Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time‐to‐Event Data

In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 67; no. 3; pp. 819 - 829
Main Author Rizopoulos, Dimitris
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2011
Wiley-Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2010.01546.x

Cover

Loading…
Abstract In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements.
AbstractList In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements.
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.
Summary In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time‐to‐event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time‐to‐event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time‐to‐death using their longitudinal CD4 cell count measurements.
Author Rizopoulos, Dimitris
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21306352$$D View this record in MEDLINE/PubMed
BookMark eNqVkstuEzEUhi1URNPCIwAjNrBJ8N3jDVLpjaK0RSIV7Cxn5kxxmIyDPVOSHY_AM_IkeDoliy4QeGH7-Hzn9-X3HtppfAMIZQRPSGqvFxMiOBljTvGE4rSKUywn6wdotE3soBHGWI4ZJ5930V6MixRqgekjtEsJw5IJOkJfjjaNXboi-xCgdEXrfBMz25Qp9nEFaeEGsoOi6IItNplrsvfeNW127kuoY1b5kE19c-3arnSNrW8rZ24Jv378bH3qjm8g0Ue2tY_Rw8rWEZ7cjfvo6uR4dvhuPL08PTs8mI4LoXQ6LSvVPMdzXZaABREUFJ-XymIQjDFQFQewhZZQScHmuVW5FSXVQuZWk1xpto9eDrqr4L91EFuzdLGAurYN-C6aXGOptBYkka_-ShKpcsExZzKhL-6hC9-FdOGkl2tNCCMiQc_uoG6-hNKsglvasDF_HjsB-QAU6W1jgGqLEGx6X83C9PaZ3j7T-2pufTXrVPrmXmnhWtu71Qbr6v8Q-O5q2Pzzxubt2eV5P00CTweBRWx92ApwQjkVDKf8eMi72MJ6m7fhq5GKKWE-XZwayqeSXpwIM0v884GvrDf2Orhorj6mrQXGhKefgNlvmKPd6Q
CODEN BIOMA5
CitedBy_id crossref_primary_10_1186_s12874_016_0272_6
crossref_primary_10_1016_j_ijcard_2023_131268
crossref_primary_10_1093_aje_kwy018
crossref_primary_10_1016_j_jclinepi_2020_07_014
crossref_primary_10_1002_pon_3846
crossref_primary_10_1177_0962280212445800
crossref_primary_10_1186_s12874_022_01660_3
crossref_primary_10_1016_j_cjca_2020_01_004
crossref_primary_10_1177_0962280216643563
crossref_primary_10_1080_10543406_2023_2187413
crossref_primary_10_1155_2022_1362913
crossref_primary_10_1177_0962280216673084
crossref_primary_10_1177_1010539519889767
crossref_primary_10_1186_s12874_020_01177_7
crossref_primary_10_1111_biom_12537
crossref_primary_10_1111_insr_12018
crossref_primary_10_3802_jgo_2014_25_1_51
crossref_primary_10_1177_1536867X1301300112
crossref_primary_10_1002_sim_8069
crossref_primary_10_1002_sim_9037
crossref_primary_10_3233_JAD_161201
crossref_primary_10_1002_sim_9713
crossref_primary_10_1093_schbul_sbz059
crossref_primary_10_1002_sim_7092
crossref_primary_10_1002_sim_9392
crossref_primary_10_7717_peerj_1673
crossref_primary_10_1007_s12561_016_9183_7
crossref_primary_10_1016_j_echo_2019_04_419
crossref_primary_10_1186_s12874_021_01294_x
crossref_primary_10_1002_bimj_201600159
crossref_primary_10_1093_ageing_afaa056
crossref_primary_10_1108_K_06_2016_0149
crossref_primary_10_1177_0962280218802300
crossref_primary_10_1002_alz_70055
crossref_primary_10_1016_j_ijcard_2021_04_061
crossref_primary_10_1111_rssa_12611
crossref_primary_10_1002_bimj_201600238
crossref_primary_10_1186_s12874_021_01375_x
crossref_primary_10_1097_GME_0000000000000642
crossref_primary_10_3390_biomedicines11102676
crossref_primary_10_1007_s10985_019_09478_w
crossref_primary_10_1371_journal_pone_0293796
crossref_primary_10_1373_clinchem_2016_261172
crossref_primary_10_1093_ije_dyab047
crossref_primary_10_3390_jcm9010195
crossref_primary_10_1002_sim_7308
crossref_primary_10_1002_sim_8757
crossref_primary_10_1007_s10742_012_0087_9
crossref_primary_10_1080_24725854_2021_1918804
crossref_primary_10_3390_cancers15010231
crossref_primary_10_3389_fonc_2022_999324
crossref_primary_10_1111_rssc_12152
crossref_primary_10_1016_j_jcf_2018_12_005
crossref_primary_10_3310_pgfar05040
crossref_primary_10_1002_sim_10322
crossref_primary_10_1177_0962280220921553
crossref_primary_10_1016_j_kint_2020_07_049
crossref_primary_10_1016_j_ijcard_2020_03_064
crossref_primary_10_1111_rssc_12264
crossref_primary_10_1371_journal_pone_0227124
crossref_primary_10_1002_sim_7675
crossref_primary_10_3389_fcvm_2022_933428
crossref_primary_10_1136_bmjopen_2015_010466
crossref_primary_10_1002_1878_0261_13755
crossref_primary_10_3389_fgene_2022_915839
crossref_primary_10_1007_s00415_016_8109_0
crossref_primary_10_1002_bimj_202300081
crossref_primary_10_1002_acr_23881
crossref_primary_10_1371_journal_pone_0182873
crossref_primary_10_1080_02664763_2022_2081965
crossref_primary_10_1080_02664763_2024_2313459
crossref_primary_10_15446_rce_v43n1_77851
crossref_primary_10_1371_journal_pone_0153234
crossref_primary_10_1002_sim_7209
crossref_primary_10_1177_09622802241236951
crossref_primary_10_7554_eLife_64827
crossref_primary_10_1016_j_csda_2023_107837
crossref_primary_10_1111_biom_12232
crossref_primary_10_1093_bib_bbab206
crossref_primary_10_1177_0962280216688032
crossref_primary_10_1016_j_jclinane_2021_110596
crossref_primary_10_1109_TII_2020_3021054
crossref_primary_10_1002_psp4_12490
crossref_primary_10_1002_bimj_201600222
crossref_primary_10_6000_1929_6029_2013_02_04_5
crossref_primary_10_1214_22_AOAS1674
crossref_primary_10_1016_j_csda_2015_05_007
crossref_primary_10_1016_j_ejor_2023_03_012
crossref_primary_10_1016_j_phrs_2013_03_009
crossref_primary_10_1002_bimj_201300028
crossref_primary_10_1080_02664763_2014_909784
crossref_primary_10_1164_rccm_201304_0736ED
crossref_primary_10_3233_JHD_170236
crossref_primary_10_1177_0272989X19861963
crossref_primary_10_1186_s12879_016_1440_3
crossref_primary_10_1109_TR_2022_3193353
crossref_primary_10_1109_TASE_2024_3432400
crossref_primary_10_2139_ssrn_3470384
crossref_primary_10_1038_s41598_020_61461_w
crossref_primary_10_1002_sim_7571
crossref_primary_10_1080_00401706_2017_1383310
crossref_primary_10_1002_bimj_201600235
crossref_primary_10_1111_dom_13929
crossref_primary_10_1182_blood_2024025868
crossref_primary_10_1080_03610926_2019_1602651
crossref_primary_10_1080_00401706_2020_1832582
crossref_primary_10_3389_fpubh_2014_00228
crossref_primary_10_1097_MD_0000000000040181
crossref_primary_10_1177_1471082X13478880
crossref_primary_10_1208_s12248_019_0388_9
crossref_primary_10_1002_sim_6937
crossref_primary_10_1093_biostatistics_kxz049
crossref_primary_10_15672_hujms_884326
crossref_primary_10_1111_rssb_12060
crossref_primary_10_1155_2020_3074532
crossref_primary_10_1186_s12872_015_0035_z
crossref_primary_10_1080_24709360_2019_1693198
crossref_primary_10_1080_01621459_2014_931236
crossref_primary_10_1177_09622802241275382
crossref_primary_10_1080_10543406_2017_1293080
crossref_primary_10_1161_JAHA_117_008349
crossref_primary_10_1080_02664763_2016_1262336
crossref_primary_10_1109_TR_2020_3035084
crossref_primary_10_1111_rssc_12075
crossref_primary_10_1126_sciadv_abf6759
crossref_primary_10_1093_jamia_ocaa242
crossref_primary_10_1002_1878_0261_12870
crossref_primary_10_1016_j_csda_2020_107095
crossref_primary_10_1016_j_psychres_2020_113201
crossref_primary_10_1111_biom_12562
crossref_primary_10_1002_sim_9896
crossref_primary_10_1186_s12874_022_01709_3
crossref_primary_10_1111_jth_14774
crossref_primary_10_1002_sim_8687
crossref_primary_10_1002_sim_9897
crossref_primary_10_1200_PO_19_00068
crossref_primary_10_1016_j_cjca_2019_12_004
crossref_primary_10_1016_j_csda_2022_107685
crossref_primary_10_1002_sim_6260
crossref_primary_10_1249_MSS_0000000000001822
crossref_primary_10_1007_s12561_023_09381_x
crossref_primary_10_1111_stan_12114
crossref_primary_10_1177_0962280218808821
crossref_primary_10_1016_j_amjsurg_2013_09_024
crossref_primary_10_1109_TR_2013_2259205
crossref_primary_10_1155_2018_7409284
crossref_primary_10_1111_biom_12940
crossref_primary_10_1177_1471082X211048695
crossref_primary_10_1109_JBHI_2023_3292475
crossref_primary_10_1177_0962280217753466
crossref_primary_10_1053_j_ajkd_2017_01_004
crossref_primary_10_1002_psp4_13145
crossref_primary_10_1002_sim_6158
crossref_primary_10_1177_11772719221112370
crossref_primary_10_1080_01621459_2014_940044
crossref_primary_10_1093_ndt_gfaa180
crossref_primary_10_1214_24_AOAS1889
crossref_primary_10_1007_s11222_020_09927_9
crossref_primary_10_1177_0962280216628560
crossref_primary_10_1164_rccm_201212_2154OC
crossref_primary_10_1016_j_artmed_2024_102862
crossref_primary_10_1016_j_kint_2017_09_013
crossref_primary_10_1093_jamia_ocac123
crossref_primary_10_2217_bmm_15_110
crossref_primary_10_1111_rssa_12101
crossref_primary_10_1111_biom_12814
crossref_primary_10_1002_psp4_12856
crossref_primary_10_1080_02664763_2016_1254728
crossref_primary_10_1186_s12876_018_0795_x
crossref_primary_10_1159_000517281
crossref_primary_10_1177_0962280219863076
crossref_primary_10_1016_j_ress_2021_107877
crossref_primary_10_1080_10618600_2022_2102027
crossref_primary_10_1016_j_ajp_2023_103468
crossref_primary_10_1177_09622802231188521
crossref_primary_10_1093_ckj_sfaa024
crossref_primary_10_1002_sim_6284
crossref_primary_10_1177_09622802241300845
crossref_primary_10_1177_0962280217722177
crossref_primary_10_1177_2632084320972257
crossref_primary_10_1080_19466315_2020_1837234
crossref_primary_10_1177_0962280218784757
crossref_primary_10_1146_annurev_statistics_030718_105048
crossref_primary_10_1177_10732748251316609
crossref_primary_10_1109_TPAMI_2017_2742504
crossref_primary_10_1002_sim_5644
crossref_primary_10_1177_0962280214535763
crossref_primary_10_1097_HEP_0000000000001045
crossref_primary_10_1097_igc_0000000000001134
crossref_primary_10_1111_j_1541_0420_2012_01823_x
crossref_primary_10_1080_24725854_2019_1630868
crossref_primary_10_1177_0962280220945352
crossref_primary_10_1080_19466315_2016_1142889
crossref_primary_10_1093_noajnl_vdaa147
crossref_primary_10_1080_24709360_2017_1381300
crossref_primary_10_1002_sim_6972
crossref_primary_10_1002_sim_9206
crossref_primary_10_1111_rssc_12433
crossref_primary_10_1111_biom_12490
crossref_primary_10_1080_00401706_2024_2421763
crossref_primary_10_1109_TR_2014_2355531
crossref_primary_10_1002_sim_9683
crossref_primary_10_1007_s11222_023_10293_5
crossref_primary_10_1055_s_0040_1718877
crossref_primary_10_1108_ILT_11_2023_0361
crossref_primary_10_1080_02664763_2019_1590540
crossref_primary_10_1183_09031936_00168113
crossref_primary_10_3389_fmed_2024_1428073
crossref_primary_10_1093_biostatistics_kxv031
crossref_primary_10_1016_j_trci_2019_08_001
crossref_primary_10_1002_bimj_201200045
crossref_primary_10_1002_sim_9214
crossref_primary_10_1016_j_csda_2022_107528
crossref_primary_10_1002_sim_6860
crossref_primary_10_1038_bmt_2014_257
crossref_primary_10_1161_CIRCOUTCOMES_120_007593
crossref_primary_10_1002_sim_9336
crossref_primary_10_1007_s12561_024_09433_w
crossref_primary_10_1093_ndt_gfw405
crossref_primary_10_1002_sim_6500
crossref_primary_10_1002_psp4_13290
crossref_primary_10_1177_0962280215588340
crossref_primary_10_1186_s12874_024_02434_9
crossref_primary_10_1093_biomtc_ujae113
crossref_primary_10_1016_j_ijmedinf_2018_09_012
crossref_primary_10_1186_s12894_024_01522_8
crossref_primary_10_1002_sim_10010
crossref_primary_10_1111_jcpe_13888
crossref_primary_10_1016_j_ijrobp_2023_02_022
crossref_primary_10_1186_1471_2288_13_146
crossref_primary_10_1186_s41512_020_00078_z
crossref_primary_10_1080_02664763_2021_1897971
crossref_primary_10_1177_0962280213495994
crossref_primary_10_1002_sim_6517
crossref_primary_10_1111_rssc_12571
crossref_primary_10_1111_rssc_12210
crossref_primary_10_1002_sim_9102
crossref_primary_10_1111_rssc_12334
crossref_primary_10_1002_sim_6754
crossref_primary_10_1055_s_0041_1730924
crossref_primary_10_1155_2012_680634
crossref_primary_10_1177_0962280218811837
crossref_primary_10_1007_s10260_017_0410_2
crossref_primary_10_1186_s12874_019_0677_0
crossref_primary_10_1186_s12874_024_02445_6
crossref_primary_10_5691_jjb_45_189
crossref_primary_10_1002_sim_10023
crossref_primary_10_1016_j_csda_2018_07_015
crossref_primary_10_1186_s12874_022_01828_x
crossref_primary_10_1136_heartjnl_2020_316813
crossref_primary_10_1186_s12874_024_02418_9
crossref_primary_10_1007_s40262_023_01310_x
crossref_primary_10_1111_biom_13027
crossref_primary_10_1016_j_annepidem_2023_03_007
crossref_primary_10_3389_fdata_2022_812725
crossref_primary_10_1016_j_addbeh_2018_01_018
crossref_primary_10_1080_10543406_2020_1852248
crossref_primary_10_1002_bimj_201900112
crossref_primary_10_1038_s41598_022_06698_3
crossref_primary_10_1053_j_ajkd_2022_05_011
crossref_primary_10_1515_ijb_2020_0067
crossref_primary_10_1016_j_kint_2018_04_007
crossref_primary_10_1016_j_ejor_2022_10_022
crossref_primary_10_1371_journal_pone_0216559
crossref_primary_10_1111_biom_12964
crossref_primary_10_1080_02664763_2014_999032
crossref_primary_10_1080_00273171_2020_1865864
crossref_primary_10_1214_23_AOAS1864
crossref_primary_10_1214_23_AOAS1733
crossref_primary_10_1161_JAHA_118_009555
crossref_primary_10_1161_CIRCULATIONAHA_117_030576
crossref_primary_10_1016_j_jacc_2021_11_023
crossref_primary_10_1080_01621459_2019_1611584
crossref_primary_10_1186_s12874_017_0382_9
crossref_primary_10_1016_j_oraloncology_2022_105787
crossref_primary_10_1016_j_conctc_2021_100827
crossref_primary_10_1016_j_csda_2011_09_007
crossref_primary_10_1164_rccm_201303_0429OC
crossref_primary_10_1002_cpt_1450
crossref_primary_10_1093_biostatistics_kxae036
crossref_primary_10_1002_sim_7065
crossref_primary_10_1002_sim_9241
crossref_primary_10_1016_S2589_7500_21_00209_0
crossref_primary_10_1016_j_compbiomed_2024_109186
crossref_primary_10_1093_gigascience_giaa128
crossref_primary_10_21032_jhis_2023_48_4_291
crossref_primary_10_1016_j_artmed_2023_102620
crossref_primary_10_2217_bmm_2020_0585
crossref_primary_10_1007_s10985_020_09511_3
crossref_primary_10_1007_s10260_025_00782_4
crossref_primary_10_1145_3377164
crossref_primary_10_1214_17_AOAS1059
crossref_primary_10_1007_s00180_016_0681_3
crossref_primary_10_1214_23_AOAS1731
crossref_primary_10_1109_TR_2017_2717190
crossref_primary_10_1161_CIRCULATIONAHA_117_032742
crossref_primary_10_1002_sim_7994
crossref_primary_10_1177_0962280212445839
crossref_primary_10_1080_0740817X_2013_876126
crossref_primary_10_1214_19_SS126
crossref_primary_10_1177_09622802241268466
crossref_primary_10_1214_17_AOAS1050
Cites_doi 10.1200/JCO.2005.12.156
10.1001/jama.247.18.2543
10.1111/j.0006-341X.2005.030929.x
10.1111/j.1541-0420.2007.00952.x
10.1056/NEJM199403103301001
10.1002/sim.2929
10.1002/9781118032985
10.2307/2533118
10.1093/biostatistics/1.4.465
10.4310/SII.2008.v1.n1.a4
10.1093/biostatistics/kxp009
10.1002/sim.2427
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
10.18637/jss.v035.i09
10.1007/978-1-4899-2887-0
10.1111/j.0006-341X.2002.00742.x
10.1093/biomet/92.3.587
10.1198/016214507000000400
10.1097/00042560-199602010-00007
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1111/j.1541-0420.2007.00896.x
10.1111/j.0006-341X.2005.030814.x
10.1111/j.0006-341X.2000.00249.x
10.1111/j.1467-9868.2008.00704.x
10.1111/j.1467-985X.2007.00514.x
10.1093/biomet/asm087
10.1111/j.1541-0420.2006.00726.x
ContentType Journal Article
Copyright 2011 International Biometric Society
2011, The International Biometric Society
2011, The International Biometric Society.
Copyright_xml – notice: 2011 International Biometric Society
– notice: 2011, The International Biometric Society
– notice: 2011, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
DOI 10.1111/j.1541-0420.2010.01546.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


ProQuest Computer Science Collection
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 829
ExternalDocumentID 2453727001
21306352
10_1111_j_1541_0420_2010_01546_x
BIOM1546
41242530
ark_67375_WNG_24L62NF5_T
US201500147960
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7S9
L.6
7X8
ID FETCH-LOGICAL-c5796-33d7b80b9dde05152e74bd7a0e5333e7f4eeac96ef653b8a78a5d29568a918793
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 01:38:18 EDT 2025
Fri Jul 11 18:29:15 EDT 2025
Wed Aug 13 09:06:50 EDT 2025
Mon Jul 21 05:57:58 EDT 2025
Tue Jul 01 00:58:01 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Wed Jan 22 16:26:56 EST 2025
Thu Jul 03 21:22:21 EDT 2025
Wed Oct 30 09:57:31 EDT 2024
Thu Apr 03 09:45:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2011, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5796-33d7b80b9dde05152e74bd7a0e5333e7f4eeac96ef653b8a78a5d29568a918793
Notes http://dx.doi.org/10.1111/j.1541-0420.2010.01546.x
ark:/67375/WNG-24L62NF5-T
ArticleID:BIOM1546
istex:06D3154CC19186801D7B6FA813CA5DFC16C42DF0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21306352
PQID 889911315
PQPubID 35366
PageCount 11
ParticipantIDs proquest_miscellaneous_890679951
proquest_miscellaneous_1678540436
proquest_journals_889911315
pubmed_primary_21306352
crossref_primary_10_1111_j_1541_0420_2010_01546_x
crossref_citationtrail_10_1111_j_1541_0420_2010_01546_x
wiley_primary_10_1111_j_1541_0420_2010_01546_x_BIOM1546
jstor_primary_41242530
istex_primary_ark_67375_WNG_24L62NF5_T
fao_agris_US201500147960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Elashoff, R., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64, 762-771.
Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 64-73.
Harrell, F., Callif, R., Pryor, D., Lee, K., and Rosati, R. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association 247, 2543-2546.
Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.
Abrams, D., Goldman, A., Launer, C., Korvick, A., Neaton, J., Crane, L., Grodesky, M., Wakefield, S., Muth, K., Kornegay, S., Cohn, D., Harris, A., Luskin-Hawk, R., Markowitz, N., Sampson, J., Thompson, M., Deyton, L. and the Terry Beirn Community Programs for Clinical Research on AIDS. (1994). Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy. New England Journal of Medicine 330, 657-662.
Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica 14, 809-834.
Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index for survival data. Statistics in Medicine 24, 3927-3944.
Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd edition. New York : Wiley.
Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637-654.
Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63-74.
Ding, J. and Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556.
Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.
Taylor, J., Yu, M., and Sandler, H. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825.
Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341.
Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., and Abrams, D. (1996). Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 11, 161-169.
Garre, F., Zwinderman, A., Geskus, R., and Sijpkens, Y. (2008). A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society, Series A 171, 299-308.
Pencina, M., D'Agostino, Sr., R., D'Agostino, Jr., R., and Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157-172.
Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339.
Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley.
Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549.
Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249-255.
Ye, W., Lin, X., and Taylor, J. (2008). A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Statistics and Its Interface 1, 33-45.
Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33.
Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753.
Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 835-832.
Cox, D. and Hinkley, D. (1974). Theoretical Statistics. London : Chapman & Hall.
Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association 103, 178-187.
Harrell, F., Kerry, L., and Mark, D. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15, 361-387.
Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.
Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag.
1994; 330
2002; 58
2010; 35
2011
1974
1982; 247
2004
2000; 1
2008; 103
2005; 61
2002
2008; 1
2008; 95
1996; 15
2005; 23
2005; 24
1996; 11
2009; 10
2000
2000; 56
1997; 53
2009; 71
2004; 14
2008; 27
2005; 92
2008; 64
2007; 63
2008; 171
Brown (10.1111/j.1541-0420.2010.01546.x-BIB3|cit3) 2005; 61
Wulfsohn (10.1111/j.1541-0420.2010.01546.x-BIB28|cit28) 1997; 53
Schemper (10.1111/j.1541-0420.2010.01546.x-BIB22|cit22) 2000; 56
Faucett (10.1111/j.1541-0420.2010.01546.x-BIB7|cit7) 1996; 15
Yu (10.1111/j.1541-0420.2010.01546.x-BIB31|cit31) 2008; 103
Harrell (10.1111/j.1541-0420.2010.01546.x-BIB11|cit11) 1982; 247
Abrams (10.1111/j.1541-0420.2010.01546.x-BIB1|cit1) 1994; 330
Henderson (10.1111/j.1541-0420.2010.01546.x-BIB14|cit14) 2000; 1
Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB18|cit18) 2010; 35
Elashoff (10.1111/j.1541-0420.2010.01546.x-BIB6|cit6) 2008; 64
Kalbfleisch (10.1111/j.1541-0420.2010.01546.x-BIB15|cit15) 2002
Antolini (10.1111/j.1541-0420.2010.01546.x-BIB2|cit2) 2005; 24
Proust-Lima (10.1111/j.1541-0420.2010.01546.x-BIB17|cit17) 2009; 10
Tseng (10.1111/j.1541-0420.2010.01546.x-BIB25|cit25) 2005; 92
Fitzmaurice (10.1111/j.1541-0420.2010.01546.x-BIB8|cit8) 2004
Ding (10.1111/j.1541-0420.2010.01546.x-BIB5|cit5) 2008; 64
Taylor (10.1111/j.1541-0420.2010.01546.x-BIB24|cit24) 2005; 23
Goldman (10.1111/j.1541-0420.2010.01546.x-BIB10|cit10) 1996; 11
Heagerty (10.1111/j.1541-0420.2010.01546.x-BIB13|cit13) 2005; 61
Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB19|cit19) 2011
Harrell (10.1111/j.1541-0420.2010.01546.x-BIB12|cit12) 1996; 15
Zheng (10.1111/j.1541-0420.2010.01546.x-BIB32|cit32) 2007; 63
Verbeke (10.1111/j.1541-0420.2010.01546.x-BIB27|cit27) 2000
Song (10.1111/j.1541-0420.2010.01546.x-BIB23|cit23) 2002; 58
Garre (10.1111/j.1541-0420.2010.01546.x-BIB9|cit9) 2008; 171
Tsiatis (10.1111/j.1541-0420.2010.01546.x-BIB26|cit26) 2004; 14
Cox (10.1111/j.1541-0420.2010.01546.x-BIB4|cit4) 1974
Pencina (10.1111/j.1541-0420.2010.01546.x-BIB16|cit16) 2008; 27
Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB20|cit20) 2009; 71
Rizopoulos (10.1111/j.1541-0420.2010.01546.x-BIB21|cit21) 2008; 95
Ye (10.1111/j.1541-0420.2010.01546.x-BIB29|cit29) 2008; 1
Yu (10.1111/j.1541-0420.2010.01546.x-BIB30|cit30) 2004; 14
References_xml – reference: Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637-654.
– reference: Antolini, L., Boracchi, P., and Biganzoli, E. (2005). A time-dependent discrimination index for survival data. Statistics in Medicine 24, 3927-3944.
– reference: Pencina, M., D'Agostino, Sr., R., D'Agostino, Jr., R., and Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157-172.
– reference: Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley.
– reference: Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.
– reference: Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339.
– reference: Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika 95, 63-74.
– reference: Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249-255.
– reference: Garre, F., Zwinderman, A., Geskus, R., and Sijpkens, Y. (2008). A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society, Series A 171, 299-308.
– reference: Brown, E., Ibrahim, J., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 64-73.
– reference: Ding, J. and Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556.
– reference: Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33.
– reference: Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 835-832.
– reference: Elashoff, R., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64, 762-771.
– reference: Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association 103, 178-187.
– reference: Harrell, F., Callif, R., Pryor, D., Lee, K., and Rosati, R. (1982). Evaluating the yield of medical tests. Journal of the American Medical Association 247, 2543-2546.
– reference: Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd edition. New York : Wiley.
– reference: Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.
– reference: Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549.
– reference: Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica 14, 809-834.
– reference: Taylor, J., Yu, M., and Sandler, H. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825.
– reference: Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341.
– reference: Abrams, D., Goldman, A., Launer, C., Korvick, A., Neaton, J., Crane, L., Grodesky, M., Wakefield, S., Muth, K., Kornegay, S., Cohn, D., Harris, A., Luskin-Hawk, R., Markowitz, N., Sampson, J., Thompson, M., Deyton, L. and the Terry Beirn Community Programs for Clinical Research on AIDS. (1994). Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy. New England Journal of Medicine 330, 657-662.
– reference: Ye, W., Lin, X., and Taylor, J. (2008). A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data. Statistics and Its Interface 1, 33-45.
– reference: Harrell, F., Kerry, L., and Mark, D. (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15, 361-387.
– reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
– reference: Goldman, A., Carlin, B., Crane, L., Launer, C., Korvick, J., Deyton, L., and Abrams, D. (1996). Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 11, 161-169.
– reference: Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753.
– reference: Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag.
– reference: Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.
– reference: Cox, D. and Hinkley, D. (1974). Theoretical Statistics. London : Chapman & Hall.
– year: 2011
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  article-title: Evaluating the yield of medical tests
  publication-title: Journal of the American Medical Association
– volume: 35
  start-page: 1
  issue: 9
  year: 2010
  end-page: 33
  article-title: : An package for the joint modelling of longitudinal and time‐to‐event data
  publication-title: Journal of Statistical Software
– volume: 61
  start-page: 64
  year: 2005
  end-page: 73
  article-title: A flexible B‐spline model for multiple longitudinal biomarkers and survival
  publication-title: Biometrics
– volume: 64
  start-page: 546
  year: 2008
  end-page: 556
  article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
  publication-title: Biometrics
– volume: 61
  start-page: 92
  year: 2005
  end-page: 105
  article-title: Survival model predictive accuracy and ROC curves
  publication-title: Biometrics
– volume: 92
  start-page: 587
  year: 2005
  end-page: 603
  article-title: Joint modelling of accelerated failure time and longitudinal data
  publication-title: Biometrika
– volume: 23
  start-page: 816
  year: 2005
  end-page: 825
  article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer
  publication-title: Journal of Clinical Oncology
– year: 2000
– volume: 11
  start-page: 161
  year: 1996
  end-page: 169
  article-title: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection
  publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology
– volume: 10
  start-page: 535
  year: 2009
  end-page: 549
  article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
  publication-title: Biostatistics
– volume: 1
  start-page: 33
  year: 2008
  end-page: 45
  article-title: A penalized likelihood approach to joint modeling of longitudinal measurements and time‐to‐event data
  publication-title: Statistics and Its Interface
– volume: 71
  start-page: 637
  year: 2009
  end-page: 654
  article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 330
  start-page: 657
  year: 1994
  end-page: 662
  article-title: Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy
  publication-title: New England Journal of Medicine
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Statistica Sinica
– volume: 24
  start-page: 3927
  year: 2005
  end-page: 3944
  article-title: A time‐dependent discrimination index for survival data
  publication-title: Statistics in Medicine
– volume: 171
  start-page: 299
  year: 2008
  end-page: 308
  article-title: A joint latent class changepoint model to improve the prediction of time to graft failure
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 15
  start-page: 361
  year: 1996
  end-page: 387
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
– volume: 14
  start-page: 835
  year: 2004
  end-page: 832
  article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer
  publication-title: Statistica Sinica
– volume: 27
  start-page: 157
  year: 2008
  end-page: 172
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Statistics in Medicine
– volume: 95
  start-page: 63
  year: 2008
  end-page: 74
  article-title: Shared parameter models under random effects misspecification
  publication-title: Biometrika
– volume: 58
  start-page: 742
  year: 2002
  end-page: 753
  article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data
  publication-title: Biometrics
– volume: 64
  start-page: 762
  year: 2008
  end-page: 771
  article-title: A joint model for longitudinal measurements and survival data in the presence of multiple failure types
  publication-title: Biometrics
– year: 2002
– year: 2004
– year: 1974
– volume: 103
  start-page: 178
  year: 2008
  end-page: 187
  article-title: Individualized prediction in prostate cancer studies using a joint longitudinal‐survival‐cure model
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 1663
  year: 1996
  end-page: 1685
  article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
  publication-title: Statistics in Medicine
– volume: 56
  start-page: 249
  year: 2000
  end-page: 255
  article-title: Predictive accuracy and explained variation in Cox regression
  publication-title: Biometrics
– volume: 53
  start-page: 330
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 63
  start-page: 332
  year: 2007
  end-page: 341
  article-title: Prospective accuracy for longitudinal markers
  publication-title: Biometrics
– volume: 23
  start-page: 816
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB24|cit24
  article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2005.12.156
– volume: 247
  start-page: 2543
  year: 1982
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB11|cit11
  article-title: Evaluating the yield of medical tests
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.247.18.2543
– volume: 61
  start-page: 64
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB3|cit3
  article-title: A flexible B-spline model for multiple longitudinal biomarkers and survival
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2005.030929.x
– volume: 64
  start-page: 762
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB6|cit6
  article-title: A joint model for longitudinal measurements and survival data in the presence of multiple failure types
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00952.x
– volume: 330
  start-page: 657
  year: 1994
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB1|cit1
  article-title: Comparative trial of didanosine and zalcitabine in patients with human immunodeficiency virus infection who are intolerant of or have failed zidovudine therapy
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM199403103301001
– volume: 27
  start-page: 157
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB16|cit16
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2929
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB15|cit15
  doi: 10.1002/9781118032985
– volume: 53
  start-page: 330
  year: 1997
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB28|cit28
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
  doi: 10.2307/2533118
– volume: 1
  start-page: 465
  year: 2000
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB14|cit14
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/1.4.465
– volume: 1
  start-page: 33
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB29|cit29
  article-title: A penalized likelihood approach to joint modeling of longitudinal measurements and time-to-event data
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2008.v1.n1.a4
– volume: 10
  start-page: 535
  year: 2009
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB17|cit17
  article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp009
– volume: 24
  start-page: 3927
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB2|cit2
  article-title: A time-dependent discrimination index for survival data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2427
– volume: 15
  start-page: 1663
  year: 1996
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB7|cit7
  article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
– volume: 14
  start-page: 835
  year: 2004
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB30|cit30
  article-title: Joint longitudinal-survival-cure models and their application to prostate cancer
  publication-title: Statistica Sinica
– volume: 35
  start-page: 1
  issue: 9
  year: 2010
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB18|cit18
  article-title: JM: An R package for the joint modelling of longitudinal and time-to-event data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v035.i09
– volume-title: Theoretical Statistics
  year: 1974
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB4|cit4
  doi: 10.1007/978-1-4899-2887-0
– volume-title: Applied Longitudinal Data
  year: 2004
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB8|cit8
– volume-title: Linear Mixed Models for Longitudinal Data
  year: 2000
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB27|cit27
– volume: 58
  start-page: 742
  year: 2002
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB23|cit23
  article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00742.x
– volume: 92
  start-page: 587
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB25|cit25
  article-title: Joint modelling of accelerated failure time and longitudinal data
  publication-title: Biometrika
  doi: 10.1093/biomet/92.3.587
– volume: 103
  start-page: 178
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB31|cit31
  article-title: Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000400
– volume: 11
  start-page: 161
  year: 1996
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB10|cit10
  article-title: Response of CD4+ and clinical consequences to treatment using ddI or ddC in patients with advanced HIV infection
  publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology
  doi: 10.1097/00042560-199602010-00007
– volume: 14
  start-page: 809
  year: 2004
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB26|cit26
  article-title: Joint modeling of longitudinal and time-to-event data: An overview
  publication-title: Statistica Sinica
– volume: 15
  start-page: 361
  year: 1996
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB12|cit12
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume-title: To appear in Statistics in Medicine
  year: 2011
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB19|cit19
– volume: 64
  start-page: 546
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB5|cit5
  article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00896.x
– volume: 61
  start-page: 92
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB13|cit13
  article-title: Survival model predictive accuracy and ROC curves
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2005.030814.x
– volume: 56
  start-page: 249
  year: 2000
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB22|cit22
  article-title: Predictive accuracy and explained variation in Cox regression
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00249.x
– volume: 71
  start-page: 637
  year: 2009
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB20|cit20
  article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2008.00704.x
– volume: 171
  start-page: 299
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB9|cit9
  article-title: A joint latent class changepoint model to improve the prediction of time to graft failure
  publication-title: Journal of the Royal Statistical Society, Series A
  doi: 10.1111/j.1467-985X.2007.00514.x
– volume: 95
  start-page: 63
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB21|cit21
  article-title: Shared parameter models under random effects misspecification
  publication-title: Biometrika
  doi: 10.1093/biomet/asm087
– volume: 63
  start-page: 332
  year: 2007
  ident: 10.1111/j.1541-0420.2010.01546.x-BIB32|cit32
  article-title: Prospective accuracy for longitudinal markers
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00726.x
SSID ssj0009502
Score 2.496916
Snippet In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of...
Summary In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 819
SubjectTerms Accuracy
Area under the curve
Bayes estimators
BIOMETRIC METHODOLOGY
Biometrics
biometry
Biometry - methods
CD4 Lymphocyte Count
CD4-Positive T-Lymphocytes - pathology
Data analysis
data collection
Datasets
Discrimination
Estimate reliability
Estimators
HIV Infections - blood
HIV Infections - mortality
Human immunodeficiency virus
Humans
Induced substructures
Longitudinal data
Longitudinal Studies
Maximum likelihood estimation
Modeling
patients
prediction
Probability
ROC methodology
Shared parameter model
Standard error
Survival Analysis
Time
Time series
Time-dependent covariates
Title Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time‐to‐Event Data
URI https://api.istex.fr/ark:/67375/WNG-24L62NF5-T/fulltext.pdf
https://www.jstor.org/stable/41242530
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2010.01546.x
https://www.ncbi.nlm.nih.gov/pubmed/21306352
https://www.proquest.com/docview/889911315
https://www.proquest.com/docview/1678540436
https://www.proquest.com/docview/890679951
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KMwFgbISIi3VIkd2-njYCtjWguCVfTNsh0Xqm7J1KbSyhM_gd_IL-HeJI1WNKQJ8VI1auzWt9fXx8655xLyymRcZlKyEHZeWQiI2IZpwk3ohUyctXFkJSYKD4byaJQcj8W44T9hLkytD9EeuOHMqOI1TnBjF5uTXCSwFU5Y1DC04Fp2EU8idQvx0Sd2RX83qoXDkeqVxONNUs-1HW2sVLcnpgD8iqa_XFMXrwOlmxi3WqT698lsPbyamzLrLkvbdd__UH78P-N_QO41WJbu1873kNzyeYfcqatbrjrk7qCVhF10yDbC2loV-hH5drDKzfnU0Y9zfFBU-T41eQbXxTr3k-47t5wbt6LTnB4X07ykWLjtbEEBZ9OTAgstLTMs6lW1xFyWXz9-lgW8HCKJkx6Y0jwmo_7h6dujsKn5EDrMig05z5RNI9uDsIvlZ5hXic2UiTzgUu7VJPGwVPSkn0jBbWpUakTGMOfR9LBwOt8hW3mR-11CuZpYr5yXDmKOF5hki3J7grsJVyqKAqLW_692jSA61uU401c2RmBijSbWaGJdmVhfBiRuW17UoiA3aLMLLqTNV4jdevSZ4UkTbE9hzPBDXld-1fZl5jPk2ymhvwzfaZacSDbsC30akJ3K8dobsXQ4Exx62Ft7om5i0EKnsJWOYx6LgLxsP4XggU-ETO6L5ULHAFUE6ivJgNC_3JP28KwRgHhAntQ-3n49AwAEgJWBJStPvbEx9Jv3Hwb49uk_t9wj2_XxPtL9npGtcr70zwEflvZFNfN_AyxKUGg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FM2FsYfIyHeUiV27KSPg650oy0IWtE3y3EcqFYS1KbSyhMfgc_IJ-EuSaMVDWlCvESNGrvN5Xz-3eXufoS80AmXiZTMBc8rcQERx24UcO1aIQMTx74XSywUHo5kfxKcTsW0pgPCWpiqP0QTcMOVUdprXOAYkN5e5SIAXzhgXp2iBeeyDYDyBhJ8I51B9wO70IHXq1qHY7JX4E-303ounWlrr7qe6hwQLAr_fJO8eBks3Ua55TbVu0vmmxusslPO2qsibpvvf_R-_E8SuEfu1HCWHlX6d59cs1mL3KwILtctcnvYdIVdtsguItuqMfQD8qW7zvTXmaHvF_iuqFR_qrMEzvNN-Sc9Mma10GZNZxk9zWdZQZG7bb6kALXpIEeupVWCvF7lSCxn-fXjZ5HD4RjzOGlXF3qPTHrH49d9t6Z9cA0WxrqcJ2EceXEHLC8y0DAbBnESas8CNOU2TAMLu0VH2lQKHkc6jLRIGJY96g5yp_N9spPlmT0glIdpbENjpQGzYwXW2WLHPcFNysPQ8xwSbh6wMnVPdKTmmKsLvhGIWKGIFYpYlSJW5w7xm5Hfqr4gVxhzADqk9Gcw32rykWGwCTxUuGf4Iy9LxWrm0oszTLkLhfo0eqNYMJBs1BNq7JD9UvOaC5E9nAkOMxxuVFHVZmipIvCmfZ_7wiHPm2_BfuBLIZ3ZfLVUPqAVgS2WpEPoX66JOhhuBCzukIeVkjc_zwADAWZlIMlSVa8sDPXq5N0QPz7655HPyK3-eDhQg5PR20OyW0X7MfvvMdkpFiv7BOBiET8tzcBvLaFUgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDQe-Cj7COPDSIi3VIkdO-njoCvbaMsEq-ibZScOVN2SqU2llSf-BP5G_hLukjRa0ZAmxEuUKLGTXM7n3zl3vyPktU64TKRkLnheiQuI2LhRwLVrhQxiY3zPSEwUHgzl4Sg4HotxHf-EuTAVP0Sz4IYjo7TXOMAvknR9kIsAXOGAeXWEFhzLNuDJO4GEsYMA6RO7QsDrVczhGOsV-OP1qJ5re1qbqm6nOgcAi7K_XMUuXodK10FuOUv1HpLp6v2q4JRpe1GYdvz9D-rH_yOAR-RBDWbpfqV9j8ktm7XI3aq85bJF7g8aTth5i2wirq1ooZ-Qb91lps8nMT2Z4Z-iUvmpzhI4zlfJn3Q_jhczHS_pJKPH-SQrKFZuO5tTANq0n2OlpUWCVb3KlpjM8uvHzyKHzQFGcdKuLvQWGfUOTt8dunXRBzfGtFiX8yQ0kWc6YHex_gyzYWCSUHsWgCm3YRpYmCs60qZScBPpMNIiYZj0qDtYOZ1vk40sz-wuoTxMjQ1jK2MwOlZgli3y7QkepzwMPc8h4er7qrhmRMfCHGfqimcEIlYoYoUiVqWI1aVD_KblRcUKcoM2u6BCSn8F461GnxkuNYF_Cu8MD_Km1KumLz2bYsBdKNSX4XvFgr5kw55Qpw7ZLhWvuRBrhzPBoYe9lSaq2gjNVQS-tO9zXzjkVXMWrAf-EtKZzRdz5QNWEUiwJB1C_3JN1MHFRkDiDtmpdLy5PQMEBIiVgSRLTb2xMNTbo48D3H36zy1fknsn3Z7qHw0_7JHNaqkfQ_-ekY1itrDPASsW5kVpBH4D7t5TOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Predictions+and+Prospective+Accuracy+in+Joint+Models+for+Longitudinal+and+Time-to-Event+Data&rft.jtitle=Biometrics&rft.au=Rizopoulos%2C+Dimitris&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=67&rft.issue=3&rft.spage=819&rft_id=info:doi/10.1111%2Fj.1541-0420.2010.01546.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2453727001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon