Advances in SnO for efficient and stable n–i–p perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.202110438 – volume: 69 start-page: 659 year: 2022 end-page: 666 ident: CR17 article-title: Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.02.016 – volume: 9 start-page: 4482 year: 2018 ident: CR31 article-title: Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability publication-title: Nat. Commun. doi: 10.1038/s41467-018-06709-w – volume: 9 start-page: 1900664 issue: 29 year: 2019 ident: CR2 article-title: Stable dynamics performance and high efficiency of ABX -type super-alkali perovskites first obtained by introducing H O cation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900664 – volume: 418 year: 2021 ident: CR28 article-title: Interfacial defect passivation and stress release by multifunctional KPF modification for planar perovskite solar cells with enhanced efficiency and stability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129375 – volume: 11 start-page: 36727 issue: 40 year: 2019 end-page: 36734 ident: CR35 article-title: Phosphate-passivated SnO electron transport layer for high-performance perovskite solar cells publication-title: ACS Appl. Mater. Interface. doi: 10.1021/acsami.9b11817 – volume: 375 start-page: 302 issue: 6578 year: 2022 end-page: 306 ident: CR4 article-title: Conformal quantum dot SnO layers as electron transporters for efficient perovskite solar cells publication-title: Science doi: 10.1126/science.abh1885 – volume: 6 start-page: 2526 issue: 7 year: 2021 end-page: 2538 ident: CR32 article-title: Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00794 – volume: 48 start-page: 3842 year: 2019 end-page: 3867 ident: CR13 article-title: Imperfections and their passivation in halide perovskite solar cells publication-title: Chem. Soc Rev. doi: 10.1039/C8CS00853A – volume: 28 start-page: 1706287 issue: 14 year: 2018 ident: CR43 article-title: Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO electron-transporting layers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706287 – volume: 13 start-page: 460 year: 2019 end-page: 466 ident: CR20 article-title: Surface passivation of perovskite film for efficient solar cells publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 367 start-page: 1352 issue: 6484 year: 2020 end-page: 1358 ident: CR11 article-title: Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells publication-title: Science doi: 10.1126/science.aba0893 – volume: 5 start-page: 2915 year: 2021 end-page: 2933 ident: CR24 article-title: Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2021.07.016 – volume: 52 start-page: 9019 year: 2013 end-page: 9038 ident: CR48 article-title: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties publication-title: Inorg. Chem. doi: 10.1021/ic401215x – volume: 33 start-page: 2007126 issue: 3 year: 2021 ident: CR19 article-title: Roles of macl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells publication-title: Adv. Mater. doi: 10.1002/adma.202007126 – volume: 32 start-page: 2003990 issue: 43 year: 2020 ident: CR23 article-title: Multifunctional polymer-regulated SnO nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.202003990 – volume: 14 start-page: 108 year: 2022 ident: CR46 article-title: Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00854-0 – year: 2022 ident: CR9 article-title: Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209516 – volume: 592 start-page: 381 year: 2021 end-page: 385 ident: CR37 article-title: Pseudo-halide anion engineering for α-FAPbI perovskite solar cells publication-title: Nature doi: 10.1038/s41586-021-03406-5 – volume: 431 year: 2022 ident: CR12 article-title: Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133209 – volume: 31 start-page: 1900390 issue: 24 year: 2019 ident: CR51 article-title: A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201900390 – volume: 3 start-page: 9194 issue: 17 year: 2015 end-page: 9200 ident: CR34 article-title: Effect of different lead precursors on perovskite solar cell performance and stability publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06198E – volume: 6 start-page: 2100893 year: 2022 ident: CR38 article-title: Self-formed multifunctional grain boundary passivation layer achieving 22.4% efficient and stable perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.202100893 – volume: 6 start-page: 7747 year: 2015 ident: CR49 article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms8747 – volume: 9 start-page: 3940 issue: 7 year: 2021 end-page: 3951 ident: CR22 article-title: Multifunctional organic ammonium salt-modified SnO nanoparticles toward efficient and stable planar perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12612H – volume: 29 start-page: 1606831 issue: 23 year: 2017 ident: CR47 article-title: 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment publication-title: Adv. Mater. doi: 10.1002/adma.201606831 – volume: 14 start-page: 7 year: 2021 ident: CR52 article-title: Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI Br solar cells publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00763-8 – volume: 5 start-page: 2100311 issue: 6 year: 2021 ident: CR33 article-title: Nonhalide materials for efficient and stable perovskite solar cells publication-title: Small Method. doi: 10.1002/smtd.202100311 – volume: 131 start-page: 6050 issue: 17 year: 2009 end-page: 6051 ident: CR6 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 5 start-page: 2796 issue: 9 year: 2020 end-page: 2801 ident: CR25 article-title: Bifunctional surface engineering on SnO reduces energy loss in perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01566 – year: 2022 ident: CR5 article-title: Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206914 – volume: 5 start-page: 2742 issue: 8 year: 2020 end-page: 2786 ident: CR8 article-title: Materials and methods for interface engineering toward stable and efficient perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01240 – volume: 14 start-page: 165 year: 2022 ident: CR30 article-title: Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00918-1 – volume: 34 start-page: 2106118 issue: 8 year: 2022 ident: CR18 article-title: Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4% publication-title: Adv. Mater. doi: 10.1002/adma.202106118 – volume: 12 start-page: 2200417 issue: 20 year: 2022 ident: CR16 article-title: Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200417 – volume: 63 start-page: 452 year: 2021 end-page: 460 ident: CR39 article-title: Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.011 – volume: 11 start-page: 3238 issue: 11 year: 2018 end-page: 3247 ident: CR26 article-title: Thermally stable, planar hybrid perovskite solar cells with high efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02242A – volume: 88 year: 2002 ident: CR15 article-title: Origins of coexistence of conductivity and transparency in SnO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.095501 – volume: 11 start-page: 2100529 issue: 20 year: 2021 ident: CR29 article-title: Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100529 – volume: 14 start-page: 5074 year: 2021 end-page: 5083 ident: CR3 article-title: Boosted charge extraction of NbO -enveloped SnO nanocrystals enables 24% efficient planar perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01519B – volume: 3 start-page: 1900088 year: 2019 ident: CR36 article-title: Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.201900088 – ident: CR7 – volume: 12 start-page: 2104030 issue: 20 year: 2022 ident: CR10 article-title: Buried interface modification in perovskite solar cells: a materials perspective publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202104030 – volume: 3 start-page: 190 year: 2019 ident: CR40 article-title: Simultaneous cesium and acetate coalloying improves efficiency and stability of FA MA PbI3 perovskite solar cell with an efficiency of 21.95% publication-title: Sol. RRL doi: 10.1002/solr.201900220 – volume: 4 year: 2022 ident: CR42 article-title: Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence publication-title: EcoMat doi: 10.1002/eom2.12158 – volume: 29 start-page: 1703852 issue: 46 year: 2017 ident: CR50 article-title: Planar-structure perovskite solar cells with efficiency beyond 21 publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 14 start-page: 5074 year: 2021 ident: 992_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01519B – volume: 33 start-page: 2007126 issue: 3 year: 2021 ident: 992_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.202007126 – volume: 31 start-page: 1900390 issue: 24 year: 2019 ident: 992_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201900390 – volume: 5 start-page: 2796 issue: 9 year: 2020 ident: 992_CR25 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01566 – volume: 14 start-page: 7 year: 2021 ident: 992_CR52 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00763-8 – volume: 5 start-page: 2100311 issue: 6 year: 2021 ident: 992_CR33 publication-title: Small Method. doi: 10.1002/smtd.202100311 – volume: 9 start-page: 1900664 issue: 29 year: 2019 ident: 992_CR2 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900664 – volume: 31 start-page: 1902902 issue: 39 year: 2019 ident: 992_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201902902 – volume: 9 start-page: 3940 issue: 7 year: 2021 ident: 992_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12612H – volume: 15 start-page: 5114 year: 2022 ident: 992_CR45 publication-title: Nano Res. doi: 10.1007/s12274-022-4135-7 – volume: 375 start-page: 434 issue: 6579 year: 2022 ident: 992_CR1 publication-title: Science doi: 10.1126/science.abl5676 – volume: 6 start-page: 2526 issue: 7 year: 2021 ident: 992_CR32 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00794 – volume: 3 start-page: 9194 issue: 17 year: 2015 ident: 992_CR34 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06198E – volume: 5 start-page: 2742 issue: 8 year: 2020 ident: 992_CR8 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01240 – volume: 12 start-page: 2104030 issue: 20 year: 2022 ident: 992_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202104030 – volume: 14 start-page: 165 year: 2022 ident: 992_CR30 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00918-1 – volume: 431 year: 2022 ident: 992_CR12 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133209 – year: 2022 ident: 992_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209516 – volume: 592 start-page: 381 year: 2021 ident: 992_CR37 publication-title: Nature doi: 10.1038/s41586-021-03406-5 – ident: 992_CR7 – volume: 48 start-page: 3842 year: 2019 ident: 992_CR13 publication-title: Chem. Soc Rev. doi: 10.1039/C8CS00853A – volume: 3 start-page: 190 year: 2019 ident: 992_CR40 publication-title: Sol. RRL doi: 10.1002/solr.201900220 – volume: 5 start-page: 2915 year: 2021 ident: 992_CR24 publication-title: Joule doi: 10.1016/j.joule.2021.07.016 – volume: 367 start-page: 1352 issue: 6484 year: 2020 ident: 992_CR11 publication-title: Science doi: 10.1126/science.aba0893 – year: 2022 ident: 992_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206914 – volume: 13 start-page: 460 year: 2019 ident: 992_CR20 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 69 start-page: 659 year: 2022 ident: 992_CR17 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.02.016 – volume: 29 start-page: 1606831 issue: 23 year: 2017 ident: 992_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201606831 – volume: 6 start-page: 7747 year: 2015 ident: 992_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms8747 – volume: 375 start-page: 302 issue: 6578 year: 2022 ident: 992_CR4 publication-title: Science doi: 10.1126/science.abh1885 – volume: 14 start-page: 108 year: 2022 ident: 992_CR46 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00854-0 – volume: 11 start-page: 2100529 issue: 20 year: 2021 ident: 992_CR29 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100529 – volume: 9 start-page: 4482 year: 2018 ident: 992_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06709-w – volume: 29 start-page: 1703852 issue: 46 year: 2017 ident: 992_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 52 start-page: 9019 year: 2013 ident: 992_CR48 publication-title: Inorg. Chem. doi: 10.1021/ic401215x – volume: 32 start-page: 2003990 issue: 43 year: 2020 ident: 992_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.202003990 – volume: 34 start-page: 2110438 issue: 27 year: 2022 ident: 992_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202110438 – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: 992_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 12 start-page: 2200417 issue: 20 year: 2022 ident: 992_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200417 – volume: 6 start-page: 2100893 year: 2022 ident: 992_CR38 publication-title: Sol. RRL doi: 10.1002/solr.202100893 – volume: 11 start-page: 36727 issue: 40 year: 2019 ident: 992_CR35 publication-title: ACS Appl. Mater. Interface. doi: 10.1021/acsami.9b11817 – volume: 88 year: 2002 ident: 992_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.095501 – volume: 598 start-page: 444 year: 2021 ident: 992_CR21 publication-title: Nature doi: 10.1038/s41586-021-03964-8 – volume: 418 year: 2021 ident: 992_CR28 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129375 – volume: 10 start-page: 2365 year: 2017 ident: 992_CR41 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02272G – volume: 63 start-page: 452 year: 2021 ident: 992_CR39 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.011 – volume: 4 year: 2022 ident: 992_CR42 publication-title: EcoMat doi: 10.1002/eom2.12158 – volume: 34 start-page: 2106118 issue: 8 year: 2022 ident: 992_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202106118 – volume: 11 start-page: 3238 issue: 11 year: 2018 ident: 992_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02242A – volume: 3 start-page: 1900088 year: 2019 ident: 992_CR36 publication-title: Sol. RRL doi: 10.1002/solr.201900088 – volume: 28 start-page: 1706287 issue: 14 year: 2018 ident: 992_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706287 – volume: 107 year: 2022 ident: 992_CR44 publication-title: Org. Electron. doi: 10.1016/j.orgel.2022.106544 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5981662 |
Snippet | Highlights
An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.
The... The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and... HighlightsAn effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.The... An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The correlations... Highlights An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17 |
SubjectTerms | Anions Buried interface Chemical bonds Crystal defects Crystallization Defect passivation Energy bands Engineering Fluorine Functional groups Hydrogen bonds Interfacial energy Molecular structure Multiple chemical bonds Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optimization Passivity Perovskite Solar Cells Perovskites Photovoltaic cells Potassium Potassium salts Solar cells Stabilization Substrates Synergistic effect Synergistic effect of functional groups Tin dioxide Wettability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQnuAB8U1gTEbiDSxqx47tRzatmpBASN2kvUWO7YhKUYrWdtL2X_Afc2enacvnC49tLq3ju_h-5zv_jpA3XhnhuBfMg7NgMojIDHgGVtnSBmtFyxNZ9afP1dmF_HipLndafWFNWKYHzhP3XgAksc6WgAWijNEYy6MQTeMg_uZeJyZQ8Hk7wRRYktDYkWmbH8S2ynKHpUYip0u5JTJTSFymt_yYSkjw64OjzUBaYwordarjnFV6Ug0ncNI5POzaPGFYGI-IC6K7PS-XmgH8DsH-Woj5UzY2ObnpA3J_QKf0Q56Vh-RO7B-RezuchY_Jd4CnWFB7C5_oMTa8CzRtK7bOR3o9d3R2g-cJEwE0zeTIdNHSabfGWr9IXR_obN21WBJPp-BW824kTbtgS3qe6njxxnk6q5nlV3jCi36JV4vrJe430xmG5PQkdt3yCbmYnp6fnLGhrwPzStsV09ZJDs8MoR-XrXTGON7AOiAcJlWN12BWAWS0iaJVJmUrfakaFUNZBZB8Sg76RR-fE-qjE1WYBImRlWhai2Vb3shgbGhBHwXhGz3UfiA9x94bXT3SNSfd1SBbJ93VqiBvx3u-ZcqPv0ofo3pHSaTrTl-AEdeDEdf_MuKCHG6Mox7WkGUtQEwZWIDhP16Pl-Htx5SO6-NiDTJaWYC0pbQFeZZtaRxJCeAS4UdB9J6V7Q11_0o__5oYxq1BKAq_-W5jj9th_XkqXvyPqXhJ7grAkbli6JAcrK7W8RXgvlVzlF7xH8zoRv4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA96vuiD-O3qKRF804Umm2ySR69YDkERegf3tmSTrBaWXem2B_pf-B87k_266in42O6kTZtJ5jeZmd8Q8tpJzS1zPHVgLFLheUg1WIY0N5nxxvCKRbLqj5_y03Px4UJeDEVh3ZjtPoYk40k9Fbtha-RFitnnCGvAhbpJbknw3VGvlzPnOFfYjWmODWJLZXGFoUYgn0s2k5hJJC1TMzem5AJs-mBkexCtMHwVu9QxluZqkQ_VN9dP68DCxUYA16HXP5Mwf4vERgO3ukfuDsiUvutV6T65EZoH5M4VvsKH5CdAU0ym_QGv6Ak2u_M0XilW1gV6ubF0_R1rCSP5M-2JkWlb0VW9xzy_QG3j6XpfV5gOT1dgUvubSBpvwDp6FnN4ceAm1mn28jus7qKfw7a97PCuma7RHafLUNfdI3K-en-2PE2Hng6pk8rsUmWsYPCbwe1johJWa8tKOAO4xYCqdgpUyoOM0oFXUsdIpctkKYPPcg-Sj8lR0zbhKaEuWJ77hRfoVfGyMpiy5bTw2vgK1iMhbFyHwg2E59h3oy4mqua4dgXIFnHtCpmQN9OYbz3dxz-lT3B5J0mk6o5vtNsvxbDzC1A9ZqzJYEwQIWhtWOC8LK3KGXNKJOR4VI5iOD-6goOY1HD4wne8mh7Dzsdwjm1CuwcZJQ3A2UyYhDzpdWmaSQbAEqFHQtSBlh1M9fBJs_ka2cWNRhgKn_l21Md5Wn__K579n_hzcht2btbnBR2To912H14AutuVL-Nm_gXMfjwv priority: 102 providerName: Springer Nature |
Title | Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells |
URI | https://link.springer.com/article/10.1007/s40820-022-00992-5 https://www.ncbi.nlm.nih.gov/pubmed/36580128 https://www.proquest.com/docview/2889583015 https://www.proquest.com/docview/2759264349 https://pubmed.ncbi.nlm.nih.gov/PMC9800669 https://doaj.org/article/21619a93009e4ee8891e22bba7611c74 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPiG8CozISbxBRO3ZsP6G1LExITBPdpL1Fru2MSlUy-jEJ_gv-Y-6ctF352EulJufKiX-9O9-df0fIGyc1t8zx1IGxSIXnIdVgGdLcZMYbwysWyaq_nOTH5-LzhbzoAm6LrqxyrROjovaNwxj5e661kRrgKD9cfU-xaxRmV7sWGnukBypYw-arNzw6Of26RhRX2JlpmyfE9sriBluNQG6XbEtoJpHATG15MiUXYN87g9s61ApTWbFjHWNprgZ5dxInnsfD7s2DFAvk0fOCXd6OtYtNAf7lyf5dkPlHVjYau-IBud95qfSwhdVDcifUj8i9G9yFj8kvcFOxsPYnfKNDbHznaQwvVtYFej21dPwDzxVGImjakiTTpqLFbIU1f4Ha2tPxalZhaTwtwLy2UUkao2ELehbreXHgNJ7ZbOWXeNKLnoZ5c73AuDMd49acjsJstnhCzoujs9Fx2vV3SJ1UZpkqYwWDZ4YtIBOVsFpbNgF9wC0mV7VTAC8PMkoHXkkds5YukxMZfJZ7kHxK9uumDs8JdcHy3A-8wB0Wn1QGy7ecFl4bX8F6JISt16F0Hfk59uCYlRva5rh2JciWce1KmZC3mzFXLfXHrdJDXN6NJNJ2xwvN_LLstEAJ0GPGmgzGBBECQJoFzicTq3LGnBIJOViDo-x0yaLcIj8hrze3QQtgasfWoVmBjJIGXNtMmIQ8a7G0mUkGTia6IQlROyjbmerunXr6LTKNG40uKfzmuzUet9P6_6t4cftTvCR3OXiKbU3QAdlfzlfhFXh2y0mf7OniU5_0Docfh0W_-zPD1REX-JmP-jFm8huBeUXv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSLWjh3bB4RoYdnSh5C2lXoLie3ASquk7KOo_Av-CL-RGSfZ7fLorcfdjKMkM54Zz-MbQp5ZqXnOLI8tGItYOO5jDZYhTk1inDG8ZAGsem8_HRyKj0fyaI386nphsKyy04lBUbvaYoz8FdfaSA3iKN8cf4txahRmV7sRGo1Y7PjT73Bkm77efgf8fc55__3B1iBupwrEViozi5XJBXPWw8GDiVLkWuesACnkOab0tFXwUg5olPa8lDrkymwiC-ldkjqghPteIpdFkhjcUbr_oZNfrnAO1DIricOcxRlsHIFIMskSPk0iXJpaonJKLsCbaM17474rTJyF-XiMxanqpW3fT-j-w1nRvRjL8dHPgzPlim0NIwj-5Tf_Xf75Rw44mNb-DXK99Ynp20aIb5I1X90i184gJd4mP8EpxjLeH_CLbuKYPUdDMLPMracno5wOT7GLMcBO0waSmdYl7Y_nWGHoaV45OpyPSyzEp30w5k0MlIbY25QehOphXDgKHaIN_Qz7yugnP6lPphjlpkMMBNAtPx5P75DDC-H7XbJe1ZW_T6j1OU9dzwk8z_GiNFgsZrVw2rgS-BER1vEhsy3UOk78GGcLkOjAuwxos8C7TEbkxWLNcQM0ci71JrJ3QYkg4eGPevIla3VOBqLHTG4SWOOF97CBmOe8KHKVMmaViMhGJxxZq7mm2XKfReTp4jLoHEwk5ZWv50CjpAFHOhEmIvcaWVo8SQIuLTo9EVErUrbyqKtXqtHXgGtuNDrAcM-XnTwuH-v_n-LB-W_xhFwZHOztZrvb-zsPyVUOPmpTjbRB1meTuX8EPuWseBw2MiWfL1pz_AZ0Unv3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAgeEN90DDASbxCtduzYfmSFaHxNk7pJe4sc2xmVqnTqx6TxX_Afc-ekSQsDicc259SpL77f-e5-R8gbJzW3zPHEgbFIhOch0WAZksykxhvDKxbJqr8dZYen4vOZPNuo4o_Z7uuQZFPTgCxN9XL_wlf7XeEbtkkeJpiJjhAH3Kmb5BZ4KgyT-kY9_zhX2JmpjxNie2WxwVYjkNsl7QnNJBKYqZ4nU3IB9r01uA2gVhjKih3rGEsyNczaSpzrp7Vl7WJTgOuQ7J8Jmb9FZaOxy--Tey1Kpe8btXpAboT6Ibm7wV34iPwEmIqJtT_gEz3AxneexuPFyrpALyeWjq-wrjASQdOGJJnOKppPV5jzF6itPR2vphWmxtMczGtzKknjadiCnsR8Xhw4iTWbjfwSK73ocZjPLhd47kzH6JrTUZhOF4_Jaf7xZHSYtP0dEieVWSbKWMHgmcEFZKISVmvLStgPuMXgqnYK1MuDjNKBV1LHqKVLZSmDTzMPkk_ITj2rwzNCXbA880Mv0MPiZWUwfctp4bXxFazHgLD1OhSuJT_HHhzToqNtjmtXgGwR166QA_K2G3PRUH_8U_oAl7eTRNru-MVsfl60u0ABqseMNSmMCSIErQ0LnJelVRljTokB2VsrR9HuJYuCg5jUsBHDb7zuLsMugKEdW4fZCmSUNABtU2EG5GmjS91MUgCZCEMGRG1p2dZUt6_Uk--RadxohKRwz3drfeyn9fe_Yvf_xF-R28cf8uLrp6Mvz8kdDiCySRfaIzvL-Sq8ANC3LF_G9_oXLzVDYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+Buried+Interface+via+Synergistic+Effect+of+Fluorine+and+Sulfonyl+Functional+Groups+Toward+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Cheng&rft.au=Zhang%2C+Cong&rft.au=Zhuang%2C+Qixin&rft.au=Li%2C+Haiyun&rft.date=2023-12-01&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=17&rft_id=info:doi/10.1007%2Fs40820-022-00992-5&rft_id=info%3Apmid%2F36580128&rft.externalDocID=36580128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |