Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time‐to‐Event Data
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling...
Saved in:
Published in | Biometrics Vol. 67; no. 3; pp. 819 - 829 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.09.2011
Wiley-Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/j.1541-0420.2010.01546.x |
Cover
Loading…
Abstract | In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements. |
---|---|
AbstractList | In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements. In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements. Summary In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements. |
Author | Rizopoulos, Dimitris |
Author_xml | – sequence: 1 givenname: Dimitris surname: Rizopoulos fullname: Rizopoulos, Dimitris |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21306352$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkstuEzEUhi1URNPCIwAjNrBJ8N3jDVLpjaK0RSIV7Cxn5kxxmIyDPVOSHY_AM_IkeDoliy4QeGH7-Hzn9-X3HtppfAMIZQRPSGqvFxMiOBljTvGE4rSKUywn6wdotE3soBHGWI4ZJ5930V6MixRqgekjtEsJw5IJOkJfjjaNXboi-xCgdEXrfBMz25Qp9nEFaeEGsoOi6IItNplrsvfeNW127kuoY1b5kE19c-3arnSNrW8rZ24Jv378bH3qjm8g0Ue2tY_Rw8rWEZ7cjfvo6uR4dvhuPL08PTs8mI4LoXQ6LSvVPMdzXZaABREUFJ-XymIQjDFQFQewhZZQScHmuVW5FSXVQuZWk1xpto9eDrqr4L91EFuzdLGAurYN-C6aXGOptBYkka_-ShKpcsExZzKhL-6hC9-FdOGkl2tNCCMiQc_uoG6-hNKsglvasDF_HjsB-QAU6W1jgGqLEGx6X83C9PaZ3j7T-2pufTXrVPrmXmnhWtu71Qbr6v8Q-O5q2Pzzxubt2eV5P00CTweBRWx92ApwQjkVDKf8eMi72MJ6m7fhq5GKKWE-XZwayqeSXpwIM0v884GvrDf2Orhorj6mrQXGhKefgNlvmKPd6Q |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1186_s12874_016_0272_6 crossref_primary_10_1016_j_ijcard_2023_131268 crossref_primary_10_1093_aje_kwy018 crossref_primary_10_1016_j_jclinepi_2020_07_014 crossref_primary_10_1002_pon_3846 crossref_primary_10_1177_0962280212445800 crossref_primary_10_1186_s12874_022_01660_3 crossref_primary_10_1016_j_cjca_2020_01_004 crossref_primary_10_1177_0962280216643563 crossref_primary_10_1080_10543406_2023_2187413 crossref_primary_10_1155_2022_1362913 crossref_primary_10_1177_0962280216673084 crossref_primary_10_1177_1010539519889767 crossref_primary_10_1186_s12874_020_01177_7 crossref_primary_10_1111_biom_12537 crossref_primary_10_1111_insr_12018 crossref_primary_10_3802_jgo_2014_25_1_51 crossref_primary_10_1177_1536867X1301300112 crossref_primary_10_1002_sim_8069 crossref_primary_10_1002_sim_9037 crossref_primary_10_3233_JAD_161201 crossref_primary_10_1002_sim_9713 crossref_primary_10_1093_schbul_sbz059 crossref_primary_10_1002_sim_7092 crossref_primary_10_1002_sim_9392 crossref_primary_10_7717_peerj_1673 crossref_primary_10_1007_s12561_016_9183_7 crossref_primary_10_1016_j_echo_2019_04_419 crossref_primary_10_1186_s12874_021_01294_x crossref_primary_10_1002_bimj_201600159 crossref_primary_10_1093_ageing_afaa056 crossref_primary_10_1108_K_06_2016_0149 crossref_primary_10_1177_0962280218802300 crossref_primary_10_1002_alz_70055 crossref_primary_10_1016_j_ijcard_2021_04_061 crossref_primary_10_1111_rssa_12611 crossref_primary_10_1002_bimj_201600238 crossref_primary_10_1186_s12874_021_01375_x crossref_primary_10_1097_GME_0000000000000642 crossref_primary_10_3390_biomedicines11102676 crossref_primary_10_1007_s10985_019_09478_w crossref_primary_10_1371_journal_pone_0293796 crossref_primary_10_1373_clinchem_2016_261172 crossref_primary_10_1093_ije_dyab047 crossref_primary_10_3390_jcm9010195 crossref_primary_10_1002_sim_7308 crossref_primary_10_1002_sim_8757 crossref_primary_10_1007_s10742_012_0087_9 crossref_primary_10_1080_24725854_2021_1918804 crossref_primary_10_3390_cancers15010231 crossref_primary_10_3389_fonc_2022_999324 crossref_primary_10_1111_rssc_12152 crossref_primary_10_1016_j_jcf_2018_12_005 crossref_primary_10_3310_pgfar05040 crossref_primary_10_1002_sim_10322 crossref_primary_10_1177_0962280220921553 crossref_primary_10_1016_j_kint_2020_07_049 crossref_primary_10_1016_j_ijcard_2020_03_064 crossref_primary_10_1111_rssc_12264 crossref_primary_10_1371_journal_pone_0227124 crossref_primary_10_1002_sim_7675 crossref_primary_10_3389_fcvm_2022_933428 crossref_primary_10_1136_bmjopen_2015_010466 crossref_primary_10_1002_1878_0261_13755 crossref_primary_10_3389_fgene_2022_915839 crossref_primary_10_1007_s00415_016_8109_0 crossref_primary_10_1002_bimj_202300081 crossref_primary_10_1002_acr_23881 crossref_primary_10_1371_journal_pone_0182873 crossref_primary_10_1080_02664763_2022_2081965 crossref_primary_10_1080_02664763_2024_2313459 crossref_primary_10_15446_rce_v43n1_77851 crossref_primary_10_1371_journal_pone_0153234 crossref_primary_10_1002_sim_7209 crossref_primary_10_1177_09622802241236951 crossref_primary_10_7554_eLife_64827 crossref_primary_10_1016_j_csda_2023_107837 crossref_primary_10_1111_biom_12232 crossref_primary_10_1093_bib_bbab206 crossref_primary_10_1177_0962280216688032 crossref_primary_10_1016_j_jclinane_2021_110596 crossref_primary_10_1109_TII_2020_3021054 crossref_primary_10_1002_psp4_12490 crossref_primary_10_1002_bimj_201600222 crossref_primary_10_6000_1929_6029_2013_02_04_5 crossref_primary_10_1214_22_AOAS1674 crossref_primary_10_1016_j_csda_2015_05_007 crossref_primary_10_1016_j_ejor_2023_03_012 crossref_primary_10_1016_j_phrs_2013_03_009 crossref_primary_10_1002_bimj_201300028 crossref_primary_10_1080_02664763_2014_909784 crossref_primary_10_1164_rccm_201304_0736ED crossref_primary_10_3233_JHD_170236 crossref_primary_10_1177_0272989X19861963 crossref_primary_10_1186_s12879_016_1440_3 crossref_primary_10_1109_TR_2022_3193353 crossref_primary_10_1109_TASE_2024_3432400 crossref_primary_10_2139_ssrn_3470384 crossref_primary_10_1038_s41598_020_61461_w crossref_primary_10_1002_sim_7571 crossref_primary_10_1080_00401706_2017_1383310 crossref_primary_10_1002_bimj_201600235 crossref_primary_10_1111_dom_13929 crossref_primary_10_1182_blood_2024025868 crossref_primary_10_1080_03610926_2019_1602651 crossref_primary_10_1080_00401706_2020_1832582 crossref_primary_10_3389_fpubh_2014_00228 crossref_primary_10_1097_MD_0000000000040181 crossref_primary_10_1177_1471082X13478880 crossref_primary_10_1208_s12248_019_0388_9 crossref_primary_10_1002_sim_6937 crossref_primary_10_1093_biostatistics_kxz049 crossref_primary_10_15672_hujms_884326 crossref_primary_10_1111_rssb_12060 crossref_primary_10_1155_2020_3074532 crossref_primary_10_1186_s12872_015_0035_z crossref_primary_10_1080_24709360_2019_1693198 crossref_primary_10_1080_01621459_2014_931236 crossref_primary_10_1177_09622802241275382 crossref_primary_10_1080_10543406_2017_1293080 crossref_primary_10_1161_JAHA_117_008349 crossref_primary_10_1080_02664763_2016_1262336 crossref_primary_10_1109_TR_2020_3035084 crossref_primary_10_1111_rssc_12075 crossref_primary_10_1126_sciadv_abf6759 crossref_primary_10_1093_jamia_ocaa242 crossref_primary_10_1002_1878_0261_12870 crossref_primary_10_1016_j_csda_2020_107095 crossref_primary_10_1016_j_psychres_2020_113201 crossref_primary_10_1111_biom_12562 crossref_primary_10_1002_sim_9896 crossref_primary_10_1186_s12874_022_01709_3 crossref_primary_10_1111_jth_14774 crossref_primary_10_1002_sim_8687 crossref_primary_10_1002_sim_9897 crossref_primary_10_1200_PO_19_00068 crossref_primary_10_1016_j_cjca_2019_12_004 crossref_primary_10_1016_j_csda_2022_107685 crossref_primary_10_1002_sim_6260 crossref_primary_10_1249_MSS_0000000000001822 crossref_primary_10_1007_s12561_023_09381_x crossref_primary_10_1111_stan_12114 crossref_primary_10_1177_0962280218808821 crossref_primary_10_1016_j_amjsurg_2013_09_024 crossref_primary_10_1109_TR_2013_2259205 crossref_primary_10_1155_2018_7409284 crossref_primary_10_1111_biom_12940 crossref_primary_10_1177_1471082X211048695 crossref_primary_10_1109_JBHI_2023_3292475 crossref_primary_10_1177_0962280217753466 crossref_primary_10_1053_j_ajkd_2017_01_004 crossref_primary_10_1002_psp4_13145 crossref_primary_10_1002_sim_6158 crossref_primary_10_1177_11772719221112370 crossref_primary_10_1080_01621459_2014_940044 crossref_primary_10_1093_ndt_gfaa180 crossref_primary_10_1214_24_AOAS1889 crossref_primary_10_1007_s11222_020_09927_9 crossref_primary_10_1177_0962280216628560 crossref_primary_10_1164_rccm_201212_2154OC crossref_primary_10_1016_j_artmed_2024_102862 crossref_primary_10_1016_j_kint_2017_09_013 crossref_primary_10_1093_jamia_ocac123 crossref_primary_10_2217_bmm_15_110 crossref_primary_10_1111_rssa_12101 crossref_primary_10_1111_biom_12814 crossref_primary_10_1002_psp4_12856 crossref_primary_10_1080_02664763_2016_1254728 crossref_primary_10_1186_s12876_018_0795_x crossref_primary_10_1159_000517281 crossref_primary_10_1177_0962280219863076 crossref_primary_10_1016_j_ress_2021_107877 crossref_primary_10_1080_10618600_2022_2102027 crossref_primary_10_1016_j_ajp_2023_103468 crossref_primary_10_1177_09622802231188521 crossref_primary_10_1093_ckj_sfaa024 crossref_primary_10_1002_sim_6284 crossref_primary_10_1177_09622802241300845 crossref_primary_10_1177_0962280217722177 crossref_primary_10_1177_2632084320972257 crossref_primary_10_1080_19466315_2020_1837234 crossref_primary_10_1177_0962280218784757 crossref_primary_10_1146_annurev_statistics_030718_105048 crossref_primary_10_1177_10732748251316609 crossref_primary_10_1109_TPAMI_2017_2742504 crossref_primary_10_1002_sim_5644 crossref_primary_10_1177_0962280214535763 crossref_primary_10_1097_HEP_0000000000001045 crossref_primary_10_1097_igc_0000000000001134 crossref_primary_10_1111_j_1541_0420_2012_01823_x crossref_primary_10_1080_24725854_2019_1630868 crossref_primary_10_1177_0962280220945352 crossref_primary_10_1080_19466315_2016_1142889 crossref_primary_10_1093_noajnl_vdaa147 crossref_primary_10_1080_24709360_2017_1381300 crossref_primary_10_1002_sim_6972 crossref_primary_10_1002_sim_9206 crossref_primary_10_1111_rssc_12433 crossref_primary_10_1111_biom_12490 crossref_primary_10_1080_00401706_2024_2421763 crossref_primary_10_1109_TR_2014_2355531 crossref_primary_10_1002_sim_9683 crossref_primary_10_1007_s11222_023_10293_5 crossref_primary_10_1055_s_0040_1718877 crossref_primary_10_1108_ILT_11_2023_0361 crossref_primary_10_1080_02664763_2019_1590540 crossref_primary_10_1183_09031936_00168113 crossref_primary_10_3389_fmed_2024_1428073 crossref_primary_10_1093_biostatistics_kxv031 crossref_primary_10_1016_j_trci_2019_08_001 crossref_primary_10_1002_bimj_201200045 crossref_primary_10_1002_sim_9214 crossref_primary_10_1016_j_csda_2022_107528 crossref_primary_10_1002_sim_6860 crossref_primary_10_1038_bmt_2014_257 crossref_primary_10_1161_CIRCOUTCOMES_120_007593 crossref_primary_10_1002_sim_9336 crossref_primary_10_1007_s12561_024_09433_w crossref_primary_10_1093_ndt_gfw405 crossref_primary_10_1002_sim_6500 crossref_primary_10_1002_psp4_13290 crossref_primary_10_1177_0962280215588340 crossref_primary_10_1186_s12874_024_02434_9 crossref_primary_10_1093_biomtc_ujae113 crossref_primary_10_1016_j_ijmedinf_2018_09_012 crossref_primary_10_1186_s12894_024_01522_8 crossref_primary_10_1002_sim_10010 crossref_primary_10_1111_jcpe_13888 crossref_primary_10_1016_j_ijrobp_2023_02_022 crossref_primary_10_1186_1471_2288_13_146 crossref_primary_10_1186_s41512_020_00078_z crossref_primary_10_1080_02664763_2021_1897971 crossref_primary_10_1177_0962280213495994 crossref_primary_10_1002_sim_6517 crossref_primary_10_1111_rssc_12571 crossref_primary_10_1111_rssc_12210 crossref_primary_10_1002_sim_9102 crossref_primary_10_1111_rssc_12334 crossref_primary_10_1002_sim_6754 crossref_primary_10_1055_s_0041_1730924 crossref_primary_10_1155_2012_680634 crossref_primary_10_1177_0962280218811837 crossref_primary_10_1007_s10260_017_0410_2 crossref_primary_10_1186_s12874_019_0677_0 crossref_primary_10_1186_s12874_024_02445_6 crossref_primary_10_5691_jjb_45_189 crossref_primary_10_1002_sim_10023 crossref_primary_10_1016_j_csda_2018_07_015 crossref_primary_10_1186_s12874_022_01828_x crossref_primary_10_1136_heartjnl_2020_316813 crossref_primary_10_1186_s12874_024_02418_9 crossref_primary_10_1007_s40262_023_01310_x crossref_primary_10_1111_biom_13027 crossref_primary_10_1016_j_annepidem_2023_03_007 crossref_primary_10_3389_fdata_2022_812725 crossref_primary_10_1016_j_addbeh_2018_01_018 crossref_primary_10_1080_10543406_2020_1852248 crossref_primary_10_1002_bimj_201900112 crossref_primary_10_1038_s41598_022_06698_3 crossref_primary_10_1053_j_ajkd_2022_05_011 crossref_primary_10_1515_ijb_2020_0067 crossref_primary_10_1016_j_kint_2018_04_007 crossref_primary_10_1016_j_ejor_2022_10_022 crossref_primary_10_1371_journal_pone_0216559 crossref_primary_10_1111_biom_12964 crossref_primary_10_1080_02664763_2014_999032 crossref_primary_10_1080_00273171_2020_1865864 crossref_primary_10_1214_23_AOAS1864 crossref_primary_10_1214_23_AOAS1733 crossref_primary_10_1161_JAHA_118_009555 crossref_primary_10_1161_CIRCULATIONAHA_117_030576 crossref_primary_10_1016_j_jacc_2021_11_023 crossref_primary_10_1080_01621459_2019_1611584 crossref_primary_10_1186_s12874_017_0382_9 crossref_primary_10_1016_j_oraloncology_2022_105787 crossref_primary_10_1016_j_conctc_2021_100827 crossref_primary_10_1016_j_csda_2011_09_007 crossref_primary_10_1164_rccm_201303_0429OC crossref_primary_10_1002_cpt_1450 crossref_primary_10_1093_biostatistics_kxae036 crossref_primary_10_1002_sim_7065 crossref_primary_10_1002_sim_9241 crossref_primary_10_1016_S2589_7500_21_00209_0 crossref_primary_10_1016_j_compbiomed_2024_109186 crossref_primary_10_1093_gigascience_giaa128 crossref_primary_10_21032_jhis_2023_48_4_291 crossref_primary_10_1016_j_artmed_2023_102620 crossref_primary_10_2217_bmm_2020_0585 crossref_primary_10_1007_s10985_020_09511_3 crossref_primary_10_1007_s10260_025_00782_4 crossref_primary_10_1145_3377164 crossref_primary_10_1214_17_AOAS1059 crossref_primary_10_1007_s00180_016_0681_3 crossref_primary_10_1214_23_AOAS1731 crossref_primary_10_1109_TR_2017_2717190 crossref_primary_10_1161_CIRCULATIONAHA_117_032742 crossref_primary_10_1002_sim_7994 crossref_primary_10_1177_0962280212445839 crossref_primary_10_1080_0740817X_2013_876126 crossref_primary_10_1214_19_SS126 crossref_primary_10_1177_09622802241268466 crossref_primary_10_1214_17_AOAS1050 |
Cites_doi | 10.1200/JCO.2005.12.156 10.1001/jama.247.18.2543 10.1111/j.0006-341X.2005.030929.x 10.1111/j.1541-0420.2007.00952.x 10.1056/NEJM199403103301001 10.1002/sim.2929 10.1002/9781118032985 10.2307/2533118 10.1093/biostatistics/1.4.465 10.4310/SII.2008.v1.n1.a4 10.1093/biostatistics/kxp009 10.1002/sim.2427 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 10.18637/jss.v035.i09 10.1007/978-1-4899-2887-0 10.1111/j.0006-341X.2002.00742.x 10.1093/biomet/92.3.587 10.1198/016214507000000400 10.1097/00042560-199602010-00007 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1111/j.1541-0420.2007.00896.x 10.1111/j.0006-341X.2005.030814.x 10.1111/j.0006-341X.2000.00249.x 10.1111/j.1467-9868.2008.00704.x 10.1111/j.1467-985X.2007.00514.x 10.1093/biomet/asm087 10.1111/j.1541-0420.2006.00726.x |
ContentType | Journal Article |
Copyright | 2011 International Biometric Society 2011, The International Biometric Society 2011, The International Biometric Society. |
Copyright_xml | – notice: 2011 International Biometric Society – notice: 2011, The International Biometric Society – notice: 2011, The International Biometric Society. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7S9 L.6 7X8 |
DOI | 10.1111/j.1541-0420.2010.01546.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Computer Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 829 |
ExternalDocumentID | 2453727001 21306352 10_1111_j_1541_0420_2010_01546_x BIOM1546 41242530 ark_67375_WNG_24L62NF5_T US201500147960 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY AAYXX AHGBF AJBYB CITATION PHGZM CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5796-33d7b80b9dde05152e74bd7a0e5333e7f4eeac96ef653b8a78a5d29568a918793 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 01:38:18 EDT 2025 Fri Jul 11 18:29:15 EDT 2025 Wed Aug 13 09:06:50 EDT 2025 Mon Jul 21 05:57:58 EDT 2025 Tue Jul 01 00:58:01 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Wed Jan 22 16:26:56 EST 2025 Thu Jul 03 21:22:21 EDT 2025 Wed Oct 30 09:57:31 EDT 2024 Thu Apr 03 09:45:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2011, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5796-33d7b80b9dde05152e74bd7a0e5333e7f4eeac96ef653b8a78a5d29568a918793 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2010.01546.x ark:/67375/WNG-24L62NF5-T ArticleID:BIOM1546 istex:06D3154CC19186801D7B6FA813CA5DFC16C42DF0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21306352 |
PQID | 889911315 |
PQPubID | 35366 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_890679951 proquest_miscellaneous_1678540436 proquest_journals_889911315 pubmed_primary_21306352 crossref_primary_10_1111_j_1541_0420_2010_01546_x crossref_citationtrail_10_1111_j_1541_0420_2010_01546_x wiley_primary_10_1111_j_1541_0420_2010_01546_x_BIOM1546 jstor_primary_41242530 istex_primary_ark_67375_WNG_24L62NF5_T fao_agris_US201500147960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | Elashoff, R., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64, 762-771. Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 64-73. Harrell, F., Callif, R., Pryor, D., Lee, K., and Rosati, R. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association 247, 2543-2546. Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603. Abrams, D., Goldman, A., Launer, C., Korvick, A., Neaton, J., Crane, L., Grodesky, M., Wakefield, S., Muth, K., Kornegay, S., Cohn, D., Harris, A., Luskin-Hawk, R., Markowitz, N., Sampson, J., Thompson, M., Deyton, L. and the Terry Beirn Community Programs for Clinical Research on AIDS. (1994). Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy. New England Journal of Medicine 330, 657-662. Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica 14, 809-834. Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index for survival data. Statistics in Medicine 24, 3927-3944. Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd edition. New York : Wiley. Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637-654. Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63-74. Ding, J. and Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556. Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105. Taylor, J., Yu, M., and Sandler, H. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825. Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341. Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., and Abrams, D. (1996). Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 11, 161-169. Garre, F., Zwinderman, A., Geskus, R., and Sijpkens, Y. (2008). A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society, Series A 171, 299-308. Pencina, M., D'Agostino, Sr., R., D'Agostino, Jr., R., and Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157-172. Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339. Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley. Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549. Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249-255. Ye, W., Lin, X., and Taylor, J. (2008). A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Statistics and Its Interface 1, 33-45. Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33. Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753. Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 835-832. Cox, D. and Hinkley, D. (1974). Theoretical Statistics. London : Chapman & Hall. Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association 103, 178-187. Harrell, F., Kerry, L., and Mark, D. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15, 361-387. Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685. Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag. 1994; 330 2002; 58 2010; 35 2011 1974 1982; 247 2004 2000; 1 2008; 103 2005; 61 2002 2008; 1 2008; 95 1996; 15 2005; 23 2005; 24 1996; 11 2009; 10 2000 2000; 56 1997; 53 2009; 71 2004; 14 2008; 27 2005; 92 2008; 64 2007; 63 2008; 171 Brown (10.1111/j.1541-0420.2010.01546.x-BIB3|cit3) 2005; 61 Wulfsohn (10.1111/j.1541-0420.2010.01546.x-BIB28|cit28) 1997; 53 Schemper (10.1111/j.1541-0420.2010.01546.x-BIB22|cit22) 2000; 56 Faucett (10.1111/j.1541-0420.2010.01546.x-BIB7|cit7) 1996; 15 Yu (10.1111/j.1541-0420.2010.01546.x-BIB31|cit31) 2008; 103 Harrell (10.1111/j.1541-0420.2010.01546.x-BIB11|cit11) 1982; 247 Abrams (10.1111/j.1541-0420.2010.01546.x-BIB1|cit1) 1994; 330 Henderson (10.1111/j.1541-0420.2010.01546.x-BIB14|cit14) 2000; 1 Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB18|cit18) 2010; 35 Elashoff (10.1111/j.1541-0420.2010.01546.x-BIB6|cit6) 2008; 64 Kalbfleisch (10.1111/j.1541-0420.2010.01546.x-BIB15|cit15) 2002 Antolini (10.1111/j.1541-0420.2010.01546.x-BIB2|cit2) 2005; 24 Proust-Lima (10.1111/j.1541-0420.2010.01546.x-BIB17|cit17) 2009; 10 Tseng (10.1111/j.1541-0420.2010.01546.x-BIB25|cit25) 2005; 92 Fitzmaurice (10.1111/j.1541-0420.2010.01546.x-BIB8|cit8) 2004 Ding (10.1111/j.1541-0420.2010.01546.x-BIB5|cit5) 2008; 64 Taylor (10.1111/j.1541-0420.2010.01546.x-BIB24|cit24) 2005; 23 Goldman (10.1111/j.1541-0420.2010.01546.x-BIB10|cit10) 1996; 11 Heagerty (10.1111/j.1541-0420.2010.01546.x-BIB13|cit13) 2005; 61 Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB19|cit19) 2011 Harrell (10.1111/j.1541-0420.2010.01546.x-BIB12|cit12) 1996; 15 Zheng (10.1111/j.1541-0420.2010.01546.x-BIB32|cit32) 2007; 63 Verbeke (10.1111/j.1541-0420.2010.01546.x-BIB27|cit27) 2000 Song (10.1111/j.1541-0420.2010.01546.x-BIB23|cit23) 2002; 58 Garre (10.1111/j.1541-0420.2010.01546.x-BIB9|cit9) 2008; 171 Tsiatis (10.1111/j.1541-0420.2010.01546.x-BIB26|cit26) 2004; 14 Cox (10.1111/j.1541-0420.2010.01546.x-BIB4|cit4) 1974 Pencina (10.1111/j.1541-0420.2010.01546.x-BIB16|cit16) 2008; 27 Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB20|cit20) 2009; 71 Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB21|cit21) 2008; 95 Ye (10.1111/j.1541-0420.2010.01546.x-BIB29|cit29) 2008; 1 Yu (10.1111/j.1541-0420.2010.01546.x-BIB30|cit30) 2004; 14 |
References_xml | – reference: Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637-654. – reference: Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index for survival data. Statistics in Medicine 24, 3927-3944. – reference: Pencina, M., D'Agostino, Sr., R., D'Agostino, Jr., R., and Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157-172. – reference: Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley. – reference: Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603. – reference: Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339. – reference: Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63-74. – reference: Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249-255. – reference: Garre, F., Zwinderman, A., Geskus, R., and Sijpkens, Y. (2008). A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society, Series A 171, 299-308. – reference: Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 64-73. – reference: Ding, J. and Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556. – reference: Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33. – reference: Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 835-832. – reference: Elashoff, R., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64, 762-771. – reference: Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association 103, 178-187. – reference: Harrell, F., Callif, R., Pryor, D., Lee, K., and Rosati, R. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association 247, 2543-2546. – reference: Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd edition. New York : Wiley. – reference: Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685. – reference: Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549. – reference: Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica 14, 809-834. – reference: Taylor, J., Yu, M., and Sandler, H. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825. – reference: Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341. – reference: Abrams, D., Goldman, A., Launer, C., Korvick, A., Neaton, J., Crane, L., Grodesky, M., Wakefield, S., Muth, K., Kornegay, S., Cohn, D., Harris, A., Luskin-Hawk, R., Markowitz, N., Sampson, J., Thompson, M., Deyton, L. and the Terry Beirn Community Programs for Clinical Research on AIDS. (1994). Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy. New England Journal of Medicine 330, 657-662. – reference: Ye, W., Lin, X., and Taylor, J. (2008). A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Statistics and Its Interface 1, 33-45. – reference: Harrell, F., Kerry, L., and Mark, D. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15, 361-387. – reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. – reference: Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., and Abrams, D. (1996). Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 11, 161-169. – reference: Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753. – reference: Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag. – reference: Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105. – reference: Cox, D. and Hinkley, D. (1974). Theoretical Statistics. London : Chapman & Hall. – year: 2011 – volume: 247 start-page: 2543 year: 1982 end-page: 2546 article-title: Evaluating the yield of medical tests publication-title: Journal of the American Medical Association – volume: 35 start-page: 1 issue: 9 year: 2010 end-page: 33 article-title: : An package for the joint modelling of longitudinal and time‐to‐event data publication-title: Journal of Statistical Software – volume: 61 start-page: 64 year: 2005 end-page: 73 article-title: A flexible B‐spline model for multiple longitudinal biomarkers and survival publication-title: Biometrics – volume: 64 start-page: 546 year: 2008 end-page: 556 article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data publication-title: Biometrics – volume: 61 start-page: 92 year: 2005 end-page: 105 article-title: Survival model predictive accuracy and ROC curves publication-title: Biometrics – volume: 92 start-page: 587 year: 2005 end-page: 603 article-title: Joint modelling of accelerated failure time and longitudinal data publication-title: Biometrika – volume: 23 start-page: 816 year: 2005 end-page: 825 article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer publication-title: Journal of Clinical Oncology – year: 2000 – volume: 11 start-page: 161 year: 1996 end-page: 169 article-title: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology – volume: 10 start-page: 535 year: 2009 end-page: 549 article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach publication-title: Biostatistics – volume: 1 start-page: 33 year: 2008 end-page: 45 article-title: A penalized likelihood approach to joint modeling of longitudinal measurements and time‐to‐event data publication-title: Statistics and Its Interface – volume: 71 start-page: 637 year: 2009 end-page: 654 article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data publication-title: Journal of the Royal Statistical Society, Series B – volume: 330 start-page: 657 year: 1994 end-page: 662 article-title: Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy publication-title: New England Journal of Medicine – volume: 14 start-page: 809 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: An overview publication-title: Statistica Sinica – volume: 24 start-page: 3927 year: 2005 end-page: 3944 article-title: A time‐dependent discrimination index for survival data publication-title: Statistics in Medicine – volume: 171 start-page: 299 year: 2008 end-page: 308 article-title: A joint latent class changepoint model to improve the prediction of time to graft failure publication-title: Journal of the Royal Statistical Society, Series A – volume: 15 start-page: 361 year: 1996 end-page: 387 article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Statistics in Medicine – volume: 1 start-page: 465 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics – volume: 14 start-page: 835 year: 2004 end-page: 832 article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer publication-title: Statistica Sinica – volume: 27 start-page: 157 year: 2008 end-page: 172 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Statistics in Medicine – volume: 95 start-page: 63 year: 2008 end-page: 74 article-title: Shared parameter models under random effects misspecification publication-title: Biometrika – volume: 58 start-page: 742 year: 2002 end-page: 753 article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data publication-title: Biometrics – volume: 64 start-page: 762 year: 2008 end-page: 771 article-title: A joint model for longitudinal measurements and survival data in the presence of multiple failure types publication-title: Biometrics – year: 2002 – year: 2004 – year: 1974 – volume: 103 start-page: 178 year: 2008 end-page: 187 article-title: Individualized prediction in prostate cancer studies using a joint longitudinal‐survival‐cure model publication-title: Journal of the American Statistical Association – volume: 15 start-page: 1663 year: 1996 end-page: 1685 article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach publication-title: Statistics in Medicine – volume: 56 start-page: 249 year: 2000 end-page: 255 article-title: Predictive accuracy and explained variation in Cox regression publication-title: Biometrics – volume: 53 start-page: 330 year: 1997 end-page: 339 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics – volume: 63 start-page: 332 year: 2007 end-page: 341 article-title: Prospective accuracy for longitudinal markers publication-title: Biometrics – volume: 23 start-page: 816 year: 2005 ident: 10.1111/j.1541-0420.2010.01546.x-BIB24|cit24 article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2005.12.156 – volume: 247 start-page: 2543 year: 1982 ident: 10.1111/j.1541-0420.2010.01546.x-BIB11|cit11 article-title: Evaluating the yield of medical tests publication-title: Journal of the American Medical Association doi: 10.1001/jama.247.18.2543 – volume: 61 start-page: 64 year: 2005 ident: 10.1111/j.1541-0420.2010.01546.x-BIB3|cit3 article-title: A flexible B-spline model for multiple longitudinal biomarkers and survival publication-title: Biometrics doi: 10.1111/j.0006-341X.2005.030929.x – volume: 64 start-page: 762 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB6|cit6 article-title: A joint model for longitudinal measurements and survival data in the presence of multiple failure types publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00952.x – volume: 330 start-page: 657 year: 1994 ident: 10.1111/j.1541-0420.2010.01546.x-BIB1|cit1 article-title: Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy publication-title: New England Journal of Medicine doi: 10.1056/NEJM199403103301001 – volume: 27 start-page: 157 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB16|cit16 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Statistics in Medicine doi: 10.1002/sim.2929 – volume-title: The Statistical Analysis of Failure Time Data year: 2002 ident: 10.1111/j.1541-0420.2010.01546.x-BIB15|cit15 doi: 10.1002/9781118032985 – volume: 53 start-page: 330 year: 1997 ident: 10.1111/j.1541-0420.2010.01546.x-BIB28|cit28 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics doi: 10.2307/2533118 – volume: 1 start-page: 465 year: 2000 ident: 10.1111/j.1541-0420.2010.01546.x-BIB14|cit14 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics doi: 10.1093/biostatistics/1.4.465 – volume: 1 start-page: 33 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB29|cit29 article-title: A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data publication-title: Statistics and Its Interface doi: 10.4310/SII.2008.v1.n1.a4 – volume: 10 start-page: 535 year: 2009 ident: 10.1111/j.1541-0420.2010.01546.x-BIB17|cit17 article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach publication-title: Biostatistics doi: 10.1093/biostatistics/kxp009 – volume: 24 start-page: 3927 year: 2005 ident: 10.1111/j.1541-0420.2010.01546.x-BIB2|cit2 article-title: A time-dependent discrimination index for survival data publication-title: Statistics in Medicine doi: 10.1002/sim.2427 – volume: 15 start-page: 1663 year: 1996 ident: 10.1111/j.1541-0420.2010.01546.x-BIB7|cit7 article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 – volume: 14 start-page: 835 year: 2004 ident: 10.1111/j.1541-0420.2010.01546.x-BIB30|cit30 article-title: Joint longitudinal-survival-cure models and their application to prostate cancer publication-title: Statistica Sinica – volume: 35 start-page: 1 issue: 9 year: 2010 ident: 10.1111/j.1541-0420.2010.01546.x-BIB18|cit18 article-title: JM: An R package for the joint modelling of longitudinal and time-to-event data publication-title: Journal of Statistical Software doi: 10.18637/jss.v035.i09 – volume-title: Theoretical Statistics year: 1974 ident: 10.1111/j.1541-0420.2010.01546.x-BIB4|cit4 doi: 10.1007/978-1-4899-2887-0 – volume-title: Applied Longitudinal Data year: 2004 ident: 10.1111/j.1541-0420.2010.01546.x-BIB8|cit8 – volume-title: Linear Mixed Models for Longitudinal Data year: 2000 ident: 10.1111/j.1541-0420.2010.01546.x-BIB27|cit27 – volume: 58 start-page: 742 year: 2002 ident: 10.1111/j.1541-0420.2010.01546.x-BIB23|cit23 article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00742.x – volume: 92 start-page: 587 year: 2005 ident: 10.1111/j.1541-0420.2010.01546.x-BIB25|cit25 article-title: Joint modelling of accelerated failure time and longitudinal data publication-title: Biometrika doi: 10.1093/biomet/92.3.587 – volume: 103 start-page: 178 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB31|cit31 article-title: Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000400 – volume: 11 start-page: 161 year: 1996 ident: 10.1111/j.1541-0420.2010.01546.x-BIB10|cit10 article-title: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology doi: 10.1097/00042560-199602010-00007 – volume: 14 start-page: 809 year: 2004 ident: 10.1111/j.1541-0420.2010.01546.x-BIB26|cit26 article-title: Joint modeling of longitudinal and time-to-event data: An overview publication-title: Statistica Sinica – volume: 15 start-page: 361 year: 1996 ident: 10.1111/j.1541-0420.2010.01546.x-BIB12|cit12 article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – volume-title: To appear in Statistics in Medicine year: 2011 ident: 10.1111/j.1541-0420.2010.01546.x-BIB19|cit19 – volume: 64 start-page: 546 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB5|cit5 article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00896.x – volume: 61 start-page: 92 year: 2005 ident: 10.1111/j.1541-0420.2010.01546.x-BIB13|cit13 article-title: Survival model predictive accuracy and ROC curves publication-title: Biometrics doi: 10.1111/j.0006-341X.2005.030814.x – volume: 56 start-page: 249 year: 2000 ident: 10.1111/j.1541-0420.2010.01546.x-BIB22|cit22 article-title: Predictive accuracy and explained variation in Cox regression publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00249.x – volume: 71 start-page: 637 year: 2009 ident: 10.1111/j.1541-0420.2010.01546.x-BIB20|cit20 article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2008.00704.x – volume: 171 start-page: 299 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB9|cit9 article-title: A joint latent class changepoint model to improve the prediction of time to graft failure publication-title: Journal of the Royal Statistical Society, Series A doi: 10.1111/j.1467-985X.2007.00514.x – volume: 95 start-page: 63 year: 2008 ident: 10.1111/j.1541-0420.2010.01546.x-BIB21|cit21 article-title: Shared parameter models under random effects misspecification publication-title: Biometrika doi: 10.1093/biomet/asm087 – volume: 63 start-page: 332 year: 2007 ident: 10.1111/j.1541-0420.2010.01546.x-BIB32|cit32 article-title: Prospective accuracy for longitudinal markers publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00726.x |
SSID | ssj0009502 |
Score | 2.496916 |
Snippet | In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of... Summary In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 819 |
SubjectTerms | Accuracy Area under the curve Bayes estimators BIOMETRIC METHODOLOGY Biometrics biometry Biometry - methods CD4 Lymphocyte Count CD4-Positive T-Lymphocytes - pathology Data analysis data collection Datasets Discrimination Estimate reliability Estimators HIV Infections - blood HIV Infections - mortality Human immunodeficiency virus Humans Induced substructures Longitudinal data Longitudinal Studies Maximum likelihood estimation Modeling patients prediction Probability ROC methodology Shared parameter model Standard error Survival Analysis Time Time series Time-dependent covariates |
Title | Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time‐to‐Event Data |
URI | https://api.istex.fr/ark:/67375/WNG-24L62NF5-T/fulltext.pdf https://www.jstor.org/stable/41242530 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2010.01546.x https://www.ncbi.nlm.nih.gov/pubmed/21306352 https://www.proquest.com/docview/889911315 https://www.proquest.com/docview/1678540436 https://www.proquest.com/docview/890679951 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KMwFgbISIi3VIkd2-njYCtjWguCVfTNsh0Xqm7J1KbSyhM_gd_IL-HeJI1WNKQJ8VI1auzWt9fXx8655xLyymRcZlKyEHZeWQiI2IZpwk3ohUyctXFkJSYKD4byaJQcj8W44T9hLkytD9EeuOHMqOI1TnBjF5uTXCSwFU5Y1DC04Fp2EU8idQvx0Sd2RX83qoXDkeqVxONNUs-1HW2sVLcnpgD8iqa_XFMXrwOlmxi3WqT698lsPbyamzLrLkvbdd__UH78P-N_QO41WJbu1873kNzyeYfcqatbrjrk7qCVhF10yDbC2loV-hH5drDKzfnU0Y9zfFBU-T41eQbXxTr3k-47t5wbt6LTnB4X07ykWLjtbEEBZ9OTAgstLTMs6lW1xFyWXz9-lgW8HCKJkx6Y0jwmo_7h6dujsKn5EDrMig05z5RNI9uDsIvlZ5hXic2UiTzgUu7VJPGwVPSkn0jBbWpUakTGMOfR9LBwOt8hW3mR-11CuZpYr5yXDmKOF5hki3J7grsJVyqKAqLW_692jSA61uU401c2RmBijSbWaGJdmVhfBiRuW17UoiA3aLMLLqTNV4jdevSZ4UkTbE9hzPBDXld-1fZl5jPk2ymhvwzfaZacSDbsC30akJ3K8dobsXQ4Exx62Ft7om5i0EKnsJWOYx6LgLxsP4XggU-ETO6L5ULHAFUE6ivJgNC_3JP28KwRgHhAntQ-3n49AwAEgJWBJStPvbEx9Jv3Hwb49uk_t9wj2_XxPtL9npGtcr70zwEflvZFNfN_AyxKUGg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FM2FsYfIyHeUiV27KSPg650oy0IWtE3y3EcqFYS1KbSyhMfgc_IJ-EuSaMVDWlCvESNGrvN5Xz-3eXufoS80AmXiZTMBc8rcQERx24UcO1aIQMTx74XSywUHo5kfxKcTsW0pgPCWpiqP0QTcMOVUdprXOAYkN5e5SIAXzhgXp2iBeeyDYDyBhJ8I51B9wO70IHXq1qHY7JX4E-303ounWlrr7qe6hwQLAr_fJO8eBks3Ua55TbVu0vmmxusslPO2qsibpvvf_R-_E8SuEfu1HCWHlX6d59cs1mL3KwILtctcnvYdIVdtsguItuqMfQD8qW7zvTXmaHvF_iuqFR_qrMEzvNN-Sc9Mma10GZNZxk9zWdZQZG7bb6kALXpIEeupVWCvF7lSCxn-fXjZ5HD4RjzOGlXF3qPTHrH49d9t6Z9cA0WxrqcJ2EceXEHLC8y0DAbBnESas8CNOU2TAMLu0VH2lQKHkc6jLRIGJY96g5yp_N9spPlmT0glIdpbENjpQGzYwXW2WLHPcFNysPQ8xwSbh6wMnVPdKTmmKsLvhGIWKGIFYpYlSJW5w7xm5Hfqr4gVxhzADqk9Gcw32rykWGwCTxUuGf4Iy9LxWrm0oszTLkLhfo0eqNYMJBs1BNq7JD9UvOaC5E9nAkOMxxuVFHVZmipIvCmfZ_7wiHPm2_BfuBLIZ3ZfLVUPqAVgS2WpEPoX66JOhhuBCzukIeVkjc_zwADAWZlIMlSVa8sDPXq5N0QPz7655HPyK3-eDhQg5PR20OyW0X7MfvvMdkpFiv7BOBiET8tzcBvLaFUgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDQe-Cj7COPDSIi3VIkdO-njoCvbaMsEq-ibZScOVN2SqU2llSf-BP5G_hLukjRa0ZAmxEuUKLGTXM7n3zl3vyPktU64TKRkLnheiQuI2LhRwLVrhQxiY3zPSEwUHgzl4Sg4HotxHf-EuTAVP0Sz4IYjo7TXOMAvknR9kIsAXOGAeXWEFhzLNuDJO4GEsYMA6RO7QsDrVczhGOsV-OP1qJ5re1qbqm6nOgcAi7K_XMUuXodK10FuOUv1HpLp6v2q4JRpe1GYdvz9D-rH_yOAR-RBDWbpfqV9j8ktm7XI3aq85bJF7g8aTth5i2wirq1ooZ-Qb91lps8nMT2Z4Z-iUvmpzhI4zlfJn3Q_jhczHS_pJKPH-SQrKFZuO5tTANq0n2OlpUWCVb3KlpjM8uvHzyKHzQFGcdKuLvQWGfUOTt8dunXRBzfGtFiX8yQ0kWc6YHex_gyzYWCSUHsWgCm3YRpYmCs60qZScBPpMNIiYZj0qDtYOZ1vk40sz-wuoTxMjQ1jK2MwOlZgli3y7QkepzwMPc8h4er7qrhmRMfCHGfqimcEIlYoYoUiVqWI1aVD_KblRcUKcoM2u6BCSn8F461GnxkuNYF_Cu8MD_Km1KumLz2bYsBdKNSX4XvFgr5kw55Qpw7ZLhWvuRBrhzPBoYe9lSaq2gjNVQS-tO9zXzjkVXMWrAf-EtKZzRdz5QNWEUiwJB1C_3JN1MHFRkDiDtmpdLy5PQMEBIiVgSRLTb2xMNTbo48D3H36zy1fknsn3Z7qHw0_7JHNaqkfQ_-ekY1itrDPASsW5kVpBH4D7t5TOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Predictions+and+Prospective+Accuracy+in+Joint+Models+for+Longitudinal+and+Time-to-Event+Data&rft.jtitle=Biometrics&rft.au=Rizopoulos%2C+Dimitris&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=67&rft.issue=3&rft.spage=819&rft_id=info:doi/10.1111%2Fj.1541-0420.2010.01546.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2453727001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |