Integrated silicon photonic MEMS
Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success...
Saved in:
Published in | Microsystems & nanoengineering Vol. 9; no. 1; pp. 27 - 22 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.03.2023
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon’s relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing. |
---|---|
AbstractList | Abstract Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon’s relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing. Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing. Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing. |
ArticleNumber | 27 |
Author | Errando-Herranz, Carlos Verheyen, Peter Antony, Cleitus Zand, Iman Bogaerts, Wim Takabayashi, Alain Yuji Niklaus, Frank Morrissey, Padraic Gylfason, Kristinn B. Mallik, Arun Kumar Quack, Niels Jezzini, Moises O’Brien, Peter Khan, Umar Bleiker, Simon J. Edinger, Pierre Lee, Jun Su Sattari, Hamed Jo, Gaehun |
Author_xml | – sequence: 1 givenname: Niels orcidid: 0000-0001-5189-0929 surname: Quack fullname: Quack, Niels email: niels.quack@sydney.edu.au organization: École Polytechnique Fédérale de Lausanne (EPFL), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney – sequence: 2 givenname: Alain Yuji orcidid: 0000-0002-1654-6636 surname: Takabayashi fullname: Takabayashi, Alain Yuji organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Hamed orcidid: 0000-0002-4792-429X surname: Sattari fullname: Sattari, Hamed organization: École Polytechnique Fédérale de Lausanne (EPFL), Swiss Center for Electronics and Microtechnology (CSEM) – sequence: 4 givenname: Pierre orcidid: 0000-0002-7339-6662 surname: Edinger fullname: Edinger, Pierre organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 5 givenname: Gaehun orcidid: 0000-0002-2752-7422 surname: Jo fullname: Jo, Gaehun organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 6 givenname: Simon J. orcidid: 0000-0002-4867-0391 surname: Bleiker fullname: Bleiker, Simon J. organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 7 givenname: Carlos orcidid: 0000-0001-7249-7392 surname: Errando-Herranz fullname: Errando-Herranz, Carlos organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 8 givenname: Kristinn B. orcidid: 0000-0001-9008-8402 surname: Gylfason fullname: Gylfason, Kristinn B. organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 9 givenname: Frank orcidid: 0000-0002-0525-8647 surname: Niklaus fullname: Niklaus, Frank organization: Division of Micro and Nanosystems, KTH Royal Institute of Technology – sequence: 10 givenname: Umar orcidid: 0000-0001-5760-7485 surname: Khan fullname: Khan, Umar organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC – sequence: 11 givenname: Peter orcidid: 0000-0002-8245-9442 surname: Verheyen fullname: Verheyen, Peter organization: imec vzw. 3DSIP Department, Si Photonics Group – sequence: 12 givenname: Arun Kumar orcidid: 0000-0002-8772-1534 surname: Mallik fullname: Mallik, Arun Kumar organization: Tyndall National Institute – sequence: 13 givenname: Jun Su surname: Lee fullname: Lee, Jun Su organization: Tyndall National Institute – sequence: 14 givenname: Moises surname: Jezzini fullname: Jezzini, Moises organization: Tyndall National Institute – sequence: 15 givenname: Iman surname: Zand fullname: Zand, Iman organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC – sequence: 16 givenname: Padraic surname: Morrissey fullname: Morrissey, Padraic organization: Tyndall National Institute – sequence: 17 givenname: Cleitus orcidid: 0000-0003-0466-8115 surname: Antony fullname: Antony, Cleitus organization: Tyndall National Institute – sequence: 18 givenname: Peter orcidid: 0000-0003-3184-3759 surname: O’Brien fullname: O’Brien, Peter organization: Tyndall National Institute – sequence: 19 givenname: Wim orcidid: 0000-0003-1112-8950 surname: Bogaerts fullname: Bogaerts, Wim organization: Department of Information Technology, Photonics Research Group, Ghent University - IMEC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36949734$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325757$$DView record from Swedish Publication Index |
BookMark | eNp9kk9vEzEQxS1UREvoF-CAInHhstR_194TqtoCkVr1UOBqeb2zicPGDrYDop8eN5uWpoeexvK899PTzLxGBz54QOgtwR8JZuokccKkqjBlFca8UdXtC3REsRCV5IwfPHofouOUlhhjIplssHiFDlnd8EYyfoSmM59hHk2Gbprc4Gzw0_Ui5OCdnV5dXN28QS97MyQ43tUJ-v754tvZ1-ry-svs7PSyskI2uaKUKIVpz1WHOwWU1UCx5EIxS23fM2ZMKaQlnPYMhOoIK_1WmN6YBhvDJmg2crtglnod3crEvzoYp7cfIc61idnZATTUorMNb5uaFZxsDYGaEAkMlGhI1xdWNbLSH1hv2j3auftxuqX9zAvNqJBCFv2nUV_EK-gs-BzNsGfb73i30PPwWxOMqSCsLoQPO0IMvzaQsl65ZGEYjIewSZqWwWOuZJnHBL1_Il2GTfRltkWlFJVEltVO0LvHkR6y3G-uCNQosDGkFKHX1mWTXbhL6IYSTd_diR7vRJc70ds70bfFSp9Y7-nPmthupkXs5xD_x37G9Q9_8s3n |
CitedBy_id | crossref_primary_10_1364_OE_547206 crossref_primary_10_1103_PRXQuantum_5_010102 crossref_primary_10_1364_OE_544493 crossref_primary_10_1021_acsphotonics_4c02518 crossref_primary_10_1080_15599612_2024_2342279 crossref_primary_10_1016_j_nanoms_2024_04_011 crossref_primary_10_1021_acsphotonics_4c02081 crossref_primary_10_1038_s43246_024_00459_7 crossref_primary_10_1039_D3NR03429A crossref_primary_10_1364_OE_517313 crossref_primary_10_1021_acs_nanolett_4c03402 crossref_primary_10_1016_j_optlaseng_2024_108524 crossref_primary_10_3390_mi14081637 crossref_primary_10_1016_j_optcom_2024_131119 crossref_primary_10_1364_OE_540523 crossref_primary_10_1088_2058_8585_ad8242 crossref_primary_10_1007_s00339_024_07981_y crossref_primary_10_1002_adom_202402889 crossref_primary_10_1038_s41467_023_42866_3 crossref_primary_10_3390_mi15040530 crossref_primary_10_3390_s24092743 crossref_primary_10_1109_JQE_2024_3397644 crossref_primary_10_1088_2633_4356_ad2521 crossref_primary_10_1016_j_ijleo_2025_172299 crossref_primary_10_1038_s44172_024_00224_1 crossref_primary_10_1063_5_0187924 crossref_primary_10_1002_advs_202304116 crossref_primary_10_1038_s41378_023_00649_2 crossref_primary_10_1364_PRJ_523986 crossref_primary_10_1364_OE_545403 crossref_primary_10_1109_JMEMS_2024_3371829 crossref_primary_10_1364_JOSAA_519506 crossref_primary_10_3788_PI_2023_R07 crossref_primary_10_1364_OME_503178 crossref_primary_10_1021_acsaelm_3c01348 crossref_primary_10_1038_s42005_025_01934_4 crossref_primary_10_1007_s12596_023_01321_8 crossref_primary_10_3390_photonics11060494 crossref_primary_10_3389_fphot_2023_1336510 crossref_primary_10_1002_adma_202415083 crossref_primary_10_1088_1367_2630_acfba6 crossref_primary_10_1002_adpr_202400140 crossref_primary_10_1007_s12633_024_02879_z crossref_primary_10_1038_s41566_023_01327_5 crossref_primary_10_1364_PRJ_521439 crossref_primary_10_1016_j_reactfunctpolym_2024_105935 crossref_primary_10_1117_1_OE_63_12_125102 crossref_primary_10_1021_acsphotonics_3c01704 crossref_primary_10_1002_admt_202301617 crossref_primary_10_1038_s41598_024_72680_w crossref_primary_10_1016_j_optlastec_2024_111348 crossref_primary_10_1038_s41377_024_01733_6 crossref_primary_10_1038_s41378_025_00894_7 crossref_primary_10_1016_j_mtcomm_2024_109338 crossref_primary_10_3390_photonics12030263 crossref_primary_10_1038_s41467_024_54704_1 crossref_primary_10_1038_s41467_024_55528_9 crossref_primary_10_1021_acsphotonics_3c01814 |
Cites_doi | 10.1007/s00542-014-2283-8 10.1038/s41566-021-00903-x 10.1109/JLT.2006.885782 10.1038/s41586-022-04415-8 10.1038/s41586-020-2764-0 10.1109/2944.736076 10.1109/JLT.2016.2604839 10.1038/nphoton.2010.179 10.1109/JSTQE.2019.2943384 10.1063/1.5087862 10.1109/JPROC.2018.2854372 10.1364/OE.21.014036 10.1109/JSTQE.2019.2915949 10.1364/OME.7.000111 10.1002/lpor.201100017 10.1109/JLT.2006.885255 10.1364/PRJ.441215 10.1038/s41566-021-00776-0 10.3390/app8071139 10.1109/2944.806745 10.1088/0960-1317/18/7/073001 10.1038/s41586-018-0065-7 10.1364/OPTICA.6.000380 10.1038/s41566-018-0310-5 10.1109/JSTQE.2006.883151 10.1109/JPROC.2018.2861576 10.1088/2040-8978/18/7/073003 10.1364/OE.26.033906 10.1364/OE.423949 10.1109/JSTQE.2002.805965 10.1364/OE.22.010487 10.1364/OL.436288 10.1038/nphoton.2014.9 10.1109/JSTQE.2017.2717863 10.1515/nanoph-2020-0013 10.1364/OL.44.000073 10.1109/LPT.2006.884726 10.1109/JSTQE.2019.2918949 10.1364/OE.413202 10.1515/nanoph-2020-0297 10.1109/LPT.2014.2326405 10.1109/JQE.1973.1077767 10.1109/JLT.2021.3066203 10.1364/OPTICA.411122 10.1364/OE.26.011147 10.1364/OE.27.013430 10.1364/OL.394470 10.1038/s41566-018-0236-y 10.1063/5.0001942 10.1364/OPTICA.6.000490 10.1126/science.aay8645 10.1109/JMEMS.2021.3060182 10.1038/s41586-018-0551-y 10.1038/s41566-020-00754-y 10.1088/0268-1242/29/8/083001 10.1109/84.623115 10.1364/OME.457589 10.1088/2515-7647/aba171 10.1063/1.5042225 10.1038/s41566-021-00893-w 10.1016/0924-4247(93)80128-4 10.1117/1.JOM.1.2.024003 10.1109/MEMS51782.2021.9375168 10.1364/OFC.2020.T3H.2 10.1117/1.JOM.2.4.044001 10.1109/MEMS51670.2022.9699708 10.1364/CLEO_SI.2021.STh1Q.5 10.1109/MEMS51670.2022.9699739 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2024 The Author(s) 2023. The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2024 – notice: The Author(s) 2023. – notice: The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC DOA |
DOI | 10.1038/s41378-023-00498-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_e65dc94b9631427ba1e6117e3e8591df oai_DiVA_org_kth_325757 PMC10025136 36949734 10_1038_s41378_023_00498_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 183717 funderid: https://doi.org/10.13039/501100001711 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priorioty Industrial Leadership | H2020 Industrial Leadership - Leadership in Enabling and Industrial Technologies | H2020 LEIT Information and Communication Technologies (H2020 Leadership in Enabling and Industrial Technologies - Information and Communication Technologies) grantid: 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283 funderid: https://doi.org/10.13039/100010669 – fundername: ; grantid: 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283; 780283 – fundername: ; grantid: 183717 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC PUEGO |
ID | FETCH-LOGICAL-c579t-2218802f48d0d8e236e2074583c2cff33aacff1b142f3e58d13207b5afaa90aa3 |
IEDL.DBID | 7X7 |
ISSN | 2055-7434 2096-1030 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Thu Aug 21 07:04:53 EDT 2025 Thu Aug 21 18:37:24 EDT 2025 Fri Jul 11 10:24:22 EDT 2025 Wed Aug 13 09:30:21 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Tue Jul 01 03:27:11 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Other photonics NEMS Nanoscale devices |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-2218802f48d0d8e236e2074583c2cff33aacff1b142f3e58d13207b5afaa90aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2752-7422 0000-0002-7339-6662 0000-0002-8245-9442 0000-0002-0525-8647 0000-0001-5760-7485 0000-0001-9008-8402 0000-0002-4792-429X 0000-0003-0466-8115 0000-0003-1112-8950 0000-0002-8772-1534 0000-0003-3184-3759 0000-0001-5189-0929 0000-0002-1654-6636 0000-0002-4867-0391 0000-0001-7249-7392 |
OpenAccessLink | https://www.proquest.com/docview/2788271741?pq-origsite=%requestingapplication% |
PMID | 36949734 |
PQID | 2788271741 |
PQPubID | 2041946 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e65dc94b9631427ba1e6117e3e8591df swepub_primary_oai_DiVA_org_kth_325757 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025136 proquest_miscellaneous_2790048758 proquest_journals_2788271741 pubmed_primary_36949734 crossref_citationtrail_10_1038_s41378_023_00498_z crossref_primary_10_1038_s41378_023_00498_z springer_journals_10_1038_s41378_023_00498_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-20 |
PublicationDateYYYYMMDD | 2023-03-20 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Pantouvaki (CR52) 2017; 35 Chen, Poon (CR62) 2006; 18 Kish (CR1) 2018; 24 Melikyan (CR39) 2014; 8 Haffner (CR45) 2019; 366 CR35 Baghdadi (CR43) 2021; 29 Qi, Li (CR10) 2020; 9 Dong (CR53) 2022; 16 Bogaerts (CR38) 2012; 6 Lischke (CR25) 2021; 15 Abe, Hane (CR47) 2015; 21 Takabayashi (CR59) 2021; 30 Abdul Rahim (CR23) 2021; 3 Harris (CR24) 2014; 22 Khan, Xing, Ye, Bogaerts (CR28) 2019; 25 Sattari (CR55) 2020; 45 Errando-Herranz (CR51) 2020; 26 Li (CR68) 2020; 7 Rahim (CR26) 2019; 25 Shastri (CR32) 2021; 15 Stark, Horst, Dangel, Weiss, Offrein (CR33) 2020; 9 Hibino (CR17) 2002; 8 Chen (CR21) 2018; 106 Lu (CR12) 2018; 26 Miscuglio, Sorger (CR31) 2020; 7 Tran (CR22) 2018; 8 CR46 Romero-García, Merget, Zhong, Finkelstein, Witzens (CR8) 2013; 21 Soref (CR9) 2006; 12 Blumenthal, Heideman, Geuzebroek, Leinse, Roeloffzen (CR7) 2018; 106 Kaneko, Goh, Yamada, Tanaka, Ogawa (CR18) 1999; 5 Jo (CR64) 2022; 10 Desiatov, Shams-Ansari, Zhang, Wang, Lončar (CR11) 2019; 6 Grottke, Hartmann, Schuck, Pernice (CR42) 2021; 29 Grutter, Davanço, Balram, Srinivasan (CR49) 2018; 3 Westerveld (CR50) 2021; 15 Marpaung, Yao, Capmany (CR3) 2019; 13 CR57 CR56 Esashi (CR63) 2008; 18 Chu, Hane (CR48) 2014; 26 Zhang, Kwon, Henriksson, Luo, Wu (CR41) 2022; 603 Van Iseghem (CR70) 2022; 12 Bogaerts (CR30) 2020; 586 Seok, Kwon, Henriksson, Luo, Wu (CR40) 2019; 6 Legtenberg, Gilbert, Senturia, Elwenspoek (CR58) 1997; 6 Smit (CR19) 2014; 29 Qiang (CR34) 2018; 12 Yariv (CR54) 1973; 9 Jalali, Fathpour (CR20) 2006; 24 Edinger (CR60) 2021; 46 van Drieënhuizen, Goosen, French, Wolffenbuttel (CR67) 1993; 37–38 CR29 Reed, Mashanovich, Gardes, Thomson (CR37) 2010; 4 Wang (CR69) 2018; 562 Himeno, Kato, Miya (CR4) 1998; 4 Smit, Williams, van der Tol (CR6) 2019; 4 Thomson (CR16) 2016; 18 Dong (CR13) 2019; 44 Bogdanov, Shalaginov, Boltasseva, Shalaev (CR15) 2017; 7 CR66 Siew (CR27) 2021; 39 CR65 Chung, Nakai, Hashemi (CR36) 2019; 27 CR61 Mi, Kiss, Graziosi, Quack (CR14) 2020; 2 Doerr, Okamoto (CR5) 2006; 24 Spencer (CR2) 2018; 557 Nagai, Hane (CR44) 2018; 26 B Jalali (498_CR20) 2006; 24 P Stark (498_CR33) 2020; 9 X Qiang (498_CR34) 2018; 12 Y Hibino (498_CR17) 2002; 8 T-J Lu (498_CR12) 2018; 26 498_CR29 S Chung (498_CR36) 2019; 27 C Wang (498_CR69) 2018; 562 S Mi (498_CR14) 2020; 2 D Thomson (498_CR16) 2016; 18 Abdul Rahim (498_CR23) 2021; 3 C Haffner (498_CR45) 2019; 366 BP van Drieënhuizen (498_CR67) 1993; 37–38 498_CR35 MU Khan (498_CR28) 2019; 25 T Nagai (498_CR44) 2018; 26 KE Grutter (498_CR49) 2018; 3 L Van Iseghem (498_CR70) 2022; 12 H Chen (498_CR62) 2006; 18 M Smit (498_CR6) 2019; 4 M Dong (498_CR53) 2022; 16 SY Siew (498_CR27) 2021; 39 C Errando-Herranz (498_CR51) 2020; 26 TJ Seok (498_CR40) 2019; 6 P Edinger (498_CR60) 2021; 46 M Miscuglio (498_CR31) 2020; 7 A Himeno (498_CR4) 1998; 4 BJ Shastri (498_CR32) 2021; 15 S Abe (498_CR47) 2015; 21 X Zhang (498_CR41) 2022; 603 W Bogaerts (498_CR38) 2012; 6 498_CR65 498_CR66 K Li (498_CR68) 2020; 7 R Soref (498_CR9) 2006; 12 M Smit (498_CR19) 2014; 29 A Melikyan (498_CR39) 2014; 8 498_CR61 F Kish (498_CR1) 2018; 24 D Marpaung (498_CR3) 2019; 13 HM Chu (498_CR48) 2014; 26 WJ Westerveld (498_CR50) 2021; 15 DT Spencer (498_CR2) 2018; 557 AY Takabayashi (498_CR59) 2021; 30 S Romero-García (498_CR8) 2013; 21 Y Qi (498_CR10) 2020; 9 B Dong (498_CR13) 2019; 44 S Bogdanov (498_CR15) 2017; 7 CR Doerr (498_CR5) 2006; 24 W Bogaerts (498_CR30) 2020; 586 B Desiatov (498_CR11) 2019; 6 498_CR56 DJ Blumenthal (498_CR7) 2018; 106 498_CR57 H Sattari (498_CR55) 2020; 45 T Grottke (498_CR42) 2021; 29 R Baghdadi (498_CR43) 2021; 29 A Yariv (498_CR54) 1973; 9 M Esashi (498_CR63) 2008; 18 G Jo (498_CR64) 2022; 10 A Rahim (498_CR26) 2019; 25 R Legtenberg (498_CR58) 1997; 6 A Kaneko (498_CR18) 1999; 5 498_CR46 GT Reed (498_CR37) 2010; 4 X Chen (498_CR21) 2018; 106 M Pantouvaki (498_CR52) 2017; 35 NC Harris (498_CR24) 2014; 22 S Lischke (498_CR25) 2021; 15 M Tran (498_CR22) 2018; 8 |
References_xml | – volume: 21 start-page: 2019 year: 2015 end-page: 2024 ident: CR47 article-title: A silicon microring resonator with a nanolatch mechanism publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2283-8 – volume: 16 start-page: 59 year: 2022 end-page: 65 ident: CR53 article-title: High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture publication-title: Nat. Photonics doi: 10.1038/s41566-021-00903-x – volume: 24 start-page: 4600 year: 2006 end-page: 4615 ident: CR20 article-title: Silicon photonics publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.885782 – volume: 603 start-page: 253 year: 2022 end-page: 258 ident: CR41 article-title: A large-scale microelectromechanical-systems-based silicon photonics LiDAR publication-title: Nature doi: 10.1038/s41586-022-04415-8 – volume: 586 start-page: 207 year: 2020 end-page: 216 ident: CR30 article-title: Programmable photonic circuits publication-title: Nature doi: 10.1038/s41586-020-2764-0 – volume: 4 start-page: 913 year: 1998 end-page: 924 ident: CR4 article-title: Silica-based planar lightwave circuits publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/2944.736076 – volume: 35 start-page: 631 year: 2017 end-page: 638 ident: CR52 article-title: Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2604839 – volume: 4 start-page: 518 year: 2010 end-page: 526 ident: CR37 article-title: Silicon optical modulators publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.179 – volume: 26 start-page: 1 year: 2020 end-page: 16 ident: CR51 article-title: MEMS for photonic integrated circuits publication-title: IEEE J. Sel. Top. Quantum Electron doi: 10.1109/JSTQE.2019.2943384 – volume: 4 start-page: 050901 year: 2019 ident: CR6 article-title: Past, present, and future of InP-based photonic integration publication-title: APL Photonics doi: 10.1063/1.5087862 – volume: 106 start-page: 2101 year: 2018 end-page: 2116 ident: CR21 article-title: The emergence of silicon photonics as a flexible technology platform publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2854372 – volume: 21 start-page: 14036 year: 2013 ident: CR8 article-title: Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths publication-title: Opt. Express doi: 10.1364/OE.21.014036 – volume: 25 start-page: 1 year: 2019 end-page: 18 ident: CR26 article-title: Open-access silicon photonics platforms in Europe publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2915949 – volume: 7 start-page: 111 year: 2017 ident: CR15 article-title: Material platforms for integrated quantum photonics publication-title: Opt. Mater. Express doi: 10.1364/OME.7.000111 – ident: CR35 – ident: CR29 – volume: 6 start-page: 47 year: 2012 end-page: 73 ident: CR38 article-title: Silicon microring resonators publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100017 – ident: CR61 – volume: 24 start-page: 4763 year: 2006 end-page: 4789 ident: CR5 article-title: Advances in silica planar lightwave circuits publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.885255 – volume: 10 start-page: A14 year: 2022 ident: CR64 article-title: Wafer-level hermetically sealed silicon photonic MEMS publication-title: Photonics Res. doi: 10.1364/PRJ.441215 – volume: 15 start-page: 341 year: 2021 end-page: 345 ident: CR50 article-title: Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics publication-title: Nat. Photonics doi: 10.1038/s41566-021-00776-0 – volume: 8 start-page: 1139 year: 2018 ident: CR22 article-title: Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics publication-title: Appl. Sci. doi: 10.3390/app8071139 – volume: 5 start-page: 1227 year: 1999 end-page: 1236 ident: CR18 article-title: Design and applications of silica-based planar lightwave circuits publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/2944.806745 – ident: CR46 – volume: 18 start-page: 073001 year: 2008 ident: CR63 article-title: Wafer level packaging of MEMS publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/7/073001 – volume: 557 start-page: 81 year: 2018 end-page: 85 ident: CR2 article-title: An optical-frequency synthesizer using integrated photonics publication-title: Nature doi: 10.1038/s41586-018-0065-7 – volume: 6 start-page: 380 year: 2019 ident: CR11 article-title: Ultra-low-loss integrated visible photonics using thin-film lithium niobate publication-title: Optica doi: 10.1364/OPTICA.6.000380 – volume: 13 start-page: 80 year: 2019 end-page: 90 ident: CR3 article-title: Integrated microwave photonics publication-title: Nat. Photonics doi: 10.1038/s41566-018-0310-5 – volume: 12 start-page: 1678 year: 2006 end-page: 1687 ident: CR9 article-title: The past, present, and future of silicon photonics publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2006.883151 – volume: 106 start-page: 2209 year: 2018 end-page: 2231 ident: CR7 article-title: Silicon nitride in silicon photonics publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2861576 – volume: 18 start-page: 073003 year: 2016 ident: CR16 article-title: Roadmap on silicon photonics publication-title: J. Opt. doi: 10.1088/2040-8978/18/7/073003 – volume: 26 start-page: 33906 year: 2018 ident: CR44 article-title: Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers publication-title: Opt. Express doi: 10.1364/OE.26.033906 – volume: 29 start-page: 19113 year: 2021 ident: CR43 article-title: Dual slot-mode NOEM phase shifter publication-title: Opt. Express doi: 10.1364/OE.423949 – ident: CR57 – volume: 8 start-page: 1090 year: 2002 end-page: 1101 ident: CR17 article-title: Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2002.805965 – volume: 22 start-page: 10487 year: 2014 ident: CR24 article-title: Efficient, compact and low loss thermo-optic phase shifter in silicon publication-title: Opt. Express doi: 10.1364/OE.22.010487 – volume: 46 start-page: 5671 year: 2021 ident: CR60 article-title: Silicon photonic microelectromechanical phase shifters for scalable programmable photonics publication-title: Opt. Lett. doi: 10.1364/OL.436288 – volume: 8 start-page: 229 year: 2014 end-page: 233 ident: CR39 article-title: High-speed plasmonic phase modulators publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.9 – volume: 24 start-page: 1 year: 2018 end-page: 20 ident: CR1 article-title: System-on-chip photonic integrated circuits publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2717863 – volume: 9 start-page: 1287 year: 2020 end-page: 1320 ident: CR10 article-title: Integrated lithium niobate photonics publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0013 – volume: 44 start-page: 73 year: 2019 ident: CR13 article-title: Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics publication-title: Opt. Lett. doi: 10.1364/OL.44.000073 – volume: 18 start-page: 2260 year: 2006 end-page: 2262 ident: CR62 article-title: Low-loss multimode-interference-based crossings for silicon wire waveguides publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2006.884726 – volume: 25 start-page: 1 year: 2019 end-page: 14 ident: CR28 article-title: Photonic integrated circuit design in a foundry+fabless ecosystem publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2918949 – ident: CR66 – volume: 29 start-page: 5525 year: 2021 ident: CR42 article-title: Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range publication-title: Opt. Express doi: 10.1364/OE.413202 – volume: 9 start-page: 4221 year: 2020 end-page: 4232 ident: CR33 article-title: Opportunities for integrated photonic neural networks publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0297 – volume: 26 start-page: 1411 year: 2014 end-page: 1413 ident: CR48 article-title: A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2014.2326405 – volume: 9 start-page: 919 year: 1973 end-page: 933 ident: CR54 article-title: Coupled-mode theory for guided-wave optics publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1973.1077767 – volume: 3 start-page: 1 year: 2021 end-page: 23 ident: CR23 article-title: Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies publication-title: Adv. Photonics – volume: 39 start-page: 4374 year: 2021 end-page: 4389 ident: CR27 article-title: Review of silicon photonics technology and platform development publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3066203 – volume: 7 start-page: 1514 year: 2020 ident: CR68 article-title: Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying publication-title: Optica doi: 10.1364/OPTICA.411122 – volume: 26 start-page: 11147 year: 2018 end-page: 11160 ident: CR12 article-title: Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum publication-title: Opt. Express doi: 10.1364/OE.26.011147 – volume: 27 start-page: 13430 year: 2019 ident: CR36 article-title: Low-power thermo-optic silicon modulator for large-scale photonic integrated systems publication-title: Opt. Express doi: 10.1364/OE.27.013430 – volume: 45 start-page: 2997 year: 2020 ident: CR55 article-title: Compact broadband suspended silicon photonic directional coupler publication-title: Opt. Lett. doi: 10.1364/OL.394470 – volume: 12 start-page: 534 year: 2018 end-page: 539 ident: CR34 article-title: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing publication-title: Nat. Photonics doi: 10.1038/s41566-018-0236-y – ident: CR56 – volume: 7 start-page: 031404 year: 2020 ident: CR31 article-title: Photonic tensor cores for machine learning publication-title: Appl. Phys. Rev. doi: 10.1063/5.0001942 – volume: 6 start-page: 490 year: 2019 ident: CR40 article-title: Wafer-scale silicon photonic switches beyond die size limit publication-title: Optica doi: 10.1364/OPTICA.6.000490 – volume: 366 start-page: 860 year: 2019 end-page: 864 ident: CR45 article-title: Nano–opto-electro-mechanical switches operated at CMOS-level voltages publication-title: Science doi: 10.1126/science.aay8645 – volume: 30 start-page: 322 year: 2021 end-page: 329 ident: CR59 article-title: Broadband compact single-pole double-throw silicon photonic MEMS switch publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3060182 – volume: 562 start-page: 101 year: 2018 end-page: 104 ident: CR69 article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages publication-title: Nature doi: 10.1038/s41586-018-0551-y – ident: CR65 – volume: 15 start-page: 102 year: 2021 end-page: 114 ident: CR32 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat. Photonics doi: 10.1038/s41566-020-00754-y – volume: 29 start-page: 083001 year: 2014 ident: CR19 article-title: An introduction to InP-based generic integration technology publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/8/083001 – volume: 6 start-page: 257 year: 1997 end-page: 265 ident: CR58 article-title: Electrostatic curved electrode actuators publication-title: J. Microelectromech. Syst. doi: 10.1109/84.623115 – volume: 12 start-page: 2181 year: 2022 ident: CR70 article-title: Low power optical phase shifter using liquid crystal actuation on a silicon photonics platform publication-title: Opt. Mater. Express doi: 10.1364/OME.457589 – volume: 2 start-page: 042001 year: 2020 ident: CR14 article-title: Integrated photonic devices in single crystal diamond publication-title: J. Phys. Photonics doi: 10.1088/2515-7647/aba171 – volume: 3 start-page: 100801 year: 2018 ident: CR49 article-title: Invited Article: Tuning and stabilization of optomechanical crystal cavities through NEMS integration publication-title: APL Photonics doi: 10.1063/1.5042225 – volume: 15 start-page: 925 year: 2021 end-page: 931 ident: CR25 article-title: Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz publication-title: Nat. Photonics doi: 10.1038/s41566-021-00893-w – volume: 37–38 start-page: 756 year: 1993 end-page: 765 ident: CR67 article-title: Comparison of techniques for measuring both compressive and tensile stress in thin films publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(93)80128-4 – volume: 18 start-page: 2260 year: 2006 ident: 498_CR62 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2006.884726 – volume: 26 start-page: 1411 year: 2014 ident: 498_CR48 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2014.2326405 – volume: 6 start-page: 380 year: 2019 ident: 498_CR11 publication-title: Optica doi: 10.1364/OPTICA.6.000380 – volume: 45 start-page: 2997 year: 2020 ident: 498_CR55 publication-title: Opt. Lett. doi: 10.1364/OL.394470 – ident: 498_CR46 doi: 10.1117/1.JOM.1.2.024003 – volume: 18 start-page: 073001 year: 2008 ident: 498_CR63 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/7/073001 – volume: 5 start-page: 1227 year: 1999 ident: 498_CR18 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/2944.806745 – volume: 37–38 start-page: 756 year: 1993 ident: 498_CR67 publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(93)80128-4 – volume: 6 start-page: 47 year: 2012 ident: 498_CR38 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100017 – volume: 25 start-page: 1 year: 2019 ident: 498_CR26 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2915949 – volume: 9 start-page: 1287 year: 2020 ident: 498_CR10 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0013 – volume: 24 start-page: 4600 year: 2006 ident: 498_CR20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.885782 – volume: 12 start-page: 534 year: 2018 ident: 498_CR34 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0236-y – volume: 106 start-page: 2209 year: 2018 ident: 498_CR7 publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2861576 – volume: 18 start-page: 073003 year: 2016 ident: 498_CR16 publication-title: J. Opt. doi: 10.1088/2040-8978/18/7/073003 – volume: 22 start-page: 10487 year: 2014 ident: 498_CR24 publication-title: Opt. Express doi: 10.1364/OE.22.010487 – volume: 27 start-page: 13430 year: 2019 ident: 498_CR36 publication-title: Opt. Express doi: 10.1364/OE.27.013430 – volume: 7 start-page: 031404 year: 2020 ident: 498_CR31 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0001942 – volume: 8 start-page: 1090 year: 2002 ident: 498_CR17 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2002.805965 – volume: 24 start-page: 1 year: 2018 ident: 498_CR1 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2717863 – volume: 29 start-page: 083001 year: 2014 ident: 498_CR19 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/8/083001 – ident: 498_CR35 – volume: 30 start-page: 322 year: 2021 ident: 498_CR59 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3060182 – volume: 15 start-page: 341 year: 2021 ident: 498_CR50 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00776-0 – volume: 3 start-page: 100801 year: 2018 ident: 498_CR49 publication-title: APL Photonics doi: 10.1063/1.5042225 – ident: 498_CR56 doi: 10.1109/MEMS51782.2021.9375168 – volume: 586 start-page: 207 year: 2020 ident: 498_CR30 publication-title: Nature doi: 10.1038/s41586-020-2764-0 – volume: 21 start-page: 14036 year: 2013 ident: 498_CR8 publication-title: Opt. Express doi: 10.1364/OE.21.014036 – volume: 2 start-page: 042001 year: 2020 ident: 498_CR14 publication-title: J. Phys. Photonics doi: 10.1088/2515-7647/aba171 – volume: 106 start-page: 2101 year: 2018 ident: 498_CR21 publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2854372 – volume: 26 start-page: 11147 year: 2018 ident: 498_CR12 publication-title: Opt. Express doi: 10.1364/OE.26.011147 – ident: 498_CR29 doi: 10.1364/OFC.2020.T3H.2 – ident: 498_CR61 doi: 10.1117/1.JOM.2.4.044001 – volume: 7 start-page: 1514 year: 2020 ident: 498_CR68 publication-title: Optica doi: 10.1364/OPTICA.411122 – volume: 4 start-page: 518 year: 2010 ident: 498_CR37 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.179 – volume: 7 start-page: 111 year: 2017 ident: 498_CR15 publication-title: Opt. Mater. Express doi: 10.1364/OME.7.000111 – volume: 29 start-page: 5525 year: 2021 ident: 498_CR42 publication-title: Opt. Express doi: 10.1364/OE.413202 – volume: 25 start-page: 1 year: 2019 ident: 498_CR28 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2918949 – volume: 35 start-page: 631 year: 2017 ident: 498_CR52 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2604839 – ident: 498_CR57 doi: 10.1109/MEMS51670.2022.9699708 – volume: 9 start-page: 919 year: 1973 ident: 498_CR54 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1973.1077767 – volume: 9 start-page: 4221 year: 2020 ident: 498_CR33 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0297 – volume: 366 start-page: 860 year: 2019 ident: 498_CR45 publication-title: Science doi: 10.1126/science.aay8645 – volume: 8 start-page: 1139 year: 2018 ident: 498_CR22 publication-title: Appl. Sci. doi: 10.3390/app8071139 – volume: 26 start-page: 33906 year: 2018 ident: 498_CR44 publication-title: Opt. Express doi: 10.1364/OE.26.033906 – volume: 44 start-page: 73 year: 2019 ident: 498_CR13 publication-title: Opt. Lett. doi: 10.1364/OL.44.000073 – volume: 4 start-page: 050901 year: 2019 ident: 498_CR6 publication-title: APL Photonics doi: 10.1063/1.5087862 – volume: 6 start-page: 490 year: 2019 ident: 498_CR40 publication-title: Optica doi: 10.1364/OPTICA.6.000490 – volume: 26 start-page: 1 year: 2020 ident: 498_CR51 publication-title: IEEE J. Sel. Top. Quantum Electron doi: 10.1109/JSTQE.2019.2943384 – volume: 13 start-page: 80 year: 2019 ident: 498_CR3 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0310-5 – volume: 29 start-page: 19113 year: 2021 ident: 498_CR43 publication-title: Opt. Express doi: 10.1364/OE.423949 – volume: 16 start-page: 59 year: 2022 ident: 498_CR53 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00903-x – volume: 21 start-page: 2019 year: 2015 ident: 498_CR47 publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2283-8 – volume: 10 start-page: A14 year: 2022 ident: 498_CR64 publication-title: Photonics Res. doi: 10.1364/PRJ.441215 – volume: 4 start-page: 913 year: 1998 ident: 498_CR4 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/2944.736076 – volume: 12 start-page: 2181 year: 2022 ident: 498_CR70 publication-title: Opt. Mater. Express doi: 10.1364/OME.457589 – volume: 24 start-page: 4763 year: 2006 ident: 498_CR5 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2006.885255 – volume: 39 start-page: 4374 year: 2021 ident: 498_CR27 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3066203 – volume: 603 start-page: 253 year: 2022 ident: 498_CR41 publication-title: Nature doi: 10.1038/s41586-022-04415-8 – volume: 15 start-page: 102 year: 2021 ident: 498_CR32 publication-title: Nat. Photonics doi: 10.1038/s41566-020-00754-y – volume: 562 start-page: 101 year: 2018 ident: 498_CR69 publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 557 start-page: 81 year: 2018 ident: 498_CR2 publication-title: Nature doi: 10.1038/s41586-018-0065-7 – volume: 3 start-page: 1 year: 2021 ident: 498_CR23 publication-title: Adv. Photonics – ident: 498_CR65 doi: 10.1364/CLEO_SI.2021.STh1Q.5 – ident: 498_CR66 doi: 10.1109/MEMS51670.2022.9699739 – volume: 15 start-page: 925 year: 2021 ident: 498_CR25 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00893-w – volume: 8 start-page: 229 year: 2014 ident: 498_CR39 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.9 – volume: 12 start-page: 1678 year: 2006 ident: 498_CR9 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2006.883151 – volume: 6 start-page: 257 year: 1997 ident: 498_CR58 publication-title: J. Microelectromech. Syst. doi: 10.1109/84.623115 – volume: 46 start-page: 5671 year: 2021 ident: 498_CR60 publication-title: Opt. Lett. doi: 10.1364/OL.436288 |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5270073 |
Snippet | Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate... Abstract Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27 |
SubjectTerms | 639/624/1111 639/925/927 639/925/927/359 Broadband Component reliability Data processing Electromechanical devices Engineering Foundries Germanium Information processing Integrated circuits Interfaces Large scale integration Microelectromechanical systems Modulators Neuromodulation Optical communication Optics Phase shifters Photodiodes Photonics Power consumption Power management Quantum computing Quantum phenomena Silicon Tuning Very large scale integration Wavelength division multiplexing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQT3BAQFkCBQUJcYGoYz8ndo5taVWQhgsU9WY5XjSjVpmKSS_99bznZMIEUHvhFClxFOd7u5fPjL1rrA0h6KaIAnwhY0Q_6LTDKsV7r2KIPNB4x_xrdXomv5yX51tHfdGasJ4euAduP1Sld7VsUFG4FKqxPFScqwCBmNd8JO-LMW-rmEqjKwqIeWrYJTMDvb9Gb01ksgIKyop1cTOJRImw_19Z5t-LJccZ0z_YRVNEOnnEHg6pZH7Q_8Jjdi-0T9iDLYLBXZZ_3rBB-Hy9vESpt_nVYtURH24-P55_e8rOTo6_H50Ww5kIhStV3RVCEIGaiFL7mddBQBUEZgGlBidcjADW4oXT0E6EUGpPW6RVU9pobT2zFp6xnXbVhhcsd8RE77ilkC0R3oY7gfYPXnlbWi4zxjf4GDcQhtO5FZcmTVyDNj2mBjE1CVNzk7EP4ztXPV3Gra0PCfaxJVFdpxuoAGZQAHOXAmRsbyM0M9jf2gis7AVWqpJn7O34GC2HpkNsG1bX1KYm_4UFU8ae9zIeewJVLWsFiIGeSH_S1emTdrlI7Nw8lW1QZezjRlF-9-s2LN73yjT5xKflj4OExkW3MIDutVQv_wdor9h9kUwB0E3usZ3u53V4jdlV17xJhvQL3S8e0Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoEDgvIKlCpIiAtErO0kdo5l26ogLRco6s1y_GBXVNmqm17665lxHiVQVeopUmInk3mPH58B3tXGeO9VnQUuXJaHgH7QKotVinNOBh-Yp_GOxbfy-CT_elqcbgEf9sLERfsR0jK66WF12KcNOlvCguUio6RWZVf34D5Bt5NWz8v59biKFIQ51e-PmQl1Q9dJDIpQ_Tfll_8vkxznSv_BFY2x6OgxPOqTyHS_I_sJbPlmBx7-BS34FNIvAw6ESzerM5R3k54v1y0h4aaLw8X3Z3BydPhjfpz1pyFktpBVm3FO0Gk85MrNnPJclJ5j_C-UsNyGIIQxeGE0qBOEL5SjzdGyLkwwppoZI57DdrNu_EtILWHQW2YoWOdogTWzHC1fOOlMYVieABv4o20PFU4nVpzpOGUtlO54qpGnOvJUXyXwYexz3gFl3Nr6M7F9bEkg1_HG-uKX7oWufVk4W-U1Uog_JWvDfMmY9MIT6J4LCewOQtO95W00x5qeY42aswTejo_RZmgixDR-fUltKvJcWCol8KKT8UiJKKu8kgJ5oCbSn5A6fdKslhGXm8WCTZQJfBwU5Zqu23jxvlOmyScOVj_3Izd-t0st0LEW8tXd3vsaHvCo9AJd4S5stxeX_g1mUG29F03mD11EFN4 priority: 102 providerName: Springer Nature |
Title | Integrated silicon photonic MEMS |
URI | https://link.springer.com/article/10.1038/s41378-023-00498-z https://www.ncbi.nlm.nih.gov/pubmed/36949734 https://www.proquest.com/docview/2788271741 https://www.proquest.com/docview/2790048758 https://pubmed.ncbi.nlm.nih.gov/PMC10025136 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325757 https://doaj.org/article/e65dc94b9631427ba1e6117e3e8591df |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxPfCRhUkxAtEq-18OE-o61pGRSdEGeqb5fiDVkxpt2Yv--u5c5OMAOpLLMWOYp_vzndn-3eEvC2UstaKInKMmyh2DvSgFhq8FGNM5qyjFuMd0_P07CKezJN5HXDb1McqG53oFbVZaYyRHzPw1Rj4HjH9uL6KMGsU7q7WKTTuk32ELsMjXdm8XU5j4Na4QUv3MZeMIx4V5psDyz3CDFv1PZo-F8cb0OcIN8t4hHaziG47a5WH9P-fHfrvccp2T_Uv_FG_Zo0fk0e1sRkOttzxhNyz5VPy8A8Iwmck_NzgRZhws7wEvijD9WJVIWJuOB1NZ8_JxXj0fXgW1VkTIp1keRUxhhBrzMXC9I2wjKeWgZ2QCK6Zdo5zpaCgGPxx3CbC4CXqrEiUUyrvK8VfkL1yVdoDEmrEqtdU4aIeg6QWVDPQENxkRiWKxgGhDX2kriHFMbPFpfRb21zILU0l0FR6msrbgLxvv1lvATV2tj5BsrctEQzbv1hd_5S1bEmbJkbncQE9hEFlhaI2pTSz3CI4n3EBOWomTdYSupF3_BSQN201yBZumKjSrm6wTY4aDlyqgLzcznHbE57mcZ5xoIHozH6nq92acrnw-N3UO3Y8DciHhlHu-rWLFu-2zNT5xenyx8BT41e1kBwUcJK92j3eQ_KAeSbnoCKPyF51fWNfg2VVFT0vPvAU4089sj8YTGYTLE-nX2ZQnozOv36D2mE67PnYxW8OkiNu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAkYCLmA1-7C9PiBUaENCm15oUW_b9T5IRGWHJhWiP4rfyMzaTgmg3HqKFK-T9bcz387ser8h5EWptXNOloln3CbCe-BBIw1kKdba3DtPHa53jPazwaH4dJQerZFf3VkYfK2y48RA1LY2uEa-ySBXY5B7CPpu-j3BqlG4u9qV0GjMYtf9_AEp2-ztcBvG9yVj_Z2DD4OkrSqQmDQv5gljKEHGvJC2Z6VjPHMM5tFUcsOM95xrDR8UF0c8d6m0eMg4L1PttS56WnP43SvkquC8QI-S_Y-d_QrwDtGps4c1npyj_hXWt4NMIcGKXu25nR6XmzOYP1DelvEE43SZnC_NjaGEwP_i3n9f31zs4f6ldxrmyP4tcrMNbuOtxhpvkzVX3SE3_pA8vEviYadPYePZ5ATssIqn43qOCr3xaGf0-R45vBQ875P1qq7cQxIb1MY3VGMQIYAZSmoYMBK3udWppiIitMNHmVbCHCtpnKiwlc6lajBVgKkKmKrziLxe3DNtBDxWtn6PsC9aovh2-KI-_apaX1YuS60pRAk9hIfKS01dRmnuuEMxQOsjstENmmoZYaYu7DcizxeXwZdxg0ZXrj7DNgUyKqRwEXnQjPGiJzwrRJFzwEAujf5SV5evVJNx0AunIZHkWUTedIZy0a9VWLxqjGnpL7YnX7YCGt_mY8WB8NP80ernfUauDQ5Ge2pvuL_7mFxnweA50PMGWZ-fnrknENXNy6fBlWJyfNm--xtN1Vja |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN64FDAScAEr2V3bax8QKqRRQ0mFBEW5bdf7IFErJzSuEP1p_Dpm1o8SQLn1FMleO-vZmW9m9vENIc8Lpay1WRE5xk0UOwc4qDMNWYoxRjjrqMX5jvFBuncYf5gkkw3yqz0Lg9sqW0z0QG3mGufIewxyNQa5R0x7rtkW8WkwfLv4HmEFKVxpbctp1Cqyb3_-gPRt-WY0gLF-wdhw98v7vaipMBDpRORVxBjSkTEXZ6ZvMst4ahn41CTjmmnnOFcKfihOlDhuk8zggWNRJMoplfeV4vDeK-Sq4AlFGxOTzpXHYClxy9Tu53sERy4srHUHWUOE1b2aMzx9nvWW4EuQ6pbxCGP2LDpf8ZO-nMD_YuB_t3J267l_cZ96fzm8RW42gW64U2vmbbJhyzvkxh_0h3dJOGq5Kky4nJ2ATpbhYjqvkK03HO-OP98jh5ciz_tks5yX9iEJNfLka6owoIgBJQqqGaATN8KoRNE4ILSVj9QNnTlW1TiRflmdZ7KWqQSZSi9TeR6QV90zi5rMY23rdyj2riUScfsL89NvsrFradPE6DwuoIfwUaJQ1KaUCsstEgMaF5DtdtBkgw5LeaHLAXnW3Qa7xsUaVdr5GbbJEV0hnQvIg3qMu57wNI9zwUEG2cror3R19U45m3rucOqTSp4G5HWrKBf9WieLl7UyrfzFYPZ1x0vjuJpKDuCfiK313_uUXAOrlR9HB_uPyHXm9Z0DUm-Tzer0zD6GAK8qnnhLCsnRZZvub6QLXQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+silicon+photonic+MEMS&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Quack%2C+Niels&rft.au=Takabayashi%2C+Alain+Yuji&rft.au=Sattari%2C+Hamed&rft.au=Edinger%2C+Pierre&rft.date=2023-03-20&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00498-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41378_023_00498_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |