Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fe...

Full description

Saved in:
Bibliographic Details
Published inJournal of hepatology Vol. 60; no. 4; pp. 824 - 831
Main Authors Vrieze, Anne, Out, Carolien, Fuentes, Susana, Jonker, Lisanne, Reuling, Isaie, Kootte, Ruud S., van Nood, Els, Holleman, Frits, Knaapen, Max, Romijn, Johannes A., Soeters, Maarten R., Blaak, Ellen E., Dallinga-Thie, Geesje M., Reijnders, Dorien, Ackermans, Mariëtte T., Serlie, Mireille J., Knop, Filip K., Holst, Jenst J., van der Ley, Claude, Kema, Ido P., Zoetendal, Erwin G., de Vos, Willem M., Hoekstra, Joost B.L., Stroes, Erik S., Groen, Albert K., Nieuwdorp, Max
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7days of amoxicillin 500mg t.i.d. or 7days of vancomycin 500mg t.i.d. At baseline and after 1week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).
AbstractList BACKGROUND: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500mg t.i.d. or 7 days of vancomycin 500mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p
Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7days of amoxicillin 500mg t.i.d. or 7days of vancomycin 500mg t.i.d. At baseline and after 1week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).
Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).
Graphical abstract
Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism.BACKGROUND & AIMSObesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism.In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured.METHODSIn this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured.Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters.RESULTSVancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters.Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).CONCLUSIONSOral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).
Author Romijn, Johannes A.
Reijnders, Dorien
Zoetendal, Erwin G.
Dallinga-Thie, Geesje M.
Holst, Jenst J.
Holleman, Frits
Soeters, Maarten R.
Kootte, Ruud S.
Nieuwdorp, Max
van der Ley, Claude
Kema, Ido P.
Vrieze, Anne
Serlie, Mireille J.
Stroes, Erik S.
de Vos, Willem M.
Hoekstra, Joost B.L.
Knaapen, Max
Blaak, Ellen E.
Ackermans, Mariëtte T.
van Nood, Els
Out, Carolien
Jonker, Lisanne
Reuling, Isaie
Knop, Filip K.
Groen, Albert K.
Fuentes, Susana
Author_xml – sequence: 1
  givenname: Anne
  surname: Vrieze
  fullname: Vrieze, Anne
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 2
  givenname: Carolien
  surname: Out
  fullname: Out, Carolien
  organization: Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
– sequence: 3
  givenname: Susana
  surname: Fuentes
  fullname: Fuentes, Susana
  organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
– sequence: 4
  givenname: Lisanne
  surname: Jonker
  fullname: Jonker, Lisanne
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 5
  givenname: Isaie
  surname: Reuling
  fullname: Reuling, Isaie
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 6
  givenname: Ruud S.
  surname: Kootte
  fullname: Kootte, Ruud S.
  organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 7
  givenname: Els
  surname: van Nood
  fullname: van Nood, Els
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 8
  givenname: Frits
  surname: Holleman
  fullname: Holleman, Frits
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 9
  givenname: Max
  surname: Knaapen
  fullname: Knaapen, Max
  organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 10
  givenname: Johannes A.
  surname: Romijn
  fullname: Romijn, Johannes A.
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 11
  givenname: Maarten R.
  surname: Soeters
  fullname: Soeters, Maarten R.
  organization: Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 12
  givenname: Ellen E.
  surname: Blaak
  fullname: Blaak, Ellen E.
  organization: Department of Human Metabolism, NUTRIM, School for Nutrition, Toxicology and Metabolism, Maastricht University, The Netherlands
– sequence: 13
  givenname: Geesje M.
  surname: Dallinga-Thie
  fullname: Dallinga-Thie, Geesje M.
  organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 14
  givenname: Dorien
  surname: Reijnders
  fullname: Reijnders, Dorien
  organization: Department of Human Metabolism, NUTRIM, School for Nutrition, Toxicology and Metabolism, Maastricht University, The Netherlands
– sequence: 15
  givenname: Mariëtte T.
  surname: Ackermans
  fullname: Ackermans, Mariëtte T.
  organization: Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 16
  givenname: Mireille J.
  surname: Serlie
  fullname: Serlie, Mireille J.
  organization: Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 17
  givenname: Filip K.
  surname: Knop
  fullname: Knop, Filip K.
  organization: Department of Internal Medicine, Gentofte Hospital, Hellerup, Denmark
– sequence: 18
  givenname: Jenst J.
  surname: Holst
  fullname: Holst, Jenst J.
  organization: NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark
– sequence: 19
  givenname: Claude
  surname: van der Ley
  fullname: van der Ley, Claude
  organization: Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
– sequence: 20
  givenname: Ido P.
  surname: Kema
  fullname: Kema, Ido P.
  organization: Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
– sequence: 21
  givenname: Erwin G.
  surname: Zoetendal
  fullname: Zoetendal, Erwin G.
  organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
– sequence: 22
  givenname: Willem M.
  surname: de Vos
  fullname: de Vos, Willem M.
  organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
– sequence: 23
  givenname: Joost B.L.
  surname: Hoekstra
  fullname: Hoekstra, Joost B.L.
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 24
  givenname: Erik S.
  surname: Stroes
  fullname: Stroes, Erik S.
  organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 25
  givenname: Albert K.
  surname: Groen
  fullname: Groen, Albert K.
  organization: Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
– sequence: 26
  givenname: Max
  surname: Nieuwdorp
  fullname: Nieuwdorp, Max
  email: m.nieuwdorp@amc.uva.nl
  organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24316517$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuLFDEUhQsZcR76B1xILV1MtzeVeqREBmTwMTDgQt24CUnq1njbVNImqR7635uiR4VBxk3uIuc7F865p8WR8w6L4jmDNQPWvtqsN99xu66A8TVja-D1o-KEtQAraGt2VJxkkViJqhPHxWmMGwDg0NdPiuOq5qxtWHdSfLuatsqk0o-lD8qWO-WMn_aGXOldeTOnciITvCaf1HmpyWKpDA3lhElpbylO56VyQ0kuzjZDEV2kRDtK-6fF41HZiM_u5lnx9f27L5cfV9efPlxdvr1emabr04oD55UZmsr0ipuh7xEEaNCjEbpFHDW0Y9sPvMqfla4QoO1Zo_tGCKHHtuFnxeuD7626QUcuP9KpYChKr0ha0kGFvbydg3R2GdtZR1nXnRAswy8P8Db4nzPGJCeKBq1VDv0cJWtAtJ1o62XPizvprCcc5DbQtBj_DjMLqoMgBxZjwPGPhIFcGpMbuTQml8YkYzI3liFxDzKUVCLvUlBkH0bfHFDM6e4Ig4yG0BkcKKBJcvD0MH5xDze5QTLK_sA9xo2fg8u9SSZjJUF-Xq5pOSbGAQTv6r_B_8vgf9t_Af4N21M
CitedBy_id crossref_primary_10_1016_j_bpg_2014_07_016
crossref_primary_10_1128_msystems_00172_22
crossref_primary_10_1016_j_intimp_2024_113613
crossref_primary_10_1136_gutjnl_2016_311910
crossref_primary_10_1016_j_aquatox_2020_105670
crossref_primary_10_4254_wjh_v13_i12_2113
crossref_primary_10_1080_19490976_2023_2237645
crossref_primary_10_1016_j_mce_2021_111333
crossref_primary_10_3390_ijms23158209
crossref_primary_10_1055_s_0044_1788653
crossref_primary_10_1016_j_ijid_2022_09_013
crossref_primary_10_1111_cen_13495
crossref_primary_10_3390_biology12121471
crossref_primary_10_1016_j_molmet_2020_100976
crossref_primary_10_3389_fendo_2025_1520436
crossref_primary_10_1016_j_bpg_2014_07_005
crossref_primary_10_3389_fmicb_2023_1272479
crossref_primary_10_3389_fnins_2024_1388748
crossref_primary_10_1007_s12020_014_0421_9
crossref_primary_10_1038_nrendo_2016_142
crossref_primary_10_1016_j_ejphar_2015_06_023
crossref_primary_10_1371_journal_pone_0213548
crossref_primary_10_3390_nu12020287
crossref_primary_10_1016_j_bpg_2020_101671
crossref_primary_10_1631_jzus_B1400327
crossref_primary_10_1016_j_clinthera_2015_03_008
crossref_primary_10_1016_j_jfma_2018_11_006
crossref_primary_10_1080_19490976_2023_2223345
crossref_primary_10_1631_jzus_B1900073
crossref_primary_10_1186_s12889_018_5879_6
crossref_primary_10_1016_j_lfs_2023_122304
crossref_primary_10_3390_biomedicines11020294
crossref_primary_10_1002_advs_202406445
crossref_primary_10_1038_nrendo_2016_150
crossref_primary_10_1016_j_aquaculture_2021_737453
crossref_primary_10_1093_jac_dkv479
crossref_primary_10_3389_fcimb_2020_572912
crossref_primary_10_1159_000441259
crossref_primary_10_3389_fcell_2021_680174
crossref_primary_10_3389_fmicb_2020_00053
crossref_primary_10_1210_er_2017_00192
crossref_primary_10_1016_j_immuni_2018_11_018
crossref_primary_10_14309_crj_0000000000000577
crossref_primary_10_1016_j_chom_2018_07_005
crossref_primary_10_1016_j_envpol_2023_122238
crossref_primary_10_3389_fimmu_2019_00647
crossref_primary_10_2147_CPAA_S273318
crossref_primary_10_1038_nrendo_2015_128
crossref_primary_10_1080_17446651_2020_1720511
crossref_primary_10_1186_s13099_021_00446_0
crossref_primary_10_3390_nu13030881
crossref_primary_10_1038_s41575_022_00690_y
crossref_primary_10_1016_j_cmet_2014_07_002
crossref_primary_10_3390_ijms24031816
crossref_primary_10_15406_ghoa_2016_05_00165
crossref_primary_10_1016_j_cmet_2014_07_006
crossref_primary_10_1016_S2213_2600_14_70213_9
crossref_primary_10_1016_j_biopha_2022_112678
crossref_primary_10_1016_j_surg_2016_07_018
crossref_primary_10_3389_fcimb_2022_892291
crossref_primary_10_1158_1055_9965_EPI_20_0824
crossref_primary_10_1016_j_fct_2022_113136
crossref_primary_10_1186_s40168_023_01709_5
crossref_primary_10_1007_s13105_017_0564_2
crossref_primary_10_1038_s41522_023_00374_8
crossref_primary_10_1111_joim_12508
crossref_primary_10_3390_ijms252212321
crossref_primary_10_1111_apt_15416
crossref_primary_10_1177_1756283X15622600
crossref_primary_10_3390_metabo12050390
crossref_primary_10_1111_dom_12748
crossref_primary_10_1371_journal_pone_0142352
crossref_primary_10_1038_s41598_024_65433_2
crossref_primary_10_1002_mbo3_1260
crossref_primary_10_1007_s00059_019_4791_x
crossref_primary_10_1128_mSystems_00542_20
crossref_primary_10_1007_s00253_015_6753_4
crossref_primary_10_1016_j_ejim_2018_04_019
crossref_primary_10_1016_j_micpath_2016_02_005
crossref_primary_10_1111_jam_14853
crossref_primary_10_3748_wjg_v21_i3_803
crossref_primary_10_1016_j_envpol_2017_03_068
crossref_primary_10_1016_j_tim_2022_10_003
crossref_primary_10_2174_1381612829666221219093450
crossref_primary_10_1080_17446651_2017_1318060
crossref_primary_10_1093_ofid_ofz095
crossref_primary_10_1093_crocol_otz015
crossref_primary_10_7554_eLife_37420
crossref_primary_10_1371_journal_pone_0181690
crossref_primary_10_1016_j_chemphyslip_2017_06_006
crossref_primary_10_1016_j_scitotenv_2021_150558
crossref_primary_10_3389_fmicb_2020_01065
crossref_primary_10_1007_s11908_017_0603_8
crossref_primary_10_1038_s41531_022_00321_y
crossref_primary_10_14814_phy2_14199
crossref_primary_10_1002_fsn3_1141
crossref_primary_10_3389_fimmu_2014_00427
crossref_primary_10_1055_s_0041_1733906
crossref_primary_10_1016_j_jhep_2015_10_002
crossref_primary_10_3390_microorganisms9020371
crossref_primary_10_1017_ice_2018_32
crossref_primary_10_1210_er_2014_1100
crossref_primary_10_2174_1389450123666220309101345
crossref_primary_10_1007_s11428_016_0123_4
crossref_primary_10_1002_eat_22497
crossref_primary_10_3390_microorganisms7030068
crossref_primary_10_1016_j_micres_2021_126942
crossref_primary_10_3390_microorganisms3020213
crossref_primary_10_1080_19490976_2024_2414796
crossref_primary_10_1080_10408398_2020_1843396
crossref_primary_10_1016_j_ebiom_2021_103475
crossref_primary_10_1016_j_chemosphere_2020_126019
crossref_primary_10_2217_fmb_2015_0024
crossref_primary_10_1093_femsec_fiaa058
crossref_primary_10_1139_cjm_2020_0043
crossref_primary_10_1186_s40168_017_0286_2
crossref_primary_10_1016_j_micpath_2015_10_018
crossref_primary_10_1136_gutjnl_2016_312297
crossref_primary_10_7759_cureus_50318
crossref_primary_10_1097_MED_0000000000000235
crossref_primary_10_1038_s41598_017_10755_7
crossref_primary_10_1007_s10620_016_4045_1
crossref_primary_10_1152_ajpgi_00045_2020
crossref_primary_10_1007_s00253_019_10165_x
crossref_primary_10_3390_metabo14020108
crossref_primary_10_2337_dc16_0351
crossref_primary_10_3389_fmicb_2015_01151
crossref_primary_10_3390_antibiotics10040401
crossref_primary_10_1016_j_tim_2022_12_010
crossref_primary_10_1016_j_prp_2024_155173
crossref_primary_10_2527_jas_2016_0911
crossref_primary_10_3389_fimmu_2019_01341
crossref_primary_10_1111_dom_12637
crossref_primary_10_1097_CM9_0000000000000330
crossref_primary_10_1007_s00253_016_8006_6
crossref_primary_10_1007_s11033_025_10425_2
crossref_primary_10_1097_HEP_0000000000000506
crossref_primary_10_1186_s40168_020_00907_9
crossref_primary_10_1038_s41575_024_00914_3
crossref_primary_10_1371_journal_pone_0218384
crossref_primary_10_1016_j_jcmgh_2020_02_005
crossref_primary_10_1172_JCI86674
crossref_primary_10_1093_ecco_jcc_jju023
crossref_primary_10_1093_ije_dyaa122
crossref_primary_10_1053_j_gastro_2016_12_048
crossref_primary_10_3390_nu12102982
crossref_primary_10_1007_s11901_016_0299_5
crossref_primary_10_1016_j_arr_2024_102544
crossref_primary_10_1159_000492114
crossref_primary_10_1089_aid_2014_0366
crossref_primary_10_1002_smtd_201900604
crossref_primary_10_1099_mic_0_000853
crossref_primary_10_1042_BSR20203850
crossref_primary_10_1007_s00018_018_2901_1
crossref_primary_10_1016_j_yclnex_2016_01_001
crossref_primary_10_1128_AAC_02347_19
crossref_primary_10_1136_gutjnl_2020_323715
crossref_primary_10_1016_j_cmi_2022_12_015
crossref_primary_10_1186_s13099_022_00513_0
crossref_primary_10_1016_j_apsb_2024_04_027
crossref_primary_10_1016_j_jenvman_2025_124693
crossref_primary_10_1111_obr_12298
crossref_primary_10_1038_s41467_018_05336_9
crossref_primary_10_1016_j_tcm_2018_08_003
crossref_primary_10_3390_nu10111765
crossref_primary_10_1016_j_medmic_2024_100106
crossref_primary_10_3389_fmicb_2018_01210
crossref_primary_10_3389_fnut_2020_594850
crossref_primary_10_1093_ibd_izaa342
crossref_primary_10_1093_femsec_fix092
crossref_primary_10_3390_ijms21176108
crossref_primary_10_3390_jof7121030
crossref_primary_10_1016_j_rgmx_2019_02_004
crossref_primary_10_1111_hepr_12904
crossref_primary_10_3390_microorganisms11082059
crossref_primary_10_1001_jamapediatrics_2021_2328
crossref_primary_10_1186_s13073_015_0157_z
crossref_primary_10_1007_s10753_022_01748_4
crossref_primary_10_3389_fvets_2019_00199
crossref_primary_10_3389_fmicb_2020_01213
crossref_primary_10_3389_fmicb_2020_00487
crossref_primary_10_1530_EJE_14_0874
crossref_primary_10_1038_s41574_024_00966_0
crossref_primary_10_3390_ijms24119444
crossref_primary_10_3390_ijms23073732
crossref_primary_10_1038_s41575_020_0341_5
crossref_primary_10_3390_ani11061807
crossref_primary_10_1016_j_ebiom_2023_104821
crossref_primary_10_1016_j_ekir_2021_05_014
crossref_primary_10_3389_fmicb_2020_01349
crossref_primary_10_3390_vetsci11020094
crossref_primary_10_14309_ajg_0000000000000604
crossref_primary_10_1016_j_biopha_2021_111235
crossref_primary_10_3390_ijms232315387
crossref_primary_10_1016_j_clinre_2024_102370
crossref_primary_10_1016_j_tem_2015_09_011
crossref_primary_10_3389_fmicb_2025_1559521
crossref_primary_10_1161_CIRCRESAHA_117_309715
crossref_primary_10_1016_S0895_3988_15_30116_1
crossref_primary_10_1080_19490976_2022_2083905
crossref_primary_10_1007_s11908_023_00796_7
crossref_primary_10_3390_microorganisms12010067
crossref_primary_10_1093_cid_ciaa152
crossref_primary_10_1128_microbiolspec_BAD_0008_2017
crossref_primary_10_1136_postgradmedj_2021_141311
crossref_primary_10_1016_j_clnu_2019_02_035
crossref_primary_10_1039_C9FO00119K
crossref_primary_10_3390_microorganisms9040697
crossref_primary_10_1080_17474124_2019_1543023
crossref_primary_10_1016_j_clnu_2023_03_022
crossref_primary_10_1038_s41579_022_00805_x
crossref_primary_10_1038_s41575_022_00685_9
crossref_primary_10_1152_ajpgi_00046_2020
crossref_primary_10_1016_j_jacc_2019_03_024
crossref_primary_10_3390_microorganisms9091932
crossref_primary_10_1146_annurev_food_041715_033159
crossref_primary_10_1146_annurev_immunol_032713_120238
crossref_primary_10_1002_cpmo_16
crossref_primary_10_1016_j_envpol_2016_11_045
crossref_primary_10_1080_19490976_2021_1921912
crossref_primary_10_3389_fendo_2021_749125
crossref_primary_10_33590_emjgastroenterol_10310702
crossref_primary_10_3390_ani10122199
crossref_primary_10_1021_acs_estlett_3c00350
crossref_primary_10_3390_life14081016
crossref_primary_10_1080_19490976_2015_1005474
crossref_primary_10_1007_s11908_018_0631_z
crossref_primary_10_1210_jc_2015_4251
crossref_primary_10_1016_j_cmicom_2024_105041
crossref_primary_10_1016_j_humic_2018_11_004
crossref_primary_10_1007_s12223_024_01157_0
crossref_primary_10_3390_foods10020299
crossref_primary_10_1111_1462_2920_13658
crossref_primary_10_3389_fmicb_2017_00837
crossref_primary_10_1039_D2FO00374K
crossref_primary_10_1016_j_beem_2020_101483
crossref_primary_10_1007_s11356_021_16781_3
crossref_primary_10_1016_j_yasa_2020_07_008
crossref_primary_10_17476_jmbs_2015_4_2_29
crossref_primary_10_3390_ijms26020730
crossref_primary_10_3390_microorganisms7100456
crossref_primary_10_1007_s11892_018_1020_6
crossref_primary_10_3389_fmicb_2015_01543
crossref_primary_10_1111_bph_15440
crossref_primary_10_1016_j_molmet_2021_101427
crossref_primary_10_3389_frmbi_2023_1222089
crossref_primary_10_1186_s40168_016_0225_7
crossref_primary_10_1016_j_bbrc_2016_10_072
crossref_primary_10_1016_j_ajpath_2021_12_008
crossref_primary_10_1016_j_gtc_2016_09_010
crossref_primary_10_1007_s10620_020_06729_x
crossref_primary_10_1016_j_ijantimicag_2017_02_018
crossref_primary_10_1053_j_gastro_2017_01_055
crossref_primary_10_1186_s13613_021_00976_5
crossref_primary_10_1016_j_metabol_2016_02_010
crossref_primary_10_3389_fphar_2018_01382
crossref_primary_10_1007_s12672_022_00465_6
crossref_primary_10_1128_cmr_00045_23
crossref_primary_10_3233_ADR_220071
crossref_primary_10_1080_19490976_2024_2310277
crossref_primary_10_1002_mbo3_810
crossref_primary_10_1097_MCO_0000000000000184
crossref_primary_10_3748_wjg_v22_i33_7463
crossref_primary_10_1093_cid_ciy822
crossref_primary_10_1097_MCO_0000000000000067
crossref_primary_10_1016_j_jtauto_2022_100182
crossref_primary_10_1007_s11695_020_05158_z
crossref_primary_10_3389_fmicb_2022_1023623
crossref_primary_10_1007_s13679_021_00438_w
crossref_primary_10_1038_s41390_021_01494_7
crossref_primary_10_7717_peerj_7502
crossref_primary_10_12688_f1000research_19481_1
crossref_primary_10_1002_mnfr_201600252
crossref_primary_10_2174_0109298673260479231010044020
crossref_primary_10_3390_nu13113887
crossref_primary_10_1126_scitranslmed_abd8077
crossref_primary_10_3389_fimmu_2021_742449
crossref_primary_10_3390_ph17081020
crossref_primary_10_3389_fphys_2018_00888
crossref_primary_10_1038_ejcn_2017_89
crossref_primary_10_1155_2022_1592786
crossref_primary_10_31482_mmsl_2020_008
crossref_primary_10_3390_ani12030330
crossref_primary_10_1016_j_arcmed_2017_11_004
crossref_primary_10_1042_CS20230934
crossref_primary_10_1016_j_cmet_2017_09_008
crossref_primary_10_1016_j_tifs_2016_08_007
crossref_primary_10_1038_s41598_023_49034_z
crossref_primary_10_1007_s40265_018_0941_3
crossref_primary_10_1016_j_jhazmat_2023_131172
crossref_primary_10_1186_s13073_016_0294_z
crossref_primary_10_1007_s12519_019_00267_x
crossref_primary_10_1080_14737175_2019_1623026
crossref_primary_10_1007_s11427_017_9303_9
crossref_primary_10_1016_j_jhin_2021_09_001
crossref_primary_10_1016_j_ecoenv_2024_116451
crossref_primary_10_1016_j_cbi_2023_110445
crossref_primary_10_1007_s00204_022_03373_4
crossref_primary_10_3389_fphys_2023_1147001
crossref_primary_10_3390_biomedicines13010144
crossref_primary_10_1097_MOL_0000000000000357
crossref_primary_10_3389_fnhum_2014_00720
crossref_primary_10_1016_j_bbalip_2017_07_005
crossref_primary_10_1111_cts_12761
crossref_primary_10_1159_000538493
crossref_primary_10_3390_ijms232315421
crossref_primary_10_1517_17425255_2015_990437
crossref_primary_10_1186_s13293_021_00378_z
crossref_primary_10_1080_17512433_2017_1362978
crossref_primary_10_1113_JP272476
crossref_primary_10_1128_mSphere_00045_15
crossref_primary_10_1152_ajpgi_00476_2020
crossref_primary_10_1007_s40200_021_00858_4
crossref_primary_10_1186_s12967_015_0640_8
crossref_primary_10_3389_fcimb_2021_629438
crossref_primary_10_3389_fphys_2019_00428
crossref_primary_10_3389_fendo_2021_636272
crossref_primary_10_1042_BSR20203498
crossref_primary_10_1097_QAD_0000000000001409
crossref_primary_10_1146_annurev_micro_091014_104115
crossref_primary_10_1128_mSystems_00340_20
crossref_primary_10_1016_j_envint_2019_02_048
crossref_primary_10_3390_microorganisms11010135
crossref_primary_10_3389_fimmu_2021_711217
crossref_primary_10_4161_gmic_29558
crossref_primary_10_1155_2018_2037838
crossref_primary_10_1111_jvim_14773
crossref_primary_10_3390_microorganisms10071309
crossref_primary_10_1177_17562848211017725
crossref_primary_10_1016_j_rgmxen_2019_05_001
crossref_primary_10_1007_s42399_018_0033_4
crossref_primary_10_3389_fcimb_2021_549678
crossref_primary_10_1007_s00335_021_09859_3
crossref_primary_10_1038_s42003_018_0140_5
crossref_primary_10_1038_ijo_2015_125
crossref_primary_10_3390_gidisord1020023
crossref_primary_10_1177_2397847317741884
crossref_primary_10_1016_j_jaut_2018_10_008
crossref_primary_10_1053_j_gastro_2017_03_051
crossref_primary_10_1016_j_cmet_2016_06_016
crossref_primary_10_1016_j_heliyon_2022_e09869
crossref_primary_10_1016_j_scitotenv_2019_135833
crossref_primary_10_1111_jdi_12673
crossref_primary_10_3390_nu14030462
crossref_primary_10_1038_s41467_021_21355_5
crossref_primary_10_3389_fmicb_2022_832915
crossref_primary_10_3920_BM2016_0189
crossref_primary_10_1016_j_appet_2019_05_032
crossref_primary_10_1111_dom_13163
crossref_primary_10_1136_gutjnl_2024_332602
crossref_primary_10_1038_ncomms8486
crossref_primary_10_1080_07388551_2019_1576025
crossref_primary_10_1016_j_clnu_2016_10_006
crossref_primary_10_1111_dom_14145
crossref_primary_10_1016_j_metop_2019_100010
crossref_primary_10_3389_fmicb_2024_1477187
crossref_primary_10_3390_biomedicines8110502
crossref_primary_10_1016_j_pcd_2018_07_001
crossref_primary_10_1111_1469_0691_12799
crossref_primary_10_1016_j_lfs_2021_120060
crossref_primary_10_1016_j_exger_2020_110875
crossref_primary_10_1093_jac_dkw383
crossref_primary_10_1186_s13054_023_04620_5
crossref_primary_10_1016_j_ecoenv_2019_109720
crossref_primary_10_1080_19476337_2018_1474264
crossref_primary_10_3390_nu11081943
crossref_primary_10_1111_eva_12658
crossref_primary_10_1186_s12920_023_01449_3
crossref_primary_10_1038_s12276_018_0181_3
crossref_primary_10_1111_1462_2920_12786
crossref_primary_10_18203_issn_2454_2156_IntJSciRep20242697
crossref_primary_10_1039_D2FO03523E
crossref_primary_10_1172_jci_insight_91809
crossref_primary_10_1016_j_taap_2018_06_028
crossref_primary_10_1111_jphp_12983
crossref_primary_10_1007_s13668_020_00307_3
crossref_primary_10_1111_jam_15519
crossref_primary_10_7570_jomes_2017_26_2_86
crossref_primary_10_1371_journal_pone_0205695
crossref_primary_10_1111_obr_12983
crossref_primary_10_1210_jc_2015_2696
crossref_primary_10_1371_journal_pone_0285613
crossref_primary_10_14309_ajg_0000000000000191
crossref_primary_10_1002_dmrr_3014
crossref_primary_10_1073_pnas_1712901115
crossref_primary_10_1016_j_tifs_2021_05_006
crossref_primary_10_4161_19490976_2014_969986
crossref_primary_10_1016_j_archoralbio_2020_104730
crossref_primary_10_1021_envhealth_3c00072
crossref_primary_10_1007_s11684_019_0686_8
crossref_primary_10_1038_s41430_021_00991_6
crossref_primary_10_1111_cei_12293
crossref_primary_10_3389_fimmu_2021_670286
crossref_primary_10_3390_nu13031018
crossref_primary_10_3389_fimmu_2024_1448116
crossref_primary_10_1016_j_cld_2015_08_008
crossref_primary_10_1186_s12902_023_01432_0
crossref_primary_10_1096_fj_14_269514
crossref_primary_10_1007_s11306_014_0750_y
crossref_primary_10_1007_s00383_021_04948_5
crossref_primary_10_1371_journal_pone_0182815
crossref_primary_10_1371_journal_pone_0231942
crossref_primary_10_1136_gutjnl_2015_310283
crossref_primary_10_1002_dmrr_3042
crossref_primary_10_1371_journal_pone_0126712
crossref_primary_10_3389_frmbi_2024_1399440
crossref_primary_10_3390_microorganisms8060879
crossref_primary_10_1016_j_envpol_2020_114399
crossref_primary_10_2147_IJGM_S353276
crossref_primary_10_3390_microorganisms3040641
crossref_primary_10_1007_s00253_019_10214_5
crossref_primary_10_14341_DM7704
crossref_primary_10_3389_fendo_2021_639856
crossref_primary_10_1097_MOG_0000000000000157
crossref_primary_10_1016_j_chom_2023_05_013
crossref_primary_10_18632_oncotarget_24681
crossref_primary_10_1128_mSphere_01296_20
crossref_primary_10_48130_fmr_0024_0013
crossref_primary_10_1146_annurev_food_030117_012830
crossref_primary_10_3390_microorganisms8091360
crossref_primary_10_3390_jcm8040451
crossref_primary_10_1186_s40001_024_02072_3
crossref_primary_10_2337_db22_0168
Cites_doi 10.1210/endo.143.5.8850
10.1053/j.gastro.2009.03.030
10.1136/gutjnl-2011-300705
10.1038/nature11400
10.1126/science.1104343
10.1007/s00125-010-1662-7
10.1038/nature11552
10.1136/gut.2010.215665
10.1111/j.1463-1326.2011.01483.x
10.1038/nature04330
10.1038/nature09944
10.1007/BF01567743
10.4161/gmic.1.4.12306
10.1042/bj2300451
10.1161/CIRCULATIONAHA.109.192644
10.1038/nmeth1102
10.4065/83.4.460
10.1073/pnas.0804437105
10.1073/pnas.0605374104
10.1096/fj.10-164921
10.1053/j.gastro.2012.06.031
10.1016/j.chom.2008.02.015
10.1007/s11892-011-0187-x
10.1007/BF01297092
10.1111/j.1574-6976.1998.tb00382.x
10.1016/j.cmet.2009.08.001
10.1016/j.bbrc.2005.01.139
10.1053/j.gastro.2013.05.042
10.1016/S0021-9258(19)38535-7
10.1128/AEM.66.3.1107-1113.2000
10.1152/ajpendo.00460.2004
10.1038/ijo.2012.132
10.1128/AEM.72.3.1729-1738.2006
10.1073/pnas.1000087107
10.1111/j.1348-0421.2004.tb03526.x
10.1210/jc.2011-2329
10.1038/nature12506
10.1073/pnas.0504978102
10.1038/ismej.2007.3
10.1038/sj.emboj.7601049
10.1371/journal.pone.0009074
10.1371/journal.pbio.0060280
10.1128/AEM.00759-10
10.1126/scitranslmed.3000322
10.1016/j.cmet.2013.01.003
10.1159/000324126
10.1073/pnas.0407076101
10.1016/S1097-2765(00)80348-2
10.1038/nature05414
ContentType Journal Article
Copyright 2013 European Association for the Study of the Liver
European Association for the Study of the Liver
Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Wageningen University & Research
Copyright_xml – notice: 2013 European Association for the Study of the Liver
– notice: European Association for the Study of the Liver
– notice: Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
QVL
DOI 10.1016/j.jhep.2013.11.034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0641
EndPage 831
ExternalDocumentID oai_library_wur_nl_wurpubs_447881
24316517
10_1016_j_jhep_2013_11_034
S0168827813008374
1_s2_0_S0168827813008374
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LZ1
M27
M41
MJL
MO0
N9A
O-L
O9-
OAUVE
OC.
ON0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UV1
WUQ
X7M
YOC
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AALMO
ABFLS
ABPIF
ABPTK
ABQIS
ACEMF
ADALY
IPNFZ
QVL
ID FETCH-LOGICAL-c579t-30332cd52c9a3cd99e080b0bfc8b6eefb06f69d323cd2b2e006915b95888bf653
IEDL.DBID .~1
ISSN 0168-8278
1600-0641
IngestDate Thu Oct 13 09:31:13 EDT 2022
Fri Jul 11 10:22:22 EDT 2025
Thu Apr 03 07:02:06 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Tue Jul 01 02:21:43 EDT 2025
Fri Feb 23 02:28:54 EST 2024
Sun Feb 23 10:19:17 EST 2025
Tue Aug 26 19:50:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bile acids
Antibiotics
Intestinal microbiota
Amoxicillin
Insulin resistance
Vancomycin
Metabolic syndrome
Language English
License Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-30332cd52c9a3cd99e080b0bfc8b6eefb06f69d323cd2b2e006915b95888bf653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 24316517
PQID 1508678645
PQPubID 23479
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_447881
proquest_miscellaneous_1508678645
pubmed_primary_24316517
crossref_primary_10_1016_j_jhep_2013_11_034
crossref_citationtrail_10_1016_j_jhep_2013_11_034
elsevier_sciencedirect_doi_10_1016_j_jhep_2013_11_034
elsevier_clinicalkeyesjournals_1_s2_0_S0168827813008374
elsevier_clinicalkey_doi_10_1016_j_jhep_2013_11_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hepatology
PublicationTitleAlternate J Hepatol
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sauter, Berr, Beuers (b0180) 1996; 24
Sayin, Wahlstrom, Felin (b0190) 2013; 17
Murphy, Cotter, Healy (b0040) 2010; 59
Turnbaugh, Ridaura, Faith (b0050) 2009; 1
Arumugam, Raes, Pelletier (b0010) 2011; 473
Ockenga, Valentini, Schuetz (b0240) 2012; 97
Lowell, Shulman (b0235) 2005; 307
Mudaliar, Henry, Sanyal, Morrow, Marschall, Kipnes (b0220) 2013; 145
Katsuma, Hirasawa, Tsujimoto (b0205) 2005; 329
Jernberg, Lofmark, Edlund (b0090) 2007; 1
Wells, Hylemon (b0140) 2000; 66
Van den Abbeele, Grootaert, Marzorati (b0185) 2010; 76
Murphy, Cotter, Hogan (b0095) 2012; 62
Raju, Cryer (b0215) 2005; 289
Backhed, Ding, Wang (b0065) 2004; 101
Kitahara, Sakata, Sakamoto (b0135) 2004; 48
Tomlinson, Fu, John (b0245) 2002; 143
Houten, Watanabe, Auwerx (b0155) 2006; 25
Dethlefsen, Huse, Sogin (b0080) 2008; 6
Alberti, Eckel, Grundy (b0170) 2009; 120
Canzi (b0115) 1985; 12
Wang, Chen, Hollister (b0200) 1999; 3
Kootte, Vrieze, Holleman (b0015) 2011; 14
Batta, Salen, Arora (b0130) 1990; 265
Ley, Backhed, Turnbaugh (b0035) 2005; 102
Claesson, O’Toole (b0225) 2010; 1
Cho, Yamanishi, Cox (b0105) 2012; 488
Tilg, Moschen, Kaser (b0025) 2009; 136
Turnbaugh, Backhed, Fulton (b0045) 2008; 3
Thuny, Richet, Casalta (b0100) 2010; 5
Prawitt, Caron, Staels (b0160) 2011; 11
Hylemon, Harder (b0150) 1998; 22
Jones, Begley, Hill (b0125) 2008; 105
Turnbaugh, Ley, Mahowald (b0070) 2006; 444
Vrieze, van Nood, Holleman (b0075) 2012; 143
Aragozzini, Canzi, Ferrari (b0145) 1985; 230
Sung, Shaffer, Costerton (b0195) 1993; 38
Tremaroli, Backhed (b0005) 2012; 489
Zilliox, Irizarry (b0175) 2007; 4
DiBaise, Zhang, Crowell (b0030) 2008; 83
Watanabe, Houten, Mataki (b0250) 2006; 439
Backhed, Manchester, Semenkovich (b0055) 2007; 104
Rabot, Membrez, Bruneau (b0060) 2010; 24
Le Chatelier, Nielsen, Qin (b0230) 2013; 500
Trasande, Blustein, Liu (b0110) 2012; 37
Begley, Hill, Gahan (b0120) 2006; 72
Dethlefsen, Relman (b0085) 2011; 108
Pols, Noriega, Nomura (b0165) 2011; 29
Thomas, Gioiello, Noriega (b0210) 2009; 10
Vrieze, Holleman, Zoetendal (b0020) 2010; 53
Jones (10.1016/j.jhep.2013.11.034_b0125) 2008; 105
Thomas (10.1016/j.jhep.2013.11.034_b0210) 2009; 10
Ley (10.1016/j.jhep.2013.11.034_b0035) 2005; 102
Canzi (10.1016/j.jhep.2013.11.034_b0115) 1985; 12
Arumugam (10.1016/j.jhep.2013.11.034_b0010) 2011; 473
Vrieze (10.1016/j.jhep.2013.11.034_b0020) 2010; 53
Sayin (10.1016/j.jhep.2013.11.034_b0190) 2013; 17
Claesson (10.1016/j.jhep.2013.11.034_b0225) 2010; 1
Wang (10.1016/j.jhep.2013.11.034_b0200) 1999; 3
Tomlinson (10.1016/j.jhep.2013.11.034_b0245) 2002; 143
Dethlefsen (10.1016/j.jhep.2013.11.034_b0085) 2011; 108
Murphy (10.1016/j.jhep.2013.11.034_b0095) 2012; 62
Begley (10.1016/j.jhep.2013.11.034_b0120) 2006; 72
Vrieze (10.1016/j.jhep.2013.11.034_b0075) 2012; 143
Turnbaugh (10.1016/j.jhep.2013.11.034_b0050) 2009; 1
Backhed (10.1016/j.jhep.2013.11.034_b0065) 2004; 101
Kitahara (10.1016/j.jhep.2013.11.034_b0135) 2004; 48
DiBaise (10.1016/j.jhep.2013.11.034_b0030) 2008; 83
Backhed (10.1016/j.jhep.2013.11.034_b0055) 2007; 104
Lowell (10.1016/j.jhep.2013.11.034_b0235) 2005; 307
Watanabe (10.1016/j.jhep.2013.11.034_b0250) 2006; 439
Rabot (10.1016/j.jhep.2013.11.034_b0060) 2010; 24
Mudaliar (10.1016/j.jhep.2013.11.034_b0220) 2013; 145
Cho (10.1016/j.jhep.2013.11.034_b0105) 2012; 488
Jernberg (10.1016/j.jhep.2013.11.034_b0090) 2007; 1
Tremaroli (10.1016/j.jhep.2013.11.034_b0005) 2012; 489
Turnbaugh (10.1016/j.jhep.2013.11.034_b0045) 2008; 3
Houten (10.1016/j.jhep.2013.11.034_b0155) 2006; 25
Sung (10.1016/j.jhep.2013.11.034_b0195) 1993; 38
Aragozzini (10.1016/j.jhep.2013.11.034_b0145) 1985; 230
Zilliox (10.1016/j.jhep.2013.11.034_b0175) 2007; 4
Batta (10.1016/j.jhep.2013.11.034_b0130) 1990; 265
Dethlefsen (10.1016/j.jhep.2013.11.034_b0080) 2008; 6
Hylemon (10.1016/j.jhep.2013.11.034_b0150) 1998; 22
Van den Abbeele (10.1016/j.jhep.2013.11.034_b0185) 2010; 76
Tilg (10.1016/j.jhep.2013.11.034_b0025) 2009; 136
Murphy (10.1016/j.jhep.2013.11.034_b0040) 2010; 59
Katsuma (10.1016/j.jhep.2013.11.034_b0205) 2005; 329
Thuny (10.1016/j.jhep.2013.11.034_b0100) 2010; 5
Prawitt (10.1016/j.jhep.2013.11.034_b0160) 2011; 11
Ockenga (10.1016/j.jhep.2013.11.034_b0240) 2012; 97
Le Chatelier (10.1016/j.jhep.2013.11.034_b0230) 2013; 500
Alberti (10.1016/j.jhep.2013.11.034_b0170) 2009; 120
Turnbaugh (10.1016/j.jhep.2013.11.034_b0070) 2006; 444
Trasande (10.1016/j.jhep.2013.11.034_b0110) 2012; 37
Wells (10.1016/j.jhep.2013.11.034_b0140) 2000; 66
Sauter (10.1016/j.jhep.2013.11.034_b0180) 1996; 24
Pols (10.1016/j.jhep.2013.11.034_b0165) 2011; 29
Kootte (10.1016/j.jhep.2013.11.034_b0015) 2011; 14
Raju (10.1016/j.jhep.2013.11.034_b0215) 2005; 289
References_xml – volume: 25
  start-page: 1419
  year: 2006
  end-page: 1425
  ident: b0155
  article-title: Endocrine functions of bile acids
  publication-title: EMBO J
– volume: 37
  start-page: 16
  year: 2012
  end-page: 23
  ident: b0110
  article-title: Infant antibiotic exposures and early-life body mass
  publication-title: Int J Obes (Lond)
– volume: 22
  start-page: 475
  year: 1998
  end-page: 488
  ident: b0150
  article-title: Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems
  publication-title: FEMS Microbiol Rev
– volume: 10
  start-page: 167
  year: 2009
  end-page: 177
  ident: b0210
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metab
– volume: 97
  start-page: 535
  year: 2012
  end-page: 542
  ident: b0240
  article-title: Plasma bile acids are associated with energy expenditure and thyroid function in humans
  publication-title: J Clin Endocrinol Metab
– volume: 1
  start-page: 56
  year: 2007
  end-page: 66
  ident: b0090
  article-title: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota
  publication-title: ISME J
– volume: 62
  start-page: 220
  year: 2012
  end-page: 226
  ident: b0095
  article-title: Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity
  publication-title: Gut
– volume: 1
  start-page: 6ra14
  year: 2009
  ident: b0050
  article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice
  publication-title: Sci Transl Med
– volume: 11
  start-page: 160
  year: 2011
  end-page: 166
  ident: b0160
  article-title: Bile acid metabolism and the pathogenesis of type 2 diabetes
  publication-title: Curr Diab Rep
– volume: 38
  start-page: 2104
  year: 1993
  end-page: 2112
  ident: b0195
  article-title: Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids
  publication-title: Dig Dis Sci
– volume: 230
  start-page: 451
  year: 1985
  end-page: 455
  ident: b0145
  article-title: A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by
  publication-title: Biochem J
– volume: 444
  start-page: 1027
  year: 2006
  end-page: 1031
  ident: b0070
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
– volume: 307
  start-page: 384
  year: 2005
  end-page: 387
  ident: b0235
  article-title: Mitochondrial dysfunction and type 2 diabetes
  publication-title: Science
– volume: 488
  start-page: 621
  year: 2012
  end-page: 626
  ident: b0105
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
– volume: 105
  start-page: 13580
  year: 2008
  end-page: 13585
  ident: b0125
  article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome
  publication-title: Proc Natl Acad Sci U S A
– volume: 108
  start-page: 4554
  year: 2011
  end-page: 4561
  ident: b0085
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 911
  year: 2007
  end-page: 913
  ident: b0175
  article-title: A gene expression bar code for microarray data
  publication-title: Nat Methods
– volume: 59
  start-page: 1635
  year: 2010
  end-page: 1642
  ident: b0040
  article-title: Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models
  publication-title: Gut
– volume: 101
  start-page: 15718
  year: 2004
  end-page: 15723
  ident: b0065
  article-title: The gut microbiota as an environmental factor that regulates fat storage
  publication-title: Proc Natl Acad Sci U S A
– volume: 143
  start-page: 1741
  year: 2002
  end-page: 1747
  ident: b0245
  article-title: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
  publication-title: Endocrinology
– volume: 17
  start-page: 225
  year: 2013
  end-page: 235
  ident: b0190
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
– volume: 6
  start-page: 2383
  year: 2008
  end-page: 2400
  ident: b0080
  article-title: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing
  publication-title: PLoS Biol
– volume: 1
  start-page: 277
  year: 2010
  end-page: 278
  ident: b0225
  article-title: Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities
  publication-title: Gut Microbes
– volume: 29
  start-page: 37
  year: 2011
  end-page: 44
  ident: b0165
  article-title: The bile acid membrane receptor TGR5: a valuable metabolic target
  publication-title: Dig Dis
– volume: 24
  start-page: 4948
  year: 2010
  end-page: 4959
  ident: b0060
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J
– volume: 5
  start-page: e9074
  year: 2010
  ident: b0100
  article-title: Vancomycin treatment of infective endocarditis is linked with recently acquired obesity
  publication-title: PLoS One
– volume: 120
  start-page: 1640
  year: 2009
  end-page: 1645
  ident: b0170
  article-title: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity
  publication-title: Circulation
– volume: 3
  start-page: 543
  year: 1999
  end-page: 553
  ident: b0200
  article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
  publication-title: Mol Cell
– volume: 14
  start-page: 112
  year: 2011
  end-page: 120
  ident: b0015
  article-title: The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus
  publication-title: Diabetes Obes Metab
– volume: 3
  start-page: 213
  year: 2008
  end-page: 223
  ident: b0045
  article-title: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
  publication-title: Cell Host Microbe
– volume: 72
  start-page: 1729
  year: 2006
  end-page: 1738
  ident: b0120
  article-title: Bile salt hydrolase activity in probiotics
  publication-title: Appl Environ Microbiol
– volume: 500
  start-page: 541
  year: 2013
  end-page: 546
  ident: b0230
  article-title: Richness of human gut microbiome correlates with metabolic markers
  publication-title: Nature
– volume: 136
  start-page: 1476
  year: 2009
  end-page: 1483
  ident: b0025
  article-title: Obesity and the microbiota
  publication-title: Gastroenterology
– volume: 76
  start-page: 5237
  year: 2010
  end-page: 5246
  ident: b0185
  article-title: Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and
  publication-title: Appl Environ Microbiol
– volume: 439
  start-page: 484
  year: 2006
  end-page: 489
  ident: b0250
  article-title: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
  publication-title: Nature
– volume: 289
  start-page: E181
  year: 2005
  end-page: E186
  ident: b0215
  article-title: Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon?
  publication-title: Am J Physiol Endocrinol Metab
– volume: 489
  start-page: 242
  year: 2012
  end-page: 249
  ident: b0005
  article-title: Functional interactions between the gut microbiota and host metabolism
  publication-title: Nature
– volume: 66
  start-page: 1107
  year: 2000
  end-page: 1113
  ident: b0140
  article-title: Identification and characterization of a bile acid 7alpha-dehydroxylation operon in
  publication-title: Appl Environ Microbiol
– volume: 329
  start-page: 386
  year: 2005
  end-page: 390
  ident: b0205
  article-title: Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1
  publication-title: Biochem Biophys Res Commun
– volume: 12
  start-page: 1
  year: 1985
  end-page: 4
  ident: b0115
  article-title: Effect of lincomycin treatment on intestinal microflora composition and its bile-acid-metabolizing activity
  publication-title: Curr Microbiol
– volume: 24
  start-page: 123
  year: 1996
  end-page: 126
  ident: b0180
  article-title: Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one reflect bile acid synthesis in humans
  publication-title: Hepatology
– volume: 143
  start-page: 913
  year: 2012
  end-page: 916
  ident: b0075
  article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
  publication-title: Gastroenterology
– volume: 265
  start-page: 10925
  year: 1990
  end-page: 10928
  ident: b0130
  article-title: Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids
  publication-title: J Biol Chem
– volume: 473
  start-page: 174
  year: 2011
  end-page: 180
  ident: b0010
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
– volume: 145
  start-page: 574
  year: 2013
  end-page: 582
  ident: b0220
  article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 53
  start-page: 606
  year: 2010
  end-page: 613
  ident: b0020
  article-title: The environment within: how gut microbiota may influence metabolism and body composition
  publication-title: Diabetologia
– volume: 83
  start-page: 460
  year: 2008
  end-page: 469
  ident: b0030
  article-title: Gut microbiota and its possible relationship with obesity
  publication-title: Mayo Clin Proc
– volume: 48
  start-page: 367
  year: 2004
  end-page: 375
  ident: b0135
  article-title: Comparison among fecal secondary bile acid levels, fecal microbiota and
  publication-title: Microbiol Immunol
– volume: 102
  start-page: 11070
  year: 2005
  end-page: 11075
  ident: b0035
  article-title: Obesity alters gut microbial ecology
  publication-title: Proc Natl Acad Sci U S A
– volume: 104
  start-page: 979
  year: 2007
  end-page: 984
  ident: b0055
  article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 143
  start-page: 1741
  year: 2002
  ident: 10.1016/j.jhep.2013.11.034_b0245
  article-title: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
  publication-title: Endocrinology
  doi: 10.1210/endo.143.5.8850
– volume: 136
  start-page: 1476
  year: 2009
  ident: 10.1016/j.jhep.2013.11.034_b0025
  article-title: Obesity and the microbiota
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.03.030
– volume: 62
  start-page: 220
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0095
  article-title: Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-300705
– volume: 488
  start-page: 621
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0105
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
  doi: 10.1038/nature11400
– volume: 307
  start-page: 384
  year: 2005
  ident: 10.1016/j.jhep.2013.11.034_b0235
  article-title: Mitochondrial dysfunction and type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.1104343
– volume: 53
  start-page: 606
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0020
  article-title: The environment within: how gut microbiota may influence metabolism and body composition
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-1662-7
– volume: 489
  start-page: 242
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0005
  article-title: Functional interactions between the gut microbiota and host metabolism
  publication-title: Nature
  doi: 10.1038/nature11552
– volume: 59
  start-page: 1635
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0040
  article-title: Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models
  publication-title: Gut
  doi: 10.1136/gut.2010.215665
– volume: 14
  start-page: 112
  year: 2011
  ident: 10.1016/j.jhep.2013.11.034_b0015
  article-title: The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2011.01483.x
– volume: 439
  start-page: 484
  year: 2006
  ident: 10.1016/j.jhep.2013.11.034_b0250
  article-title: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
  publication-title: Nature
  doi: 10.1038/nature04330
– volume: 473
  start-page: 174
  year: 2011
  ident: 10.1016/j.jhep.2013.11.034_b0010
  article-title: Enterotypes of the human gut microbiome
  publication-title: Nature
  doi: 10.1038/nature09944
– volume: 12
  start-page: 1
  year: 1985
  ident: 10.1016/j.jhep.2013.11.034_b0115
  article-title: Effect of lincomycin treatment on intestinal microflora composition and its bile-acid-metabolizing activity
  publication-title: Curr Microbiol
  doi: 10.1007/BF01567743
– volume: 1
  start-page: 277
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0225
  article-title: Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities
  publication-title: Gut Microbes
  doi: 10.4161/gmic.1.4.12306
– volume: 230
  start-page: 451
  year: 1985
  ident: 10.1016/j.jhep.2013.11.034_b0145
  article-title: A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by Clostridium perfringens
  publication-title: Biochem J
  doi: 10.1042/bj2300451
– volume: 120
  start-page: 1640
  year: 2009
  ident: 10.1016/j.jhep.2013.11.034_b0170
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.192644
– volume: 4
  start-page: 911
  year: 2007
  ident: 10.1016/j.jhep.2013.11.034_b0175
  article-title: A gene expression bar code for microarray data
  publication-title: Nat Methods
  doi: 10.1038/nmeth1102
– volume: 83
  start-page: 460
  year: 2008
  ident: 10.1016/j.jhep.2013.11.034_b0030
  article-title: Gut microbiota and its possible relationship with obesity
  publication-title: Mayo Clin Proc
  doi: 10.4065/83.4.460
– volume: 105
  start-page: 13580
  year: 2008
  ident: 10.1016/j.jhep.2013.11.034_b0125
  article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804437105
– volume: 104
  start-page: 979
  year: 2007
  ident: 10.1016/j.jhep.2013.11.034_b0055
  article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0605374104
– volume: 24
  start-page: 4948
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0060
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J
  doi: 10.1096/fj.10-164921
– volume: 143
  start-page: 913
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0075
  article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.06.031
– volume: 3
  start-page: 213
  year: 2008
  ident: 10.1016/j.jhep.2013.11.034_b0045
  article-title: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.02.015
– volume: 11
  start-page: 160
  year: 2011
  ident: 10.1016/j.jhep.2013.11.034_b0160
  article-title: Bile acid metabolism and the pathogenesis of type 2 diabetes
  publication-title: Curr Diab Rep
  doi: 10.1007/s11892-011-0187-x
– volume: 38
  start-page: 2104
  year: 1993
  ident: 10.1016/j.jhep.2013.11.034_b0195
  article-title: Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids
  publication-title: Dig Dis Sci
  doi: 10.1007/BF01297092
– volume: 22
  start-page: 475
  year: 1998
  ident: 10.1016/j.jhep.2013.11.034_b0150
  article-title: Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.1998.tb00382.x
– volume: 10
  start-page: 167
  year: 2009
  ident: 10.1016/j.jhep.2013.11.034_b0210
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.08.001
– volume: 329
  start-page: 386
  year: 2005
  ident: 10.1016/j.jhep.2013.11.034_b0205
  article-title: Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.01.139
– volume: 145
  start-page: 574
  year: 2013
  ident: 10.1016/j.jhep.2013.11.034_b0220
  article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.05.042
– volume: 265
  start-page: 10925
  year: 1990
  ident: 10.1016/j.jhep.2013.11.034_b0130
  article-title: Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)38535-7
– volume: 66
  start-page: 1107
  year: 2000
  ident: 10.1016/j.jhep.2013.11.034_b0140
  article-title: Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.3.1107-1113.2000
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jhep.2013.11.034_b0180
  article-title: Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one reflect bile acid synthesis in humans
  publication-title: Hepatology
– volume: 289
  start-page: E181
  year: 2005
  ident: 10.1016/j.jhep.2013.11.034_b0215
  article-title: Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon?
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00460.2004
– volume: 37
  start-page: 16
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0110
  article-title: Infant antibiotic exposures and early-life body mass
  publication-title: Int J Obes (Lond)
  doi: 10.1038/ijo.2012.132
– volume: 72
  start-page: 1729
  year: 2006
  ident: 10.1016/j.jhep.2013.11.034_b0120
  article-title: Bile salt hydrolase activity in probiotics
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.72.3.1729-1738.2006
– volume: 108
  start-page: 4554
  year: 2011
  ident: 10.1016/j.jhep.2013.11.034_b0085
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1000087107
– volume: 48
  start-page: 367
  year: 2004
  ident: 10.1016/j.jhep.2013.11.034_b0135
  article-title: Comparison among fecal secondary bile acid levels, fecal microbiota and Clostridium scindens cell numbers in Japanese
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.2004.tb03526.x
– volume: 97
  start-page: 535
  year: 2012
  ident: 10.1016/j.jhep.2013.11.034_b0240
  article-title: Plasma bile acids are associated with energy expenditure and thyroid function in humans
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-2329
– volume: 500
  start-page: 541
  year: 2013
  ident: 10.1016/j.jhep.2013.11.034_b0230
  article-title: Richness of human gut microbiome correlates with metabolic markers
  publication-title: Nature
  doi: 10.1038/nature12506
– volume: 102
  start-page: 11070
  year: 2005
  ident: 10.1016/j.jhep.2013.11.034_b0035
  article-title: Obesity alters gut microbial ecology
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504978102
– volume: 1
  start-page: 56
  year: 2007
  ident: 10.1016/j.jhep.2013.11.034_b0090
  article-title: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota
  publication-title: ISME J
  doi: 10.1038/ismej.2007.3
– volume: 25
  start-page: 1419
  year: 2006
  ident: 10.1016/j.jhep.2013.11.034_b0155
  article-title: Endocrine functions of bile acids
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601049
– volume: 5
  start-page: e9074
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0100
  article-title: Vancomycin treatment of infective endocarditis is linked with recently acquired obesity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009074
– volume: 6
  start-page: 2383
  year: 2008
  ident: 10.1016/j.jhep.2013.11.034_b0080
  article-title: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060280
– volume: 76
  start-page: 5237
  year: 2010
  ident: 10.1016/j.jhep.2013.11.034_b0185
  article-title: Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00759-10
– volume: 1
  start-page: 6ra14
  year: 2009
  ident: 10.1016/j.jhep.2013.11.034_b0050
  article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000322
– volume: 17
  start-page: 225
  year: 2013
  ident: 10.1016/j.jhep.2013.11.034_b0190
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.01.003
– volume: 29
  start-page: 37
  year: 2011
  ident: 10.1016/j.jhep.2013.11.034_b0165
  article-title: The bile acid membrane receptor TGR5: a valuable metabolic target
  publication-title: Dig Dis
  doi: 10.1159/000324126
– volume: 101
  start-page: 15718
  year: 2004
  ident: 10.1016/j.jhep.2013.11.034_b0065
  article-title: The gut microbiota as an environmental factor that regulates fat storage
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0407076101
– volume: 3
  start-page: 543
  year: 1999
  ident: 10.1016/j.jhep.2013.11.034_b0200
  article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80348-2
– volume: 444
  start-page: 1027
  year: 2006
  ident: 10.1016/j.jhep.2013.11.034_b0070
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
  doi: 10.1038/nature05414
SSID ssj0003094
Score 2.600578
Snippet Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters...
Graphical abstract
BACKGROUND: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics...
SourceID wageningen
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 824
SubjectTerms adiposity
Administration, Oral
Adult
Aged
Amoxicillin
Animals
Anti-Bacterial Agents - administration & dosage
Anti-Bacterial Agents - adverse effects
Antibiotics
Bile acids
Bile Acids and Salts - blood
Bile Acids and Salts - metabolism
capacity
diet-induced obesity
energy-expenditure
Feces - chemistry
Feces - microbiology
Gastroenterology and Hepatology
glucagon
Glucose - metabolism
Humans
Insulin Resistance
Intestinal microbiota
Intestines - drug effects
Intestines - microbiology
Male
Metabolic syndrome
Metabolic Syndrome - complications
Metabolic Syndrome - drug therapy
Metabolic Syndrome - microbiology
Mice
Microbiota - drug effects
Middle Aged
Obesity - complications
Obesity - drug therapy
Obesity - microbiology
resistance
salt hydrolase activity
Single-Blind Method
Vancomycin
Vancomycin - administration & dosage
Vancomycin - adverse effects
Title Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168827813008374
https://www.clinicalkey.es/playcontent/1-s2.0-S0168827813008374
https://dx.doi.org/10.1016/j.jhep.2013.11.034
https://www.ncbi.nlm.nih.gov/pubmed/24316517
https://www.proquest.com/docview/1508678645
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F447881
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAiU9lKTPbZugQm-Ns5Yt2etjWBI2fYTSNhB6EZYstw67coi9hF762ztjy5uUtCn0ZGxLljUezcOa-QbgdVFKbQtK-0BlFIjSiABZOQxQHFP1OMOLvIu2OElmp-LtmTxbg-mQC0NhlV729zK9k9b-ythTc3xRVePPaKygeZhOaEMG3SzCBBUiJS7f_3kd5hGHmcf3ngTU2ifO9DFe598tYVbyeJ-QPGPxN-V02_i8D5tXuOBdlwF1QyMdbcEDb0qyg_5tt2HNuodw74PfLH8EX4-7DEhWl4zS8Blt9teLH3iT1Y59W7ZsUfUwTG2-xzSKB5abqmAL2yJnzKtmscdyVzAfrs4ainXvi008htOjwy_TWeBLKQRGplkboKKKI1PIyGR5bIoss2gp6lCXZqITa0sdJmWSFXGENyMdWQIw5lJnEh1kXSYyfgLrrnb2GTAheSw1Uh09T2HCSSbQxcQncGtDbWwyAj7QUBmPM07lLuZqCCg7V0R3RXRHB0Qh3UfwZtXnokfZuLN1PHwaNeSPosRTqATu7JX-qZdt_KJtFFdNpEJ1i7FGIFc9f-PNf474auAbhYuWdmJyZ-sljoRmMVoJiZAjeNoz1GreEYETSJ7iLK85TDmqLNUoAgP3v_fU1fJSuTkd8AmNElQIgT__z3d9AZt45mOSXsJ6e7m0O2hutXq3W0-7sHEw_fT-Ix2P381OfgEZUyuU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkF7QLy7PI3EjaYbx3Z2c0QV1RbaXmiliosVOw6k2nWqJquKC7-dmcTZggpF4hQpjhNnMs945huAt0WpjCuo7AONUSRLKyNk5ThCdUzd4ywv8i7b4iidnciPp-p0DXaHWhhKqwy6v9fpnbYOZ8aBmuPzqhp_RmcF3cPJlDZkMMySt-C2RPGlNgY7P67yPEScBYDvaUSXh8qZPsnr7Jsj0EoudgjKU8i_Wafr3ucmbFyixPuuBOoXk7R3H-4FX5K975f7ANacfwh3DsNu-SP4st-VQLK6ZFSHz2i3v158x0FWe_Z12bJF1eMwtfk2M6gfWG6rgi1ci6wxr5rFNst9wUK-Omso2b3vNvEYTvY-HO_OotBLIbJqkrURWiqR2EIlNsuFLbLMoatoYlPaqUmdK02clmlWiAQHE5M4QjDmymQKI2RTpko8gXVfe7cFTCoulEGyY-gpbTzNJMaYeAfuXGysS0fABxpqG4DGqd_FXA8ZZWea6K6J7hiBaKT7CN6t5pz3MBs3Xi2GT6OHAlJUeRqtwI2zJn-a5ZogtY3mukl0rK9x1gjUauZvzPnPJ74Z-Eaj1NJWTO5dvcQnoV-MbkIq1Qie9gy1eu-E0AkUn-BbXnGY9tRaqtGEBh7-7-nL5YX2czrgHRotqRMCf_afa30Nd2fHhwf6YP_o03PYwJGQoPQC1tuLpXuJvldrXnWy9RNO_CuN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+oral+vancomycin+on+gut+microbiota%2C+bile+acid+metabolism%2C+and+insulin+sensitivity&rft.jtitle=Journal+of+hepatology&rft.au=Vrieze%2C+Anne&rft.au=Out%2C+Carolien&rft.au=Fuentes%2C+Susana&rft.au=Jonker%2C+Lisanne&rft.date=2014-04-01&rft.issn=0168-8278&rft.volume=60&rft.issue=4&rft.spage=824&rft.epage=831&rft_id=info:doi/10.1016%2Fj.jhep.2013.11.034&rft.externalDBID=ECK1-s2.0-S0168827813008374&rft.externalDocID=1_s2_0_S0168827813008374
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01688278%2FS0168827814X00024%2Fcov150h.gif