Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity
Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fe...
Saved in:
Published in | Journal of hepatology Vol. 60; no. 4; pp. 824 - 831 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism.
In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7days of amoxicillin 500mg t.i.d. or 7days of vancomycin 500mg t.i.d. At baseline and after 1week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured.
Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters.
Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566). |
---|---|
AbstractList | BACKGROUND: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500mg t.i.d. or 7 days of vancomycin 500mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7days of amoxicillin 500mg t.i.d. or 7days of vancomycin 500mg t.i.d. At baseline and after 1week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566). Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566). Graphical abstract Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism.BACKGROUND & AIMSObesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism.In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured.METHODSIn this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured.Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters.RESULTSVancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters.Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).CONCLUSIONSOral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566). |
Author | Romijn, Johannes A. Reijnders, Dorien Zoetendal, Erwin G. Dallinga-Thie, Geesje M. Holst, Jenst J. Holleman, Frits Soeters, Maarten R. Kootte, Ruud S. Nieuwdorp, Max van der Ley, Claude Kema, Ido P. Vrieze, Anne Serlie, Mireille J. Stroes, Erik S. de Vos, Willem M. Hoekstra, Joost B.L. Knaapen, Max Blaak, Ellen E. Ackermans, Mariëtte T. van Nood, Els Out, Carolien Jonker, Lisanne Reuling, Isaie Knop, Filip K. Groen, Albert K. Fuentes, Susana |
Author_xml | – sequence: 1 givenname: Anne surname: Vrieze fullname: Vrieze, Anne organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 2 givenname: Carolien surname: Out fullname: Out, Carolien organization: Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands – sequence: 3 givenname: Susana surname: Fuentes fullname: Fuentes, Susana organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands – sequence: 4 givenname: Lisanne surname: Jonker fullname: Jonker, Lisanne organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 5 givenname: Isaie surname: Reuling fullname: Reuling, Isaie organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 6 givenname: Ruud S. surname: Kootte fullname: Kootte, Ruud S. organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 7 givenname: Els surname: van Nood fullname: van Nood, Els organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 8 givenname: Frits surname: Holleman fullname: Holleman, Frits organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 9 givenname: Max surname: Knaapen fullname: Knaapen, Max organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 10 givenname: Johannes A. surname: Romijn fullname: Romijn, Johannes A. organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 11 givenname: Maarten R. surname: Soeters fullname: Soeters, Maarten R. organization: Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands – sequence: 12 givenname: Ellen E. surname: Blaak fullname: Blaak, Ellen E. organization: Department of Human Metabolism, NUTRIM, School for Nutrition, Toxicology and Metabolism, Maastricht University, The Netherlands – sequence: 13 givenname: Geesje M. surname: Dallinga-Thie fullname: Dallinga-Thie, Geesje M. organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 14 givenname: Dorien surname: Reijnders fullname: Reijnders, Dorien organization: Department of Human Metabolism, NUTRIM, School for Nutrition, Toxicology and Metabolism, Maastricht University, The Netherlands – sequence: 15 givenname: Mariëtte T. surname: Ackermans fullname: Ackermans, Mariëtte T. organization: Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands – sequence: 16 givenname: Mireille J. surname: Serlie fullname: Serlie, Mireille J. organization: Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands – sequence: 17 givenname: Filip K. surname: Knop fullname: Knop, Filip K. organization: Department of Internal Medicine, Gentofte Hospital, Hellerup, Denmark – sequence: 18 givenname: Jenst J. surname: Holst fullname: Holst, Jenst J. organization: NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark – sequence: 19 givenname: Claude surname: van der Ley fullname: van der Ley, Claude organization: Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands – sequence: 20 givenname: Ido P. surname: Kema fullname: Kema, Ido P. organization: Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands – sequence: 21 givenname: Erwin G. surname: Zoetendal fullname: Zoetendal, Erwin G. organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands – sequence: 22 givenname: Willem M. surname: de Vos fullname: de Vos, Willem M. organization: Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands – sequence: 23 givenname: Joost B.L. surname: Hoekstra fullname: Hoekstra, Joost B.L. organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 24 givenname: Erik S. surname: Stroes fullname: Stroes, Erik S. organization: Department of Vascular Medicine and Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 25 givenname: Albert K. surname: Groen fullname: Groen, Albert K. organization: Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands – sequence: 26 givenname: Max surname: Nieuwdorp fullname: Nieuwdorp, Max email: m.nieuwdorp@amc.uva.nl organization: Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24316517$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkuLFDEUhQsZcR76B1xILV1MtzeVeqREBmTwMTDgQt24CUnq1njbVNImqR7635uiR4VBxk3uIuc7F865p8WR8w6L4jmDNQPWvtqsN99xu66A8TVja-D1o-KEtQAraGt2VJxkkViJqhPHxWmMGwDg0NdPiuOq5qxtWHdSfLuatsqk0o-lD8qWO-WMn_aGXOldeTOnciITvCaf1HmpyWKpDA3lhElpbylO56VyQ0kuzjZDEV2kRDtK-6fF41HZiM_u5lnx9f27L5cfV9efPlxdvr1emabr04oD55UZmsr0ipuh7xEEaNCjEbpFHDW0Y9sPvMqfla4QoO1Zo_tGCKHHtuFnxeuD7626QUcuP9KpYChKr0ha0kGFvbydg3R2GdtZR1nXnRAswy8P8Db4nzPGJCeKBq1VDv0cJWtAtJ1o62XPizvprCcc5DbQtBj_DjMLqoMgBxZjwPGPhIFcGpMbuTQml8YkYzI3liFxDzKUVCLvUlBkH0bfHFDM6e4Ig4yG0BkcKKBJcvD0MH5xDze5QTLK_sA9xo2fg8u9SSZjJUF-Xq5pOSbGAQTv6r_B_8vgf9t_Af4N21M |
CitedBy_id | crossref_primary_10_1016_j_bpg_2014_07_016 crossref_primary_10_1128_msystems_00172_22 crossref_primary_10_1016_j_intimp_2024_113613 crossref_primary_10_1136_gutjnl_2016_311910 crossref_primary_10_1016_j_aquatox_2020_105670 crossref_primary_10_4254_wjh_v13_i12_2113 crossref_primary_10_1080_19490976_2023_2237645 crossref_primary_10_1016_j_mce_2021_111333 crossref_primary_10_3390_ijms23158209 crossref_primary_10_1055_s_0044_1788653 crossref_primary_10_1016_j_ijid_2022_09_013 crossref_primary_10_1111_cen_13495 crossref_primary_10_3390_biology12121471 crossref_primary_10_1016_j_molmet_2020_100976 crossref_primary_10_3389_fendo_2025_1520436 crossref_primary_10_1016_j_bpg_2014_07_005 crossref_primary_10_3389_fmicb_2023_1272479 crossref_primary_10_3389_fnins_2024_1388748 crossref_primary_10_1007_s12020_014_0421_9 crossref_primary_10_1038_nrendo_2016_142 crossref_primary_10_1016_j_ejphar_2015_06_023 crossref_primary_10_1371_journal_pone_0213548 crossref_primary_10_3390_nu12020287 crossref_primary_10_1016_j_bpg_2020_101671 crossref_primary_10_1631_jzus_B1400327 crossref_primary_10_1016_j_clinthera_2015_03_008 crossref_primary_10_1016_j_jfma_2018_11_006 crossref_primary_10_1080_19490976_2023_2223345 crossref_primary_10_1631_jzus_B1900073 crossref_primary_10_1186_s12889_018_5879_6 crossref_primary_10_1016_j_lfs_2023_122304 crossref_primary_10_3390_biomedicines11020294 crossref_primary_10_1002_advs_202406445 crossref_primary_10_1038_nrendo_2016_150 crossref_primary_10_1016_j_aquaculture_2021_737453 crossref_primary_10_1093_jac_dkv479 crossref_primary_10_3389_fcimb_2020_572912 crossref_primary_10_1159_000441259 crossref_primary_10_3389_fcell_2021_680174 crossref_primary_10_3389_fmicb_2020_00053 crossref_primary_10_1210_er_2017_00192 crossref_primary_10_1016_j_immuni_2018_11_018 crossref_primary_10_14309_crj_0000000000000577 crossref_primary_10_1016_j_chom_2018_07_005 crossref_primary_10_1016_j_envpol_2023_122238 crossref_primary_10_3389_fimmu_2019_00647 crossref_primary_10_2147_CPAA_S273318 crossref_primary_10_1038_nrendo_2015_128 crossref_primary_10_1080_17446651_2020_1720511 crossref_primary_10_1186_s13099_021_00446_0 crossref_primary_10_3390_nu13030881 crossref_primary_10_1038_s41575_022_00690_y crossref_primary_10_1016_j_cmet_2014_07_002 crossref_primary_10_3390_ijms24031816 crossref_primary_10_15406_ghoa_2016_05_00165 crossref_primary_10_1016_j_cmet_2014_07_006 crossref_primary_10_1016_S2213_2600_14_70213_9 crossref_primary_10_1016_j_biopha_2022_112678 crossref_primary_10_1016_j_surg_2016_07_018 crossref_primary_10_3389_fcimb_2022_892291 crossref_primary_10_1158_1055_9965_EPI_20_0824 crossref_primary_10_1016_j_fct_2022_113136 crossref_primary_10_1186_s40168_023_01709_5 crossref_primary_10_1007_s13105_017_0564_2 crossref_primary_10_1038_s41522_023_00374_8 crossref_primary_10_1111_joim_12508 crossref_primary_10_3390_ijms252212321 crossref_primary_10_1111_apt_15416 crossref_primary_10_1177_1756283X15622600 crossref_primary_10_3390_metabo12050390 crossref_primary_10_1111_dom_12748 crossref_primary_10_1371_journal_pone_0142352 crossref_primary_10_1038_s41598_024_65433_2 crossref_primary_10_1002_mbo3_1260 crossref_primary_10_1007_s00059_019_4791_x crossref_primary_10_1128_mSystems_00542_20 crossref_primary_10_1007_s00253_015_6753_4 crossref_primary_10_1016_j_ejim_2018_04_019 crossref_primary_10_1016_j_micpath_2016_02_005 crossref_primary_10_1111_jam_14853 crossref_primary_10_3748_wjg_v21_i3_803 crossref_primary_10_1016_j_envpol_2017_03_068 crossref_primary_10_1016_j_tim_2022_10_003 crossref_primary_10_2174_1381612829666221219093450 crossref_primary_10_1080_17446651_2017_1318060 crossref_primary_10_1093_ofid_ofz095 crossref_primary_10_1093_crocol_otz015 crossref_primary_10_7554_eLife_37420 crossref_primary_10_1371_journal_pone_0181690 crossref_primary_10_1016_j_chemphyslip_2017_06_006 crossref_primary_10_1016_j_scitotenv_2021_150558 crossref_primary_10_3389_fmicb_2020_01065 crossref_primary_10_1007_s11908_017_0603_8 crossref_primary_10_1038_s41531_022_00321_y crossref_primary_10_14814_phy2_14199 crossref_primary_10_1002_fsn3_1141 crossref_primary_10_3389_fimmu_2014_00427 crossref_primary_10_1055_s_0041_1733906 crossref_primary_10_1016_j_jhep_2015_10_002 crossref_primary_10_3390_microorganisms9020371 crossref_primary_10_1017_ice_2018_32 crossref_primary_10_1210_er_2014_1100 crossref_primary_10_2174_1389450123666220309101345 crossref_primary_10_1007_s11428_016_0123_4 crossref_primary_10_1002_eat_22497 crossref_primary_10_3390_microorganisms7030068 crossref_primary_10_1016_j_micres_2021_126942 crossref_primary_10_3390_microorganisms3020213 crossref_primary_10_1080_19490976_2024_2414796 crossref_primary_10_1080_10408398_2020_1843396 crossref_primary_10_1016_j_ebiom_2021_103475 crossref_primary_10_1016_j_chemosphere_2020_126019 crossref_primary_10_2217_fmb_2015_0024 crossref_primary_10_1093_femsec_fiaa058 crossref_primary_10_1139_cjm_2020_0043 crossref_primary_10_1186_s40168_017_0286_2 crossref_primary_10_1016_j_micpath_2015_10_018 crossref_primary_10_1136_gutjnl_2016_312297 crossref_primary_10_7759_cureus_50318 crossref_primary_10_1097_MED_0000000000000235 crossref_primary_10_1038_s41598_017_10755_7 crossref_primary_10_1007_s10620_016_4045_1 crossref_primary_10_1152_ajpgi_00045_2020 crossref_primary_10_1007_s00253_019_10165_x crossref_primary_10_3390_metabo14020108 crossref_primary_10_2337_dc16_0351 crossref_primary_10_3389_fmicb_2015_01151 crossref_primary_10_3390_antibiotics10040401 crossref_primary_10_1016_j_tim_2022_12_010 crossref_primary_10_1016_j_prp_2024_155173 crossref_primary_10_2527_jas_2016_0911 crossref_primary_10_3389_fimmu_2019_01341 crossref_primary_10_1111_dom_12637 crossref_primary_10_1097_CM9_0000000000000330 crossref_primary_10_1007_s00253_016_8006_6 crossref_primary_10_1007_s11033_025_10425_2 crossref_primary_10_1097_HEP_0000000000000506 crossref_primary_10_1186_s40168_020_00907_9 crossref_primary_10_1038_s41575_024_00914_3 crossref_primary_10_1371_journal_pone_0218384 crossref_primary_10_1016_j_jcmgh_2020_02_005 crossref_primary_10_1172_JCI86674 crossref_primary_10_1093_ecco_jcc_jju023 crossref_primary_10_1093_ije_dyaa122 crossref_primary_10_1053_j_gastro_2016_12_048 crossref_primary_10_3390_nu12102982 crossref_primary_10_1007_s11901_016_0299_5 crossref_primary_10_1016_j_arr_2024_102544 crossref_primary_10_1159_000492114 crossref_primary_10_1089_aid_2014_0366 crossref_primary_10_1002_smtd_201900604 crossref_primary_10_1099_mic_0_000853 crossref_primary_10_1042_BSR20203850 crossref_primary_10_1007_s00018_018_2901_1 crossref_primary_10_1016_j_yclnex_2016_01_001 crossref_primary_10_1128_AAC_02347_19 crossref_primary_10_1136_gutjnl_2020_323715 crossref_primary_10_1016_j_cmi_2022_12_015 crossref_primary_10_1186_s13099_022_00513_0 crossref_primary_10_1016_j_apsb_2024_04_027 crossref_primary_10_1016_j_jenvman_2025_124693 crossref_primary_10_1111_obr_12298 crossref_primary_10_1038_s41467_018_05336_9 crossref_primary_10_1016_j_tcm_2018_08_003 crossref_primary_10_3390_nu10111765 crossref_primary_10_1016_j_medmic_2024_100106 crossref_primary_10_3389_fmicb_2018_01210 crossref_primary_10_3389_fnut_2020_594850 crossref_primary_10_1093_ibd_izaa342 crossref_primary_10_1093_femsec_fix092 crossref_primary_10_3390_ijms21176108 crossref_primary_10_3390_jof7121030 crossref_primary_10_1016_j_rgmx_2019_02_004 crossref_primary_10_1111_hepr_12904 crossref_primary_10_3390_microorganisms11082059 crossref_primary_10_1001_jamapediatrics_2021_2328 crossref_primary_10_1186_s13073_015_0157_z crossref_primary_10_1007_s10753_022_01748_4 crossref_primary_10_3389_fvets_2019_00199 crossref_primary_10_3389_fmicb_2020_01213 crossref_primary_10_3389_fmicb_2020_00487 crossref_primary_10_1530_EJE_14_0874 crossref_primary_10_1038_s41574_024_00966_0 crossref_primary_10_3390_ijms24119444 crossref_primary_10_3390_ijms23073732 crossref_primary_10_1038_s41575_020_0341_5 crossref_primary_10_3390_ani11061807 crossref_primary_10_1016_j_ebiom_2023_104821 crossref_primary_10_1016_j_ekir_2021_05_014 crossref_primary_10_3389_fmicb_2020_01349 crossref_primary_10_3390_vetsci11020094 crossref_primary_10_14309_ajg_0000000000000604 crossref_primary_10_1016_j_biopha_2021_111235 crossref_primary_10_3390_ijms232315387 crossref_primary_10_1016_j_clinre_2024_102370 crossref_primary_10_1016_j_tem_2015_09_011 crossref_primary_10_3389_fmicb_2025_1559521 crossref_primary_10_1161_CIRCRESAHA_117_309715 crossref_primary_10_1016_S0895_3988_15_30116_1 crossref_primary_10_1080_19490976_2022_2083905 crossref_primary_10_1007_s11908_023_00796_7 crossref_primary_10_3390_microorganisms12010067 crossref_primary_10_1093_cid_ciaa152 crossref_primary_10_1128_microbiolspec_BAD_0008_2017 crossref_primary_10_1136_postgradmedj_2021_141311 crossref_primary_10_1016_j_clnu_2019_02_035 crossref_primary_10_1039_C9FO00119K crossref_primary_10_3390_microorganisms9040697 crossref_primary_10_1080_17474124_2019_1543023 crossref_primary_10_1016_j_clnu_2023_03_022 crossref_primary_10_1038_s41579_022_00805_x crossref_primary_10_1038_s41575_022_00685_9 crossref_primary_10_1152_ajpgi_00046_2020 crossref_primary_10_1016_j_jacc_2019_03_024 crossref_primary_10_3390_microorganisms9091932 crossref_primary_10_1146_annurev_food_041715_033159 crossref_primary_10_1146_annurev_immunol_032713_120238 crossref_primary_10_1002_cpmo_16 crossref_primary_10_1016_j_envpol_2016_11_045 crossref_primary_10_1080_19490976_2021_1921912 crossref_primary_10_3389_fendo_2021_749125 crossref_primary_10_33590_emjgastroenterol_10310702 crossref_primary_10_3390_ani10122199 crossref_primary_10_1021_acs_estlett_3c00350 crossref_primary_10_3390_life14081016 crossref_primary_10_1080_19490976_2015_1005474 crossref_primary_10_1007_s11908_018_0631_z crossref_primary_10_1210_jc_2015_4251 crossref_primary_10_1016_j_cmicom_2024_105041 crossref_primary_10_1016_j_humic_2018_11_004 crossref_primary_10_1007_s12223_024_01157_0 crossref_primary_10_3390_foods10020299 crossref_primary_10_1111_1462_2920_13658 crossref_primary_10_3389_fmicb_2017_00837 crossref_primary_10_1039_D2FO00374K crossref_primary_10_1016_j_beem_2020_101483 crossref_primary_10_1007_s11356_021_16781_3 crossref_primary_10_1016_j_yasa_2020_07_008 crossref_primary_10_17476_jmbs_2015_4_2_29 crossref_primary_10_3390_ijms26020730 crossref_primary_10_3390_microorganisms7100456 crossref_primary_10_1007_s11892_018_1020_6 crossref_primary_10_3389_fmicb_2015_01543 crossref_primary_10_1111_bph_15440 crossref_primary_10_1016_j_molmet_2021_101427 crossref_primary_10_3389_frmbi_2023_1222089 crossref_primary_10_1186_s40168_016_0225_7 crossref_primary_10_1016_j_bbrc_2016_10_072 crossref_primary_10_1016_j_ajpath_2021_12_008 crossref_primary_10_1016_j_gtc_2016_09_010 crossref_primary_10_1007_s10620_020_06729_x crossref_primary_10_1016_j_ijantimicag_2017_02_018 crossref_primary_10_1053_j_gastro_2017_01_055 crossref_primary_10_1186_s13613_021_00976_5 crossref_primary_10_1016_j_metabol_2016_02_010 crossref_primary_10_3389_fphar_2018_01382 crossref_primary_10_1007_s12672_022_00465_6 crossref_primary_10_1128_cmr_00045_23 crossref_primary_10_3233_ADR_220071 crossref_primary_10_1080_19490976_2024_2310277 crossref_primary_10_1002_mbo3_810 crossref_primary_10_1097_MCO_0000000000000184 crossref_primary_10_3748_wjg_v22_i33_7463 crossref_primary_10_1093_cid_ciy822 crossref_primary_10_1097_MCO_0000000000000067 crossref_primary_10_1016_j_jtauto_2022_100182 crossref_primary_10_1007_s11695_020_05158_z crossref_primary_10_3389_fmicb_2022_1023623 crossref_primary_10_1007_s13679_021_00438_w crossref_primary_10_1038_s41390_021_01494_7 crossref_primary_10_7717_peerj_7502 crossref_primary_10_12688_f1000research_19481_1 crossref_primary_10_1002_mnfr_201600252 crossref_primary_10_2174_0109298673260479231010044020 crossref_primary_10_3390_nu13113887 crossref_primary_10_1126_scitranslmed_abd8077 crossref_primary_10_3389_fimmu_2021_742449 crossref_primary_10_3390_ph17081020 crossref_primary_10_3389_fphys_2018_00888 crossref_primary_10_1038_ejcn_2017_89 crossref_primary_10_1155_2022_1592786 crossref_primary_10_31482_mmsl_2020_008 crossref_primary_10_3390_ani12030330 crossref_primary_10_1016_j_arcmed_2017_11_004 crossref_primary_10_1042_CS20230934 crossref_primary_10_1016_j_cmet_2017_09_008 crossref_primary_10_1016_j_tifs_2016_08_007 crossref_primary_10_1038_s41598_023_49034_z crossref_primary_10_1007_s40265_018_0941_3 crossref_primary_10_1016_j_jhazmat_2023_131172 crossref_primary_10_1186_s13073_016_0294_z crossref_primary_10_1007_s12519_019_00267_x crossref_primary_10_1080_14737175_2019_1623026 crossref_primary_10_1007_s11427_017_9303_9 crossref_primary_10_1016_j_jhin_2021_09_001 crossref_primary_10_1016_j_ecoenv_2024_116451 crossref_primary_10_1016_j_cbi_2023_110445 crossref_primary_10_1007_s00204_022_03373_4 crossref_primary_10_3389_fphys_2023_1147001 crossref_primary_10_3390_biomedicines13010144 crossref_primary_10_1097_MOL_0000000000000357 crossref_primary_10_3389_fnhum_2014_00720 crossref_primary_10_1016_j_bbalip_2017_07_005 crossref_primary_10_1111_cts_12761 crossref_primary_10_1159_000538493 crossref_primary_10_3390_ijms232315421 crossref_primary_10_1517_17425255_2015_990437 crossref_primary_10_1186_s13293_021_00378_z crossref_primary_10_1080_17512433_2017_1362978 crossref_primary_10_1113_JP272476 crossref_primary_10_1128_mSphere_00045_15 crossref_primary_10_1152_ajpgi_00476_2020 crossref_primary_10_1007_s40200_021_00858_4 crossref_primary_10_1186_s12967_015_0640_8 crossref_primary_10_3389_fcimb_2021_629438 crossref_primary_10_3389_fphys_2019_00428 crossref_primary_10_3389_fendo_2021_636272 crossref_primary_10_1042_BSR20203498 crossref_primary_10_1097_QAD_0000000000001409 crossref_primary_10_1146_annurev_micro_091014_104115 crossref_primary_10_1128_mSystems_00340_20 crossref_primary_10_1016_j_envint_2019_02_048 crossref_primary_10_3390_microorganisms11010135 crossref_primary_10_3389_fimmu_2021_711217 crossref_primary_10_4161_gmic_29558 crossref_primary_10_1155_2018_2037838 crossref_primary_10_1111_jvim_14773 crossref_primary_10_3390_microorganisms10071309 crossref_primary_10_1177_17562848211017725 crossref_primary_10_1016_j_rgmxen_2019_05_001 crossref_primary_10_1007_s42399_018_0033_4 crossref_primary_10_3389_fcimb_2021_549678 crossref_primary_10_1007_s00335_021_09859_3 crossref_primary_10_1038_s42003_018_0140_5 crossref_primary_10_1038_ijo_2015_125 crossref_primary_10_3390_gidisord1020023 crossref_primary_10_1177_2397847317741884 crossref_primary_10_1016_j_jaut_2018_10_008 crossref_primary_10_1053_j_gastro_2017_03_051 crossref_primary_10_1016_j_cmet_2016_06_016 crossref_primary_10_1016_j_heliyon_2022_e09869 crossref_primary_10_1016_j_scitotenv_2019_135833 crossref_primary_10_1111_jdi_12673 crossref_primary_10_3390_nu14030462 crossref_primary_10_1038_s41467_021_21355_5 crossref_primary_10_3389_fmicb_2022_832915 crossref_primary_10_3920_BM2016_0189 crossref_primary_10_1016_j_appet_2019_05_032 crossref_primary_10_1111_dom_13163 crossref_primary_10_1136_gutjnl_2024_332602 crossref_primary_10_1038_ncomms8486 crossref_primary_10_1080_07388551_2019_1576025 crossref_primary_10_1016_j_clnu_2016_10_006 crossref_primary_10_1111_dom_14145 crossref_primary_10_1016_j_metop_2019_100010 crossref_primary_10_3389_fmicb_2024_1477187 crossref_primary_10_3390_biomedicines8110502 crossref_primary_10_1016_j_pcd_2018_07_001 crossref_primary_10_1111_1469_0691_12799 crossref_primary_10_1016_j_lfs_2021_120060 crossref_primary_10_1016_j_exger_2020_110875 crossref_primary_10_1093_jac_dkw383 crossref_primary_10_1186_s13054_023_04620_5 crossref_primary_10_1016_j_ecoenv_2019_109720 crossref_primary_10_1080_19476337_2018_1474264 crossref_primary_10_3390_nu11081943 crossref_primary_10_1111_eva_12658 crossref_primary_10_1186_s12920_023_01449_3 crossref_primary_10_1038_s12276_018_0181_3 crossref_primary_10_1111_1462_2920_12786 crossref_primary_10_18203_issn_2454_2156_IntJSciRep20242697 crossref_primary_10_1039_D2FO03523E crossref_primary_10_1172_jci_insight_91809 crossref_primary_10_1016_j_taap_2018_06_028 crossref_primary_10_1111_jphp_12983 crossref_primary_10_1007_s13668_020_00307_3 crossref_primary_10_1111_jam_15519 crossref_primary_10_7570_jomes_2017_26_2_86 crossref_primary_10_1371_journal_pone_0205695 crossref_primary_10_1111_obr_12983 crossref_primary_10_1210_jc_2015_2696 crossref_primary_10_1371_journal_pone_0285613 crossref_primary_10_14309_ajg_0000000000000191 crossref_primary_10_1002_dmrr_3014 crossref_primary_10_1073_pnas_1712901115 crossref_primary_10_1016_j_tifs_2021_05_006 crossref_primary_10_4161_19490976_2014_969986 crossref_primary_10_1016_j_archoralbio_2020_104730 crossref_primary_10_1021_envhealth_3c00072 crossref_primary_10_1007_s11684_019_0686_8 crossref_primary_10_1038_s41430_021_00991_6 crossref_primary_10_1111_cei_12293 crossref_primary_10_3389_fimmu_2021_670286 crossref_primary_10_3390_nu13031018 crossref_primary_10_3389_fimmu_2024_1448116 crossref_primary_10_1016_j_cld_2015_08_008 crossref_primary_10_1186_s12902_023_01432_0 crossref_primary_10_1096_fj_14_269514 crossref_primary_10_1007_s11306_014_0750_y crossref_primary_10_1007_s00383_021_04948_5 crossref_primary_10_1371_journal_pone_0182815 crossref_primary_10_1371_journal_pone_0231942 crossref_primary_10_1136_gutjnl_2015_310283 crossref_primary_10_1002_dmrr_3042 crossref_primary_10_1371_journal_pone_0126712 crossref_primary_10_3389_frmbi_2024_1399440 crossref_primary_10_3390_microorganisms8060879 crossref_primary_10_1016_j_envpol_2020_114399 crossref_primary_10_2147_IJGM_S353276 crossref_primary_10_3390_microorganisms3040641 crossref_primary_10_1007_s00253_019_10214_5 crossref_primary_10_14341_DM7704 crossref_primary_10_3389_fendo_2021_639856 crossref_primary_10_1097_MOG_0000000000000157 crossref_primary_10_1016_j_chom_2023_05_013 crossref_primary_10_18632_oncotarget_24681 crossref_primary_10_1128_mSphere_01296_20 crossref_primary_10_48130_fmr_0024_0013 crossref_primary_10_1146_annurev_food_030117_012830 crossref_primary_10_3390_microorganisms8091360 crossref_primary_10_3390_jcm8040451 crossref_primary_10_1186_s40001_024_02072_3 crossref_primary_10_2337_db22_0168 |
Cites_doi | 10.1210/endo.143.5.8850 10.1053/j.gastro.2009.03.030 10.1136/gutjnl-2011-300705 10.1038/nature11400 10.1126/science.1104343 10.1007/s00125-010-1662-7 10.1038/nature11552 10.1136/gut.2010.215665 10.1111/j.1463-1326.2011.01483.x 10.1038/nature04330 10.1038/nature09944 10.1007/BF01567743 10.4161/gmic.1.4.12306 10.1042/bj2300451 10.1161/CIRCULATIONAHA.109.192644 10.1038/nmeth1102 10.4065/83.4.460 10.1073/pnas.0804437105 10.1073/pnas.0605374104 10.1096/fj.10-164921 10.1053/j.gastro.2012.06.031 10.1016/j.chom.2008.02.015 10.1007/s11892-011-0187-x 10.1007/BF01297092 10.1111/j.1574-6976.1998.tb00382.x 10.1016/j.cmet.2009.08.001 10.1016/j.bbrc.2005.01.139 10.1053/j.gastro.2013.05.042 10.1016/S0021-9258(19)38535-7 10.1128/AEM.66.3.1107-1113.2000 10.1152/ajpendo.00460.2004 10.1038/ijo.2012.132 10.1128/AEM.72.3.1729-1738.2006 10.1073/pnas.1000087107 10.1111/j.1348-0421.2004.tb03526.x 10.1210/jc.2011-2329 10.1038/nature12506 10.1073/pnas.0504978102 10.1038/ismej.2007.3 10.1038/sj.emboj.7601049 10.1371/journal.pone.0009074 10.1371/journal.pbio.0060280 10.1128/AEM.00759-10 10.1126/scitranslmed.3000322 10.1016/j.cmet.2013.01.003 10.1159/000324126 10.1073/pnas.0407076101 10.1016/S1097-2765(00)80348-2 10.1038/nature05414 |
ContentType | Journal Article |
Copyright | 2013 European Association for the Study of the Liver European Association for the Study of the Liver Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. Wageningen University & Research |
Copyright_xml | – notice: 2013 European Association for the Study of the Liver – notice: European Association for the Study of the Liver – notice: Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 QVL |
DOI | 10.1016/j.jhep.2013.11.034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1600-0641 |
EndPage | 831 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_447881 24316517 10_1016_j_jhep_2013_11_034 S0168827813008374 1_s2_0_S0168827813008374 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 D-I DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LZ1 M27 M41 MJL MO0 N9A O-L O9- OAUVE OC. ON0 OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UV1 WUQ X7M YOC Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 AALMO ABFLS ABPIF ABPTK ABQIS ACEMF ADALY IPNFZ QVL |
ID | FETCH-LOGICAL-c579t-30332cd52c9a3cd99e080b0bfc8b6eefb06f69d323cd2b2e006915b95888bf653 |
IEDL.DBID | .~1 |
ISSN | 0168-8278 1600-0641 |
IngestDate | Thu Oct 13 09:31:13 EDT 2022 Fri Jul 11 10:22:22 EDT 2025 Thu Apr 03 07:02:06 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Tue Jul 01 02:21:43 EDT 2025 Fri Feb 23 02:28:54 EST 2024 Sun Feb 23 10:19:17 EST 2025 Tue Aug 26 19:50:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bile acids Antibiotics Intestinal microbiota Amoxicillin Insulin resistance Vancomycin Metabolic syndrome |
Language | English |
License | Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-30332cd52c9a3cd99e080b0bfc8b6eefb06f69d323cd2b2e006915b95888bf653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 24316517 |
PQID | 1508678645 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_447881 proquest_miscellaneous_1508678645 pubmed_primary_24316517 crossref_primary_10_1016_j_jhep_2013_11_034 crossref_citationtrail_10_1016_j_jhep_2013_11_034 elsevier_sciencedirect_doi_10_1016_j_jhep_2013_11_034 elsevier_clinicalkeyesjournals_1_s2_0_S0168827813008374 elsevier_clinicalkey_doi_10_1016_j_jhep_2013_11_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hepatology |
PublicationTitleAlternate | J Hepatol |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sauter, Berr, Beuers (b0180) 1996; 24 Sayin, Wahlstrom, Felin (b0190) 2013; 17 Murphy, Cotter, Healy (b0040) 2010; 59 Turnbaugh, Ridaura, Faith (b0050) 2009; 1 Arumugam, Raes, Pelletier (b0010) 2011; 473 Ockenga, Valentini, Schuetz (b0240) 2012; 97 Lowell, Shulman (b0235) 2005; 307 Mudaliar, Henry, Sanyal, Morrow, Marschall, Kipnes (b0220) 2013; 145 Katsuma, Hirasawa, Tsujimoto (b0205) 2005; 329 Jernberg, Lofmark, Edlund (b0090) 2007; 1 Wells, Hylemon (b0140) 2000; 66 Van den Abbeele, Grootaert, Marzorati (b0185) 2010; 76 Murphy, Cotter, Hogan (b0095) 2012; 62 Raju, Cryer (b0215) 2005; 289 Backhed, Ding, Wang (b0065) 2004; 101 Kitahara, Sakata, Sakamoto (b0135) 2004; 48 Tomlinson, Fu, John (b0245) 2002; 143 Houten, Watanabe, Auwerx (b0155) 2006; 25 Dethlefsen, Huse, Sogin (b0080) 2008; 6 Alberti, Eckel, Grundy (b0170) 2009; 120 Canzi (b0115) 1985; 12 Wang, Chen, Hollister (b0200) 1999; 3 Kootte, Vrieze, Holleman (b0015) 2011; 14 Batta, Salen, Arora (b0130) 1990; 265 Ley, Backhed, Turnbaugh (b0035) 2005; 102 Claesson, O’Toole (b0225) 2010; 1 Cho, Yamanishi, Cox (b0105) 2012; 488 Tilg, Moschen, Kaser (b0025) 2009; 136 Turnbaugh, Backhed, Fulton (b0045) 2008; 3 Thuny, Richet, Casalta (b0100) 2010; 5 Prawitt, Caron, Staels (b0160) 2011; 11 Hylemon, Harder (b0150) 1998; 22 Jones, Begley, Hill (b0125) 2008; 105 Turnbaugh, Ley, Mahowald (b0070) 2006; 444 Vrieze, van Nood, Holleman (b0075) 2012; 143 Aragozzini, Canzi, Ferrari (b0145) 1985; 230 Sung, Shaffer, Costerton (b0195) 1993; 38 Tremaroli, Backhed (b0005) 2012; 489 Zilliox, Irizarry (b0175) 2007; 4 DiBaise, Zhang, Crowell (b0030) 2008; 83 Watanabe, Houten, Mataki (b0250) 2006; 439 Backhed, Manchester, Semenkovich (b0055) 2007; 104 Rabot, Membrez, Bruneau (b0060) 2010; 24 Le Chatelier, Nielsen, Qin (b0230) 2013; 500 Trasande, Blustein, Liu (b0110) 2012; 37 Begley, Hill, Gahan (b0120) 2006; 72 Dethlefsen, Relman (b0085) 2011; 108 Pols, Noriega, Nomura (b0165) 2011; 29 Thomas, Gioiello, Noriega (b0210) 2009; 10 Vrieze, Holleman, Zoetendal (b0020) 2010; 53 Jones (10.1016/j.jhep.2013.11.034_b0125) 2008; 105 Thomas (10.1016/j.jhep.2013.11.034_b0210) 2009; 10 Ley (10.1016/j.jhep.2013.11.034_b0035) 2005; 102 Canzi (10.1016/j.jhep.2013.11.034_b0115) 1985; 12 Arumugam (10.1016/j.jhep.2013.11.034_b0010) 2011; 473 Vrieze (10.1016/j.jhep.2013.11.034_b0020) 2010; 53 Sayin (10.1016/j.jhep.2013.11.034_b0190) 2013; 17 Claesson (10.1016/j.jhep.2013.11.034_b0225) 2010; 1 Wang (10.1016/j.jhep.2013.11.034_b0200) 1999; 3 Tomlinson (10.1016/j.jhep.2013.11.034_b0245) 2002; 143 Dethlefsen (10.1016/j.jhep.2013.11.034_b0085) 2011; 108 Murphy (10.1016/j.jhep.2013.11.034_b0095) 2012; 62 Begley (10.1016/j.jhep.2013.11.034_b0120) 2006; 72 Vrieze (10.1016/j.jhep.2013.11.034_b0075) 2012; 143 Turnbaugh (10.1016/j.jhep.2013.11.034_b0050) 2009; 1 Backhed (10.1016/j.jhep.2013.11.034_b0065) 2004; 101 Kitahara (10.1016/j.jhep.2013.11.034_b0135) 2004; 48 DiBaise (10.1016/j.jhep.2013.11.034_b0030) 2008; 83 Backhed (10.1016/j.jhep.2013.11.034_b0055) 2007; 104 Lowell (10.1016/j.jhep.2013.11.034_b0235) 2005; 307 Watanabe (10.1016/j.jhep.2013.11.034_b0250) 2006; 439 Rabot (10.1016/j.jhep.2013.11.034_b0060) 2010; 24 Mudaliar (10.1016/j.jhep.2013.11.034_b0220) 2013; 145 Cho (10.1016/j.jhep.2013.11.034_b0105) 2012; 488 Jernberg (10.1016/j.jhep.2013.11.034_b0090) 2007; 1 Tremaroli (10.1016/j.jhep.2013.11.034_b0005) 2012; 489 Turnbaugh (10.1016/j.jhep.2013.11.034_b0045) 2008; 3 Houten (10.1016/j.jhep.2013.11.034_b0155) 2006; 25 Sung (10.1016/j.jhep.2013.11.034_b0195) 1993; 38 Aragozzini (10.1016/j.jhep.2013.11.034_b0145) 1985; 230 Zilliox (10.1016/j.jhep.2013.11.034_b0175) 2007; 4 Batta (10.1016/j.jhep.2013.11.034_b0130) 1990; 265 Dethlefsen (10.1016/j.jhep.2013.11.034_b0080) 2008; 6 Hylemon (10.1016/j.jhep.2013.11.034_b0150) 1998; 22 Van den Abbeele (10.1016/j.jhep.2013.11.034_b0185) 2010; 76 Tilg (10.1016/j.jhep.2013.11.034_b0025) 2009; 136 Murphy (10.1016/j.jhep.2013.11.034_b0040) 2010; 59 Katsuma (10.1016/j.jhep.2013.11.034_b0205) 2005; 329 Thuny (10.1016/j.jhep.2013.11.034_b0100) 2010; 5 Prawitt (10.1016/j.jhep.2013.11.034_b0160) 2011; 11 Ockenga (10.1016/j.jhep.2013.11.034_b0240) 2012; 97 Le Chatelier (10.1016/j.jhep.2013.11.034_b0230) 2013; 500 Alberti (10.1016/j.jhep.2013.11.034_b0170) 2009; 120 Turnbaugh (10.1016/j.jhep.2013.11.034_b0070) 2006; 444 Trasande (10.1016/j.jhep.2013.11.034_b0110) 2012; 37 Wells (10.1016/j.jhep.2013.11.034_b0140) 2000; 66 Sauter (10.1016/j.jhep.2013.11.034_b0180) 1996; 24 Pols (10.1016/j.jhep.2013.11.034_b0165) 2011; 29 Kootte (10.1016/j.jhep.2013.11.034_b0015) 2011; 14 Raju (10.1016/j.jhep.2013.11.034_b0215) 2005; 289 |
References_xml | – volume: 25 start-page: 1419 year: 2006 end-page: 1425 ident: b0155 article-title: Endocrine functions of bile acids publication-title: EMBO J – volume: 37 start-page: 16 year: 2012 end-page: 23 ident: b0110 article-title: Infant antibiotic exposures and early-life body mass publication-title: Int J Obes (Lond) – volume: 22 start-page: 475 year: 1998 end-page: 488 ident: b0150 article-title: Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems publication-title: FEMS Microbiol Rev – volume: 10 start-page: 167 year: 2009 end-page: 177 ident: b0210 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metab – volume: 97 start-page: 535 year: 2012 end-page: 542 ident: b0240 article-title: Plasma bile acids are associated with energy expenditure and thyroid function in humans publication-title: J Clin Endocrinol Metab – volume: 1 start-page: 56 year: 2007 end-page: 66 ident: b0090 article-title: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota publication-title: ISME J – volume: 62 start-page: 220 year: 2012 end-page: 226 ident: b0095 article-title: Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity publication-title: Gut – volume: 1 start-page: 6ra14 year: 2009 ident: b0050 article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice publication-title: Sci Transl Med – volume: 11 start-page: 160 year: 2011 end-page: 166 ident: b0160 article-title: Bile acid metabolism and the pathogenesis of type 2 diabetes publication-title: Curr Diab Rep – volume: 38 start-page: 2104 year: 1993 end-page: 2112 ident: b0195 article-title: Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids publication-title: Dig Dis Sci – volume: 230 start-page: 451 year: 1985 end-page: 455 ident: b0145 article-title: A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by publication-title: Biochem J – volume: 444 start-page: 1027 year: 2006 end-page: 1031 ident: b0070 article-title: An obesity-associated gut microbiome with increased capacity for energy harvest publication-title: Nature – volume: 307 start-page: 384 year: 2005 end-page: 387 ident: b0235 article-title: Mitochondrial dysfunction and type 2 diabetes publication-title: Science – volume: 488 start-page: 621 year: 2012 end-page: 626 ident: b0105 article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity publication-title: Nature – volume: 105 start-page: 13580 year: 2008 end-page: 13585 ident: b0125 article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome publication-title: Proc Natl Acad Sci U S A – volume: 108 start-page: 4554 year: 2011 end-page: 4561 ident: b0085 article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 911 year: 2007 end-page: 913 ident: b0175 article-title: A gene expression bar code for microarray data publication-title: Nat Methods – volume: 59 start-page: 1635 year: 2010 end-page: 1642 ident: b0040 article-title: Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models publication-title: Gut – volume: 101 start-page: 15718 year: 2004 end-page: 15723 ident: b0065 article-title: The gut microbiota as an environmental factor that regulates fat storage publication-title: Proc Natl Acad Sci U S A – volume: 143 start-page: 1741 year: 2002 end-page: 1747 ident: b0245 article-title: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity publication-title: Endocrinology – volume: 17 start-page: 225 year: 2013 end-page: 235 ident: b0190 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab – volume: 6 start-page: 2383 year: 2008 end-page: 2400 ident: b0080 article-title: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing publication-title: PLoS Biol – volume: 1 start-page: 277 year: 2010 end-page: 278 ident: b0225 article-title: Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities publication-title: Gut Microbes – volume: 29 start-page: 37 year: 2011 end-page: 44 ident: b0165 article-title: The bile acid membrane receptor TGR5: a valuable metabolic target publication-title: Dig Dis – volume: 24 start-page: 4948 year: 2010 end-page: 4959 ident: b0060 article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism publication-title: FASEB J – volume: 5 start-page: e9074 year: 2010 ident: b0100 article-title: Vancomycin treatment of infective endocarditis is linked with recently acquired obesity publication-title: PLoS One – volume: 120 start-page: 1640 year: 2009 end-page: 1645 ident: b0170 article-title: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity publication-title: Circulation – volume: 3 start-page: 543 year: 1999 end-page: 553 ident: b0200 article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR publication-title: Mol Cell – volume: 14 start-page: 112 year: 2011 end-page: 120 ident: b0015 article-title: The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus publication-title: Diabetes Obes Metab – volume: 3 start-page: 213 year: 2008 end-page: 223 ident: b0045 article-title: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome publication-title: Cell Host Microbe – volume: 72 start-page: 1729 year: 2006 end-page: 1738 ident: b0120 article-title: Bile salt hydrolase activity in probiotics publication-title: Appl Environ Microbiol – volume: 500 start-page: 541 year: 2013 end-page: 546 ident: b0230 article-title: Richness of human gut microbiome correlates with metabolic markers publication-title: Nature – volume: 136 start-page: 1476 year: 2009 end-page: 1483 ident: b0025 article-title: Obesity and the microbiota publication-title: Gastroenterology – volume: 76 start-page: 5237 year: 2010 end-page: 5246 ident: b0185 article-title: Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and publication-title: Appl Environ Microbiol – volume: 439 start-page: 484 year: 2006 end-page: 489 ident: b0250 article-title: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation publication-title: Nature – volume: 289 start-page: E181 year: 2005 end-page: E186 ident: b0215 article-title: Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? publication-title: Am J Physiol Endocrinol Metab – volume: 489 start-page: 242 year: 2012 end-page: 249 ident: b0005 article-title: Functional interactions between the gut microbiota and host metabolism publication-title: Nature – volume: 66 start-page: 1107 year: 2000 end-page: 1113 ident: b0140 article-title: Identification and characterization of a bile acid 7alpha-dehydroxylation operon in publication-title: Appl Environ Microbiol – volume: 329 start-page: 386 year: 2005 end-page: 390 ident: b0205 article-title: Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1 publication-title: Biochem Biophys Res Commun – volume: 12 start-page: 1 year: 1985 end-page: 4 ident: b0115 article-title: Effect of lincomycin treatment on intestinal microflora composition and its bile-acid-metabolizing activity publication-title: Curr Microbiol – volume: 24 start-page: 123 year: 1996 end-page: 126 ident: b0180 article-title: Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one reflect bile acid synthesis in humans publication-title: Hepatology – volume: 143 start-page: 913 year: 2012 end-page: 916 ident: b0075 article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome publication-title: Gastroenterology – volume: 265 start-page: 10925 year: 1990 end-page: 10928 ident: b0130 article-title: Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids publication-title: J Biol Chem – volume: 473 start-page: 174 year: 2011 end-page: 180 ident: b0010 article-title: Enterotypes of the human gut microbiome publication-title: Nature – volume: 145 start-page: 574 year: 2013 end-page: 582 ident: b0220 article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 53 start-page: 606 year: 2010 end-page: 613 ident: b0020 article-title: The environment within: how gut microbiota may influence metabolism and body composition publication-title: Diabetologia – volume: 83 start-page: 460 year: 2008 end-page: 469 ident: b0030 article-title: Gut microbiota and its possible relationship with obesity publication-title: Mayo Clin Proc – volume: 48 start-page: 367 year: 2004 end-page: 375 ident: b0135 article-title: Comparison among fecal secondary bile acid levels, fecal microbiota and publication-title: Microbiol Immunol – volume: 102 start-page: 11070 year: 2005 end-page: 11075 ident: b0035 article-title: Obesity alters gut microbial ecology publication-title: Proc Natl Acad Sci U S A – volume: 104 start-page: 979 year: 2007 end-page: 984 ident: b0055 article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice publication-title: Proc Natl Acad Sci U S A – volume: 143 start-page: 1741 year: 2002 ident: 10.1016/j.jhep.2013.11.034_b0245 article-title: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity publication-title: Endocrinology doi: 10.1210/endo.143.5.8850 – volume: 136 start-page: 1476 year: 2009 ident: 10.1016/j.jhep.2013.11.034_b0025 article-title: Obesity and the microbiota publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.03.030 – volume: 62 start-page: 220 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0095 article-title: Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity publication-title: Gut doi: 10.1136/gutjnl-2011-300705 – volume: 488 start-page: 621 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0105 article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity publication-title: Nature doi: 10.1038/nature11400 – volume: 307 start-page: 384 year: 2005 ident: 10.1016/j.jhep.2013.11.034_b0235 article-title: Mitochondrial dysfunction and type 2 diabetes publication-title: Science doi: 10.1126/science.1104343 – volume: 53 start-page: 606 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0020 article-title: The environment within: how gut microbiota may influence metabolism and body composition publication-title: Diabetologia doi: 10.1007/s00125-010-1662-7 – volume: 489 start-page: 242 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0005 article-title: Functional interactions between the gut microbiota and host metabolism publication-title: Nature doi: 10.1038/nature11552 – volume: 59 start-page: 1635 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0040 article-title: Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models publication-title: Gut doi: 10.1136/gut.2010.215665 – volume: 14 start-page: 112 year: 2011 ident: 10.1016/j.jhep.2013.11.034_b0015 article-title: The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2011.01483.x – volume: 439 start-page: 484 year: 2006 ident: 10.1016/j.jhep.2013.11.034_b0250 article-title: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation publication-title: Nature doi: 10.1038/nature04330 – volume: 473 start-page: 174 year: 2011 ident: 10.1016/j.jhep.2013.11.034_b0010 article-title: Enterotypes of the human gut microbiome publication-title: Nature doi: 10.1038/nature09944 – volume: 12 start-page: 1 year: 1985 ident: 10.1016/j.jhep.2013.11.034_b0115 article-title: Effect of lincomycin treatment on intestinal microflora composition and its bile-acid-metabolizing activity publication-title: Curr Microbiol doi: 10.1007/BF01567743 – volume: 1 start-page: 277 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0225 article-title: Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities publication-title: Gut Microbes doi: 10.4161/gmic.1.4.12306 – volume: 230 start-page: 451 year: 1985 ident: 10.1016/j.jhep.2013.11.034_b0145 article-title: A study on the mechanism of the epimerization at C-3 of chenodeoxycholic acid by Clostridium perfringens publication-title: Biochem J doi: 10.1042/bj2300451 – volume: 120 start-page: 1640 year: 2009 ident: 10.1016/j.jhep.2013.11.034_b0170 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.192644 – volume: 4 start-page: 911 year: 2007 ident: 10.1016/j.jhep.2013.11.034_b0175 article-title: A gene expression bar code for microarray data publication-title: Nat Methods doi: 10.1038/nmeth1102 – volume: 83 start-page: 460 year: 2008 ident: 10.1016/j.jhep.2013.11.034_b0030 article-title: Gut microbiota and its possible relationship with obesity publication-title: Mayo Clin Proc doi: 10.4065/83.4.460 – volume: 105 start-page: 13580 year: 2008 ident: 10.1016/j.jhep.2013.11.034_b0125 article-title: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804437105 – volume: 104 start-page: 979 year: 2007 ident: 10.1016/j.jhep.2013.11.034_b0055 article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0605374104 – volume: 24 start-page: 4948 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0060 article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism publication-title: FASEB J doi: 10.1096/fj.10-164921 – volume: 143 start-page: 913 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0075 article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.06.031 – volume: 3 start-page: 213 year: 2008 ident: 10.1016/j.jhep.2013.11.034_b0045 article-title: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.02.015 – volume: 11 start-page: 160 year: 2011 ident: 10.1016/j.jhep.2013.11.034_b0160 article-title: Bile acid metabolism and the pathogenesis of type 2 diabetes publication-title: Curr Diab Rep doi: 10.1007/s11892-011-0187-x – volume: 38 start-page: 2104 year: 1993 ident: 10.1016/j.jhep.2013.11.034_b0195 article-title: Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids publication-title: Dig Dis Sci doi: 10.1007/BF01297092 – volume: 22 start-page: 475 year: 1998 ident: 10.1016/j.jhep.2013.11.034_b0150 article-title: Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.1998.tb00382.x – volume: 10 start-page: 167 year: 2009 ident: 10.1016/j.jhep.2013.11.034_b0210 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metab doi: 10.1016/j.cmet.2009.08.001 – volume: 329 start-page: 386 year: 2005 ident: 10.1016/j.jhep.2013.11.034_b0205 article-title: Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2005.01.139 – volume: 145 start-page: 574 year: 2013 ident: 10.1016/j.jhep.2013.11.034_b0220 article-title: Efficacy and safety of the farnesoid x receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.05.042 – volume: 265 start-page: 10925 year: 1990 ident: 10.1016/j.jhep.2013.11.034_b0130 article-title: Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)38535-7 – volume: 66 start-page: 1107 year: 2000 ident: 10.1016/j.jhep.2013.11.034_b0140 article-title: Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.3.1107-1113.2000 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jhep.2013.11.034_b0180 article-title: Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one reflect bile acid synthesis in humans publication-title: Hepatology – volume: 289 start-page: E181 year: 2005 ident: 10.1016/j.jhep.2013.11.034_b0215 article-title: Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00460.2004 – volume: 37 start-page: 16 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0110 article-title: Infant antibiotic exposures and early-life body mass publication-title: Int J Obes (Lond) doi: 10.1038/ijo.2012.132 – volume: 72 start-page: 1729 year: 2006 ident: 10.1016/j.jhep.2013.11.034_b0120 article-title: Bile salt hydrolase activity in probiotics publication-title: Appl Environ Microbiol doi: 10.1128/AEM.72.3.1729-1738.2006 – volume: 108 start-page: 4554 year: 2011 ident: 10.1016/j.jhep.2013.11.034_b0085 article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000087107 – volume: 48 start-page: 367 year: 2004 ident: 10.1016/j.jhep.2013.11.034_b0135 article-title: Comparison among fecal secondary bile acid levels, fecal microbiota and Clostridium scindens cell numbers in Japanese publication-title: Microbiol Immunol doi: 10.1111/j.1348-0421.2004.tb03526.x – volume: 97 start-page: 535 year: 2012 ident: 10.1016/j.jhep.2013.11.034_b0240 article-title: Plasma bile acids are associated with energy expenditure and thyroid function in humans publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2011-2329 – volume: 500 start-page: 541 year: 2013 ident: 10.1016/j.jhep.2013.11.034_b0230 article-title: Richness of human gut microbiome correlates with metabolic markers publication-title: Nature doi: 10.1038/nature12506 – volume: 102 start-page: 11070 year: 2005 ident: 10.1016/j.jhep.2013.11.034_b0035 article-title: Obesity alters gut microbial ecology publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0504978102 – volume: 1 start-page: 56 year: 2007 ident: 10.1016/j.jhep.2013.11.034_b0090 article-title: Long-term ecological impacts of antibiotic administration on the human intestinal microbiota publication-title: ISME J doi: 10.1038/ismej.2007.3 – volume: 25 start-page: 1419 year: 2006 ident: 10.1016/j.jhep.2013.11.034_b0155 article-title: Endocrine functions of bile acids publication-title: EMBO J doi: 10.1038/sj.emboj.7601049 – volume: 5 start-page: e9074 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0100 article-title: Vancomycin treatment of infective endocarditis is linked with recently acquired obesity publication-title: PLoS One doi: 10.1371/journal.pone.0009074 – volume: 6 start-page: 2383 year: 2008 ident: 10.1016/j.jhep.2013.11.034_b0080 article-title: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060280 – volume: 76 start-page: 5237 year: 2010 ident: 10.1016/j.jhep.2013.11.034_b0185 article-title: Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00759-10 – volume: 1 start-page: 6ra14 year: 2009 ident: 10.1016/j.jhep.2013.11.034_b0050 article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000322 – volume: 17 start-page: 225 year: 2013 ident: 10.1016/j.jhep.2013.11.034_b0190 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab doi: 10.1016/j.cmet.2013.01.003 – volume: 29 start-page: 37 year: 2011 ident: 10.1016/j.jhep.2013.11.034_b0165 article-title: The bile acid membrane receptor TGR5: a valuable metabolic target publication-title: Dig Dis doi: 10.1159/000324126 – volume: 101 start-page: 15718 year: 2004 ident: 10.1016/j.jhep.2013.11.034_b0065 article-title: The gut microbiota as an environmental factor that regulates fat storage publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0407076101 – volume: 3 start-page: 543 year: 1999 ident: 10.1016/j.jhep.2013.11.034_b0200 article-title: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80348-2 – volume: 444 start-page: 1027 year: 2006 ident: 10.1016/j.jhep.2013.11.034_b0070 article-title: An obesity-associated gut microbiome with increased capacity for energy harvest publication-title: Nature doi: 10.1038/nature05414 |
SSID | ssj0003094 |
Score | 2.600578 |
Snippet | Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters... Graphical abstract BACKGROUND: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics... |
SourceID | wageningen proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 824 |
SubjectTerms | adiposity Administration, Oral Adult Aged Amoxicillin Animals Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - adverse effects Antibiotics Bile acids Bile Acids and Salts - blood Bile Acids and Salts - metabolism capacity diet-induced obesity energy-expenditure Feces - chemistry Feces - microbiology Gastroenterology and Hepatology glucagon Glucose - metabolism Humans Insulin Resistance Intestinal microbiota Intestines - drug effects Intestines - microbiology Male Metabolic syndrome Metabolic Syndrome - complications Metabolic Syndrome - drug therapy Metabolic Syndrome - microbiology Mice Microbiota - drug effects Middle Aged Obesity - complications Obesity - drug therapy Obesity - microbiology resistance salt hydrolase activity Single-Blind Method Vancomycin Vancomycin - administration & dosage Vancomycin - adverse effects |
Title | Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168827813008374 https://www.clinicalkey.es/playcontent/1-s2.0-S0168827813008374 https://dx.doi.org/10.1016/j.jhep.2013.11.034 https://www.ncbi.nlm.nih.gov/pubmed/24316517 https://www.proquest.com/docview/1508678645 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F447881 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAiU9lKTPbZugQm-Ns5Yt2etjWBI2fYTSNhB6EZYstw67coi9hF762ztjy5uUtCn0ZGxLljUezcOa-QbgdVFKbQtK-0BlFIjSiABZOQxQHFP1OMOLvIu2OElmp-LtmTxbg-mQC0NhlV729zK9k9b-ythTc3xRVePPaKygeZhOaEMG3SzCBBUiJS7f_3kd5hGHmcf3ngTU2ifO9DFe598tYVbyeJ-QPGPxN-V02_i8D5tXuOBdlwF1QyMdbcEDb0qyg_5tt2HNuodw74PfLH8EX4-7DEhWl4zS8Blt9teLH3iT1Y59W7ZsUfUwTG2-xzSKB5abqmAL2yJnzKtmscdyVzAfrs4ainXvi008htOjwy_TWeBLKQRGplkboKKKI1PIyGR5bIoss2gp6lCXZqITa0sdJmWSFXGENyMdWQIw5lJnEh1kXSYyfgLrrnb2GTAheSw1Uh09T2HCSSbQxcQncGtDbWwyAj7QUBmPM07lLuZqCCg7V0R3RXRHB0Qh3UfwZtXnokfZuLN1PHwaNeSPosRTqATu7JX-qZdt_KJtFFdNpEJ1i7FGIFc9f-PNf474auAbhYuWdmJyZ-sljoRmMVoJiZAjeNoz1GreEYETSJ7iLK85TDmqLNUoAgP3v_fU1fJSuTkd8AmNElQIgT__z3d9AZt45mOSXsJ6e7m0O2hutXq3W0-7sHEw_fT-Ix2P381OfgEZUyuU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkF7QLy7PI3EjaYbx3Z2c0QV1RbaXmiliosVOw6k2nWqJquKC7-dmcTZggpF4hQpjhNnMs945huAt0WpjCuo7AONUSRLKyNk5ThCdUzd4ywv8i7b4iidnciPp-p0DXaHWhhKqwy6v9fpnbYOZ8aBmuPzqhp_RmcF3cPJlDZkMMySt-C2RPGlNgY7P67yPEScBYDvaUSXh8qZPsnr7Jsj0EoudgjKU8i_Wafr3ucmbFyixPuuBOoXk7R3H-4FX5K975f7ANacfwh3DsNu-SP4st-VQLK6ZFSHz2i3v158x0FWe_Z12bJF1eMwtfk2M6gfWG6rgi1ci6wxr5rFNst9wUK-Omso2b3vNvEYTvY-HO_OotBLIbJqkrURWiqR2EIlNsuFLbLMoatoYlPaqUmdK02clmlWiAQHE5M4QjDmymQKI2RTpko8gXVfe7cFTCoulEGyY-gpbTzNJMaYeAfuXGysS0fABxpqG4DGqd_FXA8ZZWea6K6J7hiBaKT7CN6t5pz3MBs3Xi2GT6OHAlJUeRqtwI2zJn-a5ZogtY3mukl0rK9x1gjUauZvzPnPJ74Z-Eaj1NJWTO5dvcQnoV-MbkIq1Qie9gy1eu-E0AkUn-BbXnGY9tRaqtGEBh7-7-nL5YX2czrgHRotqRMCf_afa30Nd2fHhwf6YP_o03PYwJGQoPQC1tuLpXuJvldrXnWy9RNO_CuN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+oral+vancomycin+on+gut+microbiota%2C+bile+acid+metabolism%2C+and+insulin+sensitivity&rft.jtitle=Journal+of+hepatology&rft.au=Vrieze%2C+Anne&rft.au=Out%2C+Carolien&rft.au=Fuentes%2C+Susana&rft.au=Jonker%2C+Lisanne&rft.date=2014-04-01&rft.issn=0168-8278&rft.volume=60&rft.issue=4&rft.spage=824&rft.epage=831&rft_id=info:doi/10.1016%2Fj.jhep.2013.11.034&rft.externalDBID=ECK1-s2.0-S0168827813008374&rft.externalDocID=1_s2_0_S0168827813008374 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01688278%2FS0168827814X00024%2Fcov150h.gif |