Inhibition of carnitine palymitoyltransferase1b induces cardiac hypertrophy and mortality in mice

Recent reports suggest that short‐term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and t...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 16; no. 8; pp. 757 - 760
Main Authors Haynie, K. R., Vandanmagsar, B., Wicks, S. E., Zhang, J., Mynatt, R. L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-8902
1463-1326
1463-1326
DOI10.1111/dom.12248

Cover

Loading…
Abstract Recent reports suggest that short‐term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart‐ and skeletal muscle‐specific deletion of the Cpt1b, Cpt1bHM−/−. These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1bHM−/− mice. The hearts of Cpt1bHM−/− mice were four times the size of controls. Cpt1bHM−/− mice were also subject to stress‐induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
AbstractList Recent reports suggest that short-term pharmacological Cpt1 inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. While this appears promising for the treatment of diabetes these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart and skeletal muscle specific deletion of the Cpt1b, Cpt1b HM−/− . These mice seem to develop normally with similar bodyweights as control mice. However, by 15 weeks of age the Cpt1b HM−/− mice begin to die. The hearts of Cpt1b HM−/− mice were 4-times the size of controls. Cpt1b HM−/− mice were also subject to stress-induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
Recent reports suggest that short-term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart- and skeletal muscle-specific deletion of the Cpt1b, Cpt1b(HM-/-). These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1b(HM-/-) mice. The hearts of Cpt1b(HM-/-) mice were four times the size of controls. Cpt1b(HM-/-) mice were also subject to stress-induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.Recent reports suggest that short-term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart- and skeletal muscle-specific deletion of the Cpt1b, Cpt1b(HM-/-). These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1b(HM-/-) mice. The hearts of Cpt1b(HM-/-) mice were four times the size of controls. Cpt1b(HM-/-) mice were also subject to stress-induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
Recent reports suggest that short‐term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart‐ and skeletal muscle‐specific deletion of the Cpt1b, Cpt1b HM −/− . These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1b HM −/− mice. The hearts of Cpt1b HM −/− mice were four times the size of controls. Cpt1b HM −/− mice were also subject to stress‐induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
Recent reports suggest that short‐term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart‐ and skeletal muscle‐specific deletion of the Cpt1b, Cpt1bHM−/−. These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1bHM−/− mice. The hearts of Cpt1bHM−/− mice were four times the size of controls. Cpt1bHM−/− mice were also subject to stress‐induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
Recent reports suggest that short-term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart- and skeletal muscle-specific deletion of the Cpt1b, Cpt1b(HM-/-). These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15 weeks of age in the Cpt1b(HM-/-) mice. The hearts of Cpt1b(HM-/-) mice were four times the size of controls. Cpt1b(HM-/-) mice were also subject to stress-induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable.
Recent reports suggest that short-term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. Although this appears promising for the treatment of diabetes, these Cpt1 inhibitors are not specific to skeletal muscle and target multiple Cpt1 isoforms. To assess the effects of inhibiting the Cpt1b isoform we generated mice with a heart- and skeletal muscle-specific deletion of the Cpt1b, Cpt1bHM-/-. These mice seem to develop normally with similar bodyweights as control mice. However, premature mortality was observed by 15weeks of age in the Cpt1bHM-/- mice. The hearts of Cpt1bHM-/- mice were four times the size of controls. Cpt1bHM-/- mice were also subject to stress-induced seizures that accompanied an increased risk for premature mortality. Our data suggests that prolonged Cpt1b inhibition poses severe cardiac risk and emphasizes that attempts to improve insulin sensitivity by targeting Cpt1 with current inhibitors is not viable. [PUBLICATION ABSTRACT]
Author Wicks, S. E.
Vandanmagsar, B.
Mynatt, R. L.
Zhang, J.
Haynie, K. R.
AuthorAffiliation 1 Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
AuthorAffiliation_xml – name: 1 Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
Author_xml – sequence: 1
  givenname: K. R.
  surname: Haynie
  fullname: Haynie, K. R.
  organization: Pennington Biomedical Research Center, Louisiana State University System, LA, Baton Rouge, USA
– sequence: 2
  givenname: B.
  surname: Vandanmagsar
  fullname: Vandanmagsar, B.
  organization: Pennington Biomedical Research Center, Louisiana State University System, LA, Baton Rouge, USA
– sequence: 3
  givenname: S. E.
  surname: Wicks
  fullname: Wicks, S. E.
  organization: Pennington Biomedical Research Center, Louisiana State University System, LA, Baton Rouge, USA
– sequence: 4
  givenname: J.
  surname: Zhang
  fullname: Zhang, J.
  organization: Pennington Biomedical Research Center, Louisiana State University System, LA, Baton Rouge, USA
– sequence: 5
  givenname: R. L.
  surname: Mynatt
  fullname: Mynatt, R. L.
  email: randall.mynatt@pbrc.edu
  organization: Pennington Biomedical Research Center, Louisiana State University System, LA, Baton Rouge, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24330405$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URB-w4A-gSGxgkXb8SpwNUlWgrVQoQiAqNpbjOFyXxA52AuTf4_TeW0EFeGNb_s7RjM_sox3nnUHoMYZDnNZR4_tDTAgT99AeZgXNMSXFzs2Z5KICsov2Y7wGAEZF-QDtEkYpMOB7SJ27la3taL3LfJtpFVy6OJMNqpt7O_q5G4NysTVBRYPrzLpm0iYuZGOVzlbzYMIY_LCaM-WarPdhVJ0d50RmvdXmIbrfqi6aR5v9AH18_erDyVl-cXl6fnJ8kWteViIXRBdCk0rgtmk54W3BQRhFSsZAQElrTgkuAAQGyqBIIloQozFg0TaC1PQAvVj7DlPdm0Yblwrv5BBsr8IsvbLyzxdnV_KL_y7TPyxeyeDZxiD4b5OJo-xt1KbrlDN-ihJzVnICVbWgT--g134KLrUnKfCKAWMphv9QyYunMFgpEvXk97pvC95mlICjNaCDjzGYVmo7qiWx1IbtJAa5TIFMUyBvpiApnt9RbE3_xm7cf9jOzP8G5cvLN1tFvlbYOJqftwoVvsqipCWXn96eyrPPUF29fyfkFf0FbnrPXg
CODEN DOMEF6
CitedBy_id crossref_primary_10_1016_j_jbior_2024_101070
crossref_primary_10_3389_fcvm_2022_988360
crossref_primary_10_1016_j_bbrc_2015_02_062
crossref_primary_10_1016_j_bbrc_2018_03_208
crossref_primary_10_7554_eLife_54166
crossref_primary_10_1155_2015_251598
crossref_primary_10_3390_ijms22168468
crossref_primary_10_1038_srep37941
crossref_primary_10_1158_2159_8290_CD_20_1437
crossref_primary_10_1007_s00210_024_03073_z
crossref_primary_10_1016_j_celrep_2014_12_023
crossref_primary_10_3389_fphys_2022_997358
crossref_primary_10_1016_j_bone_2017_08_024
crossref_primary_10_1002_oby_21665
crossref_primary_10_1042_CS20171269
crossref_primary_10_3389_fphys_2020_577856
crossref_primary_10_3390_ph17091204
crossref_primary_10_1093_cvr_cvv105
crossref_primary_10_1097_MD_0000000000036368
crossref_primary_10_1038_nrneph_2017_126
crossref_primary_10_1152_ajpheart_00133_2021
crossref_primary_10_1016_j_bbadis_2024_167442
crossref_primary_10_1016_j_jlr_2021_100069
crossref_primary_10_12997_jla_2020_9_1_92
crossref_primary_10_3390_proteomes9020027
crossref_primary_10_3389_fphar_2023_1016633
crossref_primary_10_1007_s11892_015_0611_8
crossref_primary_10_1073_pnas_1418560112
crossref_primary_10_1016_j_bbalip_2016_03_028
crossref_primary_10_1093_toxsci_kfy011
crossref_primary_10_3390_nu10010015
crossref_primary_10_1074_jbc_M117_800839
crossref_primary_10_1002_ehf2_14903
crossref_primary_10_1016_j_celrep_2021_109767
crossref_primary_10_1038_s41586_023_06585_5
crossref_primary_10_20517_jca_2023_47
crossref_primary_10_3390_ijms232213902
crossref_primary_10_1007_s12012_022_09725_x
crossref_primary_10_1016_j_yjmcc_2014_09_025
crossref_primary_10_1016_j_bbalip_2016_03_014
crossref_primary_10_1161_HYPERTENSIONAHA_119_13173
crossref_primary_10_1016_j_pharmr_2025_100051
crossref_primary_10_1172_jci_insight_92704
crossref_primary_10_1016_j_bbalip_2016_02_016
crossref_primary_10_1249_MSS_0000000000002579
crossref_primary_10_1371_journal_pone_0188850
Cites_doi 10.1073/pnas.1206868109
10.1161/CIRCULATIONAHA.111.075978
10.1006/mgme.1999.2938
10.2337/db12-0259
10.1161/01.CIR.100.22.2248
10.1161/01.RES.63.6.1036
10.1113/jphysiol.2010.198663
10.1194/jlr.M200294-JLR200
10.1042/BJ20082159
10.1055/s-2001-12932
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2013 John Wiley & Sons Ltd.
2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2013 John Wiley & Sons Ltd.
– notice: 2014 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
DOI 10.1111/dom.12248
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
AIDS and Cancer Research Abstracts
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1463-1326
EndPage 760
ExternalDocumentID PMC4057362
3372695711
24330405
10_1111_dom_12248
DOM12248
ark_67375_WNG_HZ09XRP8_X
Genre letter
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01DK089641; R01DK098687
– fundername: ADA
  funderid: 1‐10‐BS‐129
– fundername: NIDDK NIH HHS
  grantid: 2P30-DK072476
– fundername: NIDDK NIH HHS
  grantid: P30 DK072476
– fundername: NIDDK NIH HHS
  grantid: R01 DK089641
– fundername: NIDDK NIH HHS
  grantid: R01 DK098687
– fundername: NIDDK NIH HHS
  grantid: R01DK089641
– fundername: NIGMS NIH HHS
  grantid: P20 GM103528
– fundername: NIDDK NIH HHS
  grantid: R01DK098687
– fundername: NIGMS NIH HHS
  grantid: 8 P20-GM103528
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5798-82c68c2981fdf525f6508ea274408073b53216008103406c57362ec1018fd82b3
IEDL.DBID DR2
ISSN 1462-8902
1463-1326
IngestDate Thu Aug 21 14:31:43 EDT 2025
Fri Jul 11 09:28:31 EDT 2025
Fri Jul 25 07:53:13 EDT 2025
Fri Jul 25 06:13:06 EDT 2025
Thu Apr 03 07:00:12 EDT 2025
Tue Jul 01 01:02:56 EDT 2025
Thu Apr 24 22:51:37 EDT 2025
Wed Aug 20 07:25:40 EDT 2025
Wed Oct 30 09:52:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords carnitine palmitoyltransferase
fatty acid oxidation
cardiac hypertrophy
observational study
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5798-82c68c2981fdf525f6508ea274408073b53216008103406c57362ec1018fd82b3
Notes ADA - No. 1-10-BS-129
ArticleID:DOM12248
istex:E9642C94FE0877A3973C1B77563C31A658BD5E1D
ark:/67375/WNG-HZ09XRP8-X
NIH - No. R01DK089641; No. R01DK098687
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4057362
PMID 24330405
PQID 1545043478
PQPubID 1006516
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4057362
proquest_miscellaneous_1547520992
proquest_journals_3059404446
proquest_journals_1545043478
pubmed_primary_24330405
crossref_citationtrail_10_1111_dom_12248
crossref_primary_10_1111_dom_12248
wiley_primary_10_1111_dom_12248_DOM12248
istex_primary_ark_67375_WNG_HZ09XRP8_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References He L, Kim T, Long Q et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012; 126: 1705-1716.
Luiken JJ, Niessen HE, Coort SL et al. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J 2009; 419: 447-455.
Cabrero A, Merlos M, Laguna JC, Carrera MV. Down-regulation of acyl-CoA oxidase gene expression and increased NF-κB activity in etomoxir-induced cardiac hypertrophy. J Lipid Res 2003; 44: 388-398.
Timmers S, Nabben M, Bosma M et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc Natl Acad Sci U S A 2012; 109: 11711-11716.
Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis 2001; 21: 89-104.
Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63: 1036-1043.
Holloway GP, Snook LA, Harris RJ, Glatz JF, Luiken JJ, Bonen A. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. J Physiol 2011; 589: 169-180.
Bonnet D, Martin D, Pascale De L et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 1999; 100: 2248-2253.
Bonnefont JP, Demaugre F, Prip-Buus C et al. Carnitine palmitoyltransferase deficiencies. Mol Genet Metab 1999; 68: 424-440.
Keung W, Ussher JR, Jaswal JS, Raubenheimer M, Lam VH, Wagg CS, Lopaschuk GD. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 2013; 62: 711-720.
2011; 589
1999; 68
2009; 419
1999; 100
1988; 63
2012; 126
2013; 62
2012; 109
2003; 44
2001; 21
e_1_2_7_6_1
e_1_2_7_11_1
e_1_2_7_5_1
e_1_2_7_10_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_2_1
22932257 - Circulation. 2012 Oct 2;126(14):1705-16
3197271 - Circ Res. 1988 Dec;63(6):1036-43
10577999 - Circulation. 1999 Nov 30;100(22):2248-53
11296700 - Semin Liver Dis. 2001;21(1):89-104
12576521 - J Lipid Res. 2003 Feb;44(2):388-98
21041527 - J Physiol. 2011 Jan 1;589(Pt 1):169-80
22753483 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11711-6
23139350 - Diabetes. 2013 Mar;62(3):711-20
10607472 - Mol Genet Metab. 1999 Dec;68(4):424-40
19138173 - Biochem J. 2009 Apr 15;419(2):447-55
References_xml – reference: Cabrero A, Merlos M, Laguna JC, Carrera MV. Down-regulation of acyl-CoA oxidase gene expression and increased NF-κB activity in etomoxir-induced cardiac hypertrophy. J Lipid Res 2003; 44: 388-398.
– reference: Bonnefont JP, Demaugre F, Prip-Buus C et al. Carnitine palmitoyltransferase deficiencies. Mol Genet Metab 1999; 68: 424-440.
– reference: Luiken JJ, Niessen HE, Coort SL et al. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J 2009; 419: 447-455.
– reference: Bonnet D, Martin D, Pascale De L et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 1999; 100: 2248-2253.
– reference: He L, Kim T, Long Q et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012; 126: 1705-1716.
– reference: Timmers S, Nabben M, Bosma M et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc Natl Acad Sci U S A 2012; 109: 11711-11716.
– reference: Keung W, Ussher JR, Jaswal JS, Raubenheimer M, Lam VH, Wagg CS, Lopaschuk GD. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 2013; 62: 711-720.
– reference: Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis 2001; 21: 89-104.
– reference: Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63: 1036-1043.
– reference: Holloway GP, Snook LA, Harris RJ, Glatz JF, Luiken JJ, Bonen A. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. J Physiol 2011; 589: 169-180.
– volume: 100
  start-page: 2248
  year: 1999
  end-page: 2253
  article-title: Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children
  publication-title: Circulation
– volume: 589
  start-page: 169
  year: 2011
  end-page: 180
  article-title: In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long‐chain fatty acid oxidation
  publication-title: J Physiol
– volume: 126
  start-page: 1705
  year: 2012
  end-page: 1716
  article-title: Carnitine palmitoyltransferase‐1b deficiency aggravates pressure overload‐induced cardiac hypertrophy caused by lipotoxicity
  publication-title: Circulation
– volume: 68
  start-page: 424
  year: 1999
  end-page: 440
  article-title: Carnitine palmitoyltransferase deficiencies
  publication-title: Mol Genet Metab
– volume: 62
  start-page: 711
  year: 2013
  end-page: 720
  publication-title: Diabetes
– volume: 419
  start-page: 447
  year: 2009
  end-page: 455
  article-title: Etomoxir‐induced partial carnitine palmitoyltransferase‐I (CPT‐I) inhibition in vivo does not alter cardiac long‐chain fatty acid uptake and oxidation rates
  publication-title: Biochem J
– volume: 21
  start-page: 89
  year: 2001
  end-page: 104
  article-title: Animal models of steatosis
  publication-title: Semin Liver Dis
– volume: 63
  start-page: 1036
  year: 1988
  end-page: 1043
  article-title: Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid‐induced ischemic injury independent of changes in long chain acylcarnitine
  publication-title: Circ Res
– volume: 109
  start-page: 11711
  year: 2012
  end-page: 11716
  article-title: Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity
  publication-title: Proc Natl Acad Sci U S A
– volume: 44
  start-page: 388
  year: 2003
  end-page: 398
  article-title: Down‐regulation of acyl‐CoA oxidase gene expression and increased NF‐κB activity in etomoxir‐induced cardiac hypertrophy
  publication-title: J Lipid Res
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1206868109
– ident: e_1_2_7_6_1
  doi: 10.1161/CIRCULATIONAHA.111.075978
– ident: e_1_2_7_11_1
  doi: 10.1006/mgme.1999.2938
– ident: e_1_2_7_3_1
  doi: 10.2337/db12-0259
– ident: e_1_2_7_5_1
  doi: 10.1161/01.CIR.100.22.2248
– ident: e_1_2_7_9_1
  doi: 10.1161/01.RES.63.6.1036
– ident: e_1_2_7_7_1
  doi: 10.1113/jphysiol.2010.198663
– ident: e_1_2_7_10_1
  doi: 10.1194/jlr.M200294-JLR200
– ident: e_1_2_7_8_1
  doi: 10.1042/BJ20082159
– ident: e_1_2_7_4_1
  doi: 10.1055/s-2001-12932
– reference: 22753483 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11711-6
– reference: 3197271 - Circ Res. 1988 Dec;63(6):1036-43
– reference: 10577999 - Circulation. 1999 Nov 30;100(22):2248-53
– reference: 21041527 - J Physiol. 2011 Jan 1;589(Pt 1):169-80
– reference: 10607472 - Mol Genet Metab. 1999 Dec;68(4):424-40
– reference: 23139350 - Diabetes. 2013 Mar;62(3):711-20
– reference: 11296700 - Semin Liver Dis. 2001;21(1):89-104
– reference: 12576521 - J Lipid Res. 2003 Feb;44(2):388-98
– reference: 19138173 - Biochem J. 2009 Apr 15;419(2):447-55
– reference: 22932257 - Circulation. 2012 Oct 2;126(14):1705-16
SSID ssj0004387
Score 2.306273
Snippet Recent reports suggest that short‐term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and...
Recent reports suggest that short-term pharmacological carnitine palmitoyltransferase 1 (Cpt1) inhibition improves skeletal muscle glucose tolerance and...
Recent reports suggest that short-term pharmacological Cpt1 inhibition improves skeletal muscle glucose tolerance and insulin sensitivity. While this appears...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 757
SubjectTerms Animals
cardiac hypertrophy
Cardiomegaly - chemically induced
Cardiomegaly - enzymology
Cardiomegaly - pathology
Cardiomegaly - physiopathology
Carnitine O-Palmitoyltransferase - antagonists & inhibitors
Carnitine O-Palmitoyltransferase - genetics
Carnitine O-Palmitoyltransferase - metabolism
Carnitine palmitoyltransferase
Chimera
Crosses, Genetic
Diabetes mellitus
Drugs, Investigational - adverse effects
Enzyme Inhibitors - adverse effects
fatty acid oxidation
Female
Glucose tolerance
Heart - drug effects
Heart - physiopathology
Hypertrophy
Hypoglycemic Agents - adverse effects
Insulin
Insulin Resistance
Isoforms
Male
Mice, Inbred C57BL
Mice, Knockout
Mortality
Muscle, Skeletal - drug effects
Muscle, Skeletal - enzymology
Muscle, Skeletal - physiopathology
Musculoskeletal system
Myocardium - enzymology
Myocardium - pathology
observational study
Organ Size - drug effects
Palmitoyltransferase
Protein Isoforms - antagonists & inhibitors
Protein Isoforms - genetics
Protein Isoforms - metabolism
Rodents
Seizures
Seizures - chemically induced
Seizures - enzymology
Seizures - pathology
Seizures - physiopathology
Skeletal muscle
Survival Analysis
Title Inhibition of carnitine palymitoyltransferase1b induces cardiac hypertrophy and mortality in mice
URI https://api.istex.fr/ark:/67375/WNG-HZ09XRP8-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12248
https://www.ncbi.nlm.nih.gov/pubmed/24330405
https://www.proquest.com/docview/1545043478
https://www.proquest.com/docview/3059404446
https://www.proquest.com/docview/1547520992
https://pubmed.ncbi.nlm.nih.gov/PMC4057362
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KC-KL1u9oK6uI-JLjbpPdJPhUqvUUrkqxeIgQdjdZrvQuKbkctP71ndl82NMTxLfAzoZkdmb2N7uzvwV4xYXStDvnG8OlH0ZK-ipW1td5EiU20zpypD6TYzk-DT9NxXQL3nZnYRp-iH7BjTzDxWtycKWXN5w8KxcD2haig75Uq0WA6OQXdVQYuMvxMBCgxydUxbPbVfH0Pdfmoh1S6-UmoPlnveRNHOsmoqO78KP7hab-5HywqvXA_PyN3fE__3EX7rQAlR00FnUPtvLiPtyatFvwD0B9LGZn2hV6sdIyQysrNbawCzW_WmB8uJrXDgznFU6QI80w6UfzWZIk2qJhM8x8q7oqcXyZKjK2cAkAJgMoyRYYtx7C6dH7r4djv72nwTciSmI_5kbGhifxyGZWcGEJ9eXKcQ_GGEK0CPhIEvgYBogfsBPOmrkhrjCbxVwHj2C7KIv8CTCMtpFUxmphRKg1ps9SUZQZZtLmXFoP3nQjlpqWxJzu0pinXTKDKkudyjx42YteNMwdm4Reu2HvJVR1TqVukUi_HX9Ix9-HyfTkS5xOPdjr7CJtvXyZEvxEQwujeGNzQFw4xMcnPXjRN6P70p6MKvJy5V4RUSVSwj143FhZ_y08pMWmofAgWrO_XoCowddbirOZowgnGI5KRnU58_q7AtJ3nyfu4em_iz6D25zc25VB7sF2Xa3yfYRmtX7ufPAadec1Xg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQJeYPwODDAIIV5StU7iJBIviDE6WAuaNlEhIct2YnVam0xdKjH-eu6cH6xQJMRbJV-q5nzf-Tv7-hngBY-UptM53xgu_DBWwleJsr7O0zi1mdaxE_UZjcXwOPwwiSYb8Lr9L0ytD9FtuBEyXL4mgNOG9CWUZ-W8R-dCyRXYohu9CZa7h7_Eo8LAXY-HqQAxn1Ifz3bbx9M9urIabZFjv6-jmn92TF5msm4p2rsJ39qXqDtQTnvLSvfMj9_0Hf_3LbfhRsNR2Zs6qG7BRl7chquj5hT-Dqj9YnqiXa8XKy0ztLlS4Qg7U7OLOaaIi1nl-HC-wDVyoBnW_RhB52SJ4WjYFIvfRbUocYqZKjI2dzUA1gNoyeaYuu7C8d67o7dDv7mqwTdRnCZ-wo1IDE-Tgc1sxCNLxC9XTn4wwSyio4APBPGPfoAUAh_ChTM3JBdms4Tr4B5sFmWRPwCGCTcWylgdmSjUGitooSjR9DNhcy6sB6_aKZOm0TGn6zRmsq1n0GXSucyD553pWS3esc7opZv3zkItTqnbLY7kl_F7OfzaTyeHnxM58WCnDQzZAP1cEgPFSAvjZO1wQHI4JMknPHjWDSOC6VhGFXm5dF8RUzNSyj24X4dZ91t4SPtN_ciDeCUAOwNSB18dKU6mTiWcmDg6Gd3l4uvvDpC7n0buw8N_N30K14ZHowN5sD_--Aiuc0K764rcgc1qscwfI1Or9BMHyJ-cqjl3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTZp4YeN3xoCAEOIlVeomjiOeEKV0QMs0MVFNSJbtxOq0Nqm6VGL89dy5TVihSIi3SD5H8fnu_J19-QzwgsVK0-lcYAzjQZQoHiihbKDzNEltpnXiSH0GQ94_jT6M4tEWvK7_hVnyQzQbbuQZLl6Tg88ye83Js3LaomMhcQN2Ih4Kyry6J7-4o6KOux0PIwG6fEplPPt1GU_TdW0x2iG9ft-ENP8smLwOZN1K1NuDb_UYlgUoF61FpVvmx2_0jv85yH24tUKo_pulSd2Grby4A7uD1Rn8XVBHxfhcu0ovv7S-oa2VClv8mZpcTTFAXE0qh4bzOa6Qbe1j1o_2c0mSaIzGH2PqO6_mJU6wr4rMn7oMALMBlPSnGLjuwWnv3Ze3_WB1UUNg4iQVgWCGC8NS0baZjVlsCfblypEPCowhOu6wNif0EXYQQGAnXDZzQ2RhNhNMd-7DdlEW-UPwMdwmXBmrYxNHWmP-zBWFmTDjNmfcevCqnjFpVizmdJnGRNbZDKpMOpV58LwRnS2pOzYJvXTT3kio-QXVuiWx_Dp8L_tnYTo6ORZy5MFhbRdy5eaXkvAnGlqUiI3NHSLDIUI-7sGzphn9lw5lVJGXC_eKhEqRUubBg6WVNd_CItptCmMPkjX7awSIG3y9pTgfO45wwuGoZFSXM6-_K0B2Pw_cw8G_iz6F3eNuT346Gn58BDcZuboriTyE7Wq-yB8jTKv0E-eOPwHpnjgv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+carnitine+palymitoyltransferase1b+induces+cardiac+hypertrophy+and+mortality+in+mice&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Haynie%2C+K+R&rft.au=Vandanmagsar%2C+B&rft.au=Wicks%2C+S+E&rft.au=Zhang%2C+J&rft.date=2014-08-01&rft.eissn=1463-1326&rft.volume=16&rft.issue=8&rft.spage=757&rft_id=info:doi/10.1111%2Fdom.12248&rft_id=info%3Apmid%2F24330405&rft.externalDocID=24330405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon