Integrated silicon photonic MEMS

Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 9; no. 1; pp. 27 - 22
Main Authors Quack, Niels, Takabayashi, Alain Yuji, Sattari, Hamed, Edinger, Pierre, Jo, Gaehun, Bleiker, Simon J., Errando-Herranz, Carlos, Gylfason, Kristinn B., Niklaus, Frank, Khan, Umar, Verheyen, Peter, Mallik, Arun Kumar, Lee, Jun Su, Jezzini, Moises, Zand, Iman, Morrissey, Padraic, Antony, Cleitus, O’Brien, Peter, Bogaerts, Wim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.03.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon’s relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.
AbstractList Abstract Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon’s relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.
Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.
Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.
ArticleNumber 27
Author Errando-Herranz, Carlos
Verheyen, Peter
Antony, Cleitus
Zand, Iman
Bogaerts, Wim
Takabayashi, Alain Yuji
Niklaus, Frank
Morrissey, Padraic
Gylfason, Kristinn B.
Mallik, Arun Kumar
Quack, Niels
Jezzini, Moises
O’Brien, Peter
Khan, Umar
Bleiker, Simon J.
Edinger, Pierre
Lee, Jun Su
Sattari, Hamed
Jo, Gaehun
Author_xml – sequence: 1
  givenname: Niels
  orcidid: 0000-0001-5189-0929
  surname: Quack
  fullname: Quack, Niels
  email: niels.quack@sydney.edu.au
  organization: École Polytechnique Fédérale de Lausanne (EPFL), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney
– sequence: 2
  givenname: Alain Yuji
  orcidid: 0000-0002-1654-6636
  surname: Takabayashi
  fullname: Takabayashi, Alain Yuji
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Hamed
  orcidid: 0000-0002-4792-429X
  surname: Sattari
  fullname: Sattari, Hamed
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Swiss Center for Electronics and Microtechnology (CSEM)
– sequence: 4
  givenname: Pierre
  orcidid: 0000-0002-7339-6662
  surname: Edinger
  fullname: Edinger, Pierre
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 5
  givenname: Gaehun
  orcidid: 0000-0002-2752-7422
  surname: Jo
  fullname: Jo, Gaehun
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 6
  givenname: Simon J.
  orcidid: 0000-0002-4867-0391
  surname: Bleiker
  fullname: Bleiker, Simon J.
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 7
  givenname: Carlos
  orcidid: 0000-0001-7249-7392
  surname: Errando-Herranz
  fullname: Errando-Herranz, Carlos
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 8
  givenname: Kristinn B.
  orcidid: 0000-0001-9008-8402
  surname: Gylfason
  fullname: Gylfason, Kristinn B.
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 9
  givenname: Frank
  orcidid: 0000-0002-0525-8647
  surname: Niklaus
  fullname: Niklaus, Frank
  organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology
– sequence: 10
  givenname: Umar
  orcidid: 0000-0001-5760-7485
  surname: Khan
  fullname: Khan, Umar
  organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC
– sequence: 11
  givenname: Peter
  orcidid: 0000-0002-8245-9442
  surname: Verheyen
  fullname: Verheyen, Peter
  organization: imec vzw. 3DSIP Department, Si Photonics Group
– sequence: 12
  givenname: Arun Kumar
  orcidid: 0000-0002-8772-1534
  surname: Mallik
  fullname: Mallik, Arun Kumar
  organization: Tyndall National Institute
– sequence: 13
  givenname: Jun Su
  surname: Lee
  fullname: Lee, Jun Su
  organization: Tyndall National Institute
– sequence: 14
  givenname: Moises
  surname: Jezzini
  fullname: Jezzini, Moises
  organization: Tyndall National Institute
– sequence: 15
  givenname: Iman
  surname: Zand
  fullname: Zand, Iman
  organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC
– sequence: 16
  givenname: Padraic
  surname: Morrissey
  fullname: Morrissey, Padraic
  organization: Tyndall National Institute
– sequence: 17
  givenname: Cleitus
  orcidid: 0000-0003-0466-8115
  surname: Antony
  fullname: Antony, Cleitus
  organization: Tyndall National Institute
– sequence: 18
  givenname: Peter
  orcidid: 0000-0003-3184-3759
  surname: O’Brien
  fullname: O’Brien, Peter
  organization: Tyndall National Institute
– sequence: 19
  givenname: Wim
  orcidid: 0000-0003-1112-8950
  surname: Bogaerts
  fullname: Bogaerts, Wim
  organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36949734$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325757$$DView record from Swedish Publication Index
BookMark eNp9kk9vEzEQxS1UREvoF-CAInHhstR_194TqtoCkVr1UOBqeb2zicPGDrYDop8eN5uWpoeexvK899PTzLxGBz54QOgtwR8JZuokccKkqjBlFca8UdXtC3REsRCV5IwfPHofouOUlhhjIplssHiFDlnd8EYyfoSmM59hHk2Gbprc4Gzw0_Ui5OCdnV5dXN28QS97MyQ43tUJ-v754tvZ1-ry-svs7PSyskI2uaKUKIVpz1WHOwWU1UCx5EIxS23fM2ZMKaQlnPYMhOoIK_1WmN6YBhvDJmg2crtglnod3crEvzoYp7cfIc61idnZATTUorMNb5uaFZxsDYGaEAkMlGhI1xdWNbLSH1hv2j3auftxuqX9zAvNqJBCFv2nUV_EK-gs-BzNsGfb73i30PPwWxOMqSCsLoQPO0IMvzaQsl65ZGEYjIewSZqWwWOuZJnHBL1_Il2GTfRltkWlFJVEltVO0LvHkR6y3G-uCNQosDGkFKHX1mWTXbhL6IYSTd_diR7vRJc70ds70bfFSp9Y7-nPmthupkXs5xD_x37G9Q9_8s3n
CitedBy_id crossref_primary_10_1364_OE_547206
crossref_primary_10_1103_PRXQuantum_5_010102
crossref_primary_10_1364_OE_544493
crossref_primary_10_1021_acsphotonics_4c02518
crossref_primary_10_1080_15599612_2024_2342279
crossref_primary_10_1016_j_nanoms_2024_04_011
crossref_primary_10_1021_acsphotonics_4c02081
crossref_primary_10_1038_s43246_024_00459_7
crossref_primary_10_1039_D3NR03429A
crossref_primary_10_1364_OE_517313
crossref_primary_10_1021_acs_nanolett_4c03402
crossref_primary_10_1016_j_optlaseng_2024_108524
crossref_primary_10_3390_mi14081637
crossref_primary_10_1016_j_optcom_2024_131119
crossref_primary_10_1364_OE_540523
crossref_primary_10_1088_2058_8585_ad8242
crossref_primary_10_1007_s00339_024_07981_y
crossref_primary_10_1002_adom_202402889
crossref_primary_10_1038_s41467_023_42866_3
crossref_primary_10_3390_mi15040530
crossref_primary_10_3390_s24092743
crossref_primary_10_1109_JQE_2024_3397644
crossref_primary_10_1088_2633_4356_ad2521
crossref_primary_10_1016_j_ijleo_2025_172299
crossref_primary_10_1038_s44172_024_00224_1
crossref_primary_10_1063_5_0187924
crossref_primary_10_1002_advs_202304116
crossref_primary_10_1038_s41378_023_00649_2
crossref_primary_10_1364_PRJ_523986
crossref_primary_10_1364_OE_545403
crossref_primary_10_1109_JMEMS_2024_3371829
crossref_primary_10_1364_JOSAA_519506
crossref_primary_10_3788_PI_2023_R07
crossref_primary_10_1364_OME_503178
crossref_primary_10_1021_acsaelm_3c01348
crossref_primary_10_1038_s42005_025_01934_4
crossref_primary_10_1007_s12596_023_01321_8
crossref_primary_10_3390_photonics11060494
crossref_primary_10_3389_fphot_2023_1336510
crossref_primary_10_1002_adma_202415083
crossref_primary_10_1088_1367_2630_acfba6
crossref_primary_10_1002_adpr_202400140
crossref_primary_10_1007_s12633_024_02879_z
crossref_primary_10_1038_s41566_023_01327_5
crossref_primary_10_1364_PRJ_521439
crossref_primary_10_1016_j_reactfunctpolym_2024_105935
crossref_primary_10_1117_1_OE_63_12_125102
crossref_primary_10_1021_acsphotonics_3c01704
crossref_primary_10_1002_admt_202301617
crossref_primary_10_1038_s41598_024_72680_w
crossref_primary_10_1016_j_optlastec_2024_111348
crossref_primary_10_1038_s41377_024_01733_6
crossref_primary_10_1038_s41378_025_00894_7
crossref_primary_10_1016_j_mtcomm_2024_109338
crossref_primary_10_3390_photonics12030263
crossref_primary_10_1038_s41467_024_54704_1
crossref_primary_10_1038_s41467_024_55528_9
crossref_primary_10_1021_acsphotonics_3c01814
Cites_doi 10.1007/s00542-014-2283-8
10.1038/s41566-021-00903-x
10.1109/JLT.2006.885782
10.1038/s41586-022-04415-8
10.1038/s41586-020-2764-0
10.1109/2944.736076
10.1109/JLT.2016.2604839
10.1038/nphoton.2010.179
10.1109/JSTQE.2019.2943384
10.1063/1.5087862
10.1109/JPROC.2018.2854372
10.1364/OE.21.014036
10.1109/JSTQE.2019.2915949
10.1364/OME.7.000111
10.1002/lpor.201100017
10.1109/JLT.2006.885255
10.1364/PRJ.441215
10.1038/s41566-021-00776-0
10.3390/app8071139
10.1109/2944.806745
10.1088/0960-1317/18/7/073001
10.1038/s41586-018-0065-7
10.1364/OPTICA.6.000380
10.1038/s41566-018-0310-5
10.1109/JSTQE.2006.883151
10.1109/JPROC.2018.2861576
10.1088/2040-8978/18/7/073003
10.1364/OE.26.033906
10.1364/OE.423949
10.1109/JSTQE.2002.805965
10.1364/OE.22.010487
10.1364/OL.436288
10.1038/nphoton.2014.9
10.1109/JSTQE.2017.2717863
10.1515/nanoph-2020-0013
10.1364/OL.44.000073
10.1109/LPT.2006.884726
10.1109/JSTQE.2019.2918949
10.1364/OE.413202
10.1515/nanoph-2020-0297
10.1109/LPT.2014.2326405
10.1109/JQE.1973.1077767
10.1109/JLT.2021.3066203
10.1364/OPTICA.411122
10.1364/OE.26.011147
10.1364/OE.27.013430
10.1364/OL.394470
10.1038/s41566-018-0236-y
10.1063/5.0001942
10.1364/OPTICA.6.000490
10.1126/science.aay8645
10.1109/JMEMS.2021.3060182
10.1038/s41586-018-0551-y
10.1038/s41566-020-00754-y
10.1088/0268-1242/29/8/083001
10.1109/84.623115
10.1364/OME.457589
10.1088/2515-7647/aba171
10.1063/1.5042225
10.1038/s41566-021-00893-w
10.1016/0924-4247(93)80128-4
10.1117/1.JOM.1.2.024003
10.1109/MEMS51782.2021.9375168
10.1364/OFC.2020.T3H.2
10.1117/1.JOM.2.4.044001
10.1109/MEMS51670.2022.9699708
10.1364/CLEO_SI.2021.STh1Q.5
10.1109/MEMS51670.2022.9699739
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2024
The Author(s) 2023.
The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2024
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOA
DOI 10.1038/s41378-023-00498-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 22
ExternalDocumentID oai_doaj_org_article_e65dc94b9631427ba1e6117e3e8591df
oai_DiVA_org_kth_325757
PMC10025136
36949734
10_1038_s41378_023_00498_z
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 183717
  funderid: https://doi.org/10.13039/501100001711
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priorioty Industrial Leadership | H2020 Industrial Leadership - Leadership in Enabling and Industrial Technologies | H2020 LEIT Information and Communication Technologies (H2020 Leadership in Enabling and Industrial Technologies - Information and Communication Technologies)
  grantid: 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283
  funderid: https://doi.org/10.13039/100010669
– fundername: ;
  grantid: 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283
– fundername: ;
  grantid: 183717
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
PUEGO
ID FETCH-LOGICAL-c579t-2218802f48d0d8e236e2074583c2cff33aacff1b142f3e58d13207b5afaa90aa3
IEDL.DBID 7X7
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:28:08 EDT 2025
Thu Aug 21 07:04:53 EDT 2025
Thu Aug 21 18:37:24 EDT 2025
Fri Jul 11 10:24:22 EDT 2025
Wed Aug 13 09:30:21 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Tue Jul 01 03:27:11 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Other photonics
NEMS
Nanoscale devices
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-2218802f48d0d8e236e2074583c2cff33aacff1b142f3e58d13207b5afaa90aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2752-7422
0000-0002-7339-6662
0000-0002-8245-9442
0000-0002-0525-8647
0000-0001-5760-7485
0000-0001-9008-8402
0000-0002-4792-429X
0000-0003-0466-8115
0000-0003-1112-8950
0000-0002-8772-1534
0000-0003-3184-3759
0000-0001-5189-0929
0000-0002-1654-6636
0000-0002-4867-0391
0000-0001-7249-7392
OpenAccessLink https://www.proquest.com/docview/2788271741?pq-origsite=%requestingapplication%
PMID 36949734
PQID 2788271741
PQPubID 2041946
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_e65dc94b9631427ba1e6117e3e8591df
swepub_primary_oai_DiVA_org_kth_325757
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025136
proquest_miscellaneous_2790048758
proquest_journals_2788271741
pubmed_primary_36949734
crossref_citationtrail_10_1038_s41378_023_00498_z
crossref_primary_10_1038_s41378_023_00498_z
springer_journals_10_1038_s41378_023_00498_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-20
PublicationDateYYYYMMDD 2023-03-20
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Pantouvaki (CR52) 2017; 35
Chen, Poon (CR62) 2006; 18
Kish (CR1) 2018; 24
Melikyan (CR39) 2014; 8
Haffner (CR45) 2019; 366
CR35
Baghdadi (CR43) 2021; 29
Qi, Li (CR10) 2020; 9
Dong (CR53) 2022; 16
Bogaerts (CR38) 2012; 6
Lischke (CR25) 2021; 15
Abe, Hane (CR47) 2015; 21
Takabayashi (CR59) 2021; 30
Abdul Rahim (CR23) 2021; 3
Harris (CR24) 2014; 22
Khan, Xing, Ye, Bogaerts (CR28) 2019; 25
Sattari (CR55) 2020; 45
Errando-Herranz (CR51) 2020; 26
Li (CR68) 2020; 7
Rahim (CR26) 2019; 25
Shastri (CR32) 2021; 15
Stark, Horst, Dangel, Weiss, Offrein (CR33) 2020; 9
Hibino (CR17) 2002; 8
Chen (CR21) 2018; 106
Lu (CR12) 2018; 26
Miscuglio, Sorger (CR31) 2020; 7
Tran (CR22) 2018; 8
CR46
Romero-García, Merget, Zhong, Finkelstein, Witzens (CR8) 2013; 21
Soref (CR9) 2006; 12
Blumenthal, Heideman, Geuzebroek, Leinse, Roeloffzen (CR7) 2018; 106
Kaneko, Goh, Yamada, Tanaka, Ogawa (CR18) 1999; 5
Jo (CR64) 2022; 10
Desiatov, Shams-Ansari, Zhang, Wang, Lončar (CR11) 2019; 6
Grottke, Hartmann, Schuck, Pernice (CR42) 2021; 29
Grutter, Davanço, Balram, Srinivasan (CR49) 2018; 3
Westerveld (CR50) 2021; 15
Marpaung, Yao, Capmany (CR3) 2019; 13
CR57
CR56
Esashi (CR63) 2008; 18
Chu, Hane (CR48) 2014; 26
Zhang, Kwon, Henriksson, Luo, Wu (CR41) 2022; 603
Van Iseghem (CR70) 2022; 12
Bogaerts (CR30) 2020; 586
Seok, Kwon, Henriksson, Luo, Wu (CR40) 2019; 6
Legtenberg, Gilbert, Senturia, Elwenspoek (CR58) 1997; 6
Smit (CR19) 2014; 29
Qiang (CR34) 2018; 12
Yariv (CR54) 1973; 9
Jalali, Fathpour (CR20) 2006; 24
Edinger (CR60) 2021; 46
van Drieënhuizen, Goosen, French, Wolffenbuttel (CR67) 1993; 37–38
CR29
Reed, Mashanovich, Gardes, Thomson (CR37) 2010; 4
Wang (CR69) 2018; 562
Himeno, Kato, Miya (CR4) 1998; 4
Smit, Williams, van der Tol (CR6) 2019; 4
Thomson (CR16) 2016; 18
Dong (CR13) 2019; 44
Bogdanov, Shalaginov, Boltasseva, Shalaev (CR15) 2017; 7
CR66
Siew (CR27) 2021; 39
CR65
Chung, Nakai, Hashemi (CR36) 2019; 27
CR61
Mi, Kiss, Graziosi, Quack (CR14) 2020; 2
Doerr, Okamoto (CR5) 2006; 24
Spencer (CR2) 2018; 557
Nagai, Hane (CR44) 2018; 26
B Jalali (498_CR20) 2006; 24
P Stark (498_CR33) 2020; 9
X Qiang (498_CR34) 2018; 12
Y Hibino (498_CR17) 2002; 8
T-J Lu (498_CR12) 2018; 26
498_CR29
S Chung (498_CR36) 2019; 27
C Wang (498_CR69) 2018; 562
S Mi (498_CR14) 2020; 2
D Thomson (498_CR16) 2016; 18
Abdul Rahim (498_CR23) 2021; 3
C Haffner (498_CR45) 2019; 366
BP van Drieënhuizen (498_CR67) 1993; 37–38
498_CR35
MU Khan (498_CR28) 2019; 25
T Nagai (498_CR44) 2018; 26
KE Grutter (498_CR49) 2018; 3
L Van Iseghem (498_CR70) 2022; 12
H Chen (498_CR62) 2006; 18
M Smit (498_CR6) 2019; 4
M Dong (498_CR53) 2022; 16
SY Siew (498_CR27) 2021; 39
C Errando-Herranz (498_CR51) 2020; 26
TJ Seok (498_CR40) 2019; 6
P Edinger (498_CR60) 2021; 46
M Miscuglio (498_CR31) 2020; 7
A Himeno (498_CR4) 1998; 4
BJ Shastri (498_CR32) 2021; 15
S Abe (498_CR47) 2015; 21
X Zhang (498_CR41) 2022; 603
W Bogaerts (498_CR38) 2012; 6
498_CR65
498_CR66
K Li (498_CR68) 2020; 7
R Soref (498_CR9) 2006; 12
M Smit (498_CR19) 2014; 29
A Melikyan (498_CR39) 2014; 8
498_CR61
F Kish (498_CR1) 2018; 24
D Marpaung (498_CR3) 2019; 13
HM Chu (498_CR48) 2014; 26
WJ Westerveld (498_CR50) 2021; 15
DT Spencer (498_CR2) 2018; 557
AY Takabayashi (498_CR59) 2021; 30
S Romero-García (498_CR8) 2013; 21
Y Qi (498_CR10) 2020; 9
B Dong (498_CR13) 2019; 44
S Bogdanov (498_CR15) 2017; 7
CR Doerr (498_CR5) 2006; 24
W Bogaerts (498_CR30) 2020; 586
B Desiatov (498_CR11) 2019; 6
498_CR56
DJ Blumenthal (498_CR7) 2018; 106
498_CR57
H Sattari (498_CR55) 2020; 45
T Grottke (498_CR42) 2021; 29
R Baghdadi (498_CR43) 2021; 29
A Yariv (498_CR54) 1973; 9
M Esashi (498_CR63) 2008; 18
G Jo (498_CR64) 2022; 10
A Rahim (498_CR26) 2019; 25
R Legtenberg (498_CR58) 1997; 6
A Kaneko (498_CR18) 1999; 5
498_CR46
GT Reed (498_CR37) 2010; 4
X Chen (498_CR21) 2018; 106
M Pantouvaki (498_CR52) 2017; 35
NC Harris (498_CR24) 2014; 22
S Lischke (498_CR25) 2021; 15
M Tran (498_CR22) 2018; 8
References_xml – volume: 21
  start-page: 2019
  year: 2015
  end-page: 2024
  ident: CR47
  article-title: A silicon microring resonator with a nanolatch mechanism
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-014-2283-8
– volume: 16
  start-page: 59
  year: 2022
  end-page: 65
  ident: CR53
  article-title: High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00903-x
– volume: 24
  start-page: 4600
  year: 2006
  end-page: 4615
  ident: CR20
  article-title: Silicon photonics
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.885782
– volume: 603
  start-page: 253
  year: 2022
  end-page: 258
  ident: CR41
  article-title: A large-scale microelectromechanical-systems-based silicon photonics LiDAR
  publication-title: Nature
  doi: 10.1038/s41586-022-04415-8
– volume: 586
  start-page: 207
  year: 2020
  end-page: 216
  ident: CR30
  article-title: Programmable photonic circuits
  publication-title: Nature
  doi: 10.1038/s41586-020-2764-0
– volume: 4
  start-page: 913
  year: 1998
  end-page: 924
  ident: CR4
  article-title: Silica-based planar lightwave circuits
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.736076
– volume: 35
  start-page: 631
  year: 2017
  end-page: 638
  ident: CR52
  article-title: Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2604839
– volume: 4
  start-page: 518
  year: 2010
  end-page: 526
  ident: CR37
  article-title: Silicon optical modulators
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.179
– volume: 26
  start-page: 1
  year: 2020
  end-page: 16
  ident: CR51
  article-title: MEMS for photonic integrated circuits
  publication-title: IEEE J. Sel. Top. Quantum Electron
  doi: 10.1109/JSTQE.2019.2943384
– volume: 4
  start-page: 050901
  year: 2019
  ident: CR6
  article-title: Past, present, and future of InP-based photonic integration
  publication-title: APL Photonics
  doi: 10.1063/1.5087862
– volume: 106
  start-page: 2101
  year: 2018
  end-page: 2116
  ident: CR21
  article-title: The emergence of silicon photonics as a flexible technology platform
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2854372
– volume: 21
  start-page: 14036
  year: 2013
  ident: CR8
  article-title: Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths
  publication-title: Opt. Express
  doi: 10.1364/OE.21.014036
– volume: 25
  start-page: 1
  year: 2019
  end-page: 18
  ident: CR26
  article-title: Open-access silicon photonics platforms in Europe
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2915949
– volume: 7
  start-page: 111
  year: 2017
  ident: CR15
  article-title: Material platforms for integrated quantum photonics
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.7.000111
– ident: CR35
– ident: CR29
– volume: 6
  start-page: 47
  year: 2012
  end-page: 73
  ident: CR38
  article-title: Silicon microring resonators
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100017
– ident: CR61
– volume: 24
  start-page: 4763
  year: 2006
  end-page: 4789
  ident: CR5
  article-title: Advances in silica planar lightwave circuits
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.885255
– volume: 10
  start-page: A14
  year: 2022
  ident: CR64
  article-title: Wafer-level hermetically sealed silicon photonic MEMS
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.441215
– volume: 15
  start-page: 341
  year: 2021
  end-page: 345
  ident: CR50
  article-title: Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00776-0
– volume: 8
  start-page: 1139
  year: 2018
  ident: CR22
  article-title: Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics
  publication-title: Appl. Sci.
  doi: 10.3390/app8071139
– volume: 5
  start-page: 1227
  year: 1999
  end-page: 1236
  ident: CR18
  article-title: Design and applications of silica-based planar lightwave circuits
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.806745
– ident: CR46
– volume: 18
  start-page: 073001
  year: 2008
  ident: CR63
  article-title: Wafer level packaging of MEMS
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/7/073001
– volume: 557
  start-page: 81
  year: 2018
  end-page: 85
  ident: CR2
  article-title: An optical-frequency synthesizer using integrated photonics
  publication-title: Nature
  doi: 10.1038/s41586-018-0065-7
– volume: 6
  start-page: 380
  year: 2019
  ident: CR11
  article-title: Ultra-low-loss integrated visible photonics using thin-film lithium niobate
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000380
– volume: 13
  start-page: 80
  year: 2019
  end-page: 90
  ident: CR3
  article-title: Integrated microwave photonics
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0310-5
– volume: 12
  start-page: 1678
  year: 2006
  end-page: 1687
  ident: CR9
  article-title: The past, present, and future of silicon photonics
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2006.883151
– volume: 106
  start-page: 2209
  year: 2018
  end-page: 2231
  ident: CR7
  article-title: Silicon nitride in silicon photonics
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2861576
– volume: 18
  start-page: 073003
  year: 2016
  ident: CR16
  article-title: Roadmap on silicon photonics
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/7/073003
– volume: 26
  start-page: 33906
  year: 2018
  ident: CR44
  article-title: Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers
  publication-title: Opt. Express
  doi: 10.1364/OE.26.033906
– volume: 29
  start-page: 19113
  year: 2021
  ident: CR43
  article-title: Dual slot-mode NOEM phase shifter
  publication-title: Opt. Express
  doi: 10.1364/OE.423949
– ident: CR57
– volume: 8
  start-page: 1090
  year: 2002
  end-page: 1101
  ident: CR17
  article-title: Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2002.805965
– volume: 22
  start-page: 10487
  year: 2014
  ident: CR24
  article-title: Efficient, compact and low loss thermo-optic phase shifter in silicon
  publication-title: Opt. Express
  doi: 10.1364/OE.22.010487
– volume: 46
  start-page: 5671
  year: 2021
  ident: CR60
  article-title: Silicon photonic microelectromechanical phase shifters for scalable programmable photonics
  publication-title: Opt. Lett.
  doi: 10.1364/OL.436288
– volume: 8
  start-page: 229
  year: 2014
  end-page: 233
  ident: CR39
  article-title: High-speed plasmonic phase modulators
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.9
– volume: 24
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR1
  article-title: System-on-chip photonic integrated circuits
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2717863
– volume: 9
  start-page: 1287
  year: 2020
  end-page: 1320
  ident: CR10
  article-title: Integrated lithium niobate photonics
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0013
– volume: 44
  start-page: 73
  year: 2019
  ident: CR13
  article-title: Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000073
– volume: 18
  start-page: 2260
  year: 2006
  end-page: 2262
  ident: CR62
  article-title: Low-loss multimode-interference-based crossings for silicon wire waveguides
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2006.884726
– volume: 25
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR28
  article-title: Photonic integrated circuit design in a foundry+fabless ecosystem
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2918949
– ident: CR66
– volume: 29
  start-page: 5525
  year: 2021
  ident: CR42
  article-title: Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range
  publication-title: Opt. Express
  doi: 10.1364/OE.413202
– volume: 9
  start-page: 4221
  year: 2020
  end-page: 4232
  ident: CR33
  article-title: Opportunities for integrated photonic neural networks
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0297
– volume: 26
  start-page: 1411
  year: 2014
  end-page: 1413
  ident: CR48
  article-title: A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2326405
– volume: 9
  start-page: 919
  year: 1973
  end-page: 933
  ident: CR54
  article-title: Coupled-mode theory for guided-wave optics
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1973.1077767
– volume: 3
  start-page: 1
  year: 2021
  end-page: 23
  ident: CR23
  article-title: Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies
  publication-title: Adv. Photonics
– volume: 39
  start-page: 4374
  year: 2021
  end-page: 4389
  ident: CR27
  article-title: Review of silicon photonics technology and platform development
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3066203
– volume: 7
  start-page: 1514
  year: 2020
  ident: CR68
  article-title: Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying
  publication-title: Optica
  doi: 10.1364/OPTICA.411122
– volume: 26
  start-page: 11147
  year: 2018
  end-page: 11160
  ident: CR12
  article-title: Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum
  publication-title: Opt. Express
  doi: 10.1364/OE.26.011147
– volume: 27
  start-page: 13430
  year: 2019
  ident: CR36
  article-title: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems
  publication-title: Opt. Express
  doi: 10.1364/OE.27.013430
– volume: 45
  start-page: 2997
  year: 2020
  ident: CR55
  article-title: Compact broadband suspended silicon photonic directional coupler
  publication-title: Opt. Lett.
  doi: 10.1364/OL.394470
– volume: 12
  start-page: 534
  year: 2018
  end-page: 539
  ident: CR34
  article-title: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0236-y
– ident: CR56
– volume: 7
  start-page: 031404
  year: 2020
  ident: CR31
  article-title: Photonic tensor cores for machine learning
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0001942
– volume: 6
  start-page: 490
  year: 2019
  ident: CR40
  article-title: Wafer-scale silicon photonic switches beyond die size limit
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000490
– volume: 366
  start-page: 860
  year: 2019
  end-page: 864
  ident: CR45
  article-title: Nano–opto-electro-mechanical switches operated at CMOS-level voltages
  publication-title: Science
  doi: 10.1126/science.aay8645
– volume: 30
  start-page: 322
  year: 2021
  end-page: 329
  ident: CR59
  article-title: Broadband compact single-pole double-throw silicon photonic MEMS switch
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3060182
– volume: 562
  start-page: 101
  year: 2018
  end-page: 104
  ident: CR69
  article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– ident: CR65
– volume: 15
  start-page: 102
  year: 2021
  end-page: 114
  ident: CR32
  article-title: Photonics for artificial intelligence and neuromorphic computing
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00754-y
– volume: 29
  start-page: 083001
  year: 2014
  ident: CR19
  article-title: An introduction to InP-based generic integration technology
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/8/083001
– volume: 6
  start-page: 257
  year: 1997
  end-page: 265
  ident: CR58
  article-title: Electrostatic curved electrode actuators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.623115
– volume: 12
  start-page: 2181
  year: 2022
  ident: CR70
  article-title: Low power optical phase shifter using liquid crystal actuation on a silicon photonics platform
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.457589
– volume: 2
  start-page: 042001
  year: 2020
  ident: CR14
  article-title: Integrated photonic devices in single crystal diamond
  publication-title: J. Phys. Photonics
  doi: 10.1088/2515-7647/aba171
– volume: 3
  start-page: 100801
  year: 2018
  ident: CR49
  article-title: Invited Article: Tuning and stabilization of optomechanical crystal cavities through NEMS integration
  publication-title: APL Photonics
  doi: 10.1063/1.5042225
– volume: 15
  start-page: 925
  year: 2021
  end-page: 931
  ident: CR25
  article-title: Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00893-w
– volume: 37–38
  start-page: 756
  year: 1993
  end-page: 765
  ident: CR67
  article-title: Comparison of techniques for measuring both compressive and tensile stress in thin films
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(93)80128-4
– volume: 18
  start-page: 2260
  year: 2006
  ident: 498_CR62
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2006.884726
– volume: 26
  start-page: 1411
  year: 2014
  ident: 498_CR48
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2326405
– volume: 6
  start-page: 380
  year: 2019
  ident: 498_CR11
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000380
– volume: 45
  start-page: 2997
  year: 2020
  ident: 498_CR55
  publication-title: Opt. Lett.
  doi: 10.1364/OL.394470
– ident: 498_CR46
  doi: 10.1117/1.JOM.1.2.024003
– volume: 18
  start-page: 073001
  year: 2008
  ident: 498_CR63
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/7/073001
– volume: 5
  start-page: 1227
  year: 1999
  ident: 498_CR18
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.806745
– volume: 37–38
  start-page: 756
  year: 1993
  ident: 498_CR67
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(93)80128-4
– volume: 6
  start-page: 47
  year: 2012
  ident: 498_CR38
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100017
– volume: 25
  start-page: 1
  year: 2019
  ident: 498_CR26
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2915949
– volume: 9
  start-page: 1287
  year: 2020
  ident: 498_CR10
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0013
– volume: 24
  start-page: 4600
  year: 2006
  ident: 498_CR20
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.885782
– volume: 12
  start-page: 534
  year: 2018
  ident: 498_CR34
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0236-y
– volume: 106
  start-page: 2209
  year: 2018
  ident: 498_CR7
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2861576
– volume: 18
  start-page: 073003
  year: 2016
  ident: 498_CR16
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/7/073003
– volume: 22
  start-page: 10487
  year: 2014
  ident: 498_CR24
  publication-title: Opt. Express
  doi: 10.1364/OE.22.010487
– volume: 27
  start-page: 13430
  year: 2019
  ident: 498_CR36
  publication-title: Opt. Express
  doi: 10.1364/OE.27.013430
– volume: 7
  start-page: 031404
  year: 2020
  ident: 498_CR31
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0001942
– volume: 8
  start-page: 1090
  year: 2002
  ident: 498_CR17
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2002.805965
– volume: 24
  start-page: 1
  year: 2018
  ident: 498_CR1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2717863
– volume: 29
  start-page: 083001
  year: 2014
  ident: 498_CR19
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/8/083001
– ident: 498_CR35
– volume: 30
  start-page: 322
  year: 2021
  ident: 498_CR59
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3060182
– volume: 15
  start-page: 341
  year: 2021
  ident: 498_CR50
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00776-0
– volume: 3
  start-page: 100801
  year: 2018
  ident: 498_CR49
  publication-title: APL Photonics
  doi: 10.1063/1.5042225
– ident: 498_CR56
  doi: 10.1109/MEMS51782.2021.9375168
– volume: 586
  start-page: 207
  year: 2020
  ident: 498_CR30
  publication-title: Nature
  doi: 10.1038/s41586-020-2764-0
– volume: 21
  start-page: 14036
  year: 2013
  ident: 498_CR8
  publication-title: Opt. Express
  doi: 10.1364/OE.21.014036
– volume: 2
  start-page: 042001
  year: 2020
  ident: 498_CR14
  publication-title: J. Phys. Photonics
  doi: 10.1088/2515-7647/aba171
– volume: 106
  start-page: 2101
  year: 2018
  ident: 498_CR21
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2854372
– volume: 26
  start-page: 11147
  year: 2018
  ident: 498_CR12
  publication-title: Opt. Express
  doi: 10.1364/OE.26.011147
– ident: 498_CR29
  doi: 10.1364/OFC.2020.T3H.2
– ident: 498_CR61
  doi: 10.1117/1.JOM.2.4.044001
– volume: 7
  start-page: 1514
  year: 2020
  ident: 498_CR68
  publication-title: Optica
  doi: 10.1364/OPTICA.411122
– volume: 4
  start-page: 518
  year: 2010
  ident: 498_CR37
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.179
– volume: 7
  start-page: 111
  year: 2017
  ident: 498_CR15
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.7.000111
– volume: 29
  start-page: 5525
  year: 2021
  ident: 498_CR42
  publication-title: Opt. Express
  doi: 10.1364/OE.413202
– volume: 25
  start-page: 1
  year: 2019
  ident: 498_CR28
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2918949
– volume: 35
  start-page: 631
  year: 2017
  ident: 498_CR52
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2604839
– ident: 498_CR57
  doi: 10.1109/MEMS51670.2022.9699708
– volume: 9
  start-page: 919
  year: 1973
  ident: 498_CR54
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1973.1077767
– volume: 9
  start-page: 4221
  year: 2020
  ident: 498_CR33
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0297
– volume: 366
  start-page: 860
  year: 2019
  ident: 498_CR45
  publication-title: Science
  doi: 10.1126/science.aay8645
– volume: 8
  start-page: 1139
  year: 2018
  ident: 498_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app8071139
– volume: 26
  start-page: 33906
  year: 2018
  ident: 498_CR44
  publication-title: Opt. Express
  doi: 10.1364/OE.26.033906
– volume: 44
  start-page: 73
  year: 2019
  ident: 498_CR13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000073
– volume: 4
  start-page: 050901
  year: 2019
  ident: 498_CR6
  publication-title: APL Photonics
  doi: 10.1063/1.5087862
– volume: 6
  start-page: 490
  year: 2019
  ident: 498_CR40
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000490
– volume: 26
  start-page: 1
  year: 2020
  ident: 498_CR51
  publication-title: IEEE J. Sel. Top. Quantum Electron
  doi: 10.1109/JSTQE.2019.2943384
– volume: 13
  start-page: 80
  year: 2019
  ident: 498_CR3
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0310-5
– volume: 29
  start-page: 19113
  year: 2021
  ident: 498_CR43
  publication-title: Opt. Express
  doi: 10.1364/OE.423949
– volume: 16
  start-page: 59
  year: 2022
  ident: 498_CR53
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00903-x
– volume: 21
  start-page: 2019
  year: 2015
  ident: 498_CR47
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-014-2283-8
– volume: 10
  start-page: A14
  year: 2022
  ident: 498_CR64
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.441215
– volume: 4
  start-page: 913
  year: 1998
  ident: 498_CR4
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.736076
– volume: 12
  start-page: 2181
  year: 2022
  ident: 498_CR70
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.457589
– volume: 24
  start-page: 4763
  year: 2006
  ident: 498_CR5
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.885255
– volume: 39
  start-page: 4374
  year: 2021
  ident: 498_CR27
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3066203
– volume: 603
  start-page: 253
  year: 2022
  ident: 498_CR41
  publication-title: Nature
  doi: 10.1038/s41586-022-04415-8
– volume: 15
  start-page: 102
  year: 2021
  ident: 498_CR32
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00754-y
– volume: 562
  start-page: 101
  year: 2018
  ident: 498_CR69
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 557
  start-page: 81
  year: 2018
  ident: 498_CR2
  publication-title: Nature
  doi: 10.1038/s41586-018-0065-7
– volume: 3
  start-page: 1
  year: 2021
  ident: 498_CR23
  publication-title: Adv. Photonics
– ident: 498_CR65
  doi: 10.1364/CLEO_SI.2021.STh1Q.5
– ident: 498_CR66
  doi: 10.1109/MEMS51670.2022.9699739
– volume: 15
  start-page: 925
  year: 2021
  ident: 498_CR25
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00893-w
– volume: 8
  start-page: 229
  year: 2014
  ident: 498_CR39
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.9
– volume: 12
  start-page: 1678
  year: 2006
  ident: 498_CR9
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2006.883151
– volume: 6
  start-page: 257
  year: 1997
  ident: 498_CR58
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.623115
– volume: 46
  start-page: 5671
  year: 2021
  ident: 498_CR60
  publication-title: Opt. Lett.
  doi: 10.1364/OL.436288
SSID ssj0001737905
ssib048324881
Score 2.5270073
Snippet Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate...
Abstract Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms 639/624/1111
639/925/927
639/925/927/359
Broadband
Component reliability
Data processing
Electromechanical devices
Engineering
Foundries
Germanium
Information processing
Integrated circuits
Interfaces
Large scale integration
Microelectromechanical systems
Modulators
Neuromodulation
Optical communication
Optics
Phase shifters
Photodiodes
Photonics
Power consumption
Power management
Quantum computing
Quantum phenomena
Silicon
Tuning
Very large scale integration
Wavelength division multiplexing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQT3BAQFkCBQUJcYGoYz8ndo5taVWQhgsU9WY5XjSjVpmKSS_99bznZMIEUHvhFClxFOd7u5fPjL1rrA0h6KaIAnwhY0Q_6LTDKsV7r2KIPNB4x_xrdXomv5yX51tHfdGasJ4euAduP1Sld7VsUFG4FKqxPFScqwCBmNd8JO-LMW-rmEqjKwqIeWrYJTMDvb9Gb01ksgIKyop1cTOJRImw_19Z5t-LJccZ0z_YRVNEOnnEHg6pZH7Q_8Jjdi-0T9iDLYLBXZZ_3rBB-Hy9vESpt_nVYtURH24-P55_e8rOTo6_H50Ww5kIhStV3RVCEIGaiFL7mddBQBUEZgGlBidcjADW4oXT0E6EUGpPW6RVU9pobT2zFp6xnXbVhhcsd8RE77ilkC0R3oY7gfYPXnlbWi4zxjf4GDcQhtO5FZcmTVyDNj2mBjE1CVNzk7EP4ztXPV3Gra0PCfaxJVFdpxuoAGZQAHOXAmRsbyM0M9jf2gis7AVWqpJn7O34GC2HpkNsG1bX1KYm_4UFU8ae9zIeewJVLWsFiIGeSH_S1emTdrlI7Nw8lW1QZezjRlF-9-s2LN73yjT5xKflj4OExkW3MIDutVQv_wdor9h9kUwB0E3usZ3u53V4jdlV17xJhvQL3S8e0Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoEDgvIKlCpIiAtErO0kdo5l26ogLRco6s1y_GBXVNmqm17665lxHiVQVeopUmInk3mPH58B3tXGeO9VnQUuXJaHgH7QKotVinNOBh-Yp_GOxbfy-CT_elqcbgEf9sLERfsR0jK66WF12KcNOlvCguUio6RWZVf34D5Bt5NWz8v59biKFIQ51e-PmQl1Q9dJDIpQ_Tfll_8vkxznSv_BFY2x6OgxPOqTyHS_I_sJbPlmBx7-BS34FNIvAw6ESzerM5R3k54v1y0h4aaLw8X3Z3BydPhjfpz1pyFktpBVm3FO0Gk85MrNnPJclJ5j_C-UsNyGIIQxeGE0qBOEL5SjzdGyLkwwppoZI57DdrNu_EtILWHQW2YoWOdogTWzHC1fOOlMYVieABv4o20PFU4nVpzpOGUtlO54qpGnOvJUXyXwYexz3gFl3Nr6M7F9bEkg1_HG-uKX7oWufVk4W-U1Uog_JWvDfMmY9MIT6J4LCewOQtO95W00x5qeY42aswTejo_RZmgixDR-fUltKvJcWCol8KKT8UiJKKu8kgJ5oCbSn5A6fdKslhGXm8WCTZQJfBwU5Zqu23jxvlOmyScOVj_3Izd-t0st0LEW8tXd3vsaHvCo9AJd4S5stxeX_g1mUG29F03mD11EFN4
  priority: 102
  providerName: Springer Nature
Title Integrated silicon photonic MEMS
URI https://link.springer.com/article/10.1038/s41378-023-00498-z
https://www.ncbi.nlm.nih.gov/pubmed/36949734
https://www.proquest.com/docview/2788271741
https://www.proquest.com/docview/2790048758
https://pubmed.ncbi.nlm.nih.gov/PMC10025136
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325757
https://doaj.org/article/e65dc94b9631427ba1e6117e3e8591df
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxPfCRhUkxAtEq-18OE-o61pGRSdEGeqb5fiDVkxpt2Yv--u5c5OMAOpLLMWOYp_vzndn-3eEvC2UstaKInKMmyh2DvSgFhq8FGNM5qyjFuMd0_P07CKezJN5HXDb1McqG53oFbVZaYyRHzPw1Rj4HjH9uL6KMGsU7q7WKTTuk32ELsMjXdm8XU5j4Na4QUv3MZeMIx4V5psDyz3CDFv1PZo-F8cb0OcIN8t4hHaziG47a5WH9P-fHfrvccp2T_Uv_FG_Zo0fk0e1sRkOttzxhNyz5VPy8A8Iwmck_NzgRZhws7wEvijD9WJVIWJuOB1NZ8_JxXj0fXgW1VkTIp1keRUxhhBrzMXC9I2wjKeWgZ2QCK6Zdo5zpaCgGPxx3CbC4CXqrEiUUyrvK8VfkL1yVdoDEmrEqtdU4aIeg6QWVDPQENxkRiWKxgGhDX2kriHFMbPFpfRb21zILU0l0FR6msrbgLxvv1lvATV2tj5BsrctEQzbv1hd_5S1bEmbJkbncQE9hEFlhaI2pTSz3CI4n3EBOWomTdYSupF3_BSQN201yBZumKjSrm6wTY4aDlyqgLzcznHbE57mcZ5xoIHozH6nq92acrnw-N3UO3Y8DciHhlHu-rWLFu-2zNT5xenyx8BT41e1kBwUcJK92j3eQ_KAeSbnoCKPyF51fWNfg2VVFT0vPvAU4089sj8YTGYTLE-nX2ZQnozOv36D2mE67PnYxW8OkiNu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAkYCLmA1-7C9PiBUaENCm15oUW_b9T5IRGWHJhWiP4rfyMzaTgmg3HqKFK-T9bcz387ser8h5EWptXNOloln3CbCe-BBIw1kKdba3DtPHa53jPazwaH4dJQerZFf3VkYfK2y48RA1LY2uEa-ySBXY5B7CPpu-j3BqlG4u9qV0GjMYtf9_AEp2-ztcBvG9yVj_Z2DD4OkrSqQmDQv5gljKEHGvJC2Z6VjPHMM5tFUcsOM95xrDR8UF0c8d6m0eMg4L1PttS56WnP43SvkquC8QI-S_Y-d_QrwDtGps4c1npyj_hXWt4NMIcGKXu25nR6XmzOYP1DelvEE43SZnC_NjaGEwP_i3n9f31zs4f6ldxrmyP4tcrMNbuOtxhpvkzVX3SE3_pA8vEviYadPYePZ5ATssIqn43qOCr3xaGf0-R45vBQ875P1qq7cQxIb1MY3VGMQIYAZSmoYMBK3udWppiIitMNHmVbCHCtpnKiwlc6lajBVgKkKmKrziLxe3DNtBDxWtn6PsC9aovh2-KI-_apaX1YuS60pRAk9hIfKS01dRmnuuEMxQOsjstENmmoZYaYu7DcizxeXwZdxg0ZXrj7DNgUyKqRwEXnQjPGiJzwrRJFzwEAujf5SV5evVJNx0AunIZHkWUTedIZy0a9VWLxqjGnpL7YnX7YCGt_mY8WB8NP80ernfUauDQ5Ge2pvuL_7mFxnweA50PMGWZ-fnrknENXNy6fBlWJyfNm--xtN1Vja
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN64FDAScAEr2V3bax8QKqRRQ0mFBEW5bdf7IFErJzSuEP1p_Dpm1o8SQLn1FMleO-vZmW9m9vENIc8Lpay1WRE5xk0UOwc4qDMNWYoxRjjrqMX5jvFBuncYf5gkkw3yqz0Lg9sqW0z0QG3mGufIewxyNQa5R0x7rtkW8WkwfLv4HmEFKVxpbctp1Cqyb3_-gPRt-WY0gLF-wdhw98v7vaipMBDpRORVxBjSkTEXZ6ZvMst4ahn41CTjmmnnOFcKfihOlDhuk8zggWNRJMoplfeV4vDeK-Sq4AlFGxOTzpXHYClxy9Tu53sERy4srHUHWUOE1b2aMzx9nvWW4EuQ6pbxCGP2LDpf8ZO-nMD_YuB_t3J267l_cZ96fzm8RW42gW64U2vmbbJhyzvkxh_0h3dJOGq5Kky4nJ2ATpbhYjqvkK03HO-OP98jh5ciz_tks5yX9iEJNfLka6owoIgBJQqqGaATN8KoRNE4ILSVj9QNnTlW1TiRflmdZ7KWqQSZSi9TeR6QV90zi5rMY23rdyj2riUScfsL89NvsrFradPE6DwuoIfwUaJQ1KaUCsstEgMaF5DtdtBkgw5LeaHLAXnW3Qa7xsUaVdr5GbbJEV0hnQvIg3qMu57wNI9zwUEG2cror3R19U45m3rucOqTSp4G5HWrKBf9WieLl7UyrfzFYPZ1x0vjuJpKDuCfiK313_uUXAOrlR9HB_uPyHXm9Z0DUm-Tzer0zD6GAK8qnnhLCsnRZZvub6QLXQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+silicon+photonic+MEMS&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Quack%2C+Niels&rft.au=Takabayashi%2C+Alain+Yuji&rft.au=Sattari%2C+Hamed&rft.au=Edinger%2C+Pierre&rft.date=2023-03-20&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00498-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41378_023_00498_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon