Mitochondrion: a sensitive target for Pb exposure

Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 46; no. 8; pp. 345 - 358
Main Authors Han, Qing, Zhu, Gaochun, Chen, Hui, Zhang, Wei, Guo, JingChong, Zhu, Qian, Xia, YongLi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Toxicology 2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0388-1350
1880-3989
1880-3989
DOI10.2131/jts.46.345

Cover

Abstract Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children’s learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.
AbstractList Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children’s learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.
Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.
Author Zhu, Qian
Chen, Hui
Xia, YongLi
Zhang, Wei
Han, Qing
Zhu, Gaochun
Guo, JingChong
Author_xml – sequence: 1
  fullname: Han, Qing
  organization: The First Clinical Medical College of Nanchang University, China
– sequence: 1
  fullname: Zhu, Gaochun
  organization: Department of Anatomy, Medical College of Nanchang University, China
– sequence: 1
  fullname: Chen, Hui
  organization: Department of Anatomy, Medical College of Nanchang University, China
– sequence: 1
  fullname: Zhang, Wei
  organization: Department of Anatomy, Medical College of Nanchang University, China
– sequence: 1
  fullname: Guo, JingChong
  organization: The First Clinical Medical College of Nanchang University, China
– sequence: 1
  fullname: Zhu, Qian
  organization: Department of Anatomy, Medical College of Nanchang University, China
– sequence: 1
  fullname: Xia, YongLi
  organization: Department of Anatomy, Medical College of Nanchang University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34334556$$D View this record in MEDLINE/PubMed
BookMark eNpt0MtKAzEUBuAgFXvRjQ8gA25EmJpMkplEcCHFG1R0oeshTc-0KdNJTTKib2-0l0VxdeDw_YfD30edxjaA0CnBw4xQcrUIfsjyIWX8APWIEDilUsgO6mEqREoox13U936BcVZgzo5QlzIaNc97iDybYPXcNlNnbHOdqMRD400wn5AE5WYQksq65HWSwNfK-tbBMTqsVO3hZDMH6P3-7m30mI5fHp5Gt-NU80KGNOeaUphUpOJAKBNSFlRM8mnF5BRwQXDGNQigQksiscqi5gWmXAuZ66ISdIAu1ndXzn604EO5NF5DXasGbOvLjPOC05wJFun5Hl3Y1jXxuz-V5SQTMqqzjWonS5iWK2eWyn2X2zIiuFwD7az3DqodIbj8bbqMTZcsjwkeMd7D2gQVYonBKVP_H7lZRxY-qBnsrisXjK5hS8XG7_Z6rlwJDf0BlR-UoA
CitedBy_id crossref_primary_10_3390_biom13101549
crossref_primary_10_1002_jat_4664
crossref_primary_10_1016_j_heliyon_2023_e21847
crossref_primary_10_1016_j_taap_2025_117283
crossref_primary_10_1016_j_toxlet_2023_12_001
crossref_primary_10_3390_ijms231911435
crossref_primary_10_1089_ars_2022_0076
crossref_primary_10_1007_s44169_022_00013_x
crossref_primary_10_3390_cells14020081
crossref_primary_10_1007_s12011_024_04095_7
crossref_primary_10_1016_j_jnutbio_2023_109556
crossref_primary_10_1016_j_tox_2024_153760
crossref_primary_10_1007_s11655_024_3907_1
crossref_primary_10_1007_s00204_022_03317_y
crossref_primary_10_1002_tox_23654
crossref_primary_10_1016_j_bios_2023_115549
crossref_primary_10_3390_antiox13010076
crossref_primary_10_3390_ijms241914459
crossref_primary_10_3390_ijms26031050
crossref_primary_10_3390_ijms25010003
crossref_primary_10_1002_tox_23732
crossref_primary_10_2139_ssrn_4170592
crossref_primary_10_1002_2211_5463_13714
crossref_primary_10_1007_s12011_024_04279_1
crossref_primary_10_1007_s11356_024_35184_8
crossref_primary_10_1016_j_neuro_2024_11_001
crossref_primary_10_1016_j_cbi_2022_110310
crossref_primary_10_1016_j_scitotenv_2024_175968
Cites_doi 10.1016/j.tips.2018.11.004
10.1080/01616412.2016.1251711
10.1016/j.cell.2019.02.013
10.3389/fimmu.2018.00536
10.1016/j.brainres.2014.05.032
10.2147/NDT.S148248
10.1016/j.tibs.2016.09.002
10.1016/j.envres.2019.108599
10.1007/s12012-016-9374-y
10.3390/cells8070680
10.1016/j.bbadis.2016.11.010
10.1016/j.toxlet.2015.09.014
10.1039/C7TX00204A
10.1371/journal.pone.0158993
10.1152/physrev.00026.2013
10.1016/j.cellbi.2006.03.010
10.1016/j.numecd.2005.05.003
10.1016/j.scitotenv.2019.02.040
10.1007/s10495-014-0967-2
10.1038/nature09663
10.1016/j.mito.2017.10.007
10.18632/oncotarget.18740
10.1128/MCB.20.6.2198-2208.2000
10.3390/ijms19061813
10.1101/266668
10.1016/j.fct.2017.10.008
10.1111/acel.12793
10.1002/jcp.25349
10.1016/j.etap.2014.11.010
10.1038/s41586-019-1544-1
10.1016/0378-4274(96)03670-3
10.1016/j.redox.2019.101215
10.1007/s00204-015-1547-0
10.1016/j.fct.2019.110824
10.1016/j.toxlet.2019.12.025
10.1371/journal.pone.0056894
10.1016/j.yjmcc.2009.02.021
10.1089/ars.2013.5371
10.3390/ijms17122140
10.1016/j.mito.2017.12.001
10.1016/j.neuro.2016.10.004
10.1016/j.lfs.2019.05.067
10.1177/0748233720971882
10.1016/j.tox.2017.07.016
10.1016/j.tox.2015.04.015
10.1016/j.envpol.2018.12.055
10.1038/nature09973
10.1007/s00253-014-5631-9
10.1146/annurev-biochem-060614-034216
10.1016/j.chemosphere.2019.06.227
10.1042/CS20110523
10.1038/onc.2016.302
10.3389/fimmu.2018.02305
10.1016/j.scitotenv.2017.10.220
10.1038/s12276-019-0355-7
10.1016/j.jtemb.2013.07.003
10.1016/j.trsl.2018.07.014
10.1083/jcb.201008084
10.1016/j.jprot.2018.06.020
10.1155/2017/8416763
10.1016/j.theriogenology.2020.06.015
10.3233/JAD-161088
10.1038/s41420-019-0208-0
10.1016/j.scitotenv.2017.08.079
10.18388/abp.2003_3693
10.1073/pnas.0803998105
10.1038/35040600
10.1016/S0892-0362(02)00213-1
10.1152/physrev.00001.2015
10.1007/s11064-014-1451-7
10.1007/s11356-019-06692-9
10.1016/j.toxlet.2018.04.012
10.1155/2016/5698931
10.1016/j.vetmic.2019.108396
10.1038/sj.onc.1203788
10.1021/acs.inorgchem.8b02548
10.1016/j.immuni.2015.02.002
10.1038/nsmb.3444
10.1161/CIRCRESAHA.117.311082
10.1038/nsmb.3460
10.1016/j.pharmthera.2018.07.001
10.1016/j.ceca.2017.05.004
10.3109/15376516.2012.721809
10.1016/j.pneurobio.2013.04.004
10.1155/2016/4350965
10.18632/oncotarget.16736
10.1016/j.tiv.2018.11.010
10.1016/j.neuron.2016.12.034
10.1111/febs.13249
10.1016/S0006-291X(03)00616-8
10.1159/000477889
10.1007/s00018-016-2202-5
10.1038/cr.2014.75
10.1007/s11356-017-0411-6
10.1016/j.cell.2011.10.026
10.1089/ars.2016.6664
10.1016/j.cell.2011.10.018
10.1016/j.nbd.2018.07.015
10.1016/j.ceca.2004.02.012
10.1016/j.toxlet.2015.09.015
10.1016/j.molimm.2018.09.010
10.1038/nature13392
10.1111/cns.13140
10.1007/s12272-016-0827-4
ContentType Journal Article
Copyright 2021 The Japanese Society of Toxicology
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 The Japanese Society of Toxicology
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
7X8
DOI 10.2131/jts.46.345
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1880-3989
EndPage 358
ExternalDocumentID 34334556
10_2131_jts_46_345
article_jts_46_8_46_345_article_char_en
Genre Journal Article
Review
GroupedDBID .55
123
29L
2WC
36B
3O-
53G
ABDBF
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AFRAH
AL-
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
SV3
TKC
TR2
TUS
X7M
XSB
~8M
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7U7
C1K
SOI
7X8
ID FETCH-LOGICAL-c579t-65c33ebf1f5e134899738b6df49de071025ce8e38c9190a2c3357035c896c7f83
ISSN 0388-1350
1880-3989
IngestDate Fri Jul 11 04:05:11 EDT 2025
Mon Jun 30 04:29:36 EDT 2025
Thu Apr 03 07:05:07 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 01:36:58 EDT 2025
Wed Sep 03 06:31:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords Oxidative stress
Inflammation
Pb exposure
Mitochondrial permeability transition pore
Autophagy
Calcium homeostasis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579t-65c33ebf1f5e134899738b6df49de071025ce8e38c9190a2c3357035c896c7f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jts/46/8/46_345/_article/-char/en
PMID 34334556
PQID 2557261289
PQPubID 2029103
PageCount 14
ParticipantIDs proquest_miscellaneous_2557536484
proquest_journals_2557261289
pubmed_primary_34334556
crossref_primary_10_2131_jts_46_345
crossref_citationtrail_10_2131_jts_46_345
jstage_primary_article_jts_46_8_46_345_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Suita
PublicationTitle Journal of toxicological sciences
PublicationTitleAlternate J Toxicol Sci
PublicationYear 2021
Publisher The Japanese Society of Toxicology
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Toxicology
– name: Japan Science and Technology Agency
References Ma, L., Liu, J.Y., Dong, J.X., Xiao, Q., Zhao, J. and Jiang, F.L. (2017): Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. (Camb.), 6, 822-830.
Huang, H., Li, X., Wang, Z., Lin, X., Tian, Y., Zhao, Q. and Zheng, P. (2020): Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenology, 155, 139-149.
Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M. and Xu, X. (2019): Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ., 664, 690-697.
Chin, H.S., Li, M.X., Tan, I.K., Ninnis, R.L., Reljic, B., Scicluna, K., Dagley, L.F., Sandow, J.J., Kelly, G.L., Samson, A.L., Chappaz, S., Khaw, S.L., Chang, C., Morokoff, A., Brinkmann, K., Webb, A., Hockings, C., Hall, C.M., Kueh, A.J., Ryan, M.T., Kluck, R.M., Bouillet, P., Herold, M.J., Gray, D.H., Huang, D.C., van Delft, M.F. and Dewson, G. (2018): VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun., 9, 4976.
Guan, X., Shen, J., Xu, Y., Feng, X. and Zhou, R. (2020): Heme oxygenase-1 enhances autophagy by modulating the AMPK/mTORC1 signaling pathway as a renoprotective mechanism to mitigate lead-induced nephrotoxicity. Am. J. Transl. Res., 12, 4807-4818.
Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017): Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1066-1077.
Simões, M.R., Preti, S.C., Azevedo, B.F., Fiorim, J., Freire, D.D. Jr., Covre, E.P., Vassallo, D.V. and Dos Santos, L. (2017): Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats. Cardiovasc. Toxicol., 17, 190-199.
Briston, T., Selwood, D.L., Szabadkai, G. and Duchen, M.R. (2019): Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends Pharmacol. Sci., 40, 50-70.
Chu, C.T. (2019): Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis., 122, 23-34.
Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014): Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94, 909-950.
Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.A., Domingo, J.L., Alimonti, A. and Schuhmacher, M. (2019): Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res., 177, 108599.
Ve, T., Vajjhala, P.R., Hedger, A., Croll, T., DiMaio, F., Horsefield, S., Yu, X., Lavrencic, P., Hassan, Z., Morgan, G.P., Mansell, A., Mobli, M., O’Carroll, A., Chauvin, B., Gambin, Y., Sierecki, E., Landsberg, M.J., Stacey, K.J., Egelman, E.H. and Kobe, B. (2017): Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat. Struct. Mol. Biol., 24, 743-751.
Ying, Y. and Padanilam, B.J. (2016): Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell. Mol. Life Sci., 73, 2309-2324.
Gargioni, R., Filipak Neto, F., Buchi, D.F., Randi, M.A., Franco, C.R., Paludo, K.S., Pelletier, E., Ferraro, M.V., Cestari, M.M., Bussolaro, D. and Oliveira Ribeiro, C.A. (2006): Cell death and DNA damage in peritoneal macrophages of mice (Mus musculus) exposed to inorganic lead. Cell Biol. Int., 30, 615-623.
Weinberg, S.E., Sena, L.A. and Chandel, N.S. (2015): Mitochondria in the regulation of innate and adaptive immunity. Immunity, 42, 406-417.
Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., Zhang, Y., Li, S., Kacergis, M.C., Webster, C.M., Fejes-Toth, G., Naray-Fejes-Toth, A., Das, S., Hansen, M., Haas, W. and Soukas, A.A. (2019): Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314.e16.
Del Rio, D., Stewart, A.J. and Pellegrini, N. (2005): A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15, 316-328.
Cao, J., Xu, X., Zhang, Y., Zeng, Z., Hylkema, M.N. and Huo, X. (2018): Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. Sci. Total Environ., 616-617, 988-995.
Yang, W., Tian, Z.K., Yang, H.X., Feng, Z.J., Sun, J.M., Jiang, H., Cheng, C., Ming, Q.L. and Liu, C.M. (2019): Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 134, 110824.
Zheng, X., Huo, X., Zhang, Y., Wang, Q., Zhang, Y. and Xu, X. (2019): Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut., 246, 587-596.
Karri, V., Ramos, D., Martinez, J.B., Odena, A., Oliveira, E., Coort, S.L., Evelo, C.T., Mariman, E.C., Schuhmacher, M. and Kumar, V. (2018): Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: deepening into the molecular mechanism of neurodegenerative diseases. J. Proteomics, 187, 106-125.
Agarwal, A., Wu, P.H., Hughes, E.G., Fukaya, M., Tischfield, M.A., Langseth, A.J., Wirtz, D. and Bergles, D.E. (2017): Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron, 93, 587-605.e7.
Bomfim, G.F., Dos Santos, R.A., Oliveira, M.A., Giachini, F.R., Akamine, E.H., Tostes, R.C., Fortes, Z.B., Webb, R.C. and Carvalho, M.H. (2012): Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. (Lond.), 122, 535-543.
Li, N., Liu, F., Song, L., Zhang, P., Qiao, M., Zhao, Q. and Li, W. (2014): The effects of early life Pb exposure on the expression of IL1-β, TNF-α and Aβ in cerebral cortex of mouse pups. J. Trace Elem. Med. Biol., 28, 100-104.
Yu, J.W. and Lee, M.S. (2016): Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch. Pharm. Res., 39, 1503-1518.
Rai, A., Maurya, S.K., Sharma, R. and Ali, S. (2013): Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol. Mech. Methods, 23, 99-107.
Metryka, E., Chibowska, K., Gutowska, I., Falkowska, A., Kupnicka, P., Barczak, K., Chlubek, D. and Baranowska-Bosiacka, I. (2018): Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int. J. Mol. Sci., 19, 1813.
Belzacq, A.S., Vieira, H.L., Verrier, F., Vandecasteele, G., Cohen, I., Prévost, M.C., Larquet, E., Pariselli, F., Petit, P.X., Kahn, A., Rizzuto, R., Brenner, C. and Kroemer, G. (2003): Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res., 63, 541-546.
Yang, Y., Karakhanova, S., Hartwig, W., D’Haese, J.G., Philippov, P.P., Werner, J. and Bazhin, A.V. (2016): Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol., 231, 2570-2581.
Yang, X., Wang, B., Zeng, H., Cai, C., Hu, Q., Cai, S., Xu, L., Meng, X. and Zou, F. (2014): Role of the mitochondrial Ca2+ uniporter in Pb2+-induced oxidative stress in human neuroblastoma cells. Brain Res., 1575, 12-21.
Hajnóczky, G., Davies, E. and Madesh, M. (2003): Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun., 304, 445-454.
Annesley, S.J. and Fisher, P.R. (2019): Mitochondria in Health and Disease. Cells, 8, 680.
Liu, J., Liao, G., Tu, H., Huang, Y., Peng, T., Xu, Y., Chen, X., Huang, Z., Zhang, Y., Meng, X. and Zou, F. (2019): A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. Chemosphere, 235, 1050-1058.
Vyssokikh, M.Y. and Brdiczka, D. (2003): The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50, 389-404.
Mao, G., Liu, H., Ding, Y., Zhang, W., Chen, H., Zhao, T., Feng, W., Wu, X. and Yang, L. (2020): Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int., 27, 9318-9326.
Seirafi, M., Kozlov, G. and Gehring, K. (2015): Parkin structure and function. FEBS J., 282, 2076-2088.
Lv, X.H., Zhao, D.H., Cai, S.Z., Luo, S.Y., You, T., Xu, B.L. and Chen, K. (2015): Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicol. Lett., 239, 131-140.
Chibowska, K., Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Goschorska, M. and Chlubek, D. (2016): Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int. J. Mol. Sci., 17, 2140.
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017): Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev., 2017, 8416763.
He, Y., Hara, H. and Núñez, G. (2016): Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 41, 1012-1021.
Chen, P.G., Guan, Y.J., Zha, G.M., Jiao, X.Q., Zhu, H.S., Zhang, C.Y., Wang, Y.Y. and Li, H.P. (2017): Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget, 8, 61958-61968.
Chi, Q., Liu, T., Sun, Z., Tan, S., Li, S. and Li, S. (2017): Involvement of mitochondrial pathway in environmental metal pollutant lead-induced apoptosis of chicken liver: perspectives from oxidative stress and energy metabolism. Environ. Sci. Pollut. Res. Int., 24, 28121-28131.
Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011): A role for mitochondria in NLRP3 inflammasome activation. Nature, 469, 221-225.
Deng, Z., Fu, H., Xiao, Y., Zhang, B., Sun, G., Wei, Q., Ai, B. and Hu, Q. (2015): Effects of selenium on lead-induced alterations i
89
90
92
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
A.P. West (91) 2011
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
R. Zhou (107) 2011
S.E. Weinberg (88) 2015
30
31
32
33
34
35
36
37
39
40
41
42
43
45
46
47
48
49
H. Huang (38) 2020
F. Koyano (44) 2014
50
51
52
53
54
N. Mizushima (60) 2011
55
56
57
58
59
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
81
108
82
83
84
85
86
87
References_xml – reference: Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014): Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 94, 909-950.
– reference: Weinberg, S.E., Sena, L.A. and Chandel, N.S. (2015): Mitochondria in the regulation of innate and adaptive immunity. Immunity, 42, 406-417.
– reference: Chin, H.S., Li, M.X., Tan, I.K., Ninnis, R.L., Reljic, B., Scicluna, K., Dagley, L.F., Sandow, J.J., Kelly, G.L., Samson, A.L., Chappaz, S., Khaw, S.L., Chang, C., Morokoff, A., Brinkmann, K., Webb, A., Hockings, C., Hall, C.M., Kueh, A.J., Ryan, M.T., Kluck, R.M., Bouillet, P., Herold, M.J., Gray, D.H., Huang, D.C., van Delft, M.F. and Dewson, G. (2018): VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat. Commun., 9, 4976.
– reference: Lv, X.H., Zhao, D.H., Cai, S.Z., Luo, S.Y., You, T., Xu, B.L. and Chen, K. (2015): Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride. Toxicol. Lett., 239, 131-140.
– reference: Guan, X., Shen, J., Xu, Y., Feng, X. and Zhou, R. (2020): Heme oxygenase-1 enhances autophagy by modulating the AMPK/mTORC1 signaling pathway as a renoprotective mechanism to mitigate lead-induced nephrotoxicity. Am. J. Transl. Res., 12, 4807-4818.
– reference: Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N. and Bhutia, S.K. (2014): Autophagy and apoptosis: where do they meet? Apoptosis, 19, 555-566.
– reference: Gao, K., Zhang, C., Tian, Y., Naeem, S., Zhang, Y. and Qi, Y. (2020): The role of endoplasmic reticulum stress in lead (Pb)-induced mitophagy of HEK293 cells. Toxicol. Ind. Health, 36, 1002-1009.
– reference: Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y.L., Selkoe, D., Rice, S., Steen, J., LaVoie, M.J. and Schwarz, T.L. (2011): PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147, 893-906.
– reference: Wu, B., Ni, H., Li, J., Zhuang, X., Zhang, J., Qi, Z., Chen, Q., Wen, Z., Shi, H., Luo, X. and Jin, B. (2017): The Impact of Circulating Mitochondrial DNA on Cardiomyocyte Apoptosis and Myocardial Injury After TLR4 Activation in Experimental Autoimmune Myocarditis. Cell. Physiol. Biochem., 42, 713-728.
– reference: Huo, X., Dai, Y., Yang, T., Zhang, Y., Li, M. and Xu, X. (2019): Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ., 664, 690-697.
– reference: Seirafi, M., Kozlov, G. and Gehring, K. (2015): Parkin structure and function. FEBS J., 282, 2076-2088.
– reference: Rongvaux, A. (2018): Innate immunity and tolerance toward mitochondria. Mitochondrion, 41, 14-20.
– reference: Song, N. and Li, T. (2018): Regulation of NLRP3 Inflammasome by Phosphorylation. Front. Immunol., 9, 2305.
– reference: Schwacha, M.G., Rani, M., Nicholson, S.E., Lewis, A.M., Holloway, T.L., Sordo, S. and Cap, A.P. (2016): Dermal γδ T-Cells Can Be Activated by Mitochondrial Damage-Associated Molecular Patterns. PLoS One, 11, e0158993.
– reference: Ye, F., Li, X., Liu, Y., Jiang, A., Li, X., Yang, L., Chang, W., Yuan, J. and Chen, J. (2020): CypD deficiency confers neuroprotection against mitochondrial abnormality caused by lead in SH-SY5Y cell. Toxicol. Lett., 323, 25-34.
– reference: Bernardini, J.P., Lazarou, M. and Dewson, G. (2017): Parkin and mitophagy in cancer. Oncogene, 36, 1315-1327.
– reference: Chi, Q., Liu, T., Sun, Z., Tan, S., Li, S. and Li, S. (2017): Involvement of mitochondrial pathway in environmental metal pollutant lead-induced apoptosis of chicken liver: perspectives from oxidative stress and energy metabolism. Environ. Sci. Pollut. Res. Int., 24, 28121-28131.
– reference: Belzacq, A.S., Vieira, H.L., Verrier, F., Vandecasteele, G., Cohen, I., Prévost, M.C., Larquet, E., Pariselli, F., Petit, P.X., Kahn, A., Rizzuto, R., Brenner, C. and Kroemer, G. (2003): Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res., 63, 541-546.
– reference: Han, Y., Li, C., Su, M., Wang, Z., Jiang, N. and Sun, D. (2017): Antagonistic effects of selenium on lead-induced autophagy by influencing mitochondrial dynamics in the spleen of chickens. Oncotarget, 8, 33725-33735.
– reference: Lalith Kumar, V. and Muralidhara. (2014): Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem. Res., 39, 2501-2515.
– reference: Liu, G., Wang, Z.K., Wang, Z.Y., Yang, D.B., Liu, Z.P. and Wang, L. (2016): Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol., 90, 1193-1209.
– reference: Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P. and Youle, R.J. (2010): Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol., 191, 933-942.
– reference: Panel, M., Ghaleh, B. and Morin, D. (2018): Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell, 17, e12793.
– reference: Park, Y., Lee, A., Choi, K., Kim, H.J., Lee, J.J., Choi, G., Kim, S., Kim, S.Y., Cho, G.J., Suh, E., Kim, S.K., Eun, S.H., Eom, S., Kim, S., Kim, G.H., Moon, H.B., Kim, S., Choi, S., Kim, Y.D., Kim, J. and Park, J. (2018): Exposure to lead and mercury through breastfeeding during the first month of life: A CHECK cohort study. Sci. Total Environ., 612, 876-883.
– reference: Halestrap, A.P. (2009): What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 46, 821-831.
– reference: Ying, Y. and Padanilam, B.J. (2016): Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell. Mol. Life Sci., 73, 2309-2324.
– reference: Banoth, B. and Cassel, S.L. (2018): Mitochondria in innate immune signaling. Transl. Res., 202, 52-68.
– reference: Tönnies, E. and Trushina, E. (2017): Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis., 57, 1105-1121.
– reference: Gu, X., Qi, Y., Feng, Z., Ma, L., Gao, K. and Zhang, Y. (2018): Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway. Toxicol. Lett., 291, 92-100.
– reference: Zheng, X., Huo, X., Zhang, Y., Wang, Q., Zhang, Y. and Xu, X. (2019): Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. Environ. Pollut., 246, 587-596.
– reference: Bernardi, P., Rasola, A., Forte, M. and Lippe, G. (2015): The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol. Rev., 95, 1111-1155.
– reference: Dudev, T., Grauffel, C. and Lim, C. (2018): How Pb2+ Binds and Modulates Properties of Ca2+-Signaling Proteins. Inorg. Chem., 57, 14798-14809.
– reference: Deng, H., Dodson, M.W., Huang, H. and Guo, M. (2008): The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 14503-14508.
– reference: Yang, Y., Karakhanova, S., Hartwig, W., D’Haese, J.G., Philippov, P.P., Werner, J. and Bazhin, A.V. (2016): Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol., 231, 2570-2581.
– reference: Gu, X., Han, M., Du, Y., Wu, Y., Xu, Y., Zhou, X., Ye, D. and Wang, H.L. (2019): Pb disrupts autophagic flux through inhibiting the formation and activity of lysosomes in neural cells. Toxicol. In Vitro, 55, 43-50.
– reference: Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017): Autophagy and Mitophagy in Cardiovascular Disease. Circ. Res., 120, 1812-1824.
– reference: Rai, A., Maurya, S.K., Sharma, R. and Ali, S. (2013): Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol. Mech. Methods, 23, 99-107.
– reference: Sousa, C.A. and Soares, E.V. (2014): Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 98, 5153-5160.
– reference: West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., Walsh, M.C., Choi, Y., Shadel, G.S. and Ghosh, S. (2011): TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 472, 476-480.
– reference: Hajnóczky, G., Davies, E. and Madesh, M. (2003): Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun., 304, 445-454.
– reference: Starkov, A.A., Chinopoulos, C. and Fiskum, G. (2004): Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 36, 257-264.
– reference: Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Martínez, M.A., Domingo, J.L., Alimonti, A. and Schuhmacher, M. (2019): Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res., 177, 108599.
– reference: Giorgio, V., Guo, L., Bassot, C., Petronilli, V. and Bernardi, P. (2018): Calcium and regulation of the mitochondrial permeability transition. Cell Calcium, 70, 56-63.
– reference: Chen, P.G., Guan, Y.J., Zha, G.M., Jiao, X.Q., Zhu, H.S., Zhang, C.Y., Wang, Y.Y. and Li, H.P. (2017): Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget, 8, 61958-61968.
– reference: Yu, J.W. and Lee, M.S. (2016): Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch. Pharm. Res., 39, 1503-1518.
– reference: Huang, H., Li, X., Wang, Z., Lin, X., Tian, Y., Zhao, Q. and Zheng, P. (2020): Anti-inflammatory effect of selenium on lead-induced testicular inflammation by inhibiting NLRP3 inflammasome activation in chickens. Theriogenology, 155, 139-149.
– reference: Gargioni, R., Filipak Neto, F., Buchi, D.F., Randi, M.A., Franco, C.R., Paludo, K.S., Pelletier, E., Ferraro, M.V., Cestari, M.M., Bussolaro, D. and Oliveira Ribeiro, C.A. (2006): Cell death and DNA damage in peritoneal macrophages of mice (Mus musculus) exposed to inorganic lead. Cell Biol. Int., 30, 615-623.
– reference: Mizushima, N. and Komatsu, M. (2011): Autophagy: renovation of cells and tissues. Cell, 147, 728-741.
– reference: Hassan, E., El-Neweshy, M., Hassan, M. and Noreldin, A. (2019): Thymoquinone attenuates testicular and spermotoxicity following subchronic lead exposure in male rats: possible mechanisms are involved. Life Sci., 230, 132-140.
– reference: Liu, J.T., Chen, B.Y., Zhang, J.Q., Kuang, F. and Chen, L.W. (2015): Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signaling cascades. Toxicol. Lett., 239, 97-107.
– reference: Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017): Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1066-1077.
– reference: Liu, H., Nishitoh, H., Ichijo, H. and Kyriakis, J.M. (2000): Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol., 20, 2198-2208.
– reference: Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. and Dong, W. (2016): ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev., 2016, 4350965.
– reference: Li, N., Zhou, H., Wu, H., Wu, Q., Duan, M., Deng, W. and Tang, Q. (2019): STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol., 24, 101215.
– reference: Nicotra, A. and Parvez, S. (2002): Apoptotic molecules and MPTP-induced cell death. Neurotoxicol. Teratol., 24, 599-605.
– reference: Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017): Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev., 2017, 8416763.
– reference: De Stefani, D., Rizzuto, R. and Pozzan, T. (2016): Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu. Rev. Biochem., 85, 161-192.
– reference: Del Rio, D., Stewart, A.J. and Pellegrini, N. (2005): A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15, 316-328.
– reference: Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X.C. and Chen, Z.J. (2019): Structural basis of STING binding with and phosphorylation by TBK1. Nature, 567, 394-398.
– reference: Annesley, S.J. and Fisher, P.R. (2019): Mitochondria in Health and Disease. Cells, 8, 680.
– reference: Chibowska, K., Baranowska-Bosiacka, I., Falkowska, A., Gutowska, I., Goschorska, M. and Chlubek, D. (2016): Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int. J. Mol. Sci., 17, 2140.
– reference: Chetty, C.S., Rajanna, S., Hall, E., Yallapragada, P.R. and Rajanna, B. (1996): In vitro and in vivo effects of lead, methyl mercury and mercury on inositol 1,4,5-trisphosphate and 1,3,4,5-tetrakisphosphate receptor bindings in rat brain. Toxicol. Lett., 87, 11-17.
– reference: Ma, L., Liu, J.Y., Dong, J.X., Xiao, Q., Zhao, J. and Jiang, F.L. (2017): Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. (Camb.), 6, 822-830.
– reference: Parzych, K.R. and Klionsky, D.J. (2014): An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal., 20, 460-473.
– reference: Liu, L., Sakakibara, K., Chen, Q. and Okamoto, K. (2014): Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res., 24, 787-795.
– reference: Wang, Y., Liu, N. and Lu, B. (2019): Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther., 25, 859-875.
– reference: Wen, L., Jiang, X., Sun, J., Li, X., Li, X., Tian, L., Li, Y. and Bai, W. (2018): Cyanidin-3-O-glucoside promotes the biosynthesis of progesterone through the protection of mitochondrial function in Pb-exposed rat leydig cells. Food Chem. Toxicol., 112, 427-434.
– reference: Shimizu, S., Shinohara, Y. and Tsujimoto, Y. (2000): Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene, 19, 4309-4318.
– reference: Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., Zhang, Y., Li, S., Kacergis, M.C., Webster, C.M., Fejes-Toth, G., Naray-Fejes-Toth, A., Das, S., Hansen, M., Haas, W. and Soukas, A.A. (2019): Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314.e16.
– reference: Jha, J.C., Banal, C., Chow, B.S., Cooper, M.E. and Jandeleit-Dahm, K. (2016): Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal., 25, 657-684.
– reference: Pal, P.B., Sinha, K. and Sil, P.C. (2013): Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways. PLoS One, 8, e56894.
– reference: Ve, T., Vajjhala, P.R., Hedger, A., Croll, T., DiMaio, F., Horsefield, S., Yu, X., Lavrencic, P., Hassan, Z., Morgan, G.P., Mansell, A., Mobli, M., O’Carroll, A., Chauvin, B., Gambin, Y., Sierecki, E., Landsberg, M.J., Stacey, K.J., Egelman, E.H. and Kobe, B. (2017): Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat. Struct. Mol. Biol., 24, 743-751.
– reference: Letts, J.A. and Sazanov, L.A. (2017): Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol., 24, 800-808.
– reference: Ahmad, F., Salahuddin, M., Alamoudi, W. and Acharya, S. (2018): Dysfunction of cortical synapse-specific mitochondria in developing rats exposed to lead and its amelioration by ascorbate supplementation. Neuropsychiatr. Dis. Treat., 14, 813-824.
– reference: Biswas, S.K. (2016): Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev., 2016, 5698931.
– reference: Bomfim, G.F., Dos Santos, R.A., Oliveira, M.A., Giachini, F.R., Akamine, E.H., Tostes, R.C., Fortes, Z.B., Webb, R.C. and Carvalho, M.H. (2012): Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. (Lond.), 122, 535-543.
– reference: Islam, M.T. (2017): Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 39, 73-82.
– reference: Deng, Z., Fu, H., Xiao, Y., Zhang, B., Sun, G., Wei, Q., Ai, B. and Hu, Q. (2015): Effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. Environ. Toxicol. Pharmacol., 39, 221-228.
– reference: Simons, T.J. (1993): Lead-calcium interactions in cellular lead toxicity. Neurotoxicology, 14, 77-85.
– reference: Ye, F., Li, X., Li, F., Li, J., Chang, W., Yuan, J. and Chen, J. (2016): Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells. Neurotoxicology, 57, 203-213.
– reference: Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., Endo, T., Fon, E.A., Trempe, J.F., Saeki, Y., Tanaka, K. and Matsuda, N. (2014): Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510, 162-166.
– reference: Liu, Q., Zhang, D., Hu, D., Zhou, X. and Zhou, Y. (2018): The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol., 103, 115-124.
– reference: Subramaniam, S.R. and Chesselet, M.F. (2013): Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol., 106-107, 17-32.
– reference: Yang, W., Tian, Z.K., Yang, H.X., Feng, Z.J., Sun, J.M., Jiang, H., Cheng, C., Ming, Q.L. and Liu, C.M. (2019): Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol., 134, 110824.
– reference: Zhao, Q., Liu, Y., Zhong, J., Bi, Y., Liu, Y., Ren, Z., Li, X., Jia, J., Yu, M. and Yu, X. (2019): Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discov., 5, 125.
– reference: Agarwal, A., Wu, P.H., Hughes, E.G., Fukaya, M., Tischfield, M.A., Langseth, A.J., Wirtz, D. and Bergles, D.E. (2017): Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron, 93, 587-605.e7.
– reference: Cao, J., Xu, X., Zhang, Y., Zeng, Z., Hylkema, M.N. and Huo, X. (2018): Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. Sci. Total Environ., 616-617, 988-995.
– reference: Pathak, T. and Trebak, M. (2018): Mitochondrial Ca2+ signaling. Pharmacol. Ther., 192, 112-123.
– reference: Briston, T., Selwood, D.L., Szabadkai, G. and Duchen, M.R. (2019): Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends Pharmacol. Sci., 40, 50-70.
– reference: Simões, M.R., Preti, S.C., Azevedo, B.F., Fiorim, J., Freire, D.D. Jr., Covre, E.P., Vassallo, D.V. and Dos Santos, L. (2017): Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats. Cardiovasc. Toxicol., 17, 190-199.
– reference: Chu, C.T. (2019): Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis., 122, 23-34.
– reference: Dela Cruz, C.S. and Kang, M.J. (2018): Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 41, 37-44.
– reference: Vyssokikh, M.Y. and Brdiczka, D. (2003): The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim. Pol., 50, 389-404.
– reference: Karri, V., Ramos, D., Martinez, J.B., Odena, A., Oliveira, E., Coort, S.L., Evelo, C.T., Mariman, E.C., Schuhmacher, M. and Kumar, V. (2018): Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: deepening into the molecular mechanism of neurodegenerative diseases. J. Proteomics, 187, 106-125.
– reference: Peoples, J.N., Saraf, A., Ghazal, N., Pham, T.T. and Kwong, J.Q. (2019): Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med., 51, 1-13.
– reference: Yoo, S.M. and Jung, Y.K. (2018): A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells, 41, 18-26.
– reference: Meyer, A., Laverny, G., Bernardi, L., Charles, A.L., Alsaleh, G., Pottecher, J., Sibilia, J. and Geny, B. (2018): Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front. Immunol., 9, 536.
– reference: Mao, G., Liu, H., Ding, Y., Zhang, W., Chen, H., Zhao, T., Feng, W., Wu, X. and Yang, L. (2020): Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int., 27, 9318-9326.
– reference: Roperto, S., De Falco, F., Perillo, A., Catoi, C. and Roperto, F. (2019): Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet. Microbiol., 236, 108396.
– reference: West, A.P. (2017): Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology, 391, 54-63.
– reference: He, Y., Hara, H. and Núñez, G. (2016): Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 41, 1012-1021.
– reference: Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J.L. and Tong, L. (2000): Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 408, 111-115.
– reference: Metryka, E., Chibowska, K., Gutowska, I., Falkowska, A., Kupnicka, P., Barczak, K., Chlubek, D. and Baranowska-Bosiacka, I. (2018): Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int. J. Mol. Sci., 19, 1813.
– reference: Wang, H., Wang, Z.K., Jiao, P., Zhou, X.P., Yang, D.B., Wang, Z.Y. and Wang, L. (2015): Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology, 333, 137-146.
– reference: Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011): A role for mitochondria in NLRP3 inflammasome activation. Nature, 469, 221-225.
– reference: Liu, J., Liao, G., Tu, H., Huang, Y., Peng, T., Xu, Y., Chen, X., Huang, Z., Zhang, Y., Meng, X. and Zou, F. (2019): A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. Chemosphere, 235, 1050-1058.
– reference: Yang, X., Wang, B., Zeng, H., Cai, C., Hu, Q., Cai, S., Xu, L., Meng, X. and Zou, F. (2014): Role of the mitochondrial Ca2+ uniporter in Pb2+-induced oxidative stress in human neuroblastoma cells. Brain Res., 1575, 12-21.
– reference: Li, N., Liu, F., Song, L., Zhang, P., Qiao, M., Zhao, Q. and Li, W. (2014): The effects of early life Pb exposure on the expression of IL1-β, TNF-α and Aβ in cerebral cortex of mouse pups. J. Trace Elem. Med. Biol., 28, 100-104.
– ident: 13
  doi: 10.1016/j.tips.2018.11.004
– ident: 40
  doi: 10.1080/01616412.2016.1251711
– ident: 106
  doi: 10.1016/j.cell.2019.02.013
– ident: 59
  doi: 10.3389/fimmu.2018.00536
– ident: 95
  doi: 10.1016/j.brainres.2014.05.032
– ident: 2
  doi: 10.2147/NDT.S148248
– ident: 37
  doi: 10.1016/j.tibs.2016.09.002
– ident: 10
  doi: 10.1016/j.envres.2019.108599
– ident: 76
  doi: 10.1007/s12012-016-9374-y
– ident: 3
  doi: 10.3390/cells8070680
– ident: 8
  doi: 10.1016/j.bbadis.2016.11.010
– ident: 55
  doi: 10.1016/j.toxlet.2015.09.014
– ident: 56
  doi: 10.1039/C7TX00204A
– ident: 73
  doi: 10.1371/journal.pone.0158993
– ident: 108
  doi: 10.1152/physrev.00026.2013
– ident: 28
  doi: 10.1016/j.cellbi.2006.03.010
– ident: 22
  doi: 10.1016/j.numecd.2005.05.003
– ident: 39
  doi: 10.1016/j.scitotenv.2019.02.040
– ident: 61
  doi: 10.1007/s10495-014-0967-2
– start-page: 221
  issn: 0028-0836
  year: 2011
  ident: 107
  publication-title: ?Nature
  doi: 10.1038/nature09663
– ident: 71
  doi: 10.1016/j.mito.2017.10.007
– ident: 15
  doi: 10.18632/oncotarget.18740
– ident: 50
  doi: 10.1128/MCB.20.6.2198-2208.2000
– ident: 58
  doi: 10.3390/ijms19061813
– ident: 19
  doi: 10.1101/266668
– ident: 89
  doi: 10.1016/j.fct.2017.10.008
– ident: 64
  doi: 10.1111/acel.12793
– ident: 96
  doi: 10.1002/jcp.25349
– ident: 25
  doi: 10.1016/j.etap.2014.11.010
– ident: 102
  doi: 10.1038/s41586-019-1544-1
– ident: 16
  doi: 10.1016/0378-4274(96)03670-3
– ident: 48
  doi: 10.1016/j.redox.2019.101215
– ident: 49
  doi: 10.1007/s00204-015-1547-0
– ident: 100
– ident: 94
  doi: 10.1016/j.fct.2019.110824
– ident: 98
  doi: 10.1016/j.toxlet.2019.12.025
– ident: 63
  doi: 10.1371/journal.pone.0056894
– ident: 34
  doi: 10.1016/j.yjmcc.2009.02.021
– ident: 66
  doi: 10.1089/ars.2013.5371
– ident: 18
  doi: 10.3390/ijms17122140
– ident: 23
  doi: 10.1016/j.mito.2017.12.001
– ident: 97
  doi: 10.1016/j.neuro.2016.10.004
– ident: 36
  doi: 10.1016/j.lfs.2019.05.067
– ident: 27
  doi: 10.1177/0748233720971882
– ident: 90
  doi: 10.1016/j.tox.2017.07.016
– ident: 32
– ident: 85
  doi: 10.1016/j.tox.2015.04.015
– ident: 105
  doi: 10.1016/j.envpol.2018.12.055
– start-page: 476
  issn: 0028-0836
  year: 2011
  ident: 91
  publication-title: ?Nature
  doi: 10.1038/nature09973
– ident: 77
– ident: 79
  doi: 10.1007/s00253-014-5631-9
– ident: 21
  doi: 10.1146/annurev-biochem-060614-034216
– ident: 51
  doi: 10.1016/j.chemosphere.2019.06.227
– ident: 11
  doi: 10.1042/CS20110523
– ident: 7
  doi: 10.1038/onc.2016.302
– ident: 78
  doi: 10.3389/fimmu.2018.02305
– ident: 14
  doi: 10.1016/j.scitotenv.2017.10.220
– ident: 68
  doi: 10.1038/s12276-019-0355-7
– ident: 47
  doi: 10.1016/j.jtemb.2013.07.003
– ident: 4
  doi: 10.1016/j.trsl.2018.07.014
– ident: 42
  doi: 10.1083/jcb.201008084
– ident: 43
  doi: 10.1016/j.jprot.2018.06.020
– ident: 69
  doi: 10.1155/2017/8416763
– start-page: 139
  issn: 0093-691X
  year: 2020
  ident: 38
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2020.06.015
– ident: 82
  doi: 10.3233/JAD-161088
– ident: 104
  doi: 10.1038/s41420-019-0208-0
– ident: 65
  doi: 10.1016/j.scitotenv.2017.08.079
– ident: 84
  doi: 10.18388/abp.2003_3693
– ident: 24
  doi: 10.1073/pnas.0803998105
– ident: 5
– ident: 93
  doi: 10.1038/35040600
– ident: 62
  doi: 10.1016/S0892-0362(02)00213-1
– ident: 6
  doi: 10.1152/physrev.00001.2015
– ident: 45
  doi: 10.1007/s11064-014-1451-7
– ident: 57
  doi: 10.1007/s11356-019-06692-9
– ident: 31
  doi: 10.1016/j.toxlet.2018.04.012
– ident: 9
  doi: 10.1155/2016/5698931
– ident: 72
  doi: 10.1016/j.vetmic.2019.108396
– ident: 75
  doi: 10.1038/sj.onc.1203788
– ident: 26
  doi: 10.1021/acs.inorgchem.8b02548
– start-page: 406
  issn: 1074-7613
  year: 2015
  ident: 88
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.002
– ident: 83
  doi: 10.1038/nsmb.3444
– ident: 12
  doi: 10.1161/CIRCRESAHA.117.311082
– ident: 46
  doi: 10.1038/nsmb.3460
– ident: 67
  doi: 10.1016/j.pharmthera.2018.07.001
– ident: 29
  doi: 10.1016/j.ceca.2017.05.004
– ident: 70
  doi: 10.3109/15376516.2012.721809
– ident: 81
  doi: 10.1016/j.pneurobio.2013.04.004
– ident: 103
  doi: 10.1155/2016/4350965
– ident: 35
  doi: 10.18632/oncotarget.16736
– ident: 30
  doi: 10.1016/j.tiv.2018.11.010
– ident: 1
  doi: 10.1016/j.neuron.2016.12.034
– ident: 74
  doi: 10.1111/febs.13249
– ident: 33
  doi: 10.1016/S0006-291X(03)00616-8
– ident: 92
  doi: 10.1159/000477889
– ident: 99
  doi: 10.1007/s00018-016-2202-5
– ident: 53
  doi: 10.1038/cr.2014.75
– ident: 17
  doi: 10.1007/s11356-017-0411-6
– start-page: 728
  issn: 0092-8674
  year: 2011
  ident: 60
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– ident: 41
  doi: 10.1089/ars.2016.6664
– ident: 86
  doi: 10.1016/j.cell.2011.10.018
– ident: 20
  doi: 10.1016/j.nbd.2018.07.015
– ident: 80
  doi: 10.1016/j.ceca.2004.02.012
– ident: 52
  doi: 10.1016/j.toxlet.2015.09.015
– ident: 54
  doi: 10.1016/j.molimm.2018.09.010
– start-page: 162
  issn: 0028-0836
  year: 2014
  ident: 44
  publication-title: ?Nature
  doi: 10.1038/nature13392
– ident: 87
  doi: 10.1111/cns.13140
– ident: 101
  doi: 10.1007/s12272-016-0827-4
SSID ssj0027054
Score 2.5090888
SecondaryResourceType review_article
Snippet Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Apoptosis
Apoptosis - drug effects
Autophagy
Autophagy - drug effects
Calcium (intracellular)
Calcium (mitochondrial)
Calcium - metabolism
Calcium homeostasis
Child
Child, Preschool
Children
Damage
Environmental Exposure - adverse effects
Environmental Pollutants - adverse effects
Environmental Pollutants - toxicity
Eukaryotes
Exposure
Female
Food contamination
Germination
Homeostasis
Homeostasis - drug effects
Humans
Inflammation
Inflammation - chemically induced
Intelligence
Lead
Lead - adverse effects
Lead - toxicity
Male
Membrane permeability
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Permeability Transition Pore
Organelles
Oxidative stress
Oxidative Stress - drug effects
Pb exposure
Phagocytosis
Pregnancy
Toxicity
Title Mitochondrion: a sensitive target for Pb exposure
URI https://www.jstage.jst.go.jp/article/jts/46/8/46_345/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34334556
https://www.proquest.com/docview/2557261289
https://www.proquest.com/docview/2557536484
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Toxicological Sciences, 2021, Vol.46(8), pp.345-358
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96-iCI-G31lIq-iHTPbD6a-iancirKCXd4b6VJp3IiXbl2QfzrnWTS7N65wulLWdqZtpv5TDrzC2NPMcgJa6EqWm1FIUvVFQ06wQIklKrFiNdAqLb4pPcO5fsjdbTa3ip0l4x25n5t7Cv5H6niOZSr75L9B8mmm-IJ_I3yxSNKGI_nkvFHNEd0X317Eis0mueDL0gP5UBU4x3KCPetR_JfDBE9ZEMyOi5-HrvkB2NYHFbuKfimz1OYW19o_gLHqYZnSZ9xkGwX32qNdknsURPjIgP1LE9tVTjoXBA67AzIS6LRF6KivX8mNxpXEkldzJpPFIQXGcOrIKT2s557zkXw3OMwk3qWWNbhsc-ErVRMiNMYz10jby11jbwX2aV5WXJf4fn63YfV_PuFIjSx-I8Irdbz7qyeeyo_ufwNU_Sv8PfZR8hCDq6za1Fi-SvShRvsAvQ32VVae82ppewW46f04mXe5EkrctKKHLUi37f5pBW32eHbNwe7e0XcGqNwqqzGQisnBNiOdwq4kDhpLoWxuu1k1ULIGpUDA8K4CjO-Zo7UHmpNOVNpV3ZG3GFb_aKHeyxXosIbGes4B1lCa-bKaOE6Acq2XJuMPZsGpHYRN95vX_K9_nPgM_Yk0f4gtJSNVJrGNdFEC5poTCRM530HIhp8xrYnOdTRDIca58Slx8EzVcYep8voJP2Xr6aHxZJolNDSyIzdJfmlZwv0VlIpff9c7_6AXfH2QYtw22xrPFnCQ0xLR_soKNtvv16OAQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrion%3A+a+sensitive+target+for+Pb+exposure&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Han%2C+Qing&rft.au=Zhang%2C+Wei&rft.au=Guo%2C+JingChong&rft.au=Zhu%2C+Qian&rft.date=2021&rft.issn=0388-1350&rft.eissn=1880-3989&rft.volume=46&rft.issue=8&rft.spage=345&rft.epage=358&rft_id=info:doi/10.2131%2Fjts.46.345&rft.externalDBID=n%2Fa&rft.externalDocID=10_2131_jts_46_345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon