Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV)
Plant height (PH) is a key factor in maize ( Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We ex...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 3458 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant height (PH) is a key factor in maize (
Zea mays
L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH. |
---|---|
AbstractList | Plant height (PH) is a key factor in maize (
Zea mays
L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH. Plant height (PH) is a key factor in maize (Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH. Plant height (PH) is a key factor in maize (Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH.Plant height (PH) is a key factor in maize (Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH. |
ArticleNumber | 3458 |
Author | Sun, Xuan Zhao, Jiuran Liu, Xiaolei Zhao, Yanxin Wang, Xiaqing Zhang, Yunxia Zhang, Ruyang Yang, Hao Song, Wei Luo, Meijie Han, Liang Yang, Guijun Chen, Kuan |
Author_xml | – sequence: 1 givenname: Xiaqing surname: Wang fullname: Wang, Xiaqing organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 2 givenname: Ruyang surname: Zhang fullname: Zhang, Ruyang organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 3 givenname: Wei surname: Song fullname: Song, Wei organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 4 givenname: Liang surname: Han fullname: Han, Liang organization: Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, College of Architecture and Geomatics Engineering, Shanxi Datong University – sequence: 5 givenname: Xiaolei surname: Liu fullname: Liu, Xiaolei organization: Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University – sequence: 6 givenname: Xuan surname: Sun fullname: Sun, Xuan organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 7 givenname: Meijie surname: Luo fullname: Luo, Meijie organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 8 givenname: Kuan surname: Chen fullname: Chen, Kuan organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 9 givenname: Yunxia surname: Zhang fullname: Zhang, Yunxia organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 10 givenname: Hao surname: Yang fullname: Yang, Hao organization: Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture – sequence: 11 givenname: Guijun surname: Yang fullname: Yang, Guijun organization: Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture – sequence: 12 givenname: Yanxin orcidid: 0000-0003-2044-6846 surname: Zhao fullname: Zhao, Yanxin email: rentlang2003@163.com organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences – sequence: 13 givenname: Jiuran surname: Zhao fullname: Zhao, Jiuran email: maizezhao@126.com organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30837510$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstq3DAUhk1JadI0L9BFEXSTLNzqasubQkjSCwyUQtKtkO3jsYItuZI8MLPti1dzaZpmES2kg_T9v86RzuvsyDoLWfaW4A8EM_kxcCIqmWNS5aziXOabF9kJxVzklFF69Cg-zs5CuMdpCFpxUr3KjhmWrBQEn2S_r9dWj6ZB06BtRD2YZR_Rj9sF8rACPUCLjEWjNhtAsfduXvbpZHQRUAAbjF2iqQfr4nraxvNuR6M-2eQHfpojmu2orU1mGrzRA1pBb5oB0Pnd5c-LN9nLTg8Bzg7raXb3-eb26mu--P7l29XlIm9EWcWcAOZtWxdFLUsmCqgl73DJNa1KKuqatrSQrSw6DLyuhKy5ILRknaSMlRrajp1mn_a-01yP0DZgo9eDmrwZtV8rp436_8SaXi3dShUcE0ZEMjg_GHj3a4YQ1WhCA0N6OnBzUJRIKWRR0iqh75-g9272NpW3oyhOE0_Uu8cZPaTy938SQPdA410IHroHhGC17QO17wOV-kDt-kBtkkg-ETUm6mjctiozPC9le2lI99gl-H9pP6P6A-71yYU |
CitedBy_id | crossref_primary_10_1038_s41598_024_69830_5 crossref_primary_10_3390_agronomy13082088 crossref_primary_10_34133_plantphenomics_0019 crossref_primary_10_1016_j_rse_2025_114638 crossref_primary_10_1007_s00122_024_04719_5 crossref_primary_10_3389_fpls_2020_00681 crossref_primary_10_34133_2021_9840192 crossref_primary_10_3390_plants11202691 crossref_primary_10_3389_fpls_2022_998803 crossref_primary_10_1002_tpg2_20102 crossref_primary_10_1186_s12870_022_03985_z crossref_primary_10_1093_aob_mcaa097 crossref_primary_10_3390_agriculture10070290 crossref_primary_10_1111_pbi_13437 crossref_primary_10_3390_s20185354 crossref_primary_10_1016_j_compag_2021_106155 crossref_primary_10_1080_1343943X_2020_1766362 crossref_primary_10_1093_jxb_erad216 crossref_primary_10_1016_j_compag_2021_106033 crossref_primary_10_1016_j_heliyon_2023_e21650 crossref_primary_10_1093_jxb_erac242 crossref_primary_10_3390_agronomy14092059 crossref_primary_10_3389_fpls_2021_652116 crossref_primary_10_1016_j_atech_2025_100888 crossref_primary_10_1007_s00122_019_03523_w crossref_primary_10_1111_pce_14485 crossref_primary_10_3390_agriengineering6010002 crossref_primary_10_3390_agriculture12010102 crossref_primary_10_1016_j_molp_2020_01_008 crossref_primary_10_1007_s43621_024_00777_3 crossref_primary_10_3389_fpls_2021_715184 crossref_primary_10_1016_j_scienta_2023_112306 crossref_primary_10_1111_tpj_16101 crossref_primary_10_1007_s11104_023_06285_z crossref_primary_10_3389_frai_2024_1477637 crossref_primary_10_1016_j_molp_2022_11_016 crossref_primary_10_1093_jxb_eraa490 crossref_primary_10_1111_pbi_13607 crossref_primary_10_3390_plants9030381 crossref_primary_10_3389_fpls_2022_914140 crossref_primary_10_1007_s42729_023_01233_3 crossref_primary_10_1016_j_compag_2023_108220 crossref_primary_10_1002_aps3_11387 crossref_primary_10_1016_j_fcr_2022_108491 crossref_primary_10_1371_journal_pone_0224386 crossref_primary_10_3389_fpls_2021_715983 crossref_primary_10_1016_j_compag_2022_106804 crossref_primary_10_29312_remexca_v13i8_2886 crossref_primary_10_1270_jsbbs_21069 crossref_primary_10_1002_ppj2_20113 crossref_primary_10_1016_j_jgg_2024_03_005 crossref_primary_10_3390_rs15102623 crossref_primary_10_3390_su14116473 crossref_primary_10_1016_j_indcrop_2024_118330 crossref_primary_10_1016_j_jare_2021_05_002 crossref_primary_10_1007_s11119_021_09842_7 crossref_primary_10_3389_fbioe_2020_623705 crossref_primary_10_3390_agriculture12081267 crossref_primary_10_3390_rs12020338 crossref_primary_10_3389_fpls_2019_00926 crossref_primary_10_1111_jipb_13380 crossref_primary_10_1002_pld3_223 crossref_primary_10_1007_s00344_024_11450_4 crossref_primary_10_1117_1_JRS_18_046511 crossref_primary_10_3389_fgene_2021_802738 crossref_primary_10_3390_ijms242316895 crossref_primary_10_1016_j_molp_2025_01_004 crossref_primary_10_1093_jxb_eraa605 crossref_primary_10_3390_rs14010078 crossref_primary_10_1111_tpj_16272 |
Cites_doi | 10.3390/rs61110335 10.1016/j.molp.2016.06.016 10.1007/BF00201811 10.1038/ncomms13342 10.1371/journal.pgen.1005767 10.1071/FP16123 10.13031/2013.27838 10.3389/fpls.2018.01248 10.1105/tpc.7.1.75 10.1038/22307 10.1534/genetics.113.159152 10.1016/j.proeng.2012.01.752 10.1371/journal.pone.0159781 10.3389/fpls.2017.00421 10.1186/s12864-016-2555-z 10.1127/1432-8364/2013/0200 10.1360/03wc0044 10.1038/35093585 10.1038/ncomms6087 10.1371/journal.pgen.1004573 10.3390/rs8121031 10.1105/tpc.114.129601 10.1111/pbi.12712 10.1126/science.1183700 10.3390/rs61110395 10.1073/pnas.1013011108 10.1016/j.molp.2015.01.016 10.1016/j.tplants.2011.09.005 10.1104/pp.16.01516 10.1093/jxb/erv182 10.1093/gigascience/gix117 10.1016/j.tplants.2013.09.008 10.1016/j.tplants.2009.06.005 10.1007/s11032-010-9500-7 10.1038/416701a 10.1186/s13059-015-0716-z 10.1104/pp.17.00709 10.3920/9789086867783_033 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-39448-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6401315 30837510 10_1038_s41598_019_39448_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the Science and Technology Planning Project of Beijing (D161100005716002) – fundername: the National Key Research and Development Program of China (2016YFD0300106) the Sci-Tech Innovative Ability Project (KJCX20170423) the Innovative Team Construction Project of BAAFS (JNKYT201603) China Agriculture Research System (CARS-02-11) the Beijing Scholars Program (BSP041) – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c579t-1e04ddb66b87356eb84f074a29725bb2d268d86f0e4b958b451273f82337aedf3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:27:06 EDT 2025 Fri Jul 11 09:46:29 EDT 2025 Wed Aug 13 09:13:32 EDT 2025 Thu Jan 02 23:00:16 EST 2025 Thu Apr 24 22:54:17 EDT 2025 Tue Jul 01 03:08:17 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c579t-1e04ddb66b87356eb84f074a29725bb2d268d86f0e4b958b451273f82337aedf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2044-6846 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-39448-z |
PMID | 30837510 |
PQID | 2188201884 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401315 proquest_miscellaneous_2188586729 proquest_journals_2188201884 pubmed_primary_30837510 crossref_primary_10_1038_s41598_019_39448_z crossref_citationtrail_10_1038_s41598_019_39448_z springer_journals_10_1038_s41598_019_39448_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-05 |
PublicationDateYYYYMMDD | 2019-03-05 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Khush (CR6) 2001; 2 Liu (CR13) 2018; 51 Bendig (CR28) 2014; 6 Watanabe (CR29) 2017; 8 Xing (CR16) 2015; 66 Liu (CR34) 2017; 6 CR17 Furbank, Tester (CR30) 2011; 16 Woebbecke, Meyer, Von Bargen, Mortensen (CR39) 1995; 38 Bensen (CR15) 1995; 7 CR37 Araus, Cairns (CR24) 2014; 19 Holman (CR25) 2016; 8 Salas Fernandez, Becraft, Yin, Lübberstedt (CR4) 2009; 14 Yang (CR33) 2011; 28 Bendig, Bolten, Bareth (CR38) 2013; 6 Peng (CR5) 1999; 15 Yang (CR9) 2014; 10 Winkler, Freeling (CR14) 1994; 193 Yang (CR21) 2014; 5 Duan (CR26) 2017; 44 Shi (CR19) 2016; 11 Chen (CR31) 2014; 26 Hoffmeister (CR36) 2009; 7840 Zhang, Cheng, Zhang (CR18) 2012; 28 Liang (CR23) 2018; 7 Yan (CR32) 2003; 48 Zhang (CR22) 2017; 173 Geipel, Link, Claupein (CR27) 2014; 6 Peiffer (CR8) 2014; 196 Deng (CR41) 2017; 15 Tester, Langridge (CR3) 2010; 12 Dell’Acqua (CR10) 2015; 16 Liu (CR2) 2015; 8 van Heerwaarden (CR1) 2011; 18 Pan (CR12) 2017; 175 Han (CR35) 2018; 9 Al-Tamimi (CR20) 2016; 17 Zhou (CR11) 2016; 3 Sasaki (CR7) 2002; 18 Liu (CR40) 2016; 12 RG Winkler (39448_CR14) 1994; 193 J van Heerwaarden (39448_CR1) 2011; 18 A Sasaki (39448_CR7) 2002; 18 D Hoffmeister (39448_CR36) 2009; 7840 X Liu (39448_CR40) 2016; 12 W Yang (39448_CR21) 2014; 5 Z Liang (39448_CR23) 2018; 7 A Xing (39448_CR16) 2015; 66 JA Peiffer (39448_CR8) 2014; 196 F Holman (39448_CR25) 2016; 8 J Zhang (39448_CR18) 2012; 28 K Liu (39448_CR13) 2018; 51 Z Zhou (39448_CR11) 2016; 3 MG Salas Fernandez (39448_CR4) 2009; 14 RJ Bensen (39448_CR15) 1995; 7 J Geipel (39448_CR27) 2014; 6 H Liu (39448_CR2) 2015; 8 X Yang (39448_CR33) 2011; 28 K Watanabe (39448_CR29) 2017; 8 M Dell’Acqua (39448_CR10) 2015; 16 J Yan (39448_CR32) 2003; 48 H Liu (39448_CR34) 2017; 6 GS Khush (39448_CR6) 2001; 2 DM Woebbecke (39448_CR39) 1995; 38 M Tester (39448_CR3) 2010; 12 T Duan (39448_CR26) 2017; 44 39448_CR37 39448_CR17 N Al-Tamimi (39448_CR20) 2016; 17 M Deng (39448_CR41) 2017; 15 L Han (39448_CR35) 2018; 9 N Yang (39448_CR9) 2014; 10 JL Araus (39448_CR24) 2014; 19 RT Furbank (39448_CR30) 2011; 16 J Bendig (39448_CR38) 2013; 6 J Peng (39448_CR5) 1999; 15 Q Pan (39448_CR12) 2017; 175 X Zhang (39448_CR22) 2017; 173 J Bendig (39448_CR28) 2014; 6 YJA Shi (39448_CR19) 2016; 11 D Chen (39448_CR31) 2014; 26 |
References_xml | – volume: 6 start-page: 10335 year: 2014 end-page: 10355 ident: CR27 article-title: Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system publication-title: Remote Sensing doi: 10.3390/rs61110335 – volume: 6 start-page: 414 year: 2017 end-page: 426 ident: CR34 article-title: Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize publication-title: Molecular Plant doi: 10.1016/j.molp.2016.06.016 – volume: 193 start-page: 341 year: 1994 end-page: 348 ident: CR14 article-title: Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9 publication-title: Planta doi: 10.1007/BF00201811 – volume: 17 year: 2016 ident: CR20 article-title: Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping publication-title: Nature Communications doi: 10.1038/ncomms13342 – volume: 12 start-page: e1005767 year: 2016 ident: CR40 article-title: Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1005767 – volume: 44 start-page: 169 year: 2017 end-page: 183 ident: CR26 article-title: Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV publication-title: Functional Plant Biology doi: 10.1071/FP16123 – volume: 7840 start-page: 78400E year: 2009 ident: CR36 article-title: High-resolution crop surface models (CSM) and crop volume models (CVM) on field level by terrestrial laser scanning publication-title: International Society for Optics and Photonics – volume: 38 start-page: 259 year: 1995 end-page: 269 ident: CR39 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: T. Transactions of the ASAE doi: 10.13031/2013.27838 – volume: 9 start-page: 1248 year: 2018 ident: CR35 article-title: Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach publication-title: Frontier in Plant Science doi: 10.3389/fpls.2018.01248 – ident: CR37 – volume: 7 start-page: 75 year: 1995 end-page: 84 ident: CR15 article-title: Cloning and characterization of the maize An1 gene publication-title: The Plant Cell doi: 10.1105/tpc.7.1.75 – volume: 15 start-page: 256 year: 1999 end-page: 61 ident: CR5 article-title: ‘Green revolution’ genes encode mutant gibberellin response modulators publication-title: Nature doi: 10.1038/22307 – volume: 196 start-page: 1337 year: 2014 end-page: 56 ident: CR8 article-title: The genetic architecture of maize height publication-title: Genetics doi: 10.1534/genetics.113.159152 – volume: 28 start-page: 464 year: 2012 end-page: 468 ident: CR18 article-title: Regulated deficit drip irrigation influences on seed maize growth and yield under film publication-title: Procedia Engineering doi: 10.1016/j.proeng.2012.01.752 – volume: 11 start-page: e0159781 year: 2016 ident: CR19 article-title: Unmanned aerial vehicles for high-throughput phenotyping and agronomic research publication-title: PLoS One doi: 10.1371/journal.pone.0159781 – volume: 8 start-page: 421 year: 2017 ident: CR29 article-title: High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00421 – volume: 3 year: 2016 ident: CR11 article-title: Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines publication-title: BMC Genomics doi: 10.1186/s12864-016-2555-z – volume: 6 start-page: 551 year: 2013 end-page: 562 ident: CR38 article-title: UAV-based imagzing for multi-temporal, very high resolution crop surface models to monitor crop growth variability publication-title: Photogrammetrie-Fernerkundung-Geoinformation doi: 10.1127/1432-8364/2013/0200 – volume: 48 start-page: 2601 year: 2003 end-page: 260 ident: CR32 article-title: Dynamic analysis of QTL for plant height at different developmental stages in maize ( L.) publication-title: Chinese Science Bulletin doi: 10.1360/03wc0044 – volume: 2 start-page: 815 year: 2001 end-page: 22 ident: CR6 article-title: Green revolution: the way forward publication-title: Nature Reviews Genetics doi: 10.1038/35093585 – volume: 5 start-page: 5087 year: 2014 ident: CR21 article-title: Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice publication-title: Nature Communication doi: 10.1038/ncomms6087 – volume: 10 start-page: e1004573 year: 2014 ident: CR9 article-title: Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1004573 – volume: 175 start-page: 858 year: 2017 end-page: 873 ident: CR12 article-title: The genetic basis of plant architecture in 10 maize recombinant inbred line populations publication-title: Plant Physiology – volume: 8 start-page: 1031 year: 2016 ident: CR25 article-title: High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing publication-title: Remote Sensing of Environment doi: 10.3390/rs8121031 – volume: 26 start-page: 4636 year: 2014 end-page: 55 ident: CR31 article-title: Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis publication-title: The Plant Cell doi: 10.1105/tpc.114.129601 – volume: 15 start-page: 1250 year: 2017 end-page: 1263 ident: CR41 article-title: The genetic architecture of amino acids dissection by association and linkage analysis in maize publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12712 – volume: 12 start-page: 818 year: 2010 end-page: 22 ident: CR3 article-title: Breeding technologies to increase crop production in a changing world publication-title: Science doi: 10.1126/science.1183700 – volume: 6 start-page: 10395 year: 2014 end-page: 10412 ident: CR28 article-title: Estimation biomass of barley using crop surface models (CMSs) derived from UAV-based RGB imaging publication-title: Remote Sensing doi: 10.3390/rs61110395 – volume: 18 start-page: 1088 year: 2011 end-page: 92 ident: CR1 article-title: Genetic signals of origin, spread, and introgression in a large sample of maize landraces publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1013011108 – volume: 8 start-page: 871 year: 2015 end-page: 884 ident: CR2 article-title: Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding publication-title: Molecular Plant doi: 10.1016/j.molp.2015.01.016 – volume: 16 start-page: 635 year: 2011 end-page: 44 ident: CR30 article-title: Phenomics-technologies to relieve the phenotyping bottleneck publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2011.09.005 – volume: 173 start-page: 1554 year: 2017 end-page: 1564 ident: CR22 article-title: High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth publication-title: Plant Physiology doi: 10.1104/pp.16.01516 – volume: 66 start-page: 3791 year: 2015 end-page: 802 ident: CR16 article-title: A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv182 – ident: CR17 – volume: 7 start-page: 1 year: 2018 end-page: 11 ident: CR23 article-title: Conventional and hyperspectral time-series imaging of maize lines widely used in field trials publication-title: Gigascience doi: 10.1093/gigascience/gix117 – volume: 19 start-page: 52 year: 2014 end-page: 61 ident: CR24 article-title: Field high-throughput phenotyping: the new crop breeding frontier publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2013.09.008 – volume: 51 start-page: 821 year: 2018 end-page: 834 ident: CR13 article-title: Genome-wide association studies of plant type traits in maize publication-title: Scientia Agricultura Sinica – volume: 14 start-page: 454 year: 2009 end-page: 61 ident: CR4 article-title: From dwarves to giants? Plant height manipulation for biomass yield publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.06.005 – volume: 28 start-page: 511 year: 2011 end-page: 526 ident: CR33 article-title: Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize publication-title: Molecular Breeding doi: 10.1007/s11032-010-9500-7 – volume: 18 start-page: 701 year: 2002 end-page: 2 ident: CR7 article-title: Green revolution: a mutant gibberellin-synthesis gene in rice publication-title: Nature doi: 10.1038/416701a – volume: 16 year: 2015 ident: CR10 article-title: Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in publication-title: Genome Biology doi: 10.1186/s13059-015-0716-z – volume: 44 start-page: 169 year: 2017 ident: 39448_CR26 publication-title: Functional Plant Biology doi: 10.1071/FP16123 – volume: 16 start-page: 635 year: 2011 ident: 39448_CR30 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2011.09.005 – volume: 7 start-page: 75 year: 1995 ident: 39448_CR15 publication-title: The Plant Cell doi: 10.1105/tpc.7.1.75 – volume: 18 start-page: 1088 year: 2011 ident: 39448_CR1 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1013011108 – volume: 12 start-page: e1005767 year: 2016 ident: 39448_CR40 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1005767 – volume: 8 start-page: 1031 year: 2016 ident: 39448_CR25 publication-title: Remote Sensing of Environment doi: 10.3390/rs8121031 – volume: 175 start-page: 858 year: 2017 ident: 39448_CR12 publication-title: Plant Physiology doi: 10.1104/pp.17.00709 – volume: 6 start-page: 10335 year: 2014 ident: 39448_CR27 publication-title: Remote Sensing doi: 10.3390/rs61110335 – volume: 196 start-page: 1337 year: 2014 ident: 39448_CR8 publication-title: Genetics doi: 10.1534/genetics.113.159152 – volume: 48 start-page: 2601 year: 2003 ident: 39448_CR32 publication-title: Chinese Science Bulletin doi: 10.1360/03wc0044 – ident: 39448_CR37 doi: 10.3920/9789086867783_033 – volume: 15 start-page: 1250 year: 2017 ident: 39448_CR41 publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12712 – volume: 2 start-page: 815 year: 2001 ident: 39448_CR6 publication-title: Nature Reviews Genetics doi: 10.1038/35093585 – volume: 5 start-page: 5087 year: 2014 ident: 39448_CR21 publication-title: Nature Communication doi: 10.1038/ncomms6087 – volume: 14 start-page: 454 year: 2009 ident: 39448_CR4 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.06.005 – volume: 66 start-page: 3791 year: 2015 ident: 39448_CR16 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv182 – volume: 173 start-page: 1554 year: 2017 ident: 39448_CR22 publication-title: Plant Physiology doi: 10.1104/pp.16.01516 – volume: 7840 start-page: 78400E year: 2009 ident: 39448_CR36 publication-title: International Society for Optics and Photonics – volume: 19 start-page: 52 year: 2014 ident: 39448_CR24 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2013.09.008 – volume: 28 start-page: 511 year: 2011 ident: 39448_CR33 publication-title: Molecular Breeding doi: 10.1007/s11032-010-9500-7 – volume: 7 start-page: 1 year: 2018 ident: 39448_CR23 publication-title: Gigascience doi: 10.1093/gigascience/gix117 – volume: 12 start-page: 818 year: 2010 ident: 39448_CR3 publication-title: Science doi: 10.1126/science.1183700 – ident: 39448_CR17 – volume: 193 start-page: 341 year: 1994 ident: 39448_CR14 publication-title: Planta doi: 10.1007/BF00201811 – volume: 3 year: 2016 ident: 39448_CR11 publication-title: BMC Genomics doi: 10.1186/s12864-016-2555-z – volume: 28 start-page: 464 year: 2012 ident: 39448_CR18 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2012.01.752 – volume: 6 start-page: 551 year: 2013 ident: 39448_CR38 publication-title: Photogrammetrie-Fernerkundung-Geoinformation doi: 10.1127/1432-8364/2013/0200 – volume: 11 start-page: e0159781 year: 2016 ident: 39448_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0159781 – volume: 6 start-page: 414 year: 2017 ident: 39448_CR34 publication-title: Molecular Plant doi: 10.1016/j.molp.2016.06.016 – volume: 15 start-page: 256 year: 1999 ident: 39448_CR5 publication-title: Nature doi: 10.1038/22307 – volume: 26 start-page: 4636 year: 2014 ident: 39448_CR31 publication-title: The Plant Cell doi: 10.1105/tpc.114.129601 – volume: 8 start-page: 421 year: 2017 ident: 39448_CR29 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00421 – volume: 16 year: 2015 ident: 39448_CR10 publication-title: Genome Biology doi: 10.1186/s13059-015-0716-z – volume: 8 start-page: 871 year: 2015 ident: 39448_CR2 publication-title: Molecular Plant doi: 10.1016/j.molp.2015.01.016 – volume: 6 start-page: 10395 year: 2014 ident: 39448_CR28 publication-title: Remote Sensing doi: 10.3390/rs61110395 – volume: 10 start-page: e1004573 year: 2014 ident: 39448_CR9 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1004573 – volume: 9 start-page: 1248 year: 2018 ident: 39448_CR35 publication-title: Frontier in Plant Science doi: 10.3389/fpls.2018.01248 – volume: 17 year: 2016 ident: 39448_CR20 publication-title: Nature Communications doi: 10.1038/ncomms13342 – volume: 18 start-page: 701 year: 2002 ident: 39448_CR7 publication-title: Nature doi: 10.1038/416701a – volume: 51 start-page: 821 year: 2018 ident: 39448_CR13 publication-title: Scientia Agricultura Sinica – volume: 38 start-page: 259 year: 1995 ident: 39448_CR39 publication-title: T. Transactions of the ASAE doi: 10.13031/2013.27838 |
SSID | ssj0000529419 |
Score | 2.5574944 |
Snippet | Plant height (PH) is a key factor in maize (
Zea mays
L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117... Plant height (PH) is a key factor in maize (Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3458 |
SubjectTerms | 631/208/8 631/449/711 Corn Gene mapping Genome-wide association studies Growth rate Humanities and Social Sciences Inbreeding multidisciplinary Phenotyping Quantitative trait loci Remote sensing Science Science (multidisciplinary) Unmanned aerial vehicles Zea mays |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3da9QwPOhE8EX8tm5KBB8ULWuT5qNPY6hjiArCTu6tJG3iHWy902sHu1f_8f1-aa7jHO61SWiS32d-n4S88bUovQQI8NoFaxXQXJ2VqWhkqT2sYaHd27fv8nhSfJmKaTS4rWJY5YYnBkbdLGq0ke-DKEJhpXVxsPydYtco9K7GFhq3yR0sXYZYraZqtLGgF6vIy5grk3G9vwJ5hTlleZliRqhO19vy6JqSeT1W8h-HaZBDRw_I_ahA0sMB4g_JLdc-IneHlpIXj8nfT0OLebo8hTujs2D5pD9OvlKs1QTSoKHzlp6Z-drR2KMHRgBejq4wlr39RTHqa9FdYCIV7cMXQ7GqcRrnL_uO9u2ZQQ5NTcBgeu5muB36dnL4890TMjn6fPLxOI2NFtJaqLJLc5cVTWOltFpxIZ3VhQfVwrBSMWEta5jUjZY-c4UthbYFaAmKe804V8Y1nj8lO-2idc8J9cI7Dm_CujG-cDwzHnQgzo1hmbU5qxOSb667qmMVcmyGcVoFbzjX1QCiCkBUBRBV64S8H9cshxocN87e20CxivS4qq6wJyGvx2GgJHSPmNYt-mGO0BJeGwl5NgB9_B0HTVUB-0qI2kKHcQJW6d4eaeezUK1b4gs2Fwn5sEGcq239_xQvbj7FLrnHEIkxGE7skZ3uT-9egnbU2VeBBC4B5nQPYw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-rp0TwQdFimzRp-riox7GoIN7KvZWkTW4X7rqLuxVuX_3HnUk_ZD0VfG0mNO3MZH7JfAE895UsvEIOiMqF2yrUuSopYlmrQnucw0O7t4-f1PEsm57K0z3gQy5MCNoPJS3DNj1Eh71Zo6GhZLC0iCmVU8fba3BApdpRtg8mk-mX6XizQr6rLC36DJlE6D9M3rVCV6Dl1QjJ39ykwfoc3YKbPWxkk26ht2HPNXfgetdI8vIu_HjXNZZnq3P8U2we7jvZ55MPjCo0oQ2o2aJhF2axdazvzIMjyCXH1hTB3pwxivVabi4pfYq14YlhVMs47ulX7Ya1zYWhfZmZILfsu5vTctiL2eTry3swO3p_8vY47tsrxJXMi02cuiSra6uU1bmQylmdeQQUhhc5l9bymitda-UTl9lCapshNsiF11yI3Ljai_uw3ywb9xCYl94JPAlWtfGZE4nxiHyEMIYn1qa8iiAdfndZ9bXHqQXGeRl84EKXHYtKZFEZWFRuI3g1zll1lTf-SX04cLHstXBdInwhgKN1FsGzcRj1h5wipnHLtqORWuEZI4IHHdPH1wnEpzluWhHkO-IwElBt7t2RZjEPNboVnVtTGcHrQXB-LevvX_Ho_8gfww1OQk0hcfIQ9jffWvcEMdLGPu2V4icNVg80 priority: 102 providerName: Springer Nature |
Title | Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV) |
URI | https://link.springer.com/article/10.1038/s41598-019-39448-z https://www.ncbi.nlm.nih.gov/pubmed/30837510 https://www.proquest.com/docview/2188201884 https://www.proquest.com/docview/2188586729 https://pubmed.ncbi.nlm.nih.gov/PMC6401315 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7aRaC9TNwJjMpIPIAgkMTxJQ8IlbJpqtjEZUV9i5zEppW6tFsbRPvKH-fYSQpjG0-RfFEcn-Oc79g-5wN4ZnKWGI4SoLl2u1W45vIg8VnBE2mwT-To3o6O-eEg7g_ZcANauqNmAudXunaWT2pwPnn982z5Dhf82zpkXL6ZoxGygWJh4tswT-mvNmEbLZOwjAZHDdyvc31HSRwmTezM1V134CZFWCKYjan921Rdwp-Xr1H-c5bqTNTBLdhtsCXp1spwGzZ0eQdu1GyTy7vw60PNPk9mE5xOMnKbouTzyUdi0zihoSjIuCSnarzSpKHvwRoUpSZze829_E7shbDpYmljrEjlShSxCY_9pv2sWpCqPFX2502UU27yQ4_scMjzQffbi3swONg_6R36DQeDnzORLPxQB3FRZJxnUlDGdSZjg6hDRYmIWJZFRcRlIbkJdJwlTGYxAghBjYwoFUoXht6HrXJa6odADDOaoruYF8rEmgbKIDyiVKkoyLIwyj0I2-lO8yZBueXJmKTuoJzKtJZWitJKnbTSlQcv131mdXqO_7bea6WYtpqWIsaxKEjK2IOn62pcZPbkRJV6WtVtmOToiHjwoBb6-nWttnggLqjDuoFN4H2xphyPXCJvbp3bkHnwqlWcP8O6_iseXTuEx7ATWVW2V-TYHmwtziv9BDHTIuvAphiKDmx3u_2vfXy-3z_-9AVLe7zXcfsQHbdUfgOKphiM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQvE99kDDASSCCIlthx4jwgNDGmjnWTkFrUt-AkNq20pYW2oPaV_4e_kTsn6VQm9rbX2Plw7s6_O98XwAtbyNTGSAFRGHdahTJXBKkvyzhVFu_hrt3b8Unc6UefBnKwAX_aXBgKq2z3RLdRl-OCzsh3EYoIrJSK3k---9Q1iryrbQuNmi2OzOIXmmzTd4f7SN-XnB987H3o-E1XAb-QSTrzQxNEZZnHca4SIWOTq8gijmqeJlzmOS95rEoV28BEeSpVHiEkJsIqLkSiTWkFPvcaXEfgDcjYSwbJ6kyHvGZRmDa5OYFQu1PER8phC1OfMlCVv1zHvwtK7cXYzH8ctA73Dm7DVqOwsr2aw-7Ahqnuwo26heXiHvzer1vas8kp0ogN3Ukr-9zrMqoNhehTslHFzvRoaVjTEwhHkD8Mm1LsfPWNUZTZeLagxC02d1c0oyrKfjN_Mp-xeXWmCRGYdhLDfpohfQ571d_78vo-9K-EBA9gsxpX5hEwK60RaIMWpbaREYG2qHMJoTUP8jzkhQdh-7uzoql6Ts03TjPnfRcqq0mUIYkyR6Js6cGb1T2TuubHpbN3WipmjfxPs3Nu9eD5ahgll9wxujLjeT1HqhitGw8e1kRfvU6gZpzgdulBssYOqwlUFXx9pBoNXXXwmCzmUHrwtmWc88_6_yq2L1_FM7jZ6R13s-7hydFjuMWJoSkQT-7A5uzH3DxBzWyWP3XiwODrVcvfX0HSS3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKBeEG8MBRYJJBBYsXe99vqAUCGNWlqigpqqN7O2d5tIrRNIAkqu_Ct-HTN-pAoVvfXqXT_WM7PfzM4L4IXNZGxDpIDITHlahTKXebEr8zBWFu_hZbu3z71wpx98OpbHa_CnyYWhsMpmTyw36nyU0Rl5G6GIwEqpoG3rsIiDTvf9-LtLHaTI09q006hYZM_Mf6H5Nnm320Fav-S8u334ccetOwy4mYziqesbL8jzNAxTFQkZmlQFFjFV8zjiMk15zkOVq9B6JkhjqdIA4TESVnEhIm1yK_C512A9IquoBesftnsHX5cnPORDC_y4ztTxhGpPEC0po82PXcpHVe5iFQ0vqLgXIzX_cdeWKNi9BTdr9ZVtVfx2G9ZMcQeuVw0t53fhd6dqcM_Gp0gxNijPXdmXw31GlaIQi3I2LNiZHi4MqzsE4Qhyi2ETiqQvThjFnI2mc0rjYrPyimZUU9mt549nUzYrzjThA9Ol_LCfZkCfw171t45e34P-lRDhPrSKUWEeArPSGoEWaZZrGxjhaYsamBBacy9NfZ454De_O8nqGujUiuM0KX3xQiUViRIkUVKSKFk48GZ5z7iqAHLp7M2Gikm9G0ySc9514PlyGOWYnDO6MKNZNUeqEG0dBx5URF--TqCeHOHm6UC0wg7LCVQjfHWkGA7KWuEh2c--dOBtwzjnn_X_VTy6fBXP4AbKXrK_29t7DBuc-Jmi8uQmtKY_ZuYJqmnT9GktDwy-XbUI_gVPnFEP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+plant+height+QTL+revealed+in+maize+through+remote+sensing+phenotyping+using+a+high-throughput+unmanned+aerial+vehicle+%28UAV%29&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Xiaqing&rft.au=Zhang%2C+Ruyang&rft.au=Song%2C+Wei&rft.au=Han%2C+Liang&rft.date=2019-03-05&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=3458&rft_id=info:doi/10.1038%2Fs41598-019-39448-z&rft_id=info%3Apmid%2F30837510&rft.externalDocID=30837510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |