Mitochondrion: a sensitive target for Pb exposure
Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and...
Saved in:
Published in | Journal of toxicological sciences Vol. 46; no. 8; pp. 345 - 358 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Toxicology
2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0388-1350 1880-3989 1880-3989 |
DOI | 10.2131/jts.46.345 |
Cover
Abstract | Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children’s learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure. |
---|---|
AbstractList | Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children’s learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure. Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure. |
Author | Zhu, Qian Chen, Hui Xia, YongLi Zhang, Wei Han, Qing Zhu, Gaochun Guo, JingChong |
Author_xml | – sequence: 1 fullname: Han, Qing organization: The First Clinical Medical College of Nanchang University, China – sequence: 1 fullname: Zhu, Gaochun organization: Department of Anatomy, Medical College of Nanchang University, China – sequence: 1 fullname: Chen, Hui organization: Department of Anatomy, Medical College of Nanchang University, China – sequence: 1 fullname: Zhang, Wei organization: Department of Anatomy, Medical College of Nanchang University, China – sequence: 1 fullname: Guo, JingChong organization: The First Clinical Medical College of Nanchang University, China – sequence: 1 fullname: Zhu, Qian organization: Department of Anatomy, Medical College of Nanchang University, China – sequence: 1 fullname: Xia, YongLi organization: Department of Anatomy, Medical College of Nanchang University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34334556$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0MtKAzEUBuAgFXvRjQ8gA25EmJpMkplEcCHFG1R0oeshTc-0KdNJTTKib2-0l0VxdeDw_YfD30edxjaA0CnBw4xQcrUIfsjyIWX8APWIEDilUsgO6mEqREoox13U936BcVZgzo5QlzIaNc97iDybYPXcNlNnbHOdqMRD400wn5AE5WYQksq65HWSwNfK-tbBMTqsVO3hZDMH6P3-7m30mI5fHp5Gt-NU80KGNOeaUphUpOJAKBNSFlRM8mnF5BRwQXDGNQigQksiscqi5gWmXAuZ66ISdIAu1ndXzn604EO5NF5DXasGbOvLjPOC05wJFun5Hl3Y1jXxuz-V5SQTMqqzjWonS5iWK2eWyn2X2zIiuFwD7az3DqodIbj8bbqMTZcsjwkeMd7D2gQVYonBKVP_H7lZRxY-qBnsrisXjK5hS8XG7_Z6rlwJDf0BlR-UoA |
CitedBy_id | crossref_primary_10_3390_biom13101549 crossref_primary_10_1002_jat_4664 crossref_primary_10_1016_j_heliyon_2023_e21847 crossref_primary_10_1016_j_taap_2025_117283 crossref_primary_10_1016_j_toxlet_2023_12_001 crossref_primary_10_3390_ijms231911435 crossref_primary_10_1089_ars_2022_0076 crossref_primary_10_1007_s44169_022_00013_x crossref_primary_10_3390_cells14020081 crossref_primary_10_1007_s12011_024_04095_7 crossref_primary_10_1016_j_jnutbio_2023_109556 crossref_primary_10_1016_j_tox_2024_153760 crossref_primary_10_1007_s11655_024_3907_1 crossref_primary_10_1007_s00204_022_03317_y crossref_primary_10_1002_tox_23654 crossref_primary_10_1016_j_bios_2023_115549 crossref_primary_10_3390_antiox13010076 crossref_primary_10_3390_ijms241914459 crossref_primary_10_3390_ijms26031050 crossref_primary_10_3390_ijms25010003 crossref_primary_10_1002_tox_23732 crossref_primary_10_2139_ssrn_4170592 crossref_primary_10_1002_2211_5463_13714 crossref_primary_10_1007_s12011_024_04279_1 crossref_primary_10_1007_s11356_024_35184_8 crossref_primary_10_1016_j_neuro_2024_11_001 crossref_primary_10_1016_j_cbi_2022_110310 crossref_primary_10_1016_j_scitotenv_2024_175968 |
Cites_doi | 10.1016/j.tips.2018.11.004 10.1080/01616412.2016.1251711 10.1016/j.cell.2019.02.013 10.3389/fimmu.2018.00536 10.1016/j.brainres.2014.05.032 10.2147/NDT.S148248 10.1016/j.tibs.2016.09.002 10.1016/j.envres.2019.108599 10.1007/s12012-016-9374-y 10.3390/cells8070680 10.1016/j.bbadis.2016.11.010 10.1016/j.toxlet.2015.09.014 10.1039/C7TX00204A 10.1371/journal.pone.0158993 10.1152/physrev.00026.2013 10.1016/j.cellbi.2006.03.010 10.1016/j.numecd.2005.05.003 10.1016/j.scitotenv.2019.02.040 10.1007/s10495-014-0967-2 10.1038/nature09663 10.1016/j.mito.2017.10.007 10.18632/oncotarget.18740 10.1128/MCB.20.6.2198-2208.2000 10.3390/ijms19061813 10.1101/266668 10.1016/j.fct.2017.10.008 10.1111/acel.12793 10.1002/jcp.25349 10.1016/j.etap.2014.11.010 10.1038/s41586-019-1544-1 10.1016/0378-4274(96)03670-3 10.1016/j.redox.2019.101215 10.1007/s00204-015-1547-0 10.1016/j.fct.2019.110824 10.1016/j.toxlet.2019.12.025 10.1371/journal.pone.0056894 10.1016/j.yjmcc.2009.02.021 10.1089/ars.2013.5371 10.3390/ijms17122140 10.1016/j.mito.2017.12.001 10.1016/j.neuro.2016.10.004 10.1016/j.lfs.2019.05.067 10.1177/0748233720971882 10.1016/j.tox.2017.07.016 10.1016/j.tox.2015.04.015 10.1016/j.envpol.2018.12.055 10.1038/nature09973 10.1007/s00253-014-5631-9 10.1146/annurev-biochem-060614-034216 10.1016/j.chemosphere.2019.06.227 10.1042/CS20110523 10.1038/onc.2016.302 10.3389/fimmu.2018.02305 10.1016/j.scitotenv.2017.10.220 10.1038/s12276-019-0355-7 10.1016/j.jtemb.2013.07.003 10.1016/j.trsl.2018.07.014 10.1083/jcb.201008084 10.1016/j.jprot.2018.06.020 10.1155/2017/8416763 10.1016/j.theriogenology.2020.06.015 10.3233/JAD-161088 10.1038/s41420-019-0208-0 10.1016/j.scitotenv.2017.08.079 10.18388/abp.2003_3693 10.1073/pnas.0803998105 10.1038/35040600 10.1016/S0892-0362(02)00213-1 10.1152/physrev.00001.2015 10.1007/s11064-014-1451-7 10.1007/s11356-019-06692-9 10.1016/j.toxlet.2018.04.012 10.1155/2016/5698931 10.1016/j.vetmic.2019.108396 10.1038/sj.onc.1203788 10.1021/acs.inorgchem.8b02548 10.1016/j.immuni.2015.02.002 10.1038/nsmb.3444 10.1161/CIRCRESAHA.117.311082 10.1038/nsmb.3460 10.1016/j.pharmthera.2018.07.001 10.1016/j.ceca.2017.05.004 10.3109/15376516.2012.721809 10.1016/j.pneurobio.2013.04.004 10.1155/2016/4350965 10.18632/oncotarget.16736 10.1016/j.tiv.2018.11.010 10.1016/j.neuron.2016.12.034 10.1111/febs.13249 10.1016/S0006-291X(03)00616-8 10.1159/000477889 10.1007/s00018-016-2202-5 10.1038/cr.2014.75 10.1007/s11356-017-0411-6 10.1016/j.cell.2011.10.026 10.1089/ars.2016.6664 10.1016/j.cell.2011.10.018 10.1016/j.nbd.2018.07.015 10.1016/j.ceca.2004.02.012 10.1016/j.toxlet.2015.09.015 10.1016/j.molimm.2018.09.010 10.1038/nature13392 10.1111/cns.13140 10.1007/s12272-016-0827-4 |
ContentType | Journal Article |
Copyright | 2021 The Japanese Society of Toxicology Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 The Japanese Society of Toxicology – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7U7 C1K SOI 7X8 |
DOI | 10.2131/jts.46.345 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1880-3989 |
EndPage | 358 |
ExternalDocumentID | 34334556 10_2131_jts_46_345 article_jts_46_8_46_345_article_char_en |
Genre | Journal Article Review |
GroupedDBID | .55 123 29L 2WC 36B 3O- 53G ABDBF ACPRK ACUHS ADBBV AEGXH AENEX AFRAH AL- ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESX F5P GX1 HH5 JSF JSH KQ8 OK1 OVT RJT RNS RZJ SV3 TKC TR2 TUS X7M XSB ~8M AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7U7 C1K SOI 7X8 |
ID | FETCH-LOGICAL-c579t-65c33ebf1f5e134899738b6df49de071025ce8e38c9190a2c3357035c896c7f83 |
ISSN | 0388-1350 1880-3989 |
IngestDate | Fri Jul 11 04:05:11 EDT 2025 Mon Jun 30 04:29:36 EDT 2025 Thu Apr 03 07:05:07 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 Tue Jul 01 01:36:58 EDT 2025 Wed Sep 03 06:31:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | Oxidative stress Inflammation Pb exposure Mitochondrial permeability transition pore Autophagy Calcium homeostasis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c579t-65c33ebf1f5e134899738b6df49de071025ce8e38c9190a2c3357035c896c7f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jts/46/8/46_345/_article/-char/en |
PMID | 34334556 |
PQID | 2557261289 |
PQPubID | 2029103 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2557536484 proquest_journals_2557261289 pubmed_primary_34334556 crossref_primary_10_2131_jts_46_345 crossref_citationtrail_10_2131_jts_46_345 jstage_primary_article_jts_46_8_46_345_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Suita |
PublicationTitle | Journal of toxicological sciences |
PublicationTitleAlternate | J Toxicol Sci |
PublicationYear | 2021 |
Publisher | The Japanese Society of Toxicology Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society of Toxicology – name: Japan Science and Technology Agency |
References | Ma, L., Liu, J.Y., Dong, J.X., Xiao, Q., Zhao, J. and Jiang, F.L. (2017): Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. (Camb.), 6, 822-830. Huang, H., Li, X., Wang, Z., Lin, X., Tian, Y., Zhao, Q. and Zheng, P. (2020): Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenology, 155, 139-149. Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M. and Xu, X. (2019): Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ., 664, 690-697. Chin, H.S., Li, M.X., Tan, I.K., Ninnis, R.L., Reljic, B., Scicluna, K., Dagley, L.F., Sandow, J.J., Kelly, G.L., Samson, A.L., Chappaz, S., Khaw, S.L., Chang, C., Morokoff, A., Brinkmann, K., Webb, A., Hockings, C., Hall, C.M., Kueh, A.J., Ryan, M.T., Kluck, R.M., Bouillet, P., Herold, M.J., Gray, D.H., Huang, D.C., van Delft, M.F. and Dewson, G. (2018): VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun., 9, 4976. Guan, X., Shen, J., Xu, Y., Feng, X. and Zhou, R. (2020): Heme oxygenase-1 enhances autophagy by modulating the AMPK/mTORC1 signaling pathway as a renoprotective mechanism to mitigate lead-induced nephrotoxicity. Am. J. Transl. Res., 12, 4807-4818. Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017): Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1066-1077. Simões, M.R., Preti, S.C., Azevedo, B.F., Fiorim, J., Freire, D.D. Jr., Covre, E.P., Vassallo, D.V. and Dos Santos, L. (2017): Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats. Cardiovasc. Toxicol., 17, 190-199. Briston, T., Selwood, D.L., Szabadkai, G. and Duchen, M.R. (2019): Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends Pharmacol. Sci., 40, 50-70. Chu, C.T. (2019): Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis., 122, 23-34. Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014): Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94, 909-950. Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.A., Domingo, J.L., Alimonti, A. and Schuhmacher, M. (2019): Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res., 177, 108599. Ve, T., Vajjhala, P.R., Hedger, A., Croll, T., DiMaio, F., Horsefield, S., Yu, X., Lavrencic, P., Hassan, Z., Morgan, G.P., Mansell, A., Mobli, M., O’Carroll, A., Chauvin, B., Gambin, Y., Sierecki, E., Landsberg, M.J., Stacey, K.J., Egelman, E.H. and Kobe, B. (2017): Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat. Struct. Mol. Biol., 24, 743-751. Ying, Y. and Padanilam, B.J. (2016): Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell. Mol. Life Sci., 73, 2309-2324. Gargioni, R., Filipak Neto, F., Buchi, D.F., Randi, M.A., Franco, C.R., Paludo, K.S., Pelletier, E., Ferraro, M.V., Cestari, M.M., Bussolaro, D. and Oliveira Ribeiro, C.A. (2006): Cell death and DNA damage in peritoneal macrophages of mice (Mus musculus) exposed to inorganic lead. Cell Biol. Int., 30, 615-623. Weinberg, S.E., Sena, L.A. and Chandel, N.S. (2015): Mitochondria in the regulation of innate and adaptive immunity. Immunity, 42, 406-417. Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., Zhang, Y., Li, S., Kacergis, M.C., Webster, C.M., Fejes-Toth, G., Naray-Fejes-Toth, A., Das, S., Hansen, M., Haas, W. and Soukas, A.A. (2019): Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314.e16. Del Rio, D., Stewart, A.J. and Pellegrini, N. (2005): A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15, 316-328. Cao, J., Xu, X., Zhang, Y., Zeng, Z., Hylkema, M.N. and Huo, X. (2018): Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. Sci. Total Environ., 616-617, 988-995. Yang, W., Tian, Z.K., Yang, H.X., Feng, Z.J., Sun, J.M., Jiang, H., Cheng, C., Ming, Q.L. and Liu, C.M. (2019): Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 134, 110824. Zheng, X., Huo, X., Zhang, Y., Wang, Q., Zhang, Y. and Xu, X. (2019): Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut., 246, 587-596. Karri, V., Ramos, D., Martinez, J.B., Odena, A., Oliveira, E., Coort, S.L., Evelo, C.T., Mariman, E.C., Schuhmacher, M. and Kumar, V. (2018): Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: deepening into the molecular mechanism of neurodegenerative diseases. J. Proteomics, 187, 106-125. Agarwal, A., Wu, P.H., Hughes, E.G., Fukaya, M., Tischfield, M.A., Langseth, A.J., Wirtz, D. and Bergles, D.E. (2017): Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron, 93, 587-605.e7. Bomfim, G.F., Dos Santos, R.A., Oliveira, M.A., Giachini, F.R., Akamine, E.H., Tostes, R.C., Fortes, Z.B., Webb, R.C. and Carvalho, M.H. (2012): Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. (Lond.), 122, 535-543. Li, N., Liu, F., Song, L., Zhang, P., Qiao, M., Zhao, Q. and Li, W. (2014): The effects of early life Pb exposure on the expression of IL1-β, TNF-α and Aβ in cerebral cortex of mouse pups. J. Trace Elem. Med. Biol., 28, 100-104. Yu, J.W. and Lee, M.S. (2016): Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch. Pharm. Res., 39, 1503-1518. Rai, A., Maurya, S.K., Sharma, R. and Ali, S. (2013): Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol. Mech. Methods, 23, 99-107. Metryka, E., Chibowska, K., Gutowska, I., Falkowska, A., Kupnicka, P., Barczak, K., Chlubek, D. and Baranowska-Bosiacka, I. (2018): Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int. J. Mol. Sci., 19, 1813. Belzacq, A.S., Vieira, H.L., Verrier, F., Vandecasteele, G., Cohen, I., Prévost, M.C., Larquet, E., Pariselli, F., Petit, P.X., Kahn, A., Rizzuto, R., Brenner, C. and Kroemer, G. (2003): Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res., 63, 541-546. Yang, Y., Karakhanova, S., Hartwig, W., D’Haese, J.G., Philippov, P.P., Werner, J. and Bazhin, A.V. (2016): Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol., 231, 2570-2581. Yang, X., Wang, B., Zeng, H., Cai, C., Hu, Q., Cai, S., Xu, L., Meng, X. and Zou, F. (2014): Role of the mitochondrial Ca2+ uniporter in Pb2+-induced oxidative stress in human neuroblastoma cells. Brain Res., 1575, 12-21. Hajnóczky, G., Davies, E. and Madesh, M. (2003): Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun., 304, 445-454. Annesley, S.J. and Fisher, P.R. (2019): Mitochondria in Health and Disease. Cells, 8, 680. Liu, J., Liao, G., Tu, H., Huang, Y., Peng, T., Xu, Y., Chen, X., Huang, Z., Zhang, Y., Meng, X. and Zou, F. (2019): A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. Chemosphere, 235, 1050-1058. Vyssokikh, M.Y. and Brdiczka, D. (2003): The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50, 389-404. Mao, G., Liu, H., Ding, Y., Zhang, W., Chen, H., Zhao, T., Feng, W., Wu, X. and Yang, L. (2020): Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int., 27, 9318-9326. Seirafi, M., Kozlov, G. and Gehring, K. (2015): Parkin structure and function. FEBS J., 282, 2076-2088. Lv, X.H., Zhao, D.H., Cai, S.Z., Luo, S.Y., You, T., Xu, B.L. and Chen, K. (2015): Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicol. Lett., 239, 131-140. Chibowska, K., Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Goschorska, M. and Chlubek, D. (2016): Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int. J. Mol. Sci., 17, 2140. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017): Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev., 2017, 8416763. He, Y., Hara, H. and Núñez, G. (2016): Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 41, 1012-1021. Chen, P.G., Guan, Y.J., Zha, G.M., Jiao, X.Q., Zhu, H.S., Zhang, C.Y., Wang, Y.Y. and Li, H.P. (2017): Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget, 8, 61958-61968. Chi, Q., Liu, T., Sun, Z., Tan, S., Li, S. and Li, S. (2017): Involvement of mitochondrial pathway in environmental metal pollutant lead-induced apoptosis of chicken liver: perspectives from oxidative stress and energy metabolism. Environ. Sci. Pollut. Res. Int., 24, 28121-28131. Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011): A role for mitochondria in NLRP3 inflammasome activation. Nature, 469, 221-225. Deng, Z., Fu, H., Xiao, Y., Zhang, B., Sun, G., Wei, Q., Ai, B. and Hu, Q. (2015): Effects of selenium on lead-induced alterations i 89 90 92 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 A.P. West (91) 2011 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 R. Zhou (107) 2011 S.E. Weinberg (88) 2015 30 31 32 33 34 35 36 37 39 40 41 42 43 45 46 47 48 49 H. Huang (38) 2020 F. Koyano (44) 2014 50 51 52 53 54 N. Mizushima (60) 2011 55 56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 81 108 82 83 84 85 86 87 |
References_xml | – reference: Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014): Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94, 909-950. – reference: Weinberg, S.E., Sena, L.A. and Chandel, N.S. (2015): Mitochondria in the regulation of innate and adaptive immunity. Immunity, 42, 406-417. – reference: Chin, H.S., Li, M.X., Tan, I.K., Ninnis, R.L., Reljic, B., Scicluna, K., Dagley, L.F., Sandow, J.J., Kelly, G.L., Samson, A.L., Chappaz, S., Khaw, S.L., Chang, C., Morokoff, A., Brinkmann, K., Webb, A., Hockings, C., Hall, C.M., Kueh, A.J., Ryan, M.T., Kluck, R.M., Bouillet, P., Herold, M.J., Gray, D.H., Huang, D.C., van Delft, M.F. and Dewson, G. (2018): VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun., 9, 4976. – reference: Lv, X.H., Zhao, D.H., Cai, S.Z., Luo, S.Y., You, T., Xu, B.L. and Chen, K. (2015): Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicol. Lett., 239, 131-140. – reference: Guan, X., Shen, J., Xu, Y., Feng, X. and Zhou, R. (2020): Heme oxygenase-1 enhances autophagy by modulating the AMPK/mTORC1 signaling pathway as a renoprotective mechanism to mitigate lead-induced nephrotoxicity. Am. J. Transl. Res., 12, 4807-4818. – reference: Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N. and Bhutia, S.K. (2014): Autophagy and apoptosis: where do they meet? Apoptosis, 19, 555-566. – reference: Gao, K., Zhang, C., Tian, Y., Naeem, S., Zhang, Y. and Qi, Y. (2020): The role of endoplasmic reticulum stress in lead (Pb)-induced mitophagy of HEK293 cells. Toxicol. Ind. Health, 36, 1002-1009. – reference: Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J. and Schwarz, T.L. (2011): PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147, 893-906. – reference: Wu, B., Ni, H., Li, J., Zhuang, X., Zhang, J., Qi, Z., Chen, Q., Wen, Z., Shi, H., Luo, X. and Jin, B. (2017): The Impact of Circulating Mitochondrial DNA on Cardiomyocyte Apoptosis and Myocardial Injury After TLR4 Activation in Experimental Autoimmune Myocarditis. Cell. Physiol. Biochem., 42, 713-728. – reference: Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M. and Xu, X. (2019): Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ., 664, 690-697. – reference: Seirafi, M., Kozlov, G. and Gehring, K. (2015): Parkin structure and function. FEBS J., 282, 2076-2088. – reference: Rongvaux, A. (2018): Innate immunity and tolerance toward mitochondria. Mitochondrion, 41, 14-20. – reference: Song, N. and Li, T. (2018): Regulation of NLRP3 Inflammasome by Phosphorylation. Front. Immunol., 9, 2305. – reference: Schwacha, M.G., Rani, M., Nicholson, S.E., Lewis, A.M., Holloway, T.L., Sordo, S. and Cap, A.P. (2016): Dermal γδ T-Cells Can Be Activated by Mitochondrial Damage-Associated Molecular Patterns. PLoS One, 11, e0158993. – reference: Ye, F., Li, X., Liu, Y., Jiang, A., Li, X., Yang, L., Chang, W., Yuan, J. and Chen, J. (2020): CypD deficiency confers neuroprotection against mitochondrial abnormality caused by lead in SH-SY5Y cell. Toxicol. Lett., 323, 25-34. – reference: Bernardini, J.P., Lazarou, M. and Dewson, G. (2017): Parkin and mitophagy in cancer. Oncogene, 36, 1315-1327. – reference: Chi, Q., Liu, T., Sun, Z., Tan, S., Li, S. and Li, S. (2017): Involvement of mitochondrial pathway in environmental metal pollutant lead-induced apoptosis of chicken liver: perspectives from oxidative stress and energy metabolism. Environ. Sci. Pollut. Res. Int., 24, 28121-28131. – reference: Belzacq, A.S., Vieira, H.L., Verrier, F., Vandecasteele, G., Cohen, I., Prévost, M.C., Larquet, E., Pariselli, F., Petit, P.X., Kahn, A., Rizzuto, R., Brenner, C. and Kroemer, G. (2003): Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res., 63, 541-546. – reference: Han, Y., Li, C., Su, M., Wang, Z., Jiang, N. and Sun, D. (2017): Antagonistic effects of selenium on lead-induced autophagy by influencing mitochondrial dynamics in the spleen of chickens. Oncotarget, 8, 33725-33735. – reference: Lalith Kumar, V. and Muralidhara. (2014): Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem. Res., 39, 2501-2515. – reference: Liu, G., Wang, Z.K., Wang, Z.Y., Yang, D.B., Liu, Z.P. and Wang, L. (2016): Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol., 90, 1193-1209. – reference: Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P. and Youle, R.J. (2010): Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol., 191, 933-942. – reference: Panel, M., Ghaleh, B. and Morin, D. (2018): Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell, 17, e12793. – reference: Park, Y., Lee, A., Choi, K., Kim, H.J., Lee, J.J., Choi, G., Kim, S., Kim, S.Y., Cho, G.J., Suh, E., Kim, S.K., Eun, S.H., Eom, S., Kim, S., Kim, G.H., Moon, H.B., Kim, S., Choi, S., Kim, Y.D., Kim, J. and Park, J. (2018): Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study. Sci. Total Environ., 612, 876-883. – reference: Halestrap, A.P. (2009): What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 46, 821-831. – reference: Ying, Y. and Padanilam, B.J. (2016): Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell. Mol. Life Sci., 73, 2309-2324. – reference: Banoth, B. and Cassel, S.L. (2018): Mitochondria in innate immune signaling. Transl. Res., 202, 52-68. – reference: Tönnies, E. and Trushina, E. (2017): Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis., 57, 1105-1121. – reference: Gu, X., Qi, Y., Feng, Z., Ma, L., Gao, K. and Zhang, Y. (2018): Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway. Toxicol. Lett., 291, 92-100. – reference: Zheng, X., Huo, X., Zhang, Y., Wang, Q., Zhang, Y. and Xu, X. (2019): Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut., 246, 587-596. – reference: Bernardi, P., Rasola, A., Forte, M. and Lippe, G. (2015): The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol. Rev., 95, 1111-1155. – reference: Dudev, T., Grauffel, C. and Lim, C. (2018): How Pb2+ Binds and Modulates Properties of Ca2+-Signaling Proteins. Inorg. Chem., 57, 14798-14809. – reference: Deng, H., Dodson, M.W., Huang, H. and Guo, M. (2008): The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 14503-14508. – reference: Yang, Y., Karakhanova, S., Hartwig, W., D’Haese, J.G., Philippov, P.P., Werner, J. and Bazhin, A.V. (2016): Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol., 231, 2570-2581. – reference: Gu, X., Han, M., Du, Y., Wu, Y., Xu, Y., Zhou, X., Ye, D. and Wang, H.L. (2019): Pb disrupts autophagic flux through inhibiting the formation and activity of lysosomes in neural cells. Toxicol. In Vitro, 55, 43-50. – reference: Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017): Autophagy and Mitophagy in Cardiovascular Disease. Circ. Res., 120, 1812-1824. – reference: Rai, A., Maurya, S.K., Sharma, R. and Ali, S. (2013): Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol. Mech. Methods, 23, 99-107. – reference: Sousa, C.A. and Soares, E.V. (2014): Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 98, 5153-5160. – reference: West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., Walsh, M.C., Choi, Y., Shadel, G.S. and Ghosh, S. (2011): TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 472, 476-480. – reference: Hajnóczky, G., Davies, E. and Madesh, M. (2003): Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun., 304, 445-454. – reference: Starkov, A.A., Chinopoulos, C. and Fiskum, G. (2004): Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 36, 257-264. – reference: Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.A., Domingo, J.L., Alimonti, A. and Schuhmacher, M. (2019): Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res., 177, 108599. – reference: Giorgio, V., Guo, L., Bassot, C., Petronilli, V. and Bernardi, P. (2018): Calcium and regulation of the mitochondrial permeability transition. Cell Calcium, 70, 56-63. – reference: Chen, P.G., Guan, Y.J., Zha, G.M., Jiao, X.Q., Zhu, H.S., Zhang, C.Y., Wang, Y.Y. and Li, H.P. (2017): Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget, 8, 61958-61968. – reference: Yu, J.W. and Lee, M.S. (2016): Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch. Pharm. Res., 39, 1503-1518. – reference: Huang, H., Li, X., Wang, Z., Lin, X., Tian, Y., Zhao, Q. and Zheng, P. (2020): Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenology, 155, 139-149. – reference: Gargioni, R., Filipak Neto, F., Buchi, D.F., Randi, M.A., Franco, C.R., Paludo, K.S., Pelletier, E., Ferraro, M.V., Cestari, M.M., Bussolaro, D. and Oliveira Ribeiro, C.A. (2006): Cell death and DNA damage in peritoneal macrophages of mice (Mus musculus) exposed to inorganic lead. Cell Biol. Int., 30, 615-623. – reference: Mizushima, N. and Komatsu, M. (2011): Autophagy: renovation of cells and tissues. Cell, 147, 728-741. – reference: Hassan, E., El-Neweshy, M., Hassan, M. and Noreldin, A. (2019): Thymoquinone attenuates testicular and spermotoxicity following subchronic lead exposure in male rats: possible mechanisms are involved. Life Sci., 230, 132-140. – reference: Liu, J.T., Chen, B.Y., Zhang, J.Q., Kuang, F. and Chen, L.W. (2015): Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol. Lett., 239, 97-107. – reference: Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017): Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1066-1077. – reference: Liu, H., Nishitoh, H., Ichijo, H. and Kyriakis, J.M. (2000): Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol., 20, 2198-2208. – reference: Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. and Dong, W. (2016): ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev., 2016, 4350965. – reference: Li, N., Zhou, H., Wu, H., Wu, Q., Duan, M., Deng, W. and Tang, Q. (2019): STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol., 24, 101215. – reference: Nicotra, A. and Parvez, S. (2002): Apoptotic molecules and MPTP-induced cell death. Neurotoxicol. Teratol., 24, 599-605. – reference: Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017): Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev., 2017, 8416763. – reference: De Stefani, D., Rizzuto, R. and Pozzan, T. (2016): Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu. Rev. Biochem., 85, 161-192. – reference: Del Rio, D., Stewart, A.J. and Pellegrini, N. (2005): A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15, 316-328. – reference: Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X.C. and Chen, Z.J. (2019): Structural basis of STING binding with and phosphorylation by TBK1. Nature, 567, 394-398. – reference: Annesley, S.J. and Fisher, P.R. (2019): Mitochondria in Health and Disease. Cells, 8, 680. – reference: Chibowska, K., Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Goschorska, M. and Chlubek, D. (2016): Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int. J. Mol. Sci., 17, 2140. – reference: Chetty, C.S., Rajanna, S., Hall, E., Yallapragada, P.R. and Rajanna, B. (1996): In vitro and in vivo effects of lead, methyl mercury and mercury on inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate receptor bindings in rat brain. Toxicol. Lett., 87, 11-17. – reference: Ma, L., Liu, J.Y., Dong, J.X., Xiao, Q., Zhao, J. and Jiang, F.L. (2017): Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. (Camb.), 6, 822-830. – reference: Parzych, K.R. and Klionsky, D.J. (2014): An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal., 20, 460-473. – reference: Liu, L., Sakakibara, K., Chen, Q. and Okamoto, K. (2014): Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res., 24, 787-795. – reference: Wang, Y., Liu, N. and Lu, B. (2019): Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther., 25, 859-875. – reference: Wen, L., Jiang, X., Sun, J., Li, X., Li, X., Tian, L., Li, Y. and Bai, W. (2018): Cyanidin-3-O-glucoside promotes the biosynthesis of progesterone through the protection of mitochondrial function in Pb-exposed rat leydig cells. Food Chem. Toxicol., 112, 427-434. – reference: Shimizu, S., Shinohara, Y. and Tsujimoto, Y. (2000): Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene, 19, 4309-4318. – reference: Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., Zhang, Y., Li, S., Kacergis, M.C., Webster, C.M., Fejes-Toth, G., Naray-Fejes-Toth, A., Das, S., Hansen, M., Haas, W. and Soukas, A.A. (2019): Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314.e16. – reference: Jha, J.C., Banal, C., Chow, B.S., Cooper, M.E. and Jandeleit-Dahm, K. (2016): Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal., 25, 657-684. – reference: Pal, P.B., Sinha, K. and Sil, P.C. (2013): Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways. PLoS One, 8, e56894. – reference: Ve, T., Vajjhala, P.R., Hedger, A., Croll, T., DiMaio, F., Horsefield, S., Yu, X., Lavrencic, P., Hassan, Z., Morgan, G.P., Mansell, A., Mobli, M., O’Carroll, A., Chauvin, B., Gambin, Y., Sierecki, E., Landsberg, M.J., Stacey, K.J., Egelman, E.H. and Kobe, B. (2017): Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat. Struct. Mol. Biol., 24, 743-751. – reference: Letts, J.A. and Sazanov, L.A. (2017): Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol., 24, 800-808. – reference: Ahmad, F., Salahuddin, M., Alamoudi, W. and Acharya, S. (2018): Dysfunction of cortical synapse-specific mitochondria in developing rats exposed to lead and its amelioration by ascorbate supplementation. Neuropsychiatr. Dis. Treat., 14, 813-824. – reference: Biswas, S.K. (2016): Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev., 2016, 5698931. – reference: Bomfim, G.F., Dos Santos, R.A., Oliveira, M.A., Giachini, F.R., Akamine, E.H., Tostes, R.C., Fortes, Z.B., Webb, R.C. and Carvalho, M.H. (2012): Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. (Lond.), 122, 535-543. – reference: Islam, M.T. (2017): Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 39, 73-82. – reference: Deng, Z., Fu, H., Xiao, Y., Zhang, B., Sun, G., Wei, Q., Ai, B. and Hu, Q. (2015): Effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. Environ. Toxicol. Pharmacol., 39, 221-228. – reference: Simons, T.J. (1993): Lead-calcium interactions in cellular lead toxicity. Neurotoxicology, 14, 77-85. – reference: Ye, F., Li, X., Li, F., Li, J., Chang, W., Yuan, J. and Chen, J. (2016): Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells. Neurotoxicology, 57, 203-213. – reference: Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., Endo, T., Fon, E.A., Trempe, J.F., Saeki, Y., Tanaka, K. and Matsuda, N. (2014): Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510, 162-166. – reference: Liu, Q., Zhang, D., Hu, D., Zhou, X. and Zhou, Y. (2018): The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol., 103, 115-124. – reference: Subramaniam, S.R. and Chesselet, M.F. (2013): Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol., 106-107, 17-32. – reference: Yang, W., Tian, Z.K., Yang, H.X., Feng, Z.J., Sun, J.M., Jiang, H., Cheng, C., Ming, Q.L. and Liu, C.M. (2019): Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 134, 110824. – reference: Zhao, Q., Liu, Y., Zhong, J., Bi, Y., Liu, Y., Ren, Z., Li, X., Jia, J., Yu, M. and Yu, X. (2019): Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discov., 5, 125. – reference: Agarwal, A., Wu, P.H., Hughes, E.G., Fukaya, M., Tischfield, M.A., Langseth, A.J., Wirtz, D. and Bergles, D.E. (2017): Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron, 93, 587-605.e7. – reference: Cao, J., Xu, X., Zhang, Y., Zeng, Z., Hylkema, M.N. and Huo, X. (2018): Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. Sci. Total Environ., 616-617, 988-995. – reference: Pathak, T. and Trebak, M. (2018): Mitochondrial Ca2+ signaling. Pharmacol. Ther., 192, 112-123. – reference: Briston, T., Selwood, D.L., Szabadkai, G. and Duchen, M.R. (2019): Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends Pharmacol. Sci., 40, 50-70. – reference: Simões, M.R., Preti, S.C., Azevedo, B.F., Fiorim, J., Freire, D.D. Jr., Covre, E.P., Vassallo, D.V. and Dos Santos, L. (2017): Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats. Cardiovasc. Toxicol., 17, 190-199. – reference: Chu, C.T. (2019): Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis., 122, 23-34. – reference: Dela Cruz, C.S. and Kang, M.J. (2018): Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 41, 37-44. – reference: Vyssokikh, M.Y. and Brdiczka, D. (2003): The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50, 389-404. – reference: Karri, V., Ramos, D., Martinez, J.B., Odena, A., Oliveira, E., Coort, S.L., Evelo, C.T., Mariman, E.C., Schuhmacher, M. and Kumar, V. (2018): Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: deepening into the molecular mechanism of neurodegenerative diseases. J. Proteomics, 187, 106-125. – reference: Peoples, J.N., Saraf, A., Ghazal, N., Pham, T.T. and Kwong, J.Q. (2019): Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med., 51, 1-13. – reference: Yoo, S.M. and Jung, Y.K. (2018): A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells, 41, 18-26. – reference: Meyer, A., Laverny, G., Bernardi, L., Charles, A.L., Alsaleh, G., Pottecher, J., Sibilia, J. and Geny, B. (2018): Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front. Immunol., 9, 536. – reference: Mao, G., Liu, H., Ding, Y., Zhang, W., Chen, H., Zhao, T., Feng, W., Wu, X. and Yang, L. (2020): Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int., 27, 9318-9326. – reference: Roperto, S., De Falco, F., Perillo, A., Catoi, C. and Roperto, F. (2019): Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet. Microbiol., 236, 108396. – reference: West, A.P. (2017): Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology, 391, 54-63. – reference: He, Y., Hara, H. and Núñez, G. (2016): Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 41, 1012-1021. – reference: Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J.L. and Tong, L. (2000): Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 408, 111-115. – reference: Metryka, E., Chibowska, K., Gutowska, I., Falkowska, A., Kupnicka, P., Barczak, K., Chlubek, D. and Baranowska-Bosiacka, I. (2018): Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int. J. Mol. Sci., 19, 1813. – reference: Wang, H., Wang, Z.K., Jiao, P., Zhou, X.P., Yang, D.B., Wang, Z.Y. and Wang, L. (2015): Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology, 333, 137-146. – reference: Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011): A role for mitochondria in NLRP3 inflammasome activation. Nature, 469, 221-225. – reference: Liu, J., Liao, G., Tu, H., Huang, Y., Peng, T., Xu, Y., Chen, X., Huang, Z., Zhang, Y., Meng, X. and Zou, F. (2019): A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. Chemosphere, 235, 1050-1058. – reference: Yang, X., Wang, B., Zeng, H., Cai, C., Hu, Q., Cai, S., Xu, L., Meng, X. and Zou, F. (2014): Role of the mitochondrial Ca2+ uniporter in Pb2+-induced oxidative stress in human neuroblastoma cells. Brain Res., 1575, 12-21. – reference: Li, N., Liu, F., Song, L., Zhang, P., Qiao, M., Zhao, Q. and Li, W. (2014): The effects of early life Pb exposure on the expression of IL1-β, TNF-α and Aβ in cerebral cortex of mouse pups. J. Trace Elem. Med. Biol., 28, 100-104. – ident: 13 doi: 10.1016/j.tips.2018.11.004 – ident: 40 doi: 10.1080/01616412.2016.1251711 – ident: 106 doi: 10.1016/j.cell.2019.02.013 – ident: 59 doi: 10.3389/fimmu.2018.00536 – ident: 95 doi: 10.1016/j.brainres.2014.05.032 – ident: 2 doi: 10.2147/NDT.S148248 – ident: 37 doi: 10.1016/j.tibs.2016.09.002 – ident: 10 doi: 10.1016/j.envres.2019.108599 – ident: 76 doi: 10.1007/s12012-016-9374-y – ident: 3 doi: 10.3390/cells8070680 – ident: 8 doi: 10.1016/j.bbadis.2016.11.010 – ident: 55 doi: 10.1016/j.toxlet.2015.09.014 – ident: 56 doi: 10.1039/C7TX00204A – ident: 73 doi: 10.1371/journal.pone.0158993 – ident: 108 doi: 10.1152/physrev.00026.2013 – ident: 28 doi: 10.1016/j.cellbi.2006.03.010 – ident: 22 doi: 10.1016/j.numecd.2005.05.003 – ident: 39 doi: 10.1016/j.scitotenv.2019.02.040 – ident: 61 doi: 10.1007/s10495-014-0967-2 – start-page: 221 issn: 0028-0836 year: 2011 ident: 107 publication-title: ?Nature doi: 10.1038/nature09663 – ident: 71 doi: 10.1016/j.mito.2017.10.007 – ident: 15 doi: 10.18632/oncotarget.18740 – ident: 50 doi: 10.1128/MCB.20.6.2198-2208.2000 – ident: 58 doi: 10.3390/ijms19061813 – ident: 19 doi: 10.1101/266668 – ident: 89 doi: 10.1016/j.fct.2017.10.008 – ident: 64 doi: 10.1111/acel.12793 – ident: 96 doi: 10.1002/jcp.25349 – ident: 25 doi: 10.1016/j.etap.2014.11.010 – ident: 102 doi: 10.1038/s41586-019-1544-1 – ident: 16 doi: 10.1016/0378-4274(96)03670-3 – ident: 48 doi: 10.1016/j.redox.2019.101215 – ident: 49 doi: 10.1007/s00204-015-1547-0 – ident: 100 – ident: 94 doi: 10.1016/j.fct.2019.110824 – ident: 98 doi: 10.1016/j.toxlet.2019.12.025 – ident: 63 doi: 10.1371/journal.pone.0056894 – ident: 34 doi: 10.1016/j.yjmcc.2009.02.021 – ident: 66 doi: 10.1089/ars.2013.5371 – ident: 18 doi: 10.3390/ijms17122140 – ident: 23 doi: 10.1016/j.mito.2017.12.001 – ident: 97 doi: 10.1016/j.neuro.2016.10.004 – ident: 36 doi: 10.1016/j.lfs.2019.05.067 – ident: 27 doi: 10.1177/0748233720971882 – ident: 90 doi: 10.1016/j.tox.2017.07.016 – ident: 32 – ident: 85 doi: 10.1016/j.tox.2015.04.015 – ident: 105 doi: 10.1016/j.envpol.2018.12.055 – start-page: 476 issn: 0028-0836 year: 2011 ident: 91 publication-title: ?Nature doi: 10.1038/nature09973 – ident: 77 – ident: 79 doi: 10.1007/s00253-014-5631-9 – ident: 21 doi: 10.1146/annurev-biochem-060614-034216 – ident: 51 doi: 10.1016/j.chemosphere.2019.06.227 – ident: 11 doi: 10.1042/CS20110523 – ident: 7 doi: 10.1038/onc.2016.302 – ident: 78 doi: 10.3389/fimmu.2018.02305 – ident: 14 doi: 10.1016/j.scitotenv.2017.10.220 – ident: 68 doi: 10.1038/s12276-019-0355-7 – ident: 47 doi: 10.1016/j.jtemb.2013.07.003 – ident: 4 doi: 10.1016/j.trsl.2018.07.014 – ident: 42 doi: 10.1083/jcb.201008084 – ident: 43 doi: 10.1016/j.jprot.2018.06.020 – ident: 69 doi: 10.1155/2017/8416763 – start-page: 139 issn: 0093-691X year: 2020 ident: 38 publication-title: Theriogenology doi: 10.1016/j.theriogenology.2020.06.015 – ident: 82 doi: 10.3233/JAD-161088 – ident: 104 doi: 10.1038/s41420-019-0208-0 – ident: 65 doi: 10.1016/j.scitotenv.2017.08.079 – ident: 84 doi: 10.18388/abp.2003_3693 – ident: 24 doi: 10.1073/pnas.0803998105 – ident: 5 – ident: 93 doi: 10.1038/35040600 – ident: 62 doi: 10.1016/S0892-0362(02)00213-1 – ident: 6 doi: 10.1152/physrev.00001.2015 – ident: 45 doi: 10.1007/s11064-014-1451-7 – ident: 57 doi: 10.1007/s11356-019-06692-9 – ident: 31 doi: 10.1016/j.toxlet.2018.04.012 – ident: 9 doi: 10.1155/2016/5698931 – ident: 72 doi: 10.1016/j.vetmic.2019.108396 – ident: 75 doi: 10.1038/sj.onc.1203788 – ident: 26 doi: 10.1021/acs.inorgchem.8b02548 – start-page: 406 issn: 1074-7613 year: 2015 ident: 88 publication-title: Immunity doi: 10.1016/j.immuni.2015.02.002 – ident: 83 doi: 10.1038/nsmb.3444 – ident: 12 doi: 10.1161/CIRCRESAHA.117.311082 – ident: 46 doi: 10.1038/nsmb.3460 – ident: 67 doi: 10.1016/j.pharmthera.2018.07.001 – ident: 29 doi: 10.1016/j.ceca.2017.05.004 – ident: 70 doi: 10.3109/15376516.2012.721809 – ident: 81 doi: 10.1016/j.pneurobio.2013.04.004 – ident: 103 doi: 10.1155/2016/4350965 – ident: 35 doi: 10.18632/oncotarget.16736 – ident: 30 doi: 10.1016/j.tiv.2018.11.010 – ident: 1 doi: 10.1016/j.neuron.2016.12.034 – ident: 74 doi: 10.1111/febs.13249 – ident: 33 doi: 10.1016/S0006-291X(03)00616-8 – ident: 92 doi: 10.1159/000477889 – ident: 99 doi: 10.1007/s00018-016-2202-5 – ident: 53 doi: 10.1038/cr.2014.75 – ident: 17 doi: 10.1007/s11356-017-0411-6 – start-page: 728 issn: 0092-8674 year: 2011 ident: 60 publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – ident: 41 doi: 10.1089/ars.2016.6664 – ident: 86 doi: 10.1016/j.cell.2011.10.018 – ident: 20 doi: 10.1016/j.nbd.2018.07.015 – ident: 80 doi: 10.1016/j.ceca.2004.02.012 – ident: 52 doi: 10.1016/j.toxlet.2015.09.015 – ident: 54 doi: 10.1016/j.molimm.2018.09.010 – start-page: 162 issn: 0028-0836 year: 2014 ident: 44 publication-title: ?Nature doi: 10.1038/nature13392 – ident: 87 doi: 10.1111/cns.13140 – ident: 101 doi: 10.1007/s12272-016-0827-4 |
SSID | ssj0027054 |
Score | 2.5090888 |
SecondaryResourceType | review_article |
Snippet | Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 345 |
SubjectTerms | Apoptosis Apoptosis - drug effects Autophagy Autophagy - drug effects Calcium (intracellular) Calcium (mitochondrial) Calcium - metabolism Calcium homeostasis Child Child, Preschool Children Damage Environmental Exposure - adverse effects Environmental Pollutants - adverse effects Environmental Pollutants - toxicity Eukaryotes Exposure Female Food contamination Germination Homeostasis Homeostasis - drug effects Humans Inflammation Inflammation - chemically induced Intelligence Lead Lead - adverse effects Lead - toxicity Male Membrane permeability Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - pathology Mitochondrial Permeability Transition Pore Organelles Oxidative stress Oxidative Stress - drug effects Pb exposure Phagocytosis Pregnancy Toxicity |
Title | Mitochondrion: a sensitive target for Pb exposure |
URI | https://www.jstage.jst.go.jp/article/jts/46/8/46_345/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34334556 https://www.proquest.com/docview/2557261289 https://www.proquest.com/docview/2557536484 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Toxicological Sciences, 2021, Vol.46(8), pp.345-358 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96-iCI-G31lIq-iHTPbD6a-iancirKCXd4b6VJp3IiXbl2QfzrnWTS7N65wulLWdqZtpv5TDrzC2NPMcgJa6EqWm1FIUvVFQ06wQIklKrFiNdAqLb4pPcO5fsjdbTa3ip0l4x25n5t7Cv5H6niOZSr75L9B8mmm-IJ_I3yxSNKGI_nkvFHNEd0X317Eis0mueDL0gP5UBU4x3KCPetR_JfDBE9ZEMyOi5-HrvkB2NYHFbuKfimz1OYW19o_gLHqYZnSZ9xkGwX32qNdknsURPjIgP1LE9tVTjoXBA67AzIS6LRF6KivX8mNxpXEkldzJpPFIQXGcOrIKT2s557zkXw3OMwk3qWWNbhsc-ErVRMiNMYz10jby11jbwX2aV5WXJf4fn63YfV_PuFIjSx-I8Irdbz7qyeeyo_ufwNU_Sv8PfZR8hCDq6za1Fi-SvShRvsAvQ32VVae82ppewW46f04mXe5EkrctKKHLUi37f5pBW32eHbNwe7e0XcGqNwqqzGQisnBNiOdwq4kDhpLoWxuu1k1ULIGpUDA8K4CjO-Zo7UHmpNOVNpV3ZG3GFb_aKHeyxXosIbGes4B1lCa-bKaOE6Acq2XJuMPZsGpHYRN95vX_K9_nPgM_Yk0f4gtJSNVJrGNdFEC5poTCRM530HIhp8xrYnOdTRDIca58Slx8EzVcYep8voJP2Xr6aHxZJolNDSyIzdJfmlZwv0VlIpff9c7_6AXfH2QYtw22xrPFnCQ0xLR_soKNtvv16OAQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrion%3A+a+sensitive+target+for+Pb+exposure&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Han%2C+Qing&rft.au=Zhang%2C+Wei&rft.au=Guo%2C+JingChong&rft.au=Zhu%2C+Qian&rft.date=2021&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=46&rft.issue=8&rft.spage=345&rft.epage=358&rft_id=info:doi/10.2131%2Fjts.46.345&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_46_345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon |