CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse

The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 8; no. 5; pp. 477 - 488
Main Authors Guan, Yuting, Ma, Yanlin, Li, Qi, Sun, Zhenliang, Ma, Lie, Wu, Lijuan, Wang, Liren, Zeng, Li, Shao, Yanjiao, Chen, Yuting, Ma, Ning, Lu, Wenqing, Hu, Kewen, Han, Honghui, Yu, Yanhong, Huang, Yuanhua, Liu, Mingyao, Li, Dali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2016
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. Synopsis CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model. Hepatic in situ correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice. Graphical Abstract CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B.
AbstractList The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. Synopsis CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model. Hepatic in situ correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice. CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B.
The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. Synopsis CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model. Hepatic in situ correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice. Graphical Abstract CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B.
The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
Abstract The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX , hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR /Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR /Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
Author Ma, Lie
Zeng, Li
Huang, Yuanhua
Shao, Yanjiao
Hu, Kewen
Li, Qi
Chen, Yuting
Wu, Lijuan
Ma, Ning
Liu, Mingyao
Li, Dali
Lu, Wenqing
Han, Honghui
Sun, Zhenliang
Ma, Yanlin
Wang, Liren
Yu, Yanhong
Guan, Yuting
AuthorAffiliation 6 Department of Molecular and Cellular Medicine The Institute of Biosciences and Technology Texas A&M University Health Science Center Houston TX USA
4 Fengxian Hospital affiliated to Southern Medical University Shanghai China
1 Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
3 Department of Obstetrics and Gynecology Nanfang Hospital Southern Medical University Guangzhou China
5 Bioray Laboratories Inc. Shanghai China
2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research Hainan Reproductive Medical Center the Affiliated Hospital of Hainan Medical University Hainan Medical University Haikou China
AuthorAffiliation_xml – name: 2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research Hainan Reproductive Medical Center the Affiliated Hospital of Hainan Medical University Hainan Medical University Haikou China
– name: 4 Fengxian Hospital affiliated to Southern Medical University Shanghai China
– name: 6 Department of Molecular and Cellular Medicine The Institute of Biosciences and Technology Texas A&M University Health Science Center Houston TX USA
– name: 5 Bioray Laboratories Inc. Shanghai China
– name: 1 Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
– name: 3 Department of Obstetrics and Gynecology Nanfang Hospital Southern Medical University Guangzhou China
Author_xml – sequence: 1
  givenname: Yuting
  surname: Guan
  fullname: Guan, Yuting
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 2
  givenname: Yanlin
  surname: Ma
  fullname: Ma, Yanlin
  email: mayl1990@foxmail.com
  organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University
– sequence: 3
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University
– sequence: 4
  givenname: Zhenliang
  surname: Sun
  fullname: Sun, Zhenliang
  organization: Fengxian Hospital affiliated to Southern Medical University
– sequence: 5
  givenname: Lie
  surname: Ma
  fullname: Ma, Lie
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 6
  givenname: Lijuan
  surname: Wu
  fullname: Wu, Lijuan
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 7
  givenname: Liren
  surname: Wang
  fullname: Wang, Liren
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 8
  givenname: Li
  surname: Zeng
  fullname: Zeng, Li
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 9
  givenname: Yanjiao
  surname: Shao
  fullname: Shao, Yanjiao
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 10
  givenname: Yuting
  surname: Chen
  fullname: Chen, Yuting
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 11
  givenname: Ning
  surname: Ma
  fullname: Ma, Ning
  organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University
– sequence: 12
  givenname: Wenqing
  surname: Lu
  fullname: Lu, Wenqing
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 13
  givenname: Kewen
  surname: Hu
  fullname: Hu, Kewen
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
– sequence: 14
  givenname: Honghui
  surname: Han
  fullname: Han, Honghui
  organization: Bioray Laboratories Inc
– sequence: 15
  givenname: Yanhong
  surname: Yu
  fullname: Yu, Yanhong
  organization: Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University
– sequence: 16
  givenname: Yuanhua
  surname: Huang
  fullname: Huang, Yuanhua
  organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University
– sequence: 17
  givenname: Mingyao
  surname: Liu
  fullname: Liu, Mingyao
  email: myliu@bio.ecnu.edu.cn
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Department of Molecular and Cellular Medicine, The Institute of Biosciences and Technology, Texas A&M University Health Science Center
– sequence: 18
  givenname: Dali
  surname: Li
  fullname: Li, Dali
  email: dlli@bio.ecnu.edu.cn
  organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26964564$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v0zAYxyM0xLbCmRuKxIVLV8eO3zggoWpApVWgARI3y3GetK6cuNjJpt34CHxGPgles5Vt0sTpsez_7-_n7Tg76HwHWfayQCcFxRTPoG3bE4wKihgi8kl2VHDKpyUT5cH-zNlhdhzjBiFGWSGeZYeYSVZSVh5ll_Pzxdcv57O5jvLPr98t1Fb3UOfRt7q3Jjc-BDC99V3um1znnb8Al271anC69yFvtLkOix_5CjrI26HXO7VuwVkfklnM19D67do6q3Pb5a0fIjzPnjbaRXhxEyfZ9w-n3-afpmefPy7m78-mhnIppwQ3lSnqUlPOiqYiohENoiVnQACJmkhe1bVsCsOkTkokBQWKScUFToDRZJItRt_a643aBtvqcKW8tmp34cNK6ZAKdaAQl7yUsiTEyBKDEZzrSiNcCcYlESx5vRu9tkOVGmWg64N290zvv3R2rVb-QtECU0FwMnhzYxD8zwFir1obDTinO0hNUQUXHAlRJvEke_1AuvFD6FKrFMYSISoYRUn16m5G-1Ru55sEdBSY4GMM0ChjxwGlBK1TBVK7PVLXe6T2e5S42QPu1vpx4u1IXFoHV_-Tq9PlcnkXRiMcE9etIPyr9rH__gKiJuyw
CitedBy_id crossref_primary_10_1186_s13059_019_1907_9
crossref_primary_10_3390_ijms24109013
crossref_primary_10_1371_journal_pone_0239411
crossref_primary_10_3390_ijms241713447
crossref_primary_10_1016_j_jconrel_2019_02_009
crossref_primary_10_1016_j_omtn_2020_04_012
crossref_primary_10_1080_17476348_2019_1634547
crossref_primary_10_1111_bjh_14297
crossref_primary_10_1002_jcb_26165
crossref_primary_10_1007_s40259_024_00654_5
crossref_primary_10_1016_j_ymthe_2018_02_023
crossref_primary_10_1038_s41392_019_0089_y
crossref_primary_10_1007_s13167_023_00324_6
crossref_primary_10_1016_j_exer_2017_06_007
crossref_primary_10_1016_j_jconrel_2020_09_003
crossref_primary_10_1089_hum_2017_210
crossref_primary_10_1038_s41587_023_01821_9
crossref_primary_10_1021_acsmaterialslett_0c00041
crossref_primary_10_1016_j_mce_2017_11_023
crossref_primary_10_1177_2040620717746312
crossref_primary_10_1620_tjem_256_197
crossref_primary_10_1007_s12033_023_00739_6
crossref_primary_10_1016_j_omtm_2020_06_022
crossref_primary_10_1038_ncomms15464
crossref_primary_10_15407_visn2020_03_050
crossref_primary_10_5482_HAMO_16_09_0035
crossref_primary_10_1186_s13287_024_03848_4
crossref_primary_10_1002_cac2_12366
crossref_primary_10_1016_j_kint_2018_10_038
crossref_primary_10_1007_s11596_022_2645_x
crossref_primary_10_3390_ijms241310766
crossref_primary_10_1016_j_csbj_2020_08_031
crossref_primary_10_1038_s12276_020_0466_1
crossref_primary_10_3390_genes13101727
crossref_primary_10_1016_j_mad_2021_111549
crossref_primary_10_1038_s41434_020_0163_7
crossref_primary_10_1126_sciadv_adr8648
crossref_primary_10_3892_ijmm_2020_4609
crossref_primary_10_2147_BTT_S265767
crossref_primary_10_1089_hum_2017_213
crossref_primary_10_1007_s00439_017_1801_z
crossref_primary_10_1016_j_omtn_2018_12_008
crossref_primary_10_3390_diseases5010006
crossref_primary_10_3390_genes11101113
crossref_primary_10_1007_s11427_021_2057_0
crossref_primary_10_3389_fgeed_2022_785698
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_1007_s00393_017_0267_7
crossref_primary_10_1038_s41434_018_0003_1
crossref_primary_10_3390_pharmaceutics14061252
crossref_primary_10_3390_genes14020483
crossref_primary_10_1186_s43556_022_00095_y
crossref_primary_10_1002_wsbm_1408
crossref_primary_10_1016_j_jgg_2021_01_008
crossref_primary_10_5482_HAMO_17_01_0001
crossref_primary_10_1016_j_omtm_2023_101161
crossref_primary_10_1097_MBC_0000000000001126
crossref_primary_10_3390_ijms20123036
crossref_primary_10_1002_biot_201800195
crossref_primary_10_1097_HEP_0000000000000578
crossref_primary_10_1016_j_lfs_2023_122165
crossref_primary_10_1089_hum_2023_112
crossref_primary_10_3390_ijms23084410
crossref_primary_10_1002_ajh_24543
crossref_primary_10_34172_bi_2022_23871
crossref_primary_10_1186_s11658_022_00336_6
crossref_primary_10_1007_s00439_016_1699_x
crossref_primary_10_1016_j_nantod_2020_100895
crossref_primary_10_3390_app10249001
crossref_primary_10_1016_j_celrep_2018_03_121
crossref_primary_10_3324_haematol_2019_224063
crossref_primary_10_3389_fnmol_2017_00142
crossref_primary_10_1111_hae_14101
crossref_primary_10_1186_s12929_018_0425_5
crossref_primary_10_1007_s40291_019_00392_3
crossref_primary_10_1016_j_ymthe_2017_03_033
crossref_primary_10_1089_crispr_2020_0025
crossref_primary_10_1038_s41598_017_04625_5
crossref_primary_10_3389_fgeed_2022_1037290
crossref_primary_10_1186_s13287_018_0839_8
crossref_primary_10_3389_fnins_2017_00175
crossref_primary_10_3390_ijms242015301
crossref_primary_10_1097_MNH_0000000000000790
crossref_primary_10_1007_s13346_023_01320_z
crossref_primary_10_1007_s11427_020_1744_6
crossref_primary_10_1002_ctm2_261
crossref_primary_10_1093_bfgp_elz031
crossref_primary_10_1080_10717544_2018_1474964
crossref_primary_10_1007_s11427_017_9057_2
crossref_primary_10_1007_s12033_023_00932_7
crossref_primary_10_1093_nar_gky548
crossref_primary_10_1016_j_pep_2024_106500
crossref_primary_10_2491_jjsth_28_24
crossref_primary_10_1093_bfgp_elw031
crossref_primary_10_1038_gt_2017_62
crossref_primary_10_3390_ijms22147456
crossref_primary_10_1016_j_omtm_2021_03_025
crossref_primary_10_1002_jcb_26627
crossref_primary_10_1007_s12015_023_10585_3
crossref_primary_10_1155_2021_8689873
crossref_primary_10_1016_j_gene_2016_11_008
crossref_primary_10_1016_j_ymthe_2020_05_001
crossref_primary_10_1016_j_jddst_2025_106798
crossref_primary_10_1016_j_ymthe_2021_09_002
crossref_primary_10_1097_HC9_0000000000000424
crossref_primary_10_1074_jbc_RA117_000347
crossref_primary_10_1007_s40271_020_00442_7
crossref_primary_10_1007_s00277_023_05457_2
crossref_primary_10_1016_j_plantsci_2019_01_006
crossref_primary_10_1080_14712598_2020_1817375
crossref_primary_10_1002_ajh_26018
crossref_primary_10_1007_s12038_020_00057_y
crossref_primary_10_1021_acssynbio_7b00011
crossref_primary_10_1016_j_bbrc_2022_08_076
crossref_primary_10_1124_dmd_118_084277
crossref_primary_10_15252_emmm_201606325
crossref_primary_10_1002_jcb_26111
crossref_primary_10_7717_peerj_17261
crossref_primary_10_1089_hum_2021_145
crossref_primary_10_1016_j_jgg_2022_06_001
crossref_primary_10_1080_1744666X_2018_1539667
crossref_primary_10_18632_oncotarget_15215
crossref_primary_10_1016_j_ymthe_2018_07_024
Cites_doi 10.1016/j.cell.2014.01.027
10.1038/sj.cgt.7701119
10.1089/10430340460732445
10.1038/nmeth.3075
10.1126/science.8211118
10.1126/science.1232033
10.1038/cr.2013.46
10.1038/73464
10.1038/ng0797-270
10.1038/nature14299
10.1182/blood-2013-04-497354
10.1038/nprot.2014.171
10.1182/blood.V91.3.784
10.1016/j.stem.2015.07.001
10.1016/j.stem.2013.11.002
10.1038/nbt.2501
10.7554/eLife.04766
10.1038/nature10177
10.1038/nbt.2661
10.1074/jbc.M105432200
10.1161/CIRCRESAHA.115.304351
10.1038/sj.gt.3300947
10.1055/s-0037-1615621
10.1016/j.cell.2013.04.025
10.1089/hum.2013.2527
10.1038/75568
10.1126/science.1225829
10.1038/nrg2971
10.1038/nbt.2884
10.1089/10430349950018364
10.1016/0076-6879(93)22011-4
10.1038/nature13864
10.1056/NEJMoa1407309
10.1016/j.stem.2013.10.016
10.1126/science.1254445
10.1126/science.1258096
10.1111/jth.12276
10.1126/science.1231143
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2016
2016 The Authors. Published under the terms of the CC BY 4.0 license
2016 The Authors. Published under the terms of the CC BY 4.0 license.
2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2016
– notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.15252/emmm.201506039
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Yuting Guan et al
EISSN 1757-4684
EndPage 488
ExternalDocumentID oai_doaj_org_article_0797499433c942ec877aba02b8679386
PMC5125832
26964564
10_15252_emmm_201506039
EMMM201506039
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Mali
China
GeographicLocations_xml – name: Mali
– name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021
  funderid: 10.13039/501100001809
– fundername: State Key Development Programs of China
  grantid: 2012CB910400; 2012CB966502
– fundername: International Science & Technology Cooperation Program of China
  grantid: 2014DFA30180
– fundername: Shanghai Municipal Commission for Science and Technology
  grantid: 14140900300; 15JC1400201
– fundername: International Science & Technology Cooperation Program of China
  funderid: 2014DFA30180
– fundername: State Key Development Programs of China
  funderid: 2012CB910400; 2012CB966502
– fundername: Shanghai Municipal Commission for Science and Technology
  funderid: 14140900300; 15JC1400201
– fundername: National Natural Science Foundation of China
  funderid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021
– fundername: National Natural Science Foundation of China
  grantid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M48
M7P
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
AAHHS
ABJNI
ACCFJ
ADPDF
ADZOD
AEEZP
AEQDE
AFZJQ
AIWBW
AJBDE
EBLON
GODZA
H13
M~E
OVEED
RHF
AASML
AAYXX
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5799-32fbc1d4a5761fb38f8f05476e3e08d397bdd9f1c69afbc0985e523b782761ca3
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:20:55 EDT 2025
Thu Aug 21 13:16:29 EDT 2025
Fri Jul 11 10:44:40 EDT 2025
Wed Aug 13 04:39:50 EDT 2025
Mon Jul 21 06:03:52 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Wed Jan 22 17:05:42 EST 2025
Sat Aug 09 01:12:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords genome editing
gene therapy
monogenetic disease
hemostasis
hemophilia B
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2016 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5799-32fbc1d4a5761fb38f8f05476e3e08d397bdd9f1c69afbc0985e523b782761ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201506039
PMID 26964564
PQID 2290058650
PQPubID 866378
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0797499433c942ec877aba02b8679386
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5125832
proquest_miscellaneous_1787088458
proquest_journals_2290058650
pubmed_primary_26964564
crossref_citationtrail_10_15252_emmm_201506039
crossref_primary_10_15252_emmm_201506039
wiley_primary_10_15252_emmm_201506039_EMMM201506039
springer_journals_10_15252_emmm_201506039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2016
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2015; 17
2000; 25
2000; 24
2015; 520
2013; 23
2002; 277
2013; 122
2008; 15
2014; 25
1993; 262
2011; 12
2014; 371
1999; 6
2011; 475
2014; 115
2001; 85
2014; 156
1993; 222
2014; 3
2013; 11
2013; 339
2013; 13
2004; 15
2013; 31
2015; 517
1999; 10
1997; 16
1998; 91
2013; 153
2014; 9
2012; 337
2014; 345
2014; 346
2014; 11
2014; 32
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
27138565 - EMBO Mol Med. 2016 May 02;8(5):439-41
References_xml – volume: 11
  start-page: 1329
  year: 2013
  end-page: 1340
  article-title: An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B
  publication-title: J Thromb Haemost
– volume: 85
  start-page: 560
  year: 2001
  article-title: Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis
  publication-title: Thromb Haemost
– volume: 222
  start-page: 143
  year: 1993
  end-page: 169
  article-title: Characterization of factor IX defects in hemophilia B patients
  publication-title: Methods Enzymol
– volume: 115
  start-page: 488
  year: 2014
  end-page: 492
  article-title: Permanent alteration of PCSK9 with in vivo CRISPR‐Cas9 genome editing
  publication-title: Circ Res
– volume: 122
  start-page: 3283
  year: 2013
  end-page: 3287
  article-title: Robust ZFN‐mediated genome editing in adult hemophilic mice
  publication-title: Blood
– volume: 15
  start-page: 35
  year: 2004
  end-page: 46
  article-title: Acute toxicity after high‐dose systemic injection of helper‐dependent adenoviral vectors into nonhuman primates
  publication-title: Hum Gene Ther
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  article-title: In vivo genome editing using Cas9
  publication-title: Nature
– volume: 3
  start-page: e04766
  year: 2014
  article-title: Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
  publication-title: Elife
– volume: 277
  start-page: 25393
  year: 2002
  end-page: 25399
  article-title: Identification of functionally important residues of the epidermal growth factor‐2 domain of factor IX by alanine‐scanning mutagenesis. Residues Asn(89)‐Gly(93) are critical for binding factor VIIIa
  publication-title: J Biol Chem
– volume: 15
  start-page: 225
  year: 2008
  end-page: 230
  article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human
  publication-title: Cancer Gene Ther
– volume: 23
  start-page: 720
  year: 2013
  end-page: 723
  article-title: Generation of gene‐modified mice via Cas9/RNA‐mediated gene targeting
  publication-title: Cell Res
– volume: 31
  start-page: 227
  year: 2013
  end-page: 229
  article-title: Efficient genome editing in zebrafish using a CRISPR‐Cas system
  publication-title: Nat Biotechnol
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 25
  start-page: 35
  year: 2000
  end-page: 41
  article-title: Somatic integration and long‐term transgene expression in normal and haemophilic mice using a DNA transposon system
  publication-title: Nat Genet
– volume: 17
  start-page: 213
  year: 2015
  end-page: 220
  article-title: Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient‐derived iPSCs using CRISPR‐Cas9
  publication-title: Cell Stem Cell
– volume: 153
  start-page: 910
  year: 2013
  end-page: 918
  article-title: One‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering
  publication-title: Cell
– volume: 11
  start-page: 1051
  year: 2014
  end-page: 1057
  article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases
  publication-title: Nat Methods
– volume: 517
  start-page: 360
  year: 2015
  end-page: 364
  article-title: Promoterless gene targeting without nucleases ameliorates haemophilia B in mice
  publication-title: Nature
– volume: 6
  start-page: 1258
  year: 1999
  end-page: 1266
  article-title: Hydrodynamics‐based transfection in animals by systemic administration of plasmid DNA
  publication-title: Gene Ther
– volume: 32
  start-page: 551
  year: 2014
  end-page: 553
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat Biotechnol
– volume: 371
  start-page: 1994
  year: 2014
  end-page: 2004
  article-title: Long‐term safety and efficacy of factor IX gene therapy in hemophilia B
  publication-title: N Engl J Med
– volume: 25
  start-page: 3
  year: 2014
  end-page: 11
  article-title: Adenovirus: the first effective in vivo gene delivery vector
  publication-title: Hum Gene Ther
– volume: 24
  start-page: 257
  year: 2000
  end-page: 261
  article-title: Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector
  publication-title: Nat Genet
– volume: 10
  start-page: 965
  year: 1999
  end-page: 976
  article-title: Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil‐dependent hepatic injury in vivo
  publication-title: Hum Gene Ther
– volume: 475
  start-page: 217
  year: 2011
  end-page: 221
  article-title: In vivo genome editing restores haemostasis in a mouse model of haemophilia
  publication-title: Nature
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 31
  start-page: 681
  year: 2013
  end-page: 683
  article-title: Heritable gene targeting in the mouse and rat using a CRISPR‐Cas system
  publication-title: Nat Biotechnol
– volume: 91
  start-page: 784
  year: 1998
  end-page: 790
  article-title: Human factor IX corrects the bleeding diathesis of mice with hemophilia B
  publication-title: Blood
– volume: 345
  start-page: 1184
  year: 2014
  end-page: 1188
  article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9‐mediated editing of germline DNA
  publication-title: Science
– volume: 12
  start-page: 316
  year: 2011
  end-page: 328
  article-title: State‐of‐the‐art gene‐based therapies: the road ahead
  publication-title: Nat Rev Genet
– volume: 346
  start-page: 1258096
  year: 2014
  article-title: Genome editing. The new frontier of genome engineering with CRISPR‐Cas9
  publication-title: Science
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science
– volume: 13
  start-page: 659
  year: 2013
  end-page: 662
  article-title: Correction of a genetic disease in mouse via use of CRISPR‐Cas9
  publication-title: Cell Stem Cell
– volume: 13
  start-page: 653
  year: 2013
  end-page: 658
  article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
  publication-title: Cell Stem Cell
– volume: 262
  start-page: 117
  year: 1993
  end-page: 119
  article-title: In vivo gene therapy of hemophilia B: sustained partial correction in factor IX‐deficient dogs
  publication-title: Science
– volume: 9
  start-page: 2493
  year: 2014
  end-page: 2512
  article-title: CRISPR/Cas‐mediated genome editing in the rat via direct injection of one‐cell embryos
  publication-title: Nat Protoc
– volume: 16
  start-page: 270
  year: 1997
  end-page: 276
  article-title: Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors
  publication-title: Nat Genet
– volume: 156
  start-page: 836
  year: 2014
  end-page: 843
  article-title: Generation of gene‐modified cynomolgus monkey via Cas9/RNA‐mediated gene targeting in one‐cell embryos
  publication-title: Cell
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cell.2014.01.027
– ident: e_1_2_9_16_1
  doi: 10.1038/sj.cgt.7701119
– ident: e_1_2_9_4_1
  doi: 10.1089/10430340460732445
– ident: e_1_2_9_10_1
  doi: 10.1038/nmeth.3075
– ident: e_1_2_9_13_1
  doi: 10.1126/science.8211118
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1232033
– ident: e_1_2_9_32_1
  doi: 10.1038/cr.2013.46
– ident: e_1_2_9_14_1
  doi: 10.1038/73464
– ident: e_1_2_9_33_1
  doi: 10.1038/ng0797-270
– ident: e_1_2_9_29_1
  doi: 10.1038/nature14299
– ident: e_1_2_9_2_1
  doi: 10.1182/blood-2013-04-497354
– ident: e_1_2_9_31_1
  doi: 10.1038/nprot.2014.171
– ident: e_1_2_9_17_1
  doi: 10.1182/blood.V91.3.784
– ident: e_1_2_9_27_1
  doi: 10.1016/j.stem.2015.07.001
– ident: e_1_2_9_30_1
  doi: 10.1016/j.stem.2013.11.002
– ident: e_1_2_9_11_1
  doi: 10.1038/nbt.2501
– ident: e_1_2_9_20_1
  doi: 10.7554/eLife.04766
– ident: e_1_2_9_18_1
  doi: 10.1038/nature10177
– ident: e_1_2_9_19_1
  doi: 10.1038/nbt.2661
– ident: e_1_2_9_5_1
  doi: 10.1074/jbc.M105432200
– ident: e_1_2_9_8_1
  doi: 10.1161/CIRCRESAHA.115.304351
– ident: e_1_2_9_21_1
  doi: 10.1038/sj.gt.3300947
– ident: e_1_2_9_36_1
  doi: 10.1055/s-0037-1615621
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cell.2013.04.025
– ident: e_1_2_9_7_1
  doi: 10.1089/hum.2013.2527
– ident: e_1_2_9_38_1
  doi: 10.1038/75568
– ident: e_1_2_9_12_1
  doi: 10.1126/science.1225829
– ident: e_1_2_9_15_1
  doi: 10.1038/nrg2971
– ident: e_1_2_9_39_1
  doi: 10.1038/nbt.2884
– ident: e_1_2_9_24_1
  doi: 10.1089/10430349950018364
– ident: e_1_2_9_34_1
  doi: 10.1016/0076-6879(93)22011-4
– ident: e_1_2_9_3_1
  doi: 10.1038/nature13864
– ident: e_1_2_9_25_1
  doi: 10.1056/NEJMoa1407309
– ident: e_1_2_9_37_1
  doi: 10.1016/j.stem.2013.10.016
– ident: e_1_2_9_22_1
  doi: 10.1126/science.1254445
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1258096
– ident: e_1_2_9_28_1
  doi: 10.1111/jth.12276
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1231143
– reference: 27138565 - EMBO Mol Med. 2016 May 02;8(5):439-41
SSID ssj0065618
Score 2.4978614
Snippet The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome...
The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome...
The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX , hemophilia B, is a disease ideally suited for gene therapy with genome...
Abstract The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 477
SubjectTerms Adenoviridae - genetics
Animal models
Animals
Child
Coagulation factors
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
Disease
Disease Models, Animal
DNA
EMBO16
EMBO18
Expression vectors
Factor IX - genetics
Factor IX deficiency
Gene Editing - methods
Gene loci
Gene therapy
Genetic disorders
Genetic Therapy - methods
Genetic Vectors
Genome editing
Genomes
Hemophilia
hemophilia B
Hemophilia B - pathology
Hemophilia B - therapy
Hemostasis
Hepatocytes
Hereditary diseases
Humans
Male
Males
Mice
monogenetic disease
Mutation
Mutation, Missense
Phenotypes
Point mutation
Recombination, Genetic
Research Article
Toxicity
Treatment Outcome
Twins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSiAuCMpfSkFG4gCHsEkcx_YRVq1apCBUqLQ3y3FstdImqbotiBuPwDPyJIztbOgKql44xrEdZzy2v7E93wC8wmU7t1yY1FWsTUtDadpIx1PNtaYGS9HgLlZ_rA6Oyw8LtrgS6svfCYv0wFFws4wj4pWypNTIsrBGcK4bnRWNZ4qjIpBt4_fWxlScgxGkhJ09XBt5ilNBNZL6sIIVM9t13gU9UOv5GOFX1qNA2_8vrPn3lcnp3HQT1YZlaf8-3BvxJHkX_-MB3LL9NtyOESa_b8Odejw7fwjf5keHnz8dzeZ6JX_9-BlcRhBuktUQWFuJ8XE6gpcDGRzRpB--2iWm6hCsfjgnMTQPOVwQVDpLust4ik90Z5fe0R9BKzmx3XDm92g0Oe2J31awj-B4f-_L_CAdwy6khnEpU1q4xuRtqdEUyV1DhRMOgR2vLLWZaBHANG0rXW4qqTFnJgWzaM42iDWwgNH0MWz1Q2-fAikZM3nptONYH8obsWheVBpNMEuzNqcJvF0LX5mRk9yHxlgqb5v43lK-t9TUWwm8ngqcRTqO67O-9705ZfM82iEBtUuN2qVu0q4Edte6oMbBvVKeIj9jArFtAi-n1zgs_VmL7i3KVuV-IhSiZCKBJ1F1ppYUlaw8i08CfEOpNpq6-aY_PQnU3wjPGM7BCbxZq9-fZl0rBxr08yZ5qb26rqennf8hvWdwFyus4v3QXdi6OL-0zxHDXTQvwnD9DRigPeo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMQFQfkLFGQkDnAIm8RxbJ8QrFq1SEGoUGlvkePYbaVNsuy2CG48As_IkzDjeFNWUDhuYq-c8dj-ZsbzDSHP4dhOrZAmdgVv4twwFtfKiVgLrZmBXsyni5Xvi_2j_N2Mz4LDbRWuVa73RL9RN71BH_kEeckTLgFQvF58jrFqFEZXQwmNq-QaUpehVovZaHABVPH-PTghRQwbQhGofXjGs4ltW0xE9wR7WCn8t1PJk_f_DXH-eXFyjJ5uYlt_OO3dJrcCqqRvBjW4Q67YbptcH-pMftsmN8oQQb9Lvk4PDz5-OKSTqV6pn99_-MwRQJ101XvyVmqwXIdPdqC9o5p2_Rc7h6fa16zvl3So0EMPZhR0z9L2fAjmU93aOeb7A3alJ7btF-iq0fS0o-hdsPfI0d7up-l-HKovxIYLpWKWudqkTa7BIkldzaSTDvCdKCyziWwAx9RNo1xqCqWhZaIkt2DV1gA5oIPR7D7Z6vrOPiQ059ykudNOwP-BwAGSplmhwRKzLGlSFpFXa-lXJlCTY4WMeYUmCk5XhdNVjdMVkRdjh8XAynF507c4nWMzpNP2D_rlcRVWZ5UIMKuUyhkzKs-skULoWidZjXSETBYR2VkrQxXW-Kq60MiIPBtfw-rEkIvuLMi2SnE_lDLnMiIPBt0ZR5IVqkAyn4iIDa3aGOrmm-70xDOAA0rjsBVH5OVa_y6GdakcmFfQ_8mr2i3Lcvz16N8f_pjchKbFcAF0h2ydLc_tEwBpZ_VTvxJ_AdwUNxU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYgLgvIKFGQkDnAITeL4dYSoVYsUhAqV9mY5jqNW2iRVt6XqjZ_Ab-SXMHaygYhWiNtuYifWPOxv7Mw3AK9x2U6dkDZuOKvj3FIaV6oRsRHGUIu9aEgXKz_xvcP844ItRpIknwvz5_k9y1i27drWJ4wHIjyqbsItllLhazQUvFhPuYhJwkYeLoUiRs_nI4fPFQ-YLT-Bpf8qaPn3F5LTMekcxIZVaPc-3BvhI3k_6PsB3HDdJtweCkpebsKdcjwqfwgXxcH-l88H24VZqZ_ff4QMEUSXZNUHklZifVmOkNRA-oYY0vXf3BKvmlCbvj8lQyUesr8gaGOOtOfDoT0xrVv6vH7EqOTItf2J35Ix5LgjfhfBPYLD3Z2vxV48VlmILRNKxTRrKpvWucHII20qKhvZII4T3FGXyBrxSlXXqkktVwZbJkoyh9FrhdACO1hDH8NG13fuKZCcMZvmjWkEPg_ljdAzzbjBiMvRpE5pBO_Wwtd2pCD3lTCW2ociXlvaa0tP2orgzdThZGDfuL7pB6_NqZmnzQ4X0Jr06IU6ERg-KZVTalWeOSuFMJVJssrTDlLJI9ha24IefXmlPSN-wiRC2QheTbfRC_3Riukcylanft6TMmcygieD6UwjybjinrQnAjEzqtlQ53e646PA9I1ojOGUG8Hbtfn9Hta1cqDBPv8lL71TluX079l_vOE53MXffPjqcws2zk7P3QtEZmfVy-CVvwAc1C9-
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9YwFA46UbwRnV_VKRG80Iu6tmnzcakvG5tQGdPB7kKaJm6wtuPtpnjnT_A3-ks8J_2QokPwrh9JCCfnJM9Jcp5DyEtYtlMnpI09L-o4t4zFlfIiNsIYZqEWC-Fi5Qe-d5S_Py6m24QYCzPwQ8wbbmgZYb5GAzdVP2XsQdZQ1zQYSh4o8pi6Tm5ggC3e6svyg2kyBrQStvhgkRQxzAl8ZPfBJraXDSwWpsDf_zfQ-efdyfkAdQlvw_q0e5fcGYElfTtowj1yzbWb5OaQavLbJrlVjofo98nX1eH-x4PD7ZXp1c_vP0LsCOBO2neBvpVaTNgRwh1o56mhbffFncFXE7LWd2s65Oih-8cUtM_R5nI4zqemAZGiSrmenrimO8fNGkNPW4r7C-4BOdrd-bTai8f8C7EthFIxy3xl0zo34JOkvmLSSw8IT3DHXCJrQDJVXSufWq4MlEyULBz4tRWADqhgDXtINtqudY8JzYvCprk3XkB7IG8ApWnGDfhijiV1yiLyZhK-tiM5OebIONPopOBoaRwtPY9WRF7NFc4HXo6ri77D0ZyLIaF2-NCtP-vRPnUiwLFSKmfMqjxzVgphKpNkFRISMskjsjXpgh6tvNfIlZ8UEkBuRF7Mv8E-8dDFtA5kq1OcEaXMCxmRR4PqzD3JuOJI5xMRsVCqRVeXf9rTk8ABDjitgMk4Iq8n9fvdrSvlwIJ-_kteeqcsy_ntyX_VekpuwzMfboZukY2L9aV7Bujtonoe7PMXo507DQ
  priority: 102
  providerName: Wiley-Blackwell
Title CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse
URI https://link.springer.com/article/10.15252/emmm.201506039
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201506039
https://www.ncbi.nlm.nih.gov/pubmed/26964564
https://www.proquest.com/docview/2290058650
https://www.proquest.com/docview/1787088458
https://pubmed.ncbi.nlm.nih.gov/PMC5125832
https://doaj.org/article/0797499433c942ec877aba02b8679386
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7RViAuFZS_lLIyEgc4pE3ixD8HhOhqqxYp1Wphpb1FjuO0lXaTstsCvfEIPCNPwtjJplqxFRKXSElsyxqPPd947G8A3qDZDg0X2i9ZUvixptTPZcl9xZWiGmtRd10sPWXH4_jTJJncpgNqBbhY69rZfFLj-XT_x9ebDzjh37fZe6IDM5vZS-WOLI_KDdhCs8RtOoM07kIKiFvcZh-aS-7j6sBanp81DViCYCaZJVpZsVaO1H8dEv37QGUXVV3FvM5oHT2C7RZtko-NejyGe6bagftN_smbHXiQtpH1J_C9Pzr5PBwd9NVC_v75y10oQTBKFrXjdCXaZvFwdyBIXRJFqvqbmeJX5VLZ13PSJO4hJxOCKmnI7LqJ8RM1M1NLA4CQlpybWX1pd3AUuaiI3XQwT2F8NPjSP_bbpAy-TriUPo3KXIdFrNBRCcucilKUCPs4M9QEokB4kxeFLEPNpMKSgRSJQWc3RySCFbSiz2CzqivzAkicJDqMS1VybA9Fj0g1jJhCB83QoAipB_tL4We6ZSy3iTOmmfVc7MBlduCybuA8eNtVuGzIOu4uemhHsytmWbbdh3p-lrWTNgs4eltSxpRqGUdGC85VroIotyyFVDAP9pa6kC01N7ME-kEiEPl68Lr7jZPWRmJUZVC2WWiXSSHiRHjwvFGdridL1fOAryjVSldX_1QX544YHMFbgiu0B--W6nfbrTvlQJ1-_kte2SBN0-5t97_79hIeYiusOTK6B5tX82vzCmHdVd6DjSge4pNPeA-2DgenwxG-9Vm_5zZKem46_wEl4Uyu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIigXBOWngQJGAgkOYZM4iZMDQrC02qVNhUor7S04jtNW2k2W3RbojUfgSXgonoQZ56esoHDqMYkdOZ7JzDe25xuAJ-i2XS0iZRdhkNu-4tzO4kLYUkjJFfbiJl0s2QkH-_67UTBagh9tLgwdq2xtojHUeaVojbxHvOROECGgeDX9ZFPVKNpdbUto1GqxpU-_YMg2fzl8i_J96nmbG3v9gd1UFbBVIOLY5l6RKTf3JSJtt8h4VEQF4hYRaq6dKEf_nOV5XLgqjCW2dOIo0BitZehKsYOSHN97CS6j43Uo2BOjLsBDaGTWE9EjCxsNUNhQCQVe4PX0ZEKJ74bQjyqT_-YFTbGAvyHcPw9qdru1i1jaOMPNG3C9QbHsda12N2FJl6twpa5reboKV5Nmx_4WfO3vDj-832W9vpzHP799N5kqiHLZvDJksUxReRCTXMGqgklWVp_1GO_KAyosVs1YXRGIDUcMdV2zyUl9eIDJiR4TvwBiZXaoJ9WUloYkOyoZrWbo27B_IXK5A8tlVeo1YH4QKNcvZCHwfTjhCIFdL5QY-Wnu5C634EU7-6lqqNCpIsc4pZCIxJWSuNJOXBY86zpMaxaQ85u-IXF2zYi-29yoZgdpYw1SR2AYF8c-5yr2Pa0iIWQmHS8j-kMehRast8qQNjZlnp79ARY87h6jNaAtHllqnNvUJfsbRX4QWXC31p1uJF4Yh0QeZIFY0KqFoS4-KY8ODeM4osIATb8Fz1v9OxvWufPAjYL-b77SjSRJuqt7__7wR7Ay2Eu20-3hztZ9uIbdwvrw6TosH89O9AMEiMfZQ_NXMvh40WbgF8Hmc9Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVFRcEJQ_Q4FFAgkOJrHX9toHhGiaqKEkigqVcjPr9bqtlNghaYHeeASeh8fhSZhZ_5QICqcebe9a65nxzDf78w3AUwzbjhahsrPAT21PcW4nUSZsKaTkCntxc1xsOAp2D7y3E3-yBj_qszC0rbL2icZRp4WiOfI28ZJ3_BABRTurtkWMd_qv559sqiBFK611OY3SRPb02RdM35avBjuo62eu2-996O7aVYUBW_kiimzuZolyUk8i6nayhIdZmCGGEYHmuhOmGKuTNI0yRwWRxJadKPQ1Zm4JhlXsoCTH916BdUFZUQvWt3uj8X4dBxAomdlFjM_CRncUVMRCvuu7bT2b0TF4Q-9Hdcp_i4mmdMDf8O6f2zabtdtVZG1CY_8GXK8wLXtTGuFNWNP5Jlwtq1yebcLGsFq_vwVfu_uD9-N91u7KZfTz23dzbgUxL1sWhjqWKSoWYo5asCJjkuXFZz3Fu_KQyowVC1bWB2KDCUPL12x2Wm4lYHKmp8Q2gMiZHelZMaeJIsmOc0ZzG_o2HFyKZu5AKy9yfQ-Y5_vK8TKZCXwfChwBseMGEvNAzTupwy14WUs_VhUxOtXnmMaUIJG6YlJX3KjLgudNh3nJCXJx021SZ9OMyLzNjWJxGFe-Ie4ITOqiyONcRZ6rVSiETGTHTYgMkYeBBVu1McSVh1nG5_-DBU-ax-gbaMFH5hplGzvkjcPQ80ML7pa204zEDaKAqIQsECtWtTLU1Sf58ZHhH0eM6GMgsOBFbX_nw7pQDtwY6P_kFfeGw2Fzdf_fH_4YNtAFxO8Go70HcA17BeVO1C1onSxO9UNEiyfJo-q3ZPDxsj3BL8UseXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9%E2%80%90mediated+somatic+correction+of+a+novel+coagulator+factor+IX+gene+mutation+ameliorates+hemophilia+in+mouse&rft.jtitle=EMBO+molecular+medicine&rft.au=Guan%2C+Yuting&rft.au=Ma%2C+Yanlin&rft.au=Li%2C+Qi&rft.au=Sun%2C+Zhenliang&rft.date=2016-05-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=8&rft.issue=5&rft.spage=477&rft.epage=488&rft_id=info:doi/10.15252%2Femmm.201506039&rft_id=info%3Apmid%2F26964564&rft.externalDocID=PMC5125832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon