Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model
Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is a paramount environmental concern. It is challenging to simulate groundwater quality dynamics with the Soil and Water Assessment Tool (SWAT) because it does not adequately model nutrient perc...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 13574 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is a paramount environmental concern. It is challenging to simulate groundwater quality dynamics with the Soil and Water Assessment Tool (SWAT) because it does not adequately model nutrient percolation processes in the soil. The objectives of this study were to extend the SWAT module to simulate groundwater quality for the parameters nitrate and Total Dissolved Solids (TDS). The results of the SWAT model for the Athabasca River Basin in Canada revealed a linear relationship between observed and calculated groundwater quality. This result achieved satisfactory values for coefficient of determination (
R
2
), Nash-Sutcliffe efficiency (
NSE
), and percent bias (
PBIAS
). For nitrate, the model performance measures
R
2
ranged from 0.66–0.83 during calibration and
NSE
from 0.61–0.83.
R
2
is 0.71 during validation and NSE ranged from 0.69–0.75. Likewise, for TDS, the model performance measures
R
2
ranged from 0.61–0.82 during calibration and from 0.58–0.62 during validation. When coupled with soil zone and land surface processes, nitrate and TDS concentrations in groundwater can be simulated with the SWAT model. This indicated that SWAT may be helpful in evaluating adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for regional-scale modelling of nutrient loads, and to support and effective surface and groundwater management. |
---|---|
AbstractList | Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is a paramount environmental concern. It is challenging to simulate groundwater quality dynamics with the Soil and Water Assessment Tool (SWAT) because it does not adequately model nutrient percolation processes in the soil. The objectives of this study were to extend the SWAT module to simulate groundwater quality for the parameters nitrate and Total Dissolved Solids (TDS). The results of the SWAT model for the Athabasca River Basin in Canada revealed a linear relationship between observed and calculated groundwater quality. This result achieved satisfactory values for coefficient of determination (
R
2
), Nash-Sutcliffe efficiency (
NSE
), and percent bias (
PBIAS
). For nitrate, the model performance measures
R
2
ranged from 0.66–0.83 during calibration and
NSE
from 0.61–0.83.
R
2
is 0.71 during validation and NSE ranged from 0.69–0.75. Likewise, for TDS, the model performance measures
R
2
ranged from 0.61–0.82 during calibration and from 0.58–0.62 during validation. When coupled with soil zone and land surface processes, nitrate and TDS concentrations in groundwater can be simulated with the SWAT model. This indicated that SWAT may be helpful in evaluating adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for regional-scale modelling of nutrient loads, and to support and effective surface and groundwater management. Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is challenging to simulate groundwater quality dynamics due to the insufficient representation of nutrient percolation processes in the soil and Water Assessment Tool model. The objectives of this study were extending the SWAT module to predict groundwater quality. The results proved a linear relationship between observed and calculated groundwater quality with coefficient of determination (R ), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS) values in the satisfied ranges. While the values of R , NSE and PBIAS were 0.69, 0.65, and 2.68 during nitrate calibration, they were 0.85, 0.85 and 5.44, respectively during nitrate validation. Whereas the values of R , NSE and PBIAS were 0.59, 0.37, and - 2.21 during total dissolved solid (TDS) calibration and they were 0.81, 0.80, 7.5 during the validation. The results showed that the nitrate and TDS concentrations in groundwater might change with varying surface water quality. This indicated the requirement for designing adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for future regional to global scale modelling of nutrient loads and effective surface and groundwater management. Abstract Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is challenging to simulate groundwater quality dynamics due to the insufficient representation of nutrient percolation processes in the soil and Water Assessment Tool model. The objectives of this study were extending the SWAT module to predict groundwater quality. The results proved a linear relationship between observed and calculated groundwater quality with coefficient of determination (R 2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) values in the satisfied ranges. While the values of R 2, NSE and PBIAS were 0.69, 0.65, and 2.68 during nitrate calibration, they were 0.85, 0.85 and 5.44, respectively during nitrate validation. Whereas the values of R 2, NSE and PBIAS were 0.59, 0.37, and − 2.21 during total dissolved solid (TDS) calibration and they were 0.81, 0.80, 7.5 during the validation. The results showed that the nitrate and TDS concentrations in groundwater might change with varying surface water quality. This indicated the requirement for designing adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for future regional to global scale modelling of nutrient loads and effective surface and groundwater management. Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is a paramount environmental concern. It is challenging to simulate groundwater quality dynamics with the Soil and Water Assessment Tool (SWAT) because it does not adequately model nutrient percolation processes in the soil. The objectives of this study were to extend the SWAT module to simulate groundwater quality for the parameters nitrate and Total Dissolved Solids (TDS). The results of the SWAT model for the Athabasca River Basin in Canada revealed a linear relationship between observed and calculated groundwater quality. This result achieved satisfactory values for coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS). For nitrate, the model performance measures R2 ranged from 0.66–0.83 during calibration and NSE from 0.61–0.83. R2 is 0.71 during validation and NSE ranged from 0.69–0.75. Likewise, for TDS, the model performance measures R2 ranged from 0.61–0.82 during calibration and from 0.58–0.62 during validation. When coupled with soil zone and land surface processes, nitrate and TDS concentrations in groundwater can be simulated with the SWAT model. This indicated that SWAT may be helpful in evaluating adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for regional-scale modelling of nutrient loads, and to support and effective surface and groundwater management. Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is challenging to simulate groundwater quality dynamics due to the insufficient representation of nutrient percolation processes in the soil and Water Assessment Tool model. The objectives of this study were extending the SWAT module to predict groundwater quality. The results proved a linear relationship between observed and calculated groundwater quality with coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS) values in the satisfied ranges. While the values of R2, NSE and PBIAS were 0.69, 0.65, and 2.68 during nitrate calibration, they were 0.85, 0.85 and 5.44, respectively during nitrate validation. Whereas the values of R2, NSE and PBIAS were 0.59, 0.37, and - 2.21 during total dissolved solid (TDS) calibration and they were 0.81, 0.80, 7.5 during the validation. The results showed that the nitrate and TDS concentrations in groundwater might change with varying surface water quality. This indicated the requirement for designing adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for future regional to global scale modelling of nutrient loads and effective surface and groundwater management.Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is challenging to simulate groundwater quality dynamics due to the insufficient representation of nutrient percolation processes in the soil and Water Assessment Tool model. The objectives of this study were extending the SWAT module to predict groundwater quality. The results proved a linear relationship between observed and calculated groundwater quality with coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS) values in the satisfied ranges. While the values of R2, NSE and PBIAS were 0.69, 0.65, and 2.68 during nitrate calibration, they were 0.85, 0.85 and 5.44, respectively during nitrate validation. Whereas the values of R2, NSE and PBIAS were 0.59, 0.37, and - 2.21 during total dissolved solid (TDS) calibration and they were 0.81, 0.80, 7.5 during the validation. The results showed that the nitrate and TDS concentrations in groundwater might change with varying surface water quality. This indicated the requirement for designing adaptive management scenarios. Hence, the extended SWAT model could be a powerful tool for future regional to global scale modelling of nutrient loads and effective surface and groundwater management. |
ArticleNumber | 13574 |
Author | Melaku, Nigus Demelash Meshesha, Tesfa Worku Wang, Junye McClain, Cynthia N. |
Author_xml | – sequence: 1 givenname: Tesfa Worku surname: Meshesha fullname: Meshesha, Tesfa Worku organization: Athabasca River Basin Research Institute (ARBRI), Athabasca University – sequence: 2 givenname: Junye surname: Wang fullname: Wang, Junye email: junyewang@athabascau.ca organization: Athabasca River Basin Research Institute (ARBRI), Athabasca University – sequence: 3 givenname: Nigus Demelash surname: Melaku fullname: Melaku, Nigus Demelash organization: Athabasca River Basin Research Institute (ARBRI), Athabasca University – sequence: 4 givenname: Cynthia N. surname: McClain fullname: McClain, Cynthia N. organization: Environment and Parks, Government of Alberta, Department of Geoscience, University of Calgary |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34193903$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxIVLwJ-JfUHaVnxUKkKCIo7Wi_OS9Sprt3ZS1H-P022h7aGWpWf7zYxGfvOy2PPBY1G8puQ9JVx9SIJKrSrCaKWZZqRqnhUHjAhZMc7Y3r3zfnGU0obkJZkWVL8o9nkuXBN-UPhvocNxdH4ohxhm3_2BCWN5OcPopusy9OW0xnI1raGFZKH84a5y-xiS82XeSzPNLUQ7OVtGHFzw5ZwWOSi3oXO9w678-Xt1vtxwfFU872FMeHRbD4tfnz-dn3ytzr5_OT1ZnVVWNnqqGFLZMCZ6qVvaMGp5j9rW2GINkihCUXUUKWl6tI0gVnSir7WwFmxNhEZ-WJzudLsAG3MR3RbitQngzM1DiIOBmC2PaIgmTFhUXHZCKAuAGlDylogaeqZE1vq407qY2y12Fv0UYXwg-rDj3doM4cooJqRQLAu8uxWI4XLGNJmtSzb_OngMczJMikZy1nCaoW8fQTdhjj5_1YKqG8VUvTh6c9_RPyt3Y80AtQPYGFKK2BvrJpjycLJBNxpKzBIiswuRySEyNyEyTaayR9Q79SdJfEdKGewHjP9tP8H6C7af2Vo |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2022_131005 crossref_primary_10_3390_w15081571 crossref_primary_10_1016_j_ecolind_2024_112852 crossref_primary_10_1016_j_jag_2022_103044 crossref_primary_10_3390_w14121918 crossref_primary_10_1007_s11356_023_27319_0 crossref_primary_10_1007_s12665_022_10625_0 crossref_primary_10_1016_j_scitotenv_2022_155255 crossref_primary_10_3390_hydrology10040095 crossref_primary_10_3390_w14233946 crossref_primary_10_1007_s40899_021_00576_y crossref_primary_10_1016_j_jhydrol_2024_132612 |
Cites_doi | 10.1007/BF03325971 10.1016/j.jhydrol.2008.02.024 10.1016/j.eiar.2006.11.002 10.13031/trans.58.10715 10.1002/jeq2.20002 10.1007/s40808-015-0049-7 10.1016/j.jhydrol.2008.01.003 10.5194/hess-22-6241-2018 10.1016/j.jhydrol.2019.05.052 10.3390/w13040518 10.1016/j.scitotenv.2017.05.013 10.1007/s11269-010-9605-0 10.1016/j.watres.2017.05.032 10.1007/s00477-010-0371-6 10.1016/j.ejrh.2018.01.003 10.1016/j.envint.2008.08.005 10.1016/j.jhydrol.2020.124939 10.1016/j.jenvman.2020.111678 10.1139/S09-003 10.30638/eemj.2013.287 10.3390/w8040145 10.1016/j.scitotenv.2017.05.242 10.1016/j.gsf.2016.11.017 10.1016/j.ecolmodel.2015.07.009 10.1016/j.jhydrol.2019.124513 10.1016/j.scitotenv.2017.04.236 10.1016/j.jhydrol.2020.124952 10.1016/j.envsoft.2015.08.011 10.5194/gmd-11-4755-2018 10.13031/2013.26840 10.1007/s13201-016-0400-9 10.1007/s40808-017-0328-6 10.1007/s10661-006-1505-7 10.1002/hyp.11466 10.1016/j.watres.2007.04.019 10.13031/2013.18511 10.1016/j.scitotenv.2017.12.347 10.1016/j.scitotenv.2019.133796 10.1007/s10040-018-1825-z 10.3390/su11072031 10.1007/s12665-017-6883-3 10.3354/meps332107 10.1016/S1474-7065(02)00048-7 10.1016/j.apm.2017.05.021 10.1007/s40899-017-0200-x 10.1016/j.scitotenv.2020.139092 10.1002/hyp.10384 10.5194/hess-22-3561-2018 10.1007/s40808-017-0327-7 10.5194/hess-14-1863-2010 10.1016/j.agwat.2006.07.008 10.3301/ROL.2016.88 10.2166/aqua.2019.026 10.1007/s12518-018-0218-2 10.1016/j.agwat.2009.10.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2022 The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2022 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2022 – notice: The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2022 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-92920-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_09024ce835d448caae9ae53b046af284 PMC8245482 34193903 10_1038_s41598_021_92920_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Athabasca River |
GeographicLocations_xml | – name: Athabasca River |
GrantInformation_xml | – fundername: Alberta Economic Development and Trade for the Campus Innovates Program Research Chair for the financial support grantid: RCP-12-001-BCAIP; RCP-12-001-BCAIP; RCP-12-001-BCAIP; RCP-12-001-BCAIP – fundername: ; grantid: RCP-12-001-BCAIP; RCP-12-001-BCAIP; RCP-12-001-BCAIP; RCP-12-001-BCAIP |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c579t-2e157224f59b1721c3fe9c6ebe6a50801e8d1e107fec740c4d4f694ccac6049e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:24:57 EDT 2025 Thu Aug 21 13:54:41 EDT 2025 Fri Jul 11 08:50:11 EDT 2025 Wed Aug 13 08:05:44 EDT 2025 Wed Apr 16 06:20:02 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Tue Jul 01 03:48:48 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-2e157224f59b1721c3fe9c6ebe6a50801e8d1e107fec740c4d4f694ccac6049e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-92920-7 |
PMID | 34193903 |
PQID | 2546782864 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09024ce835d448caae9ae53b046af284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8245482 proquest_miscellaneous_2547532731 proquest_journals_2546782864 pubmed_primary_34193903 crossref_citationtrail_10_1038_s41598_021_92920_7 crossref_primary_10_1038_s41598_021_92920_7 springer_journals_10_1038_s41598_021_92920_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-30 |
PublicationDateYYYYMMDD | 2021-06-30 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Fisher, Davidson, Goodman (CR57) 2004 Moharir, Pande, Singh, Choudhari, Kishan, Jeyakumar (CR20) 2019; 68 Nguyen, Dietrich (CR37) 2018; 32 Rolff, Almesjö, Elmgren (CR55) 2007; 332 Wang, Kumar Shrestha, Aghajani Delavar, Worku Meshesha, Bhanja (CR70) 2021; 13 Srivastava, Singh, Gupta, Thakur, Mukherjee (CR17) 2013; 12 Kumar, Singh, Pandey (CR18) 2018; 10 Shao, Zhang, Guan, Xie, Huang (CR58) 2019; 11 Eckhardt, Haverkamp, Fohrer, Frede (CR25) 2002; 27 CR31 Halefom, Sisay, Khare, Singh, Worku (CR48) 2017; 3 Bhanja, Zhang, Wang (CR19) 2018; 22 Worku, Khare, Tripathi (CR46) 2017; 76 Khadri, Pande (CR3) 2016; 2 Kim, Chung, Won, Arnold (CR35) 2008; 356 Shrestha, Du, Wang (CR45) 2017; 601 Guzman, Moriasi, Gowda, Steiner, Starks, Arnold, Srinivasan (CR36) 2015; 73 Longe, Enekwechi (CR64) 2007; 4 Lewandowski, Meinikmann, Nützmann, Rosenberry (CR13) 2015; 29 Malagó, Bouraoui, Vigiak, Grizzetti, Pastori (CR71) 2017; 603 Arnold (CR41) 2012; 55 Di Curzio, Rusi, Signanini (CR26) 2019; 695 Morris, Lawrence, Chilton, Adams, Calow, Klinck (CR5) 2003 CR42 Dibike, Eum, Prowse (CR43) 2018; 15 CR40 Motsinger, Kalita, Bhattarai (CR54) 2016; 8 Shrestha, Wang (CR44) 2018; 625 Deng, Wang (CR22) 2017; 50 Haas, Guse, Pfannerstill, Fohrer (CR62) 2015; 314 Moharir, Pande, Patil (CR4) 2017; 8 Shrestha, Wang (CR50) 2020; 35 Williams, Hann (CR8) 1978 Vigiak, Malagó, Bouraoui, Vanmaercke, Obreja, Poesen, Habersack, Fehér, Grošelj (CR63) 2017; 599 Luo, He, Sophocleous, Yin, Hongrui, Ouyang (CR28) 2008; 352 Chen, Luo, Potter, Moran, Grieneisen, Zhang (CR59) 2017; 121 Ng, Wickert, Somers, Saberi, Cronkite-Ratcliff, Niswonger, McKenzie (CR38) 2018; 11 Oyarzun, Arumí, Salgado, Mariño (CR16) 2007; 87 García-Díaz (CR2) 2011; 25 Coynel, Schäfer, Dabrin, Girardot, Blanc (CR7) 2007; 41 Sisay, Halefom, Khare, Singh, Worku (CR49) 2017; 3 CR56 CR11 CR10 Di Curzio, Palmucci, Rusi, Signanini (CR15) 2016; 41 Roselló, Martinez, Navarro (CR21) 2009; 35 Almasri (CR9) 2007; 27 Pardo-Igúzquiza, Dowd, Bosch, Luque-Espinar, Heredia, Durán-Valsero (CR23) 2018; 26 Meshesha, Wang, Melaku (CR33) 2020; 582 Vazquez-Amábile, Engel (CR27) 2005; 48 Malagó, Bouraoui, Vigiak, Grizzetti, Pastori (CR68) 2017; 603 Siebert, Burke, Faures, Frenken, Hoogeveen, Döll, Portmann (CR6) 2010; 14 Nemčić-Jurec, Singh, Jazbec, Gautam, Kovač (CR14) 2019; 5 Papaioannou, Dovriki, Rigas, Plageras, Rigas, Kokkora, Papastergiou (CR1) 2010; 24 Younes, Zaouali, Lehmann, Fahs (CR24) 2018; 22 Meshesha, Wang, Melaku (CR34) 2020; 587 Wang, Li, Bork, Richter, Eum, Chen, Shah, Mezbahuddin (CR39) 2020; 739 Shah, Wang, Hao, Thomas (CR66) 2020 Baffaut, Benson (CR29) 2009; 52 Watson, McKeown, Putz, MacDonald (CR30) 2008; 7 Lam, Schmalz, Fohrer (CR53) 2010; 97 Melaku, Shrestha, Wang, Thorman (CR52) 2020; 49 CR67 Eckhardt, Haverkamp, Fohrer, Frede (CR69) 2002; 27 Melaku, Wang (CR32) 2019; 575 CR61 Neitsch, Arnold, Kiniry, Williams (CR47) 2011 Melaku, Wang, Meshesha (CR51) 2020; 587 Mor, Ravindra, Dahiya, Chandra (CR65) 2006; 118 Moriasi, Gitau, Pai, Daggupati (CR60) 2015; 58 Jacintha, Rawat, Mishra, Singh (CR12) 2017; 7 VT Nguyen (92920_CR37) 2018; 32 K Eckhardt (92920_CR25) 2002; 27 R Oyarzun (92920_CR16) 2007; 87 92920_CR67 JA Guzman (92920_CR36) 2015; 73 Y Luo (92920_CR28) 2008; 352 D Di Curzio (92920_CR26) 2019; 695 NK Shrestha (92920_CR50) 2020; 35 B Deng (92920_CR22) 2017; 50 T Worku (92920_CR46) 2017; 76 J Nemčić-Jurec (92920_CR14) 2019; 5 SN Bhanja (92920_CR19) 2018; 22 J Motsinger (92920_CR54) 2016; 8 DN Moriasi (92920_CR60) 2015; 58 92920_CR61 JG Arnold (92920_CR41) 2012; 55 ND Melaku (92920_CR51) 2020; 587 J Lewandowski (92920_CR13) 2015; 29 SL Neitsch (92920_CR47) 2011 TGA Jacintha (92920_CR12) 2017; 7 K Wang (92920_CR70) 2021; 13 J Wang (92920_CR39) 2020; 739 JC García-Díaz (92920_CR2) 2011; 25 G Shao (92920_CR58) 2019; 11 MB Haas (92920_CR62) 2015; 314 GH Ng (92920_CR38) 2018; 11 E Pardo-Igúzquiza (92920_CR23) 2018; 26 D Di Curzio (92920_CR15) 2016; 41 BL Morris (92920_CR5) 2003 NW Kim (92920_CR35) 2008; 356 92920_CR31 A Younes (92920_CR24) 2018; 22 NK Shrestha (92920_CR44) 2018; 625 TW Meshesha (92920_CR34) 2020; 587 S Mor (92920_CR65) 2006; 118 C Baffaut (92920_CR29) 2009; 52 MN Almasri (92920_CR9) 2007; 27 PK Srivastava (92920_CR17) 2013; 12 SHH Shah (92920_CR66) 2020 NK Shrestha (92920_CR45) 2017; 601 E Sisay (92920_CR49) 2017; 3 MP Roselló (92920_CR21) 2009; 35 RS Fisher (92920_CR57) 2004 ND Melaku (92920_CR32) 2019; 575 A Coynel (92920_CR7) 2007; 41 QD Lam (92920_CR53) 2010; 97 N Kumar (92920_CR18) 2018; 10 ND Melaku (92920_CR52) 2020; 49 92920_CR40 EO Longe (92920_CR64) 2007; 4 BM Watson (92920_CR30) 2008; 7 92920_CR42 A Halefom (92920_CR48) 2017; 3 A Papaioannou (92920_CR1) 2010; 24 C Rolff (92920_CR55) 2007; 332 Y Dibike (92920_CR43) 2018; 15 92920_CR56 92920_CR11 K Eckhardt (92920_CR69) 2002; 27 GG Vazquez-Amábile (92920_CR27) 2005; 48 A Malagó (92920_CR68) 2017; 603 H Chen (92920_CR59) 2017; 121 S Siebert (92920_CR6) 2010; 14 O Vigiak (92920_CR63) 2017; 599 K Moharir (92920_CR4) 2017; 8 TW Meshesha (92920_CR33) 2020; 582 JR Williams (92920_CR8) 1978 K Moharir (92920_CR20) 2019; 68 A Malagó (92920_CR71) 2017; 603 92920_CR10 SFR Khadri (92920_CR3) 2016; 2 35351919 - Sci Rep. 2022 Mar 29;12(1):5303 |
References_xml | – volume: 4 start-page: 133 issue: 1 year: 2007 end-page: 140 ident: CR64 article-title: Investigation on potential groundwater impacts and influence of local hydrogeology on natural attenuation of leachate at a municipal landfill publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03325971 – volume: 356 start-page: 1 issue: 1–2 year: 2008 end-page: 16 ident: CR35 article-title: Development and application of the integrated SWAT–MODFLOW model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.02.024 – volume: 27 start-page: 220 issue: 3 year: 2007 end-page: 242 ident: CR9 article-title: Nitrate contamination of groundwater: A conceptual management framework publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2006.11.002 – volume: 58 start-page: 1763 issue: 6 year: 2015 end-page: 1785 ident: CR60 article-title: Hydrologic and water quality models: Performance measures and evaluation criteria publication-title: Trans. ASABE doi: 10.13031/trans.58.10715 – volume: 49 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR52 article-title: Predicting nitrous oxide emissions following the application of solid manure to grassland in the United Kingdom publication-title: J. Environ. Qual. doi: 10.1002/jeq2.20002 – volume: 2 start-page: 39 issue: 1 year: 2016 ident: CR3 article-title: Ground water flow modeling for calibrating steady state using MODFLOW software: A case study of Mahesh River basin, India publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-015-0049-7 – volume: 352 start-page: 139 issue: 1–2 year: 2008 end-page: 156 ident: CR28 article-title: Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.01.003 – volume: 22 start-page: 6241 year: 2018 end-page: 6255 ident: CR19 article-title: Estimating long-term groundwater storage and its controlling factors in Alberta, Canada publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6241-2018 – volume: 575 start-page: 420 year: 2019 end-page: 431 ident: CR32 article-title: A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.052 – volume: 13 start-page: 518 issue: 4 year: 2021 ident: CR70 article-title: Modelling watershed and river basin processes in cold climate regions: A review publication-title: Water doi: 10.3390/w13040518 – volume: 601 start-page: 425 year: 2017 end-page: 440 ident: CR45 article-title: Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.013 – ident: CR61 – volume: 24 start-page: 3257 issue: 12 year: 2010 end-page: 3278 ident: CR1 article-title: Assessment and modelling of groundwater quality data by environmetric methods in the context of public health publication-title: Water Resour. Manag. doi: 10.1007/s11269-010-9605-0 – volume: 121 start-page: 374 year: 2017 end-page: 385 ident: CR59 article-title: Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT publication-title: Water Res. doi: 10.1016/j.watres.2017.05.032 – volume: 55 start-page: 1491 issue: 4 year: 2012 end-page: 1508 ident: CR41 article-title: SWAT: model use, calibration, and validation publication-title: Am. Soc. Agric. Biol. Eng. – ident: CR42 – volume: 25 start-page: 331 issue: 3 year: 2011 end-page: 339 ident: CR2 article-title: Monitoring and forecasting nitrate concentration in the groundwater using statistical process control and time series analysis: a case study publication-title: Stoch. Env. Res. Risk Assess. doi: 10.1007/s00477-010-0371-6 – volume: 15 start-page: 134 year: 2018 end-page: 148 ident: CR43 article-title: Modelling the Athabasca watershed snow response to a changing climate publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2018.01.003 – volume: 35 start-page: 325 issue: 2 year: 2009 end-page: 335 ident: CR21 article-title: Vulnerability of human environment to risk: Case of groundwater contamination risk publication-title: Environ. Int. doi: 10.1016/j.envint.2008.08.005 – volume: 587 start-page: 124939 year: 2020 ident: CR51 article-title: Improving hydrologic model to predict the effect of snowpack and soil temperature on carbon dioxide emission in the cold region peatlands publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124939 – year: 2003 ident: CR5 publication-title: Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management – ident: CR67 – year: 2020 ident: CR66 article-title: Modeling the effect of salt-affected soil on water balance fluxes and nitrous oxide emission using modified DNDC publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.111678 – volume: 7 start-page: 145 issue: S1 year: 2008 end-page: 159 ident: CR30 article-title: Modification of SWAT for modelling streamflow from forested watersheds on the Canadian Boreal Plain publication-title: J. Environ. Eng. Sci. doi: 10.1139/S09-003 – volume: 12 start-page: 2343 issue: 12 year: 2013 end-page: 2355 ident: CR17 article-title: Modeling impact of land use change trajectories on groundwater quality using remote sensing and GIS publication-title: Environ. Eng. Manag. J. doi: 10.30638/eemj.2013.287 – volume: 8 start-page: 145 issue: 4 year: 2016 ident: CR54 article-title: Analysis of best management practices implementation on water quality using the soil and water assessment tool publication-title: Water doi: 10.3390/w8040145 – volume: 603 start-page: 196 year: 2017 end-page: 218 ident: CR71 article-title: Modelling water and nutrient fluxes in the Danube River Basin with SWAT publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.05.242 – volume: 8 start-page: 1385 issue: 6 year: 2017 end-page: 1395 ident: CR4 article-title: Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software publication-title: Geosci. Front. doi: 10.1016/j.gsf.2016.11.017 – volume: 314 start-page: 62 year: 2015 end-page: 72 ident: CR62 article-title: Detection of dominant nitrate processes in ecohydrological modeling with temporal parameter sensitivity analysis publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2015.07.009 – ident: CR11 – volume: 582 start-page: 124513 year: 2020 ident: CR33 article-title: The modified Hydrological model for assessing effect of pH on fate and transport of in the Athabasca River Basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124513 – volume: 599 start-page: 992 year: 2017 end-page: 1012 ident: CR63 article-title: Modelling sediment fluxes in the Danube River Basin with SWAT publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.236 – volume: 587 start-page: 124952 year: 2020 ident: CR34 article-title: Modelling spatiotemporal patterns of water quality and its impacts on aquatic ecosystem in the cold climate region of Alberta, Canada publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124952 – volume: 73 start-page: 103 year: 2015 end-page: 116 ident: CR36 article-title: A model integration framework for linking SWAT and MODFLOW publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.08.011 – volume: 11 start-page: 4755 year: 2018 end-page: 4777 ident: CR38 article-title: GSFLOW-GRASS v1.0.0: GIS-enabled hydrologic modeling of coupled groundwater-surface-water systems publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-4755-2018 – volume: 52 start-page: 469 issue: 2 year: 2009 end-page: 479 ident: CR29 article-title: Modeling flow and pollutant transport in a karst watershed with SWAT publication-title: Trans. ASABE doi: 10.13031/2013.26840 – volume: 35 start-page: 56 issue: 1 year: 2020 end-page: 80 ident: CR50 article-title: Water quality management of a cold climate region watershed in changing climate publication-title: J. Environ. Inf. – volume: 7 start-page: 3001 issue: 6 year: 2017 end-page: 3013 ident: CR12 article-title: Hydrogeochemical characterization of groundwater of peninsular Indian region using multivariate statistical techniques publication-title: Appl. Water Sci. doi: 10.1007/s13201-016-0400-9 – volume: 3 start-page: 693 issue: 2 year: 2017 end-page: 702 ident: CR49 article-title: Hydrological modelling of ungauged urban watershed using SWAT model publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-017-0328-6 – volume: 118 start-page: 435 issue: 1–3 year: 2006 end-page: 456 ident: CR65 article-title: Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-006-1505-7 – volume: 32 start-page: 939 issue: 7 year: 2018 end-page: 953 ident: CR37 article-title: Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer publication-title: Hydrol. Process. doi: 10.1002/hyp.11466 – volume: 41 start-page: 3420 issue: 15 year: 2007 end-page: 3428 ident: CR7 article-title: Groundwater contributions to metal transport in a small river affected by mining and smelting waste publication-title: Water Res. doi: 10.1016/j.watres.2007.04.019 – volume: 48 start-page: 991 issue: 3 year: 2005 end-page: 1003 ident: CR27 article-title: Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River watershed publication-title: Trans. ASAE doi: 10.13031/2013.18511 – volume: 625 start-page: 1030 year: 2018 end-page: 1045 ident: CR44 article-title: Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.347 – ident: CR10 – volume: 695 year: 2019 ident: CR26 article-title: Advanced redox zonation of the San Pedro Sula alluvial aquifer (Honduras) using data fusion and multivariate geostatistics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133796 – volume: 26 start-page: 2617 issue: 8 year: 2018 end-page: 2627 ident: CR23 article-title: A parsimonious distributed model for simulating transient water flow in a high-relief karst aquifer publication-title: Hydrogeol. J. doi: 10.1007/s10040-018-1825-z – volume: 11 start-page: 2031 issue: 7 year: 2019 ident: CR58 article-title: Application of SWAT model with a modified groundwater module to the semi-arid Hailiutu River Catchment, Northwest China publication-title: Sustainability doi: 10.3390/su11072031 – ident: CR56 – volume: 76 start-page: 550 issue: 16 year: 2017 ident: CR46 article-title: Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6883-3 – volume: 332 start-page: 107 year: 2007 end-page: 118 ident: CR55 article-title: Nitrogen fixation and abundance of the diazotrophic cyanobacterium Aphanizomenon sp. in the Baltic Proper publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps332107 – volume: 27 start-page: 641 issue: 9–10 year: 2002 end-page: 644 ident: CR69 article-title: Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site publication-title: Phys Chem Earth, Parts A/B/C. doi: 10.1016/S1474-7065(02)00048-7 – ident: CR40 – volume: 50 start-page: 39 year: 2017 end-page: 52 ident: CR22 article-title: Saturated-unsaturated groundwater modelling using 3D Richards equation with a coordinate transform of nonorthogonal grids publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.05.021 – year: 1978 ident: CR8 publication-title: Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints – volume: 5 start-page: 467 issue: 2 year: 2019 end-page: 490 ident: CR14 article-title: Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India) publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-017-0200-x – volume: 739 start-page: 139092 year: 2020 ident: CR39 article-title: Modelling spatio-temporal patterns of soil carbon and greenhouse gas emissions in grazing lands: Current status and prospects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139092 – volume: 29 start-page: 2922 issue: 13 year: 2015 end-page: 2955 ident: CR13 article-title: Groundwater—The disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients publication-title: Hydrol. Processes doi: 10.1002/hyp.10384 – year: 2011 ident: CR47 publication-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009 – volume: 603 start-page: 196 year: 2017 end-page: 218 ident: CR68 article-title: Modelling water and nutrient fluxes in the Danube River Basin with SWAT publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.242 – volume: 22 start-page: 3561 issue: 7 year: 2018 end-page: 3574 ident: CR24 article-title: Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-3561-2018 – ident: CR31 – year: 2004 ident: CR57 publication-title: Summary and Evaluation of Groundwater Quality in the Upper Cumberland, Lower Cumberland, Green, Trade water, Tennessee, and Mississippi River Basins – volume: 3 start-page: 683 issue: 2 year: 2017 end-page: 692 ident: CR48 article-title: Hydrological modeling of urban catchment using semi-distributed model publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-017-0327-7 – volume: 14 start-page: 1863 issue: 10 year: 2010 end-page: 1880 ident: CR6 article-title: Groundwater use for irrigation—A global inventory publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-14-1863-2010 – volume: 87 start-page: 251 issue: 3 year: 2007 end-page: 260 ident: CR16 article-title: Sensitivity analysis and field testing of the RISK-N model in the Central Valley of Chile publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.07.008 – volume: 27 start-page: 641 issue: 9–10 year: 2002 end-page: 644 ident: CR25 article-title: SWAT-G, a version of SWAT99. 2 modified for application to low mountain range catchments publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/S1474-7065(02)00048-7 – volume: 41 start-page: 42 year: 2016 end-page: 45 ident: CR15 article-title: Evaluation of processes controlling Fe and Mn contamination in the San Pedro Sula porous aquifer (North Western Honduras) publication-title: Rend. Online Soc. Geol. Ital. doi: 10.3301/ROL.2016.88 – volume: 68 start-page: 431 issue: 6 year: 2019 end-page: 447 ident: CR20 article-title: Spatial interpolation approach-based appraisal of groundwater quality of arid regions publication-title: J. Water Supply Res. Technol. AQUA doi: 10.2166/aqua.2019.026 – volume: 10 start-page: 173 issue: 3 year: 2018 end-page: 189 ident: CR18 article-title: Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand, India publication-title: Appl. Geomat. doi: 10.1007/s12518-018-0218-2 – volume: 97 start-page: 317 issue: 2 year: 2010 end-page: 325 ident: CR53 article-title: Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.10.004 – volume: 11 start-page: 4755 year: 2018 ident: 92920_CR38 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-4755-2018 – year: 2020 ident: 92920_CR66 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.111678 – volume: 12 start-page: 2343 issue: 12 year: 2013 ident: 92920_CR17 publication-title: Environ. Eng. Manag. J. doi: 10.30638/eemj.2013.287 – volume: 10 start-page: 173 issue: 3 year: 2018 ident: 92920_CR18 publication-title: Appl. Geomat. doi: 10.1007/s12518-018-0218-2 – volume: 7 start-page: 145 issue: S1 year: 2008 ident: 92920_CR30 publication-title: J. Environ. Eng. Sci. doi: 10.1139/S09-003 – ident: 92920_CR31 – volume: 3 start-page: 683 issue: 2 year: 2017 ident: 92920_CR48 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-017-0327-7 – volume: 587 start-page: 124939 year: 2020 ident: 92920_CR51 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124939 – volume: 118 start-page: 435 issue: 1–3 year: 2006 ident: 92920_CR65 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-006-1505-7 – volume: 601 start-page: 425 year: 2017 ident: 92920_CR45 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.013 – volume: 24 start-page: 3257 issue: 12 year: 2010 ident: 92920_CR1 publication-title: Water Resour. Manag. doi: 10.1007/s11269-010-9605-0 – volume: 68 start-page: 431 issue: 6 year: 2019 ident: 92920_CR20 publication-title: J. Water Supply Res. Technol. AQUA doi: 10.2166/aqua.2019.026 – volume: 35 start-page: 56 issue: 1 year: 2020 ident: 92920_CR50 publication-title: J. Environ. Inf. – volume: 97 start-page: 317 issue: 2 year: 2010 ident: 92920_CR53 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.10.004 – volume-title: Optimal Operation of Large Agricultural Watersheds with Water Quality Restraints year: 1978 ident: 92920_CR8 – volume: 15 start-page: 134 year: 2018 ident: 92920_CR43 publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2018.01.003 – volume: 11 start-page: 2031 issue: 7 year: 2019 ident: 92920_CR58 publication-title: Sustainability doi: 10.3390/su11072031 – volume: 14 start-page: 1863 issue: 10 year: 2010 ident: 92920_CR6 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-14-1863-2010 – volume: 55 start-page: 1491 issue: 4 year: 2012 ident: 92920_CR41 publication-title: Am. Soc. Agric. Biol. Eng. – ident: 92920_CR67 – volume: 27 start-page: 641 issue: 9–10 year: 2002 ident: 92920_CR25 publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/S1474-7065(02)00048-7 – volume: 352 start-page: 139 issue: 1–2 year: 2008 ident: 92920_CR28 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.01.003 – volume: 52 start-page: 469 issue: 2 year: 2009 ident: 92920_CR29 publication-title: Trans. ASABE doi: 10.13031/2013.26840 – volume: 41 start-page: 42 year: 2016 ident: 92920_CR15 publication-title: Rend. Online Soc. Geol. Ital. doi: 10.3301/ROL.2016.88 – ident: 92920_CR11 – ident: 92920_CR61 – volume: 58 start-page: 1763 issue: 6 year: 2015 ident: 92920_CR60 publication-title: Trans. ASABE doi: 10.13031/trans.58.10715 – volume: 27 start-page: 641 issue: 9–10 year: 2002 ident: 92920_CR69 publication-title: Phys Chem Earth, Parts A/B/C. doi: 10.1016/S1474-7065(02)00048-7 – volume: 73 start-page: 103 year: 2015 ident: 92920_CR36 publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.08.011 – volume: 332 start-page: 107 year: 2007 ident: 92920_CR55 publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps332107 – ident: 92920_CR40 – volume: 25 start-page: 331 issue: 3 year: 2011 ident: 92920_CR2 publication-title: Stoch. Env. Res. Risk Assess. doi: 10.1007/s00477-010-0371-6 – volume: 50 start-page: 39 year: 2017 ident: 92920_CR22 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.05.021 – volume: 29 start-page: 2922 issue: 13 year: 2015 ident: 92920_CR13 publication-title: Hydrol. Processes doi: 10.1002/hyp.10384 – volume-title: Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management year: 2003 ident: 92920_CR5 – volume: 575 start-page: 420 year: 2019 ident: 92920_CR32 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.052 – volume-title: Summary and Evaluation of Groundwater Quality in the Upper Cumberland, Lower Cumberland, Green, Trade water, Tennessee, and Mississippi River Basins year: 2004 ident: 92920_CR57 – volume: 22 start-page: 6241 year: 2018 ident: 92920_CR19 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6241-2018 – volume: 26 start-page: 2617 issue: 8 year: 2018 ident: 92920_CR23 publication-title: Hydrogeol. J. doi: 10.1007/s10040-018-1825-z – volume: 587 start-page: 124952 year: 2020 ident: 92920_CR34 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124952 – ident: 92920_CR10 – volume: 87 start-page: 251 issue: 3 year: 2007 ident: 92920_CR16 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.07.008 – volume: 2 start-page: 39 issue: 1 year: 2016 ident: 92920_CR3 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-015-0049-7 – volume: 13 start-page: 518 issue: 4 year: 2021 ident: 92920_CR70 publication-title: Water doi: 10.3390/w13040518 – ident: 92920_CR56 – volume: 7 start-page: 3001 issue: 6 year: 2017 ident: 92920_CR12 publication-title: Appl. Water Sci. doi: 10.1007/s13201-016-0400-9 – ident: 92920_CR42 – volume: 625 start-page: 1030 year: 2018 ident: 92920_CR44 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.347 – volume: 49 start-page: 1 issue: 1 year: 2020 ident: 92920_CR52 publication-title: J. Environ. Qual. doi: 10.1002/jeq2.20002 – volume: 314 start-page: 62 year: 2015 ident: 92920_CR62 publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2015.07.009 – volume: 121 start-page: 374 year: 2017 ident: 92920_CR59 publication-title: Water Res. doi: 10.1016/j.watres.2017.05.032 – volume: 582 start-page: 124513 year: 2020 ident: 92920_CR33 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124513 – volume: 48 start-page: 991 issue: 3 year: 2005 ident: 92920_CR27 publication-title: Trans. ASAE doi: 10.13031/2013.18511 – volume: 32 start-page: 939 issue: 7 year: 2018 ident: 92920_CR37 publication-title: Hydrol. Process. doi: 10.1002/hyp.11466 – volume: 76 start-page: 550 issue: 16 year: 2017 ident: 92920_CR46 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6883-3 – volume: 603 start-page: 196 year: 2017 ident: 92920_CR68 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.242 – volume: 599 start-page: 992 year: 2017 ident: 92920_CR63 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.236 – volume: 8 start-page: 1385 issue: 6 year: 2017 ident: 92920_CR4 publication-title: Geosci. Front. doi: 10.1016/j.gsf.2016.11.017 – volume: 3 start-page: 693 issue: 2 year: 2017 ident: 92920_CR49 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-017-0328-6 – volume: 695 year: 2019 ident: 92920_CR26 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133796 – volume: 4 start-page: 133 issue: 1 year: 2007 ident: 92920_CR64 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03325971 – volume: 5 start-page: 467 issue: 2 year: 2019 ident: 92920_CR14 publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-017-0200-x – volume: 739 start-page: 139092 year: 2020 ident: 92920_CR39 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139092 – volume: 8 start-page: 145 issue: 4 year: 2016 ident: 92920_CR54 publication-title: Water doi: 10.3390/w8040145 – volume: 22 start-page: 3561 issue: 7 year: 2018 ident: 92920_CR24 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-3561-2018 – volume: 356 start-page: 1 issue: 1–2 year: 2008 ident: 92920_CR35 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.02.024 – volume: 41 start-page: 3420 issue: 15 year: 2007 ident: 92920_CR7 publication-title: Water Res. doi: 10.1016/j.watres.2007.04.019 – volume: 27 start-page: 220 issue: 3 year: 2007 ident: 92920_CR9 publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2006.11.002 – volume-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009 year: 2011 ident: 92920_CR47 – volume: 603 start-page: 196 year: 2017 ident: 92920_CR71 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.05.242 – volume: 35 start-page: 325 issue: 2 year: 2009 ident: 92920_CR21 publication-title: Environ. Int. doi: 10.1016/j.envint.2008.08.005 – reference: 35351919 - Sci Rep. 2022 Mar 29;12(1):5303 |
SSID | ssj0000529419 |
Score | 2.400341 |
Snippet | Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is a paramount environmental concern. It is... Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns. Yet, it is... Abstract Groundwater is a vital resource for human welfare. However, due to various factors, groundwater pollution is one of the main environmental concerns.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13574 |
SubjectTerms | 704/172 704/242 704/47 Adaptive management Calibration Cold regions Environmental perception Groundwater Groundwater management Groundwater pollution Humanities and Social Sciences multidisciplinary Nitrates Nutrient loading River basins Rivers Science Science (multidisciplinary) Surface water Total dissolved solids Water quality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kUPBFtPVjtUoE33TpJpvdbB6vYikFfdAW-xay2cQeaFZ6d0j_e2eSvbPn54uwT5fcMmRmdn5DZuYH8EIELnseMFNtZSglWnBpMU6gX2kxdLJzdeJYevuuPTmXpxfNxQ2qL6oJy-OB88EdUt2gdB6BwoCZhLPWa-ubuse8zgb8ttLXF2PejWQqT_UWWnI9dclUdXe4QAmom4wqEoihqVRbkSgN7P8dyvy1WPKnG9MUiI7vwp0JQbJZlvwe3PJxD3Yzp-T1PkRiN0uDthl1bMThG6LJK5abJ6_ZGBhCPjZbXloMYM6y91SYwY7sYh4ZPrS4WPVo_vh6RrQNY2RUHP-JWfZlHOYBMSv78HF2xhKJzn04P35z9vqknEgVStcovSyF543CuB0a3VP65-rgtWtRl61FsFZx3w3cY1IYvFOycnKQodUSFe1azCZ8_QB24hj9I2CIPOxQ-UrYXkrlXcfR-7kPrhWD4kEXwNcHbNw0cZyILz6bdPNddyYrxaBSTFKKUQW83Pzna5638dfdR6S3zU6alZ1-QAsykwWZf1lQAQdrrZvJgReGaAIUtdjj8vPNMroe3afY6MdV2oPJHuI_XsDDbCQbSWhMXq2rugC1ZT5bom6vxPllGu_dCYlppCjg1drQfoj156N4_D-O4gncFuQhqR7yAHaWVyv_FEHXsn-W_Os7If4mVw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BEBIviO8FBjISbxAtTpw4eUId2jQhwQNsom-W44-tEiRb0wrtv-fOcTMV2KQ-1W7l5O58v_Od7wfwLvdctNxjpFoJnwrU4FSjn0C7anJbi9oUgWPpy9fq-FR8npfzeOA2xLLKzZ4YNmrbGzoj36e-7ZLuPIuPF5cpsUZRdjVSaNyFe9S6jLRazuV0xkJZLMGbeFcmK-r9AddBd8qoLoF4mlK55Y9C2_7_Yc1_Syb_ypsGd3T0CB5GHMlmo-Afwx3XPYH7I7Pk1VPoiOMstNtmdG-js78RUy7ZeIXyivWeIfBjs9W5RjdmNPtG5RnsQA-LjuGHBod1i0aAf8-IvKHvGJXInzHNfvV24RG5su8_ZicsUOk8g9Ojw5NPx2mkVkhNKZtVmjteSvTevmxaCgJN4V1jKpRopRGyZdzVljsMDb0zUmRGWOGrRqC4TYUxhSuew07Xd24XGOIPbTOX5boVQjpTc9wDuPOmyq3kvkmAb16wMrHvONFf_FQh_13UahSKQqGoIBQlE3g__eZi7Lpx6-wDkts0kzpmhy_65ZmKBqio_lQYh4DTYkRqtHaNdmXRZqLSHn10AnsbqatoxoO6VroE3k7DaICUVdGd69dhDoZ8iAJ5Ai9GJZlWQs3yiiYrEpBb6rO11O2RbnEemnzXucBgMk_gw0bRrpd186t4eftTvIIHOel-qHfcg53Vcu1eI6hatW-C5fwBffAd4Q priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WXQRfxLvVVSL4psWmTZvmsSsuywF9cHdx30KaJrsHNJVzQfbfO5Ne5OgqCH1q0hIyM51vmplvAF7nnouWe4xUK-FTgRqcGvQTaFcq72pR2yL2WPr4qTo5F4uL8mIP8qkWJibtR0rL-JmessPerfEFVAxGCQXUYCmVt-CAqNpRtw-aZnG6mP-s0NmV4GqskMmK-oaHd7xQJOu_CWH-mSj522lpdELH9-DuiB5ZM6z3Puy58ABuD_0krx9CoM5mkWSbUbVG6H4gklyxoXDymvWeIdxjzebKoPOyhn2mpAx2ZNbLwPCiwfW2RdXH1zNq2dAHRonxl8ywb3239IhX2emX5ozFBjqP4Pz4w9n7k3RsqJDaUqpNmjteSvTZvlQthX628E7ZCuVYGQRqGXd1xx0GhN5ZKTIrOuErJVDItsJIwhWPYT_0wT0FhqjDdJnLctMKIZ2tOVo-d95WeSe5VwnwaYO1HdnGqenFVx1PvYtaD0LRKBQdhaJlAm_mZ74PXBv_nH1EcptnEk92vNGvLvWoN5qyToV1CDM7jEOtMU4ZVxZtJirj0TMncDhJXY_Gu9bUIkBSeT0Ov5qH0ezoLMUE12_jHAz0EPvxBJ4MSjKvhCjyCpUVCcgd9dlZ6u5IWF5Fau86FxhC5gm8nRTt17L-vhXP_m_6c7iTky3ErMdD2N-stu4FQqtN-3K0pZ9MPxz- priority: 102 providerName: Springer Nature |
Title | Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model |
URI | https://link.springer.com/article/10.1038/s41598-021-92920-7 https://www.ncbi.nlm.nih.gov/pubmed/34193903 https://www.proquest.com/docview/2546782864 https://www.proquest.com/docview/2547532731 https://pubmed.ncbi.nlm.nih.gov/PMC8245482 https://doaj.org/article/09024ce835d448caae9ae53b046af284 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6wUZfxr7nrgsa7G3zZtmyZT-MkYSWEmgZbcPyZmRZagOdveaDLf_97mQ7I1u2h0EgYMm20N3lfhfd3Q_gTWi5KLjFSDUR1heowb5CP4F2lYVlKlIdOY6ls_PkdCxGk3iyAx3dUbuB862hHfFJjWe373_crT6hwX9sSsbTD3N8OBWKUbIBkS_5chf20TNJYjQ4a-F-0-s7zATP2tqZ7bcewH1qcRZlHY1W66pcR_9tMPTPbMrfjlSdpzp5CA9aiMn6jU48gh1TPYZ7Denk6glURH_mOnEzKumoyu8IN2esqa5csdoyxISsv7hR6OG0YheUucEGaj6tGH5ocL4s0D7w8Yx4HeqKUfb8NVPsa11OLYJadvmlf8Ucy85TGJ8cXw1P_ZZ1wdexzBZ-aHgs0bHbOCsoPtSRNZlOUNiJQjQXcJOW3GDUaI2WItCiFDbJBGqCTjDcMNEz2KvqyrwAhtBElYEJQlUIIY1OOf48cGN1EpaS28wD3m1wrtuW5MSMcZu7o_EozRv55Cif3Mknlx68Xd_zrWnI8c_ZA5LbeiY103YX6tl13tpmTqmpQhvEoiUGq1opkykTR0UgEmXRfXtw1Ek97xQ0Jx4BSTX4OPx6PYy2SQcuqjL10s3BaBABIvfgeaMk65V0SuaB3FCfjaVujlTTG9f_Ow0FxpmhB-86Rfu1rL9vxeF_v-glHIRkIS5L8gj2FrOleYVQbFH0YFdOZA_2-_3R5Qi_B8fnny_w6jAZ9tzfGz1ngT8Bii40MA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkaCE0SNE2-cHBDaAtWWPg6wFXtzHcduV6JJ2Yeq_VP8RmacZKvl0VulPa2dyPbMeL7JvABex46Lgju0VFPhQoEcHGrUEyhXeVxmIjOJ77F0cJgOjsSXUW-0Br-6XBgKq-zuRH9Rl7Whb-RbVLddUs6z-HD-M6SuUeRd7VpoNGyxZxcXaLJN3-9-Qvq-ieOdz8OPg7DtKhCansxnYWx5T6Licr28IPvHJM7mJsXNpBrRSsRtVnKLVpGzRorIiFK4NBe4U5MinLYJvvcG3ETFG5GxJ0dy-U2HvGaC521uTpRkW1PcN-WwURwE9YUK5Yr-820C_oVt_w7R_MNP69Xfzj242-JW1m8Y7T6s2eoB3Go6WS4eQkU91Xx5b0Z5IlV5gRh2wpqUzQWrHUOgyfqzU41q02j2lcJB2LaejiuGPxqczgs8XXw9o2YRdcUoJP-EaXZWl2OHSJl9-94fMt-65xEcXcuhP4b1qq7sU2CId3QZ2SjWhRDSmozjncOtM2lcSu7yAHh3wMq0dc6p3cYP5f3tSaYaoigkivJEUTKAt8tnzpsqH1fO3ia6LWdShW7_Rz05Ua3AK4p3FcYiwC3RAjZa21zbXlJEItUOMUEAmx3VVXttTNUlkwfwajmMAk9eHF3Zeu7noImJqJMH8KRhkuVKqDhfkkdJAHKFfVaWujpSjU99UfEsFmi8xgG86xjtcln_P4qNq3fxEm4Phgf7an_3cO8Z3IlJDnys5SaszyZz-xwB3ax44aWIwfF1i-1vcLNa7g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9SChgJThBtnHjzOCC0S7tqKayq0oreXMex25VoUvahav8av44ZJ9lqefRWaU9rJ7I9M_Y38cx8AG9Cy0XOLXqqsbC-QA32FZ4TaFdZWKQi1ZHjWPo6ineOxOfj3vEa_GpzYSisst0T3UZdVJq-kXepbntCOc-ia5uwiP2t4ceLnz4xSNFNa0unUavInllcovs2_bC7hbJ-G4bD7cNPO37DMODrXpLN_NDwXoKHmO1lOflCOrIm0zFOLFaIXAJu0oIb9JCs0YkItCiEjTOBs9YxQmsT4XtvwXpCXlEH1gfbo_2D5RceukMTPGsydYIo7U5xFSijjaIiiCXKT1ZOQ0ca8C-k-3fA5h-3tu4wHN6Hew2KZf1a7R7Amikfwu2a13LxCEpiWHPFvhlljZTFJSLaCasTOBessgxhJ-vPzhQeolqxAwoOYQM1HZcMf9Q4nee4vvh6RtQRVckoQP-UKXZeFWOLuJl9-94_ZI7I5zEc3ciyP4FOWZXmGTBEP6oITBCqXIjE6JTjDsSN1XFYJNxmHvB2gaVuqp4T-cYP6W7fo1TWQpEoFOmEIhMP3i2fuahrflzbe0ByW_aket3uj2pyKhvzlxT9KrRBuFugP6yVMpkyvSgPRKwsIgQPNlupy2YTmcorlffg9bIZzZ_udFRpqrnrgw4nYlDuwdNaSZYjoVJ9URZEHiQr6rMy1NWWcnzmSoynoUBXNvTgfatoV8P6_1JsXD-LV3AHTVZ-2R3tPYe7IZmBC7zchM5sMjcvEN3N8peNGTE4uWnL_Q2krGCJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+groundwater+quality+of+the+Athabasca+River+Basin+in+the+subarctic+region+using+a+modified+SWAT+model&rft.jtitle=Scientific+reports&rft.au=Meshesha%2C+Tesfa+Worku&rft.au=Wang%2C+Junye&rft.au=Melaku%2C+Nigus+Demelash&rft.au=McClain%2C+Cynthia+N.&rft.date=2021-06-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-92920-7&rft_id=info%3Apmid%2F34193903&rft.externalDocID=PMC8245482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |