CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse
The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system...
Saved in:
Published in | EMBO molecular medicine Vol. 8; no. 5; pp. 477 - 488 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2016
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human
F9
gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the
F9
Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of
F9
alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated
in situ
genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
Synopsis
CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B.
Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human
F9
gene.
Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model.
Hepatic
in situ
correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice.
Graphical Abstract
CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. |
---|---|
AbstractList | The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
Synopsis
CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B.
Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene.
Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model.
Hepatic in situ correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice.
CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. Synopsis CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. Identification a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. Generation of three distinct genetically modified mouse models and confirmation that the mouse harboring the novel Y371D mutation is a new hemophilia B model. Hepatic in situ correction of the point mutation in the F9 allele via CRISPR/Cas9‐mediated genome editing was sufficient to restore hemostasis in hemophilia B mice. Graphical Abstract CRISPR/Cas9‐mediated genome editing holds promise for the treatment of genetic disorders, but its potential for hemophilia treatment is unknown. This study shows that in genome correction via Cas9 is a feasible therapeutic strategy for hemophilia B. The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. Abstract The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX , hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR /Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR /Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas‐mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. |
Author | Ma, Lie Zeng, Li Huang, Yuanhua Shao, Yanjiao Hu, Kewen Li, Qi Chen, Yuting Wu, Lijuan Ma, Ning Liu, Mingyao Li, Dali Lu, Wenqing Han, Honghui Sun, Zhenliang Ma, Yanlin Wang, Liren Yu, Yanhong Guan, Yuting |
AuthorAffiliation | 6 Department of Molecular and Cellular Medicine The Institute of Biosciences and Technology Texas A&M University Health Science Center Houston TX USA 4 Fengxian Hospital affiliated to Southern Medical University Shanghai China 1 Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China 3 Department of Obstetrics and Gynecology Nanfang Hospital Southern Medical University Guangzhou China 5 Bioray Laboratories Inc. Shanghai China 2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research Hainan Reproductive Medical Center the Affiliated Hospital of Hainan Medical University Hainan Medical University Haikou China |
AuthorAffiliation_xml | – name: 2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research Hainan Reproductive Medical Center the Affiliated Hospital of Hainan Medical University Hainan Medical University Haikou China – name: 4 Fengxian Hospital affiliated to Southern Medical University Shanghai China – name: 6 Department of Molecular and Cellular Medicine The Institute of Biosciences and Technology Texas A&M University Health Science Center Houston TX USA – name: 5 Bioray Laboratories Inc. Shanghai China – name: 1 Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China – name: 3 Department of Obstetrics and Gynecology Nanfang Hospital Southern Medical University Guangzhou China |
Author_xml | – sequence: 1 givenname: Yuting surname: Guan fullname: Guan, Yuting organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 2 givenname: Yanlin surname: Ma fullname: Ma, Yanlin email: mayl1990@foxmail.com organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University – sequence: 3 givenname: Qi surname: Li fullname: Li, Qi organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University – sequence: 4 givenname: Zhenliang surname: Sun fullname: Sun, Zhenliang organization: Fengxian Hospital affiliated to Southern Medical University – sequence: 5 givenname: Lie surname: Ma fullname: Ma, Lie organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 6 givenname: Lijuan surname: Wu fullname: Wu, Lijuan organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 7 givenname: Liren surname: Wang fullname: Wang, Liren organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 8 givenname: Li surname: Zeng fullname: Zeng, Li organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 9 givenname: Yanjiao surname: Shao fullname: Shao, Yanjiao organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 10 givenname: Yuting surname: Chen fullname: Chen, Yuting organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 11 givenname: Ning surname: Ma fullname: Ma, Ning organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University – sequence: 12 givenname: Wenqing surname: Lu fullname: Lu, Wenqing organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 13 givenname: Kewen surname: Hu fullname: Hu, Kewen organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University – sequence: 14 givenname: Honghui surname: Han fullname: Han, Honghui organization: Bioray Laboratories Inc – sequence: 15 givenname: Yanhong surname: Yu fullname: Yu, Yanhong organization: Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University – sequence: 16 givenname: Yuanhua surname: Huang fullname: Huang, Yuanhua organization: Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Hainan Medical University – sequence: 17 givenname: Mingyao surname: Liu fullname: Liu, Mingyao email: myliu@bio.ecnu.edu.cn organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Department of Molecular and Cellular Medicine, The Institute of Biosciences and Technology, Texas A&M University Health Science Center – sequence: 18 givenname: Dali surname: Li fullname: Li, Dali email: dlli@bio.ecnu.edu.cn organization: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26964564$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v0zAYxyM0xLbCmRuKxIVLV8eO3zggoWpApVWgARI3y3GetK6cuNjJpt34CHxGPgles5Vt0sTpsez_7-_n7Tg76HwHWfayQCcFxRTPoG3bE4wKihgi8kl2VHDKpyUT5cH-zNlhdhzjBiFGWSGeZYeYSVZSVh5ll_Pzxdcv57O5jvLPr98t1Fb3UOfRt7q3Jjc-BDC99V3um1znnb8Al271anC69yFvtLkOix_5CjrI26HXO7VuwVkfklnM19D67do6q3Pb5a0fIjzPnjbaRXhxEyfZ9w-n3-afpmefPy7m78-mhnIppwQ3lSnqUlPOiqYiohENoiVnQACJmkhe1bVsCsOkTkokBQWKScUFToDRZJItRt_a643aBtvqcKW8tmp34cNK6ZAKdaAQl7yUsiTEyBKDEZzrSiNcCcYlESx5vRu9tkOVGmWg64N290zvv3R2rVb-QtECU0FwMnhzYxD8zwFir1obDTinO0hNUQUXHAlRJvEke_1AuvFD6FKrFMYSISoYRUn16m5G-1Ru55sEdBSY4GMM0ChjxwGlBK1TBVK7PVLXe6T2e5S42QPu1vpx4u1IXFoHV_-Tq9PlcnkXRiMcE9etIPyr9rH__gKiJuyw |
CitedBy_id | crossref_primary_10_1186_s13059_019_1907_9 crossref_primary_10_3390_ijms24109013 crossref_primary_10_1371_journal_pone_0239411 crossref_primary_10_3390_ijms241713447 crossref_primary_10_1016_j_jconrel_2019_02_009 crossref_primary_10_1016_j_omtn_2020_04_012 crossref_primary_10_1080_17476348_2019_1634547 crossref_primary_10_1111_bjh_14297 crossref_primary_10_1002_jcb_26165 crossref_primary_10_1007_s40259_024_00654_5 crossref_primary_10_1016_j_ymthe_2018_02_023 crossref_primary_10_1038_s41392_019_0089_y crossref_primary_10_1007_s13167_023_00324_6 crossref_primary_10_1016_j_exer_2017_06_007 crossref_primary_10_1016_j_jconrel_2020_09_003 crossref_primary_10_1089_hum_2017_210 crossref_primary_10_1038_s41587_023_01821_9 crossref_primary_10_1021_acsmaterialslett_0c00041 crossref_primary_10_1016_j_mce_2017_11_023 crossref_primary_10_1177_2040620717746312 crossref_primary_10_1620_tjem_256_197 crossref_primary_10_1007_s12033_023_00739_6 crossref_primary_10_1016_j_omtm_2020_06_022 crossref_primary_10_1038_ncomms15464 crossref_primary_10_15407_visn2020_03_050 crossref_primary_10_5482_HAMO_16_09_0035 crossref_primary_10_1186_s13287_024_03848_4 crossref_primary_10_1002_cac2_12366 crossref_primary_10_1016_j_kint_2018_10_038 crossref_primary_10_1007_s11596_022_2645_x crossref_primary_10_3390_ijms241310766 crossref_primary_10_1016_j_csbj_2020_08_031 crossref_primary_10_1038_s12276_020_0466_1 crossref_primary_10_3390_genes13101727 crossref_primary_10_1016_j_mad_2021_111549 crossref_primary_10_1038_s41434_020_0163_7 crossref_primary_10_1126_sciadv_adr8648 crossref_primary_10_3892_ijmm_2020_4609 crossref_primary_10_2147_BTT_S265767 crossref_primary_10_1089_hum_2017_213 crossref_primary_10_1007_s00439_017_1801_z crossref_primary_10_1016_j_omtn_2018_12_008 crossref_primary_10_3390_diseases5010006 crossref_primary_10_3390_genes11101113 crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_3389_fgeed_2022_785698 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_1007_s00393_017_0267_7 crossref_primary_10_1038_s41434_018_0003_1 crossref_primary_10_3390_pharmaceutics14061252 crossref_primary_10_3390_genes14020483 crossref_primary_10_1186_s43556_022_00095_y crossref_primary_10_1002_wsbm_1408 crossref_primary_10_1016_j_jgg_2021_01_008 crossref_primary_10_5482_HAMO_17_01_0001 crossref_primary_10_1016_j_omtm_2023_101161 crossref_primary_10_1097_MBC_0000000000001126 crossref_primary_10_3390_ijms20123036 crossref_primary_10_1002_biot_201800195 crossref_primary_10_1097_HEP_0000000000000578 crossref_primary_10_1016_j_lfs_2023_122165 crossref_primary_10_1089_hum_2023_112 crossref_primary_10_3390_ijms23084410 crossref_primary_10_1002_ajh_24543 crossref_primary_10_34172_bi_2022_23871 crossref_primary_10_1186_s11658_022_00336_6 crossref_primary_10_1007_s00439_016_1699_x crossref_primary_10_1016_j_nantod_2020_100895 crossref_primary_10_3390_app10249001 crossref_primary_10_1016_j_celrep_2018_03_121 crossref_primary_10_3324_haematol_2019_224063 crossref_primary_10_3389_fnmol_2017_00142 crossref_primary_10_1111_hae_14101 crossref_primary_10_1186_s12929_018_0425_5 crossref_primary_10_1007_s40291_019_00392_3 crossref_primary_10_1016_j_ymthe_2017_03_033 crossref_primary_10_1089_crispr_2020_0025 crossref_primary_10_1038_s41598_017_04625_5 crossref_primary_10_3389_fgeed_2022_1037290 crossref_primary_10_1186_s13287_018_0839_8 crossref_primary_10_3389_fnins_2017_00175 crossref_primary_10_3390_ijms242015301 crossref_primary_10_1097_MNH_0000000000000790 crossref_primary_10_1007_s13346_023_01320_z crossref_primary_10_1007_s11427_020_1744_6 crossref_primary_10_1002_ctm2_261 crossref_primary_10_1093_bfgp_elz031 crossref_primary_10_1080_10717544_2018_1474964 crossref_primary_10_1007_s11427_017_9057_2 crossref_primary_10_1007_s12033_023_00932_7 crossref_primary_10_1093_nar_gky548 crossref_primary_10_1016_j_pep_2024_106500 crossref_primary_10_2491_jjsth_28_24 crossref_primary_10_1093_bfgp_elw031 crossref_primary_10_1038_gt_2017_62 crossref_primary_10_3390_ijms22147456 crossref_primary_10_1016_j_omtm_2021_03_025 crossref_primary_10_1002_jcb_26627 crossref_primary_10_1007_s12015_023_10585_3 crossref_primary_10_1155_2021_8689873 crossref_primary_10_1016_j_gene_2016_11_008 crossref_primary_10_1016_j_ymthe_2020_05_001 crossref_primary_10_1016_j_jddst_2025_106798 crossref_primary_10_1016_j_ymthe_2021_09_002 crossref_primary_10_1097_HC9_0000000000000424 crossref_primary_10_1074_jbc_RA117_000347 crossref_primary_10_1007_s40271_020_00442_7 crossref_primary_10_1007_s00277_023_05457_2 crossref_primary_10_1016_j_plantsci_2019_01_006 crossref_primary_10_1080_14712598_2020_1817375 crossref_primary_10_1002_ajh_26018 crossref_primary_10_1007_s12038_020_00057_y crossref_primary_10_1021_acssynbio_7b00011 crossref_primary_10_1016_j_bbrc_2022_08_076 crossref_primary_10_1124_dmd_118_084277 crossref_primary_10_15252_emmm_201606325 crossref_primary_10_1002_jcb_26111 crossref_primary_10_7717_peerj_17261 crossref_primary_10_1089_hum_2021_145 crossref_primary_10_1016_j_jgg_2022_06_001 crossref_primary_10_1080_1744666X_2018_1539667 crossref_primary_10_18632_oncotarget_15215 crossref_primary_10_1016_j_ymthe_2018_07_024 |
Cites_doi | 10.1016/j.cell.2014.01.027 10.1038/sj.cgt.7701119 10.1089/10430340460732445 10.1038/nmeth.3075 10.1126/science.8211118 10.1126/science.1232033 10.1038/cr.2013.46 10.1038/73464 10.1038/ng0797-270 10.1038/nature14299 10.1182/blood-2013-04-497354 10.1038/nprot.2014.171 10.1182/blood.V91.3.784 10.1016/j.stem.2015.07.001 10.1016/j.stem.2013.11.002 10.1038/nbt.2501 10.7554/eLife.04766 10.1038/nature10177 10.1038/nbt.2661 10.1074/jbc.M105432200 10.1161/CIRCRESAHA.115.304351 10.1038/sj.gt.3300947 10.1055/s-0037-1615621 10.1016/j.cell.2013.04.025 10.1089/hum.2013.2527 10.1038/75568 10.1126/science.1225829 10.1038/nrg2971 10.1038/nbt.2884 10.1089/10430349950018364 10.1016/0076-6879(93)22011-4 10.1038/nature13864 10.1056/NEJMoa1407309 10.1016/j.stem.2013.10.016 10.1126/science.1254445 10.1126/science.1258096 10.1111/jth.12276 10.1126/science.1231143 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2016 2016 The Authors. Published under the terms of the CC BY 4.0 license 2016 The Authors. Published under the terms of the CC BY 4.0 license. 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2016 – notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.15252/emmm.201506039 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Yuting Guan et al |
EISSN | 1757-4684 |
EndPage | 488 |
ExternalDocumentID | oai_doaj_org_article_0797499433c942ec877aba02b8679386 PMC5125832 26964564 10_15252_emmm_201506039 EMMM201506039 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Mali China |
GeographicLocations_xml | – name: Mali – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021 funderid: 10.13039/501100001809 – fundername: State Key Development Programs of China grantid: 2012CB910400; 2012CB966502 – fundername: International Science & Technology Cooperation Program of China grantid: 2014DFA30180 – fundername: Shanghai Municipal Commission for Science and Technology grantid: 14140900300; 15JC1400201 – fundername: International Science & Technology Cooperation Program of China funderid: 2014DFA30180 – fundername: State Key Development Programs of China funderid: 2012CB910400; 2012CB966502 – fundername: Shanghai Municipal Commission for Science and Technology funderid: 14140900300; 15JC1400201 – fundername: National Natural Science Foundation of China funderid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021 – fundername: National Natural Science Foundation of China grantid: 31371455; 81202104; 81330049; 81060016; 81460034; 81260032; 31140021 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAJSJ AAMMB AAZKR ABOCM ABUWG ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AFBPY AFKRA AGXDD AHMBA AIAGR AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M48 M7P NNB O9- OIG OK1 OVD P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ AAHHS ABJNI ACCFJ ADPDF ADZOD AEEZP AEQDE AFZJQ AIWBW AJBDE EBLON GODZA H13 M~E OVEED RHF AASML AAYXX CITATION NAO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5799-32fbc1d4a5761fb38f8f05476e3e08d397bdd9f1c69afbc0985e523b782761ca3 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:20:55 EDT 2025 Thu Aug 21 13:16:29 EDT 2025 Fri Jul 11 10:44:40 EDT 2025 Wed Aug 13 04:39:50 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Wed Jan 22 17:05:42 EST 2025 Sat Aug 09 01:12:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | genome editing gene therapy monogenetic disease hemostasis hemophilia B |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5799-32fbc1d4a5761fb38f8f05476e3e08d397bdd9f1c69afbc0985e523b782761ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201506039 |
PMID | 26964564 |
PQID | 2290058650 |
PQPubID | 866378 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0797499433c942ec877aba02b8679386 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5125832 proquest_miscellaneous_1787088458 proquest_journals_2290058650 pubmed_primary_26964564 crossref_citationtrail_10_15252_emmm_201506039 crossref_primary_10_15252_emmm_201506039 wiley_primary_10_15252_emmm_201506039_EMMM201506039 springer_journals_10_15252_emmm_201506039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2015; 17 2000; 25 2000; 24 2015; 520 2013; 23 2002; 277 2013; 122 2008; 15 2014; 25 1993; 262 2011; 12 2014; 371 1999; 6 2011; 475 2014; 115 2001; 85 2014; 156 1993; 222 2014; 3 2013; 11 2013; 339 2013; 13 2004; 15 2013; 31 2015; 517 1999; 10 1997; 16 1998; 91 2013; 153 2014; 9 2012; 337 2014; 345 2014; 346 2014; 11 2014; 32 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 27138565 - EMBO Mol Med. 2016 May 02;8(5):439-41 |
References_xml | – volume: 11 start-page: 1329 year: 2013 end-page: 1340 article-title: An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B publication-title: J Thromb Haemost – volume: 85 start-page: 560 year: 2001 article-title: Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis publication-title: Thromb Haemost – volume: 222 start-page: 143 year: 1993 end-page: 169 article-title: Characterization of factor IX defects in hemophilia B patients publication-title: Methods Enzymol – volume: 115 start-page: 488 year: 2014 end-page: 492 article-title: Permanent alteration of PCSK9 with in vivo CRISPR‐Cas9 genome editing publication-title: Circ Res – volume: 122 start-page: 3283 year: 2013 end-page: 3287 article-title: Robust ZFN‐mediated genome editing in adult hemophilic mice publication-title: Blood – volume: 15 start-page: 35 year: 2004 end-page: 46 article-title: Acute toxicity after high‐dose systemic injection of helper‐dependent adenoviral vectors into nonhuman primates publication-title: Hum Gene Ther – volume: 520 start-page: 186 year: 2015 end-page: 191 article-title: In vivo genome editing using Cas9 publication-title: Nature – volume: 3 start-page: e04766 year: 2014 article-title: Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: Elife – volume: 277 start-page: 25393 year: 2002 end-page: 25399 article-title: Identification of functionally important residues of the epidermal growth factor‐2 domain of factor IX by alanine‐scanning mutagenesis. Residues Asn(89)‐Gly(93) are critical for binding factor VIIIa publication-title: J Biol Chem – volume: 15 start-page: 225 year: 2008 end-page: 230 article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human publication-title: Cancer Gene Ther – volume: 23 start-page: 720 year: 2013 end-page: 723 article-title: Generation of gene‐modified mice via Cas9/RNA‐mediated gene targeting publication-title: Cell Res – volume: 31 start-page: 227 year: 2013 end-page: 229 article-title: Efficient genome editing in zebrafish using a CRISPR‐Cas system publication-title: Nat Biotechnol – volume: 337 start-page: 816 year: 2012 end-page: 821 article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 25 start-page: 35 year: 2000 end-page: 41 article-title: Somatic integration and long‐term transgene expression in normal and haemophilic mice using a DNA transposon system publication-title: Nat Genet – volume: 17 start-page: 213 year: 2015 end-page: 220 article-title: Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient‐derived iPSCs using CRISPR‐Cas9 publication-title: Cell Stem Cell – volume: 153 start-page: 910 year: 2013 end-page: 918 article-title: One‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering publication-title: Cell – volume: 11 start-page: 1051 year: 2014 end-page: 1057 article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases publication-title: Nat Methods – volume: 517 start-page: 360 year: 2015 end-page: 364 article-title: Promoterless gene targeting without nucleases ameliorates haemophilia B in mice publication-title: Nature – volume: 6 start-page: 1258 year: 1999 end-page: 1266 article-title: Hydrodynamics‐based transfection in animals by systemic administration of plasmid DNA publication-title: Gene Ther – volume: 32 start-page: 551 year: 2014 end-page: 553 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat Biotechnol – volume: 371 start-page: 1994 year: 2014 end-page: 2004 article-title: Long‐term safety and efficacy of factor IX gene therapy in hemophilia B publication-title: N Engl J Med – volume: 25 start-page: 3 year: 2014 end-page: 11 article-title: Adenovirus: the first effective in vivo gene delivery vector publication-title: Hum Gene Ther – volume: 24 start-page: 257 year: 2000 end-page: 261 article-title: Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector publication-title: Nat Genet – volume: 10 start-page: 965 year: 1999 end-page: 976 article-title: Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil‐dependent hepatic injury in vivo publication-title: Hum Gene Ther – volume: 475 start-page: 217 year: 2011 end-page: 221 article-title: In vivo genome editing restores haemostasis in a mouse model of haemophilia publication-title: Nature – volume: 339 start-page: 819 year: 2013 end-page: 823 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 31 start-page: 681 year: 2013 end-page: 683 article-title: Heritable gene targeting in the mouse and rat using a CRISPR‐Cas system publication-title: Nat Biotechnol – volume: 91 start-page: 784 year: 1998 end-page: 790 article-title: Human factor IX corrects the bleeding diathesis of mice with hemophilia B publication-title: Blood – volume: 345 start-page: 1184 year: 2014 end-page: 1188 article-title: Prevention of muscular dystrophy in mice by CRISPR/Cas9‐mediated editing of germline DNA publication-title: Science – volume: 12 start-page: 316 year: 2011 end-page: 328 article-title: State‐of‐the‐art gene‐based therapies: the road ahead publication-title: Nat Rev Genet – volume: 346 start-page: 1258096 year: 2014 article-title: Genome editing. The new frontier of genome engineering with CRISPR‐Cas9 publication-title: Science – volume: 339 start-page: 823 year: 2013 end-page: 826 article-title: RNA‐guided human genome engineering via Cas9 publication-title: Science – volume: 13 start-page: 659 year: 2013 end-page: 662 article-title: Correction of a genetic disease in mouse via use of CRISPR‐Cas9 publication-title: Cell Stem Cell – volume: 13 start-page: 653 year: 2013 end-page: 658 article-title: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients publication-title: Cell Stem Cell – volume: 262 start-page: 117 year: 1993 end-page: 119 article-title: In vivo gene therapy of hemophilia B: sustained partial correction in factor IX‐deficient dogs publication-title: Science – volume: 9 start-page: 2493 year: 2014 end-page: 2512 article-title: CRISPR/Cas‐mediated genome editing in the rat via direct injection of one‐cell embryos publication-title: Nat Protoc – volume: 16 start-page: 270 year: 1997 end-page: 276 article-title: Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors publication-title: Nat Genet – volume: 156 start-page: 836 year: 2014 end-page: 843 article-title: Generation of gene‐modified cynomolgus monkey via Cas9/RNA‐mediated gene targeting in one‐cell embryos publication-title: Cell – ident: e_1_2_9_26_1 doi: 10.1016/j.cell.2014.01.027 – ident: e_1_2_9_16_1 doi: 10.1038/sj.cgt.7701119 – ident: e_1_2_9_4_1 doi: 10.1089/10430340460732445 – ident: e_1_2_9_10_1 doi: 10.1038/nmeth.3075 – ident: e_1_2_9_13_1 doi: 10.1126/science.8211118 – ident: e_1_2_9_23_1 doi: 10.1126/science.1232033 – ident: e_1_2_9_32_1 doi: 10.1038/cr.2013.46 – ident: e_1_2_9_14_1 doi: 10.1038/73464 – ident: e_1_2_9_33_1 doi: 10.1038/ng0797-270 – ident: e_1_2_9_29_1 doi: 10.1038/nature14299 – ident: e_1_2_9_2_1 doi: 10.1182/blood-2013-04-497354 – ident: e_1_2_9_31_1 doi: 10.1038/nprot.2014.171 – ident: e_1_2_9_17_1 doi: 10.1182/blood.V91.3.784 – ident: e_1_2_9_27_1 doi: 10.1016/j.stem.2015.07.001 – ident: e_1_2_9_30_1 doi: 10.1016/j.stem.2013.11.002 – ident: e_1_2_9_11_1 doi: 10.1038/nbt.2501 – ident: e_1_2_9_20_1 doi: 10.7554/eLife.04766 – ident: e_1_2_9_18_1 doi: 10.1038/nature10177 – ident: e_1_2_9_19_1 doi: 10.1038/nbt.2661 – ident: e_1_2_9_5_1 doi: 10.1074/jbc.M105432200 – ident: e_1_2_9_8_1 doi: 10.1161/CIRCRESAHA.115.304351 – ident: e_1_2_9_21_1 doi: 10.1038/sj.gt.3300947 – ident: e_1_2_9_36_1 doi: 10.1055/s-0037-1615621 – ident: e_1_2_9_35_1 doi: 10.1016/j.cell.2013.04.025 – ident: e_1_2_9_7_1 doi: 10.1089/hum.2013.2527 – ident: e_1_2_9_38_1 doi: 10.1038/75568 – ident: e_1_2_9_12_1 doi: 10.1126/science.1225829 – ident: e_1_2_9_15_1 doi: 10.1038/nrg2971 – ident: e_1_2_9_39_1 doi: 10.1038/nbt.2884 – ident: e_1_2_9_24_1 doi: 10.1089/10430349950018364 – ident: e_1_2_9_34_1 doi: 10.1016/0076-6879(93)22011-4 – ident: e_1_2_9_3_1 doi: 10.1038/nature13864 – ident: e_1_2_9_25_1 doi: 10.1056/NEJMoa1407309 – ident: e_1_2_9_37_1 doi: 10.1016/j.stem.2013.10.016 – ident: e_1_2_9_22_1 doi: 10.1126/science.1254445 – ident: e_1_2_9_9_1 doi: 10.1126/science.1258096 – ident: e_1_2_9_28_1 doi: 10.1111/jth.12276 – ident: e_1_2_9_6_1 doi: 10.1126/science.1231143 – reference: 27138565 - EMBO Mol Med. 2016 May 02;8(5):439-41 |
SSID | ssj0065618 |
Score | 2.4978614 |
Snippet | The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome... The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome... The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX , hemophilia B, is a disease ideally suited for gene therapy with genome... Abstract The X‐linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 477 |
SubjectTerms | Adenoviridae - genetics Animal models Animals Child Coagulation factors CRISPR CRISPR-Cas Systems Deoxyribonucleic acid Disease Disease Models, Animal DNA EMBO16 EMBO18 Expression vectors Factor IX - genetics Factor IX deficiency Gene Editing - methods Gene loci Gene therapy Genetic disorders Genetic Therapy - methods Genetic Vectors Genome editing Genomes Hemophilia hemophilia B Hemophilia B - pathology Hemophilia B - therapy Hemostasis Hepatocytes Hereditary diseases Humans Male Males Mice monogenetic disease Mutation Mutation, Missense Phenotypes Point mutation Recombination, Genetic Research Article Toxicity Treatment Outcome Twins |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSiAuCMpfSkFG4gCHsEkcx_YRVq1apCBUqLQ3y3FstdImqbotiBuPwDPyJIztbOgKql44xrEdZzy2v7E93wC8wmU7t1yY1FWsTUtDadpIx1PNtaYGS9HgLlZ_rA6Oyw8LtrgS6svfCYv0wFFws4wj4pWypNTIsrBGcK4bnRWNZ4qjIpBt4_fWxlScgxGkhJ09XBt5ilNBNZL6sIIVM9t13gU9UOv5GOFX1qNA2_8vrPn3lcnp3HQT1YZlaf8-3BvxJHkX_-MB3LL9NtyOESa_b8Odejw7fwjf5keHnz8dzeZ6JX_9-BlcRhBuktUQWFuJ8XE6gpcDGRzRpB--2iWm6hCsfjgnMTQPOVwQVDpLust4ik90Z5fe0R9BKzmx3XDm92g0Oe2J31awj-B4f-_L_CAdwy6khnEpU1q4xuRtqdEUyV1DhRMOgR2vLLWZaBHANG0rXW4qqTFnJgWzaM42iDWwgNH0MWz1Q2-fAikZM3nptONYH8obsWheVBpNMEuzNqcJvF0LX5mRk9yHxlgqb5v43lK-t9TUWwm8ngqcRTqO67O-9705ZfM82iEBtUuN2qVu0q4Edte6oMbBvVKeIj9jArFtAi-n1zgs_VmL7i3KVuV-IhSiZCKBJ1F1ppYUlaw8i08CfEOpNpq6-aY_PQnU3wjPGM7BCbxZq9-fZl0rBxr08yZ5qb26rqennf8hvWdwFyus4v3QXdi6OL-0zxHDXTQvwnD9DRigPeo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMQFQfkLFGQkDnAIm8RxbJ8QrFq1SEGoUGlvkePYbaVNsuy2CG48As_IkzDjeFNWUDhuYq-c8dj-ZsbzDSHP4dhOrZAmdgVv4twwFtfKiVgLrZmBXsyni5Xvi_2j_N2Mz4LDbRWuVa73RL9RN71BH_kEeckTLgFQvF58jrFqFEZXQwmNq-QaUpehVovZaHABVPH-PTghRQwbQhGofXjGs4ltW0xE9wR7WCn8t1PJk_f_DXH-eXFyjJ5uYlt_OO3dJrcCqqRvBjW4Q67YbptcH-pMftsmN8oQQb9Lvk4PDz5-OKSTqV6pn99_-MwRQJ101XvyVmqwXIdPdqC9o5p2_Rc7h6fa16zvl3So0EMPZhR0z9L2fAjmU93aOeb7A3alJ7btF-iq0fS0o-hdsPfI0d7up-l-HKovxIYLpWKWudqkTa7BIkldzaSTDvCdKCyziWwAx9RNo1xqCqWhZaIkt2DV1gA5oIPR7D7Z6vrOPiQ059ykudNOwP-BwAGSplmhwRKzLGlSFpFXa-lXJlCTY4WMeYUmCk5XhdNVjdMVkRdjh8XAynF507c4nWMzpNP2D_rlcRVWZ5UIMKuUyhkzKs-skULoWidZjXSETBYR2VkrQxXW-Kq60MiIPBtfw-rEkIvuLMi2SnE_lDLnMiIPBt0ZR5IVqkAyn4iIDa3aGOrmm-70xDOAA0rjsBVH5OVa_y6GdakcmFfQ_8mr2i3Lcvz16N8f_pjchKbFcAF0h2ydLc_tEwBpZ_VTvxJ_AdwUNxU priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEYgLgvIKFGQkDnAITeL4dYSoVYsUhAqV9mY5jqNW2iRVt6XqjZ_Ab-SXMHaygYhWiNtuYifWPOxv7Mw3AK9x2U6dkDZuOKvj3FIaV6oRsRHGUIu9aEgXKz_xvcP844ItRpIknwvz5_k9y1i27drWJ4wHIjyqbsItllLhazQUvFhPuYhJwkYeLoUiRs_nI4fPFQ-YLT-Bpf8qaPn3F5LTMekcxIZVaPc-3BvhI3k_6PsB3HDdJtweCkpebsKdcjwqfwgXxcH-l88H24VZqZ_ff4QMEUSXZNUHklZifVmOkNRA-oYY0vXf3BKvmlCbvj8lQyUesr8gaGOOtOfDoT0xrVv6vH7EqOTItf2J35Ix5LgjfhfBPYLD3Z2vxV48VlmILRNKxTRrKpvWucHII20qKhvZII4T3FGXyBrxSlXXqkktVwZbJkoyh9FrhdACO1hDH8NG13fuKZCcMZvmjWkEPg_ljdAzzbjBiMvRpE5pBO_Wwtd2pCD3lTCW2ociXlvaa0tP2orgzdThZGDfuL7pB6_NqZmnzQ4X0Jr06IU6ERg-KZVTalWeOSuFMJVJssrTDlLJI9ha24IefXmlPSN-wiRC2QheTbfRC_3Riukcylanft6TMmcygieD6UwjybjinrQnAjEzqtlQ53e646PA9I1ojOGUG8Hbtfn9Hta1cqDBPv8lL71TluX079l_vOE53MXffPjqcws2zk7P3QtEZmfVy-CVvwAc1C9- priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9YwFA46UbwRnV_VKRG80Iu6tmnzcakvG5tQGdPB7kKaJm6wtuPtpnjnT_A3-ks8J_2QokPwrh9JCCfnJM9Jcp5DyEtYtlMnpI09L-o4t4zFlfIiNsIYZqEWC-Fi5Qe-d5S_Py6m24QYCzPwQ8wbbmgZYb5GAzdVP2XsQdZQ1zQYSh4o8pi6Tm5ggC3e6svyg2kyBrQStvhgkRQxzAl8ZPfBJraXDSwWpsDf_zfQ-efdyfkAdQlvw_q0e5fcGYElfTtowj1yzbWb5OaQavLbJrlVjofo98nX1eH-x4PD7ZXp1c_vP0LsCOBO2neBvpVaTNgRwh1o56mhbffFncFXE7LWd2s65Oih-8cUtM_R5nI4zqemAZGiSrmenrimO8fNGkNPW4r7C-4BOdrd-bTai8f8C7EthFIxy3xl0zo34JOkvmLSSw8IT3DHXCJrQDJVXSufWq4MlEyULBz4tRWADqhgDXtINtqudY8JzYvCprk3XkB7IG8ApWnGDfhijiV1yiLyZhK-tiM5OebIONPopOBoaRwtPY9WRF7NFc4HXo6ri77D0ZyLIaF2-NCtP-vRPnUiwLFSKmfMqjxzVgphKpNkFRISMskjsjXpgh6tvNfIlZ8UEkBuRF7Mv8E-8dDFtA5kq1OcEaXMCxmRR4PqzD3JuOJI5xMRsVCqRVeXf9rTk8ABDjitgMk4Iq8n9fvdrSvlwIJ-_kteeqcsy_ntyX_VekpuwzMfboZukY2L9aV7Bujtonoe7PMXo507DQ priority: 102 providerName: Wiley-Blackwell |
Title | CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse |
URI | https://link.springer.com/article/10.15252/emmm.201506039 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201506039 https://www.ncbi.nlm.nih.gov/pubmed/26964564 https://www.proquest.com/docview/2290058650 https://www.proquest.com/docview/1787088458 https://pubmed.ncbi.nlm.nih.gov/PMC5125832 https://doaj.org/article/0797499433c942ec877aba02b8679386 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7RViAuFZS_lLIyEgc4pE3ixD8HhOhqqxYp1Wphpb1FjuO0lXaTstsCvfEIPCNPwtjJplqxFRKXSElsyxqPPd947G8A3qDZDg0X2i9ZUvixptTPZcl9xZWiGmtRd10sPWXH4_jTJJncpgNqBbhY69rZfFLj-XT_x9ebDzjh37fZe6IDM5vZS-WOLI_KDdhCs8RtOoM07kIKiFvcZh-aS-7j6sBanp81DViCYCaZJVpZsVaO1H8dEv37QGUXVV3FvM5oHT2C7RZtko-NejyGe6bagftN_smbHXiQtpH1J_C9Pzr5PBwd9NVC_v75y10oQTBKFrXjdCXaZvFwdyBIXRJFqvqbmeJX5VLZ13PSJO4hJxOCKmnI7LqJ8RM1M1NLA4CQlpybWX1pd3AUuaiI3XQwT2F8NPjSP_bbpAy-TriUPo3KXIdFrNBRCcucilKUCPs4M9QEokB4kxeFLEPNpMKSgRSJQWc3RySCFbSiz2CzqivzAkicJDqMS1VybA9Fj0g1jJhCB83QoAipB_tL4We6ZSy3iTOmmfVc7MBlduCybuA8eNtVuGzIOu4uemhHsytmWbbdh3p-lrWTNgs4eltSxpRqGUdGC85VroIotyyFVDAP9pa6kC01N7ME-kEiEPl68Lr7jZPWRmJUZVC2WWiXSSHiRHjwvFGdridL1fOAryjVSldX_1QX544YHMFbgiu0B--W6nfbrTvlQJ1-_kte2SBN0-5t97_79hIeYiusOTK6B5tX82vzCmHdVd6DjSge4pNPeA-2DgenwxG-9Vm_5zZKem46_wEl4Uyu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIigXBOWngQJGAgkOYZM4iZMDQrC02qVNhUor7S04jtNW2k2W3RbojUfgSXgonoQZ56esoHDqMYkdOZ7JzDe25xuAJ-i2XS0iZRdhkNu-4tzO4kLYUkjJFfbiJl0s2QkH-_67UTBagh9tLgwdq2xtojHUeaVojbxHvOROECGgeDX9ZFPVKNpdbUto1GqxpU-_YMg2fzl8i_J96nmbG3v9gd1UFbBVIOLY5l6RKTf3JSJtt8h4VEQF4hYRaq6dKEf_nOV5XLgqjCW2dOIo0BitZehKsYOSHN97CS6j43Uo2BOjLsBDaGTWE9EjCxsNUNhQCQVe4PX0ZEKJ74bQjyqT_-YFTbGAvyHcPw9qdru1i1jaOMPNG3C9QbHsda12N2FJl6twpa5reboKV5Nmx_4WfO3vDj-832W9vpzHP799N5kqiHLZvDJksUxReRCTXMGqgklWVp_1GO_KAyosVs1YXRGIDUcMdV2zyUl9eIDJiR4TvwBiZXaoJ9WUloYkOyoZrWbo27B_IXK5A8tlVeo1YH4QKNcvZCHwfTjhCIFdL5QY-Wnu5C634EU7-6lqqNCpIsc4pZCIxJWSuNJOXBY86zpMaxaQ85u-IXF2zYi-29yoZgdpYw1SR2AYF8c-5yr2Pa0iIWQmHS8j-kMehRast8qQNjZlnp79ARY87h6jNaAtHllqnNvUJfsbRX4QWXC31p1uJF4Yh0QeZIFY0KqFoS4-KY8ODeM4osIATb8Fz1v9OxvWufPAjYL-b77SjSRJuqt7__7wR7Ay2Eu20-3hztZ9uIbdwvrw6TosH89O9AMEiMfZQ_NXMvh40WbgF8Hmc9Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVFRcEJQ_Q4FFAgkOJrHX9toHhGiaqKEkigqVcjPr9bqtlNghaYHeeASeh8fhSZhZ_5QICqcebe9a65nxzDf78w3AUwzbjhahsrPAT21PcW4nUSZsKaTkCntxc1xsOAp2D7y3E3-yBj_qszC0rbL2icZRp4WiOfI28ZJ3_BABRTurtkWMd_qv559sqiBFK611OY3SRPb02RdM35avBjuo62eu2-996O7aVYUBW_kiimzuZolyUk8i6nayhIdZmCGGEYHmuhOmGKuTNI0yRwWRxJadKPQ1Zm4JhlXsoCTH916BdUFZUQvWt3uj8X4dBxAomdlFjM_CRncUVMRCvuu7bT2b0TF4Q-9Hdcp_i4mmdMDf8O6f2zabtdtVZG1CY_8GXK8wLXtTGuFNWNP5Jlwtq1yebcLGsFq_vwVfu_uD9-N91u7KZfTz23dzbgUxL1sWhjqWKSoWYo5asCJjkuXFZz3Fu_KQyowVC1bWB2KDCUPL12x2Wm4lYHKmp8Q2gMiZHelZMaeJIsmOc0ZzG_o2HFyKZu5AKy9yfQ-Y5_vK8TKZCXwfChwBseMGEvNAzTupwy14WUs_VhUxOtXnmMaUIJG6YlJX3KjLgudNh3nJCXJx021SZ9OMyLzNjWJxGFe-Ie4ITOqiyONcRZ6rVSiETGTHTYgMkYeBBVu1McSVh1nG5_-DBU-ax-gbaMFH5hplGzvkjcPQ80ML7pa204zEDaKAqIQsECtWtTLU1Sf58ZHhH0eM6GMgsOBFbX_nw7pQDtwY6P_kFfeGw2Fzdf_fH_4YNtAFxO8Go70HcA17BeVO1C1onSxO9UNEiyfJo-q3ZPDxsj3BL8UseXE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9%E2%80%90mediated+somatic+correction+of+a+novel+coagulator+factor+IX+gene+mutation+ameliorates+hemophilia+in+mouse&rft.jtitle=EMBO+molecular+medicine&rft.au=Guan%2C+Yuting&rft.au=Ma%2C+Yanlin&rft.au=Li%2C+Qi&rft.au=Sun%2C+Zhenliang&rft.date=2016-05-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=8&rft.issue=5&rft.spage=477&rft.epage=488&rft_id=info:doi/10.15252%2Femmm.201506039&rft_id=info%3Apmid%2F26964564&rft.externalDocID=PMC5125832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |