The relationship between species replacement, dissimilarity derived from nestedness, and nestedness

Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I revi...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 21; no. 12; pp. 1223 - 1232
Main Author Baselga, Andrés
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2012
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation: The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions: Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity.
AbstractList Aim  Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography , 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation  The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions  Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.
Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation: The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions: Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity.
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134-143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity. [PUBLICATION ABSTRACT]
ABSTRACT Aim  Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation  The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions  Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.
Author Baselga, Andrés
Author_xml – sequence: 1
  givenname: Andrés
  surname: Baselga
  fullname: Baselga, Andrés
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26615899$$DView record in Pascal Francis
BookMark eNqNkUtr3DAUhU1JoXn0JxQMpdBF7OgxekEpNNNkUkjbRac0O6HI10SuLbuSp5n599HEYRKyihbSFeeceyW-g2zP9x6yLMeoxGmdNCWecV5IQmVJEMYlQoLxcv0q298Je7uaXL3JDmJsEEJsxvh-Zpc3kAdozeh6H2_ckF_DeAvg8ziAdRCTOLTGQgd-PM4rF6PrXGuCGzd5BcH9hyqvQ9_lHuIIVdrjcW589eR-lL2uTRvh7cN5mP0-P1vOL4rLn4tv8y-XhWVC8YJUGGFra2INFcQqLKlF7LpGDBjHnEpWEWksBVFbggWrpCLVDBRDpsbYAj3MPk59h9D_W6XxunPRQtsaD_0qakyYEFRJRJL1_TNr06-CT6_TGCvBmWREJteHB5eJ1rR1MN66qIfgOhM2mnCOmVQq-eTks6GPMUC9s2Ckt5R0o7cA9BaG3lLS95T0OkU_P4taN97DGINx7UsafJoa3LoWNi8erBdnp6lI8XdTvIljHx6_Rmn63QwlvZh0l2iud7oJfzUXVDD958dCL8-vTn-pr9_1nN4BuLPG0g
CODEN GEBIFS
CitedBy_id crossref_primary_10_3389_fevo_2020_605176
crossref_primary_10_1111_1365_2664_13638
crossref_primary_10_1111_ddi_12600
crossref_primary_10_1098_rspb_2016_0128
crossref_primary_10_1098_rspb_2020_0777
crossref_primary_10_1650_CONDOR_16_116_1
crossref_primary_10_1016_j_rmb_2015_07_001
crossref_primary_10_1016_j_envpol_2023_121022
crossref_primary_10_1111_ecog_03711
crossref_primary_10_1007_s42690_020_00257_x
crossref_primary_10_1016_j_gecco_2019_e00658
crossref_primary_10_1098_rspb_2019_1887
crossref_primary_10_1111_jbi_13460
crossref_primary_10_1007_s00442_021_05025_3
crossref_primary_10_1111_fwb_12981
crossref_primary_10_1111_fwb_12980
crossref_primary_10_3390_ani14081240
crossref_primary_10_1016_j_actao_2019_04_001
crossref_primary_10_1016_j_ecolind_2019_105535
crossref_primary_10_1016_j_jnc_2025_126826
crossref_primary_10_3390_plants12173060
crossref_primary_10_1007_s10750_023_05440_y
crossref_primary_10_1016_j_ecoinf_2019_05_009
crossref_primary_10_1111_fwb_13714
crossref_primary_10_1016_j_ecolind_2021_107573
crossref_primary_10_1007_s10531_023_02634_7
crossref_primary_10_1111_jbi_12239
crossref_primary_10_1007_s00442_015_3342_2
crossref_primary_10_1016_j_ecoleng_2017_04_052
crossref_primary_10_3354_meps10877
crossref_primary_10_1146_annurev_environ_102014_021415
crossref_primary_10_3389_fevo_2023_1199874
crossref_primary_10_1111_jbi_12243
crossref_primary_10_1111_jbi_12241
crossref_primary_10_1038_s41598_021_84511_3
crossref_primary_10_1016_j_ijpara_2017_01_006
crossref_primary_10_1111_avsc_12255
crossref_primary_10_1007_s00572_016_0737_9
crossref_primary_10_3389_fenvs_2022_1022776
crossref_primary_10_7717_peerj_11096
crossref_primary_10_1016_j_ecolind_2018_09_039
crossref_primary_10_3390_ani12131626
crossref_primary_10_1111_ddi_12986
crossref_primary_10_1016_j_japb_2020_11_005
crossref_primary_10_1098_rspb_2012_1651
crossref_primary_10_1111_jbi_13559
crossref_primary_10_1111_ddi_12507
crossref_primary_10_1016_j_ecolind_2022_108618
crossref_primary_10_3389_fevo_2022_740371
crossref_primary_10_3390_fishes9060222
crossref_primary_10_3390_d16010011
crossref_primary_10_1007_s13744_021_00901_2
crossref_primary_10_1098_rspb_2013_3246
crossref_primary_10_1080_15627020_2023_2188121
crossref_primary_10_1111_fwb_12885
crossref_primary_10_1016_j_ecolind_2023_110044
crossref_primary_10_1016_j_actao_2023_103911
crossref_primary_10_1002_ece3_10993
crossref_primary_10_1111_nph_17434
crossref_primary_10_1111_ddi_12752
crossref_primary_10_1111_ecog_05904
crossref_primary_10_1371_journal_pone_0281483
crossref_primary_10_1111_j_2041_210X_2012_00224_x
crossref_primary_10_1016_j_jenvman_2023_118374
crossref_primary_10_1111_1365_2745_13118
crossref_primary_10_1002_ece3_7811
crossref_primary_10_1007_s10641_024_01538_x
crossref_primary_10_1111_btp_12660
crossref_primary_10_1002_aqc_4005
crossref_primary_10_1002_ldr_4595
crossref_primary_10_1093_jmammal_gyz178
crossref_primary_10_1016_j_biocon_2019_108323
crossref_primary_10_1111_jbi_13436
crossref_primary_10_1111_jbi_13793
crossref_primary_10_1016_j_envres_2025_121432
crossref_primary_10_1111_fwb_12533
crossref_primary_10_1007_s10452_021_09912_y
crossref_primary_10_1016_j_gecco_2025_e03438
crossref_primary_10_1016_j_copbio_2023_102917
crossref_primary_10_1371_journal_pone_0082905
crossref_primary_10_1111_ddi_12763
crossref_primary_10_1111_fwb_12899
crossref_primary_10_1016_j_scitotenv_2024_177222
crossref_primary_10_1111_jvs_12381
crossref_primary_10_1128_mBio_00602_12
crossref_primary_10_1590_0001_3765202120200094
crossref_primary_10_1111_jbi_13543
crossref_primary_10_1111_jbi_13786
crossref_primary_10_1016_j_palaeo_2022_111362
crossref_primary_10_1111_2041_210X_12029
crossref_primary_10_1111_2041_210X_12388
crossref_primary_10_1111_2041_210X_14324
crossref_primary_10_1007_s10841_019_00162_w
crossref_primary_10_1111_1365_2745_12050
crossref_primary_10_1111_pala_12272
crossref_primary_10_1371_journal_pone_0303539
crossref_primary_10_1111_fwb_13873
crossref_primary_10_3389_fmars_2017_00404
crossref_primary_10_1016_j_ecolind_2024_112467
crossref_primary_10_3958_059_048_0212
crossref_primary_10_1007_s10841_021_00310_1
crossref_primary_10_1111_ddi_12896
crossref_primary_10_1186_s40064_016_2831_z
crossref_primary_10_1590_0001_3765202220201079
crossref_primary_10_1371_journal_pone_0109642
crossref_primary_10_3398_064_078_0411
crossref_primary_10_1002_ece3_2389
crossref_primary_10_1016_j_ecolind_2021_108504
crossref_primary_10_1002_aqc_4062
crossref_primary_10_1371_journal_pone_0139031
crossref_primary_10_1007_s13157_021_01487_6
crossref_primary_10_3390_d16030154
crossref_primary_10_34019_2596_3325_2018_v19_24683
crossref_primary_10_1111_jbi_13772
crossref_primary_10_1038_s43247_023_00875_6
crossref_primary_10_1016_j_scitotenv_2023_165193
crossref_primary_10_1007_s10841_021_00346_3
crossref_primary_10_1007_s10841_019_00194_2
crossref_primary_10_1111_cobi_13142
crossref_primary_10_1111_geb_12921
crossref_primary_10_1111_jse_13166
crossref_primary_10_1111_fwb_13406
crossref_primary_10_1655_0018_0831_76_2_121
crossref_primary_10_1111_1365_2745_70003
crossref_primary_10_1111_ddi_12785
crossref_primary_10_1590_s2179_975x10023
crossref_primary_10_1016_j_pocean_2022_102788
crossref_primary_10_1080_01650521_2022_2117530
crossref_primary_10_1111_een_12988
crossref_primary_10_1016_j_actao_2023_103960
crossref_primary_10_3398_064_076_0206
crossref_primary_10_1038_s41598_022_24600_z
crossref_primary_10_1080_0269249X_2019_1585960
crossref_primary_10_1111_ddi_13514
crossref_primary_10_3390_biology11060886
crossref_primary_10_3390_f9090567
crossref_primary_10_1016_j_ppees_2016_10_001
crossref_primary_10_1111_jbi_13879
crossref_primary_10_1017_S0959270922000119
crossref_primary_10_1002_ece3_5669
crossref_primary_10_1111_ecog_01231
crossref_primary_10_1007_s10531_020_01940_8
crossref_primary_10_1007_s10750_018_3722_9
crossref_primary_10_1111_oik_05910
crossref_primary_10_1002_ecy_3188
crossref_primary_10_7717_peerj_6197
crossref_primary_10_1111_jse_13172
crossref_primary_10_1007_s12224_025_09460_5
crossref_primary_10_1038_s41467_018_07592_1
crossref_primary_10_1111_pala_12250
crossref_primary_10_3389_fevo_2023_1131403
crossref_primary_10_1111_pala_12375
crossref_primary_10_1080_23818107_2023_2172453
crossref_primary_10_1655_HERPETOLOGICA_D_22_00031
crossref_primary_10_1007_s10531_016_1063_4
crossref_primary_10_1111_jbi_13869
crossref_primary_10_1016_j_indic_2024_100579
crossref_primary_10_1111_1755_0998_12900
crossref_primary_10_1111_jbi_12303
crossref_primary_10_1002_ecy_4168
crossref_primary_10_3389_fevo_2023_1084949
crossref_primary_10_1111_j_1600_0587_2012_07671_x
crossref_primary_10_1111_fwb_13302
crossref_primary_10_1002_ecm_70008
crossref_primary_10_1007_s13744_016_0461_3
crossref_primary_10_1016_j_biocon_2017_09_021
crossref_primary_10_1016_j_ecoleng_2013_12_054
crossref_primary_10_3354_meps13081
crossref_primary_10_1002_ece3_8150
crossref_primary_10_1016_j_scitotenv_2024_176854
crossref_primary_10_1016_j_dsr2_2013_01_018
crossref_primary_10_1098_rspb_2022_2450
crossref_primary_10_3389_fmars_2021_734036
crossref_primary_10_7717_peerj_18343
crossref_primary_10_1007_s11629_022_7838_z
crossref_primary_10_1038_s41559_021_01513_0
crossref_primary_10_1002_ece3_8158
crossref_primary_10_1016_j_ppees_2023_125731
crossref_primary_10_1186_s12862_024_02328_w
crossref_primary_10_3390_d14020138
crossref_primary_10_1002_ece3_2852
crossref_primary_10_1017_S0007485318000676
crossref_primary_10_1111_geb_12629
crossref_primary_10_1371_journal_pone_0195991
crossref_primary_10_1016_j_pld_2019_12_003
crossref_primary_10_1007_s10750_024_05690_4
crossref_primary_10_1016_j_scitotenv_2023_165324
crossref_primary_10_1016_j_fooweb_2021_e00193
crossref_primary_10_3897_zookeys_817_29337
crossref_primary_10_1111_btp_12619
crossref_primary_10_1002_ldr_3690
crossref_primary_10_1016_j_catena_2024_108224
crossref_primary_10_1038_s41396_019_0396_x
crossref_primary_10_1007_s00027_022_00922_y
crossref_primary_10_3389_fevo_2024_1339946
crossref_primary_10_7717_peerj_1946
crossref_primary_10_1111_aec_12641
crossref_primary_10_7717_peerj_7013
crossref_primary_10_3389_fpls_2017_01465
crossref_primary_10_1007_s10750_014_1841_5
crossref_primary_10_1111_jbi_12523
crossref_primary_10_1111_oik_10269
crossref_primary_10_1016_j_physrep_2019_04_001
crossref_primary_10_1111_icad_12593
crossref_primary_10_1007_s11368_022_03329_2
crossref_primary_10_1007_s10750_023_05202_w
crossref_primary_10_1111_fwb_12354
crossref_primary_10_1111_fwb_13322
crossref_primary_10_3897_zookeys_597_6792
crossref_primary_10_3390_biology11121794
crossref_primary_10_1007_s10531_019_01880_y
crossref_primary_10_1038_s41598_020_68340_4
crossref_primary_10_18307_2018_0518
crossref_primary_10_1007_s10750_022_04842_8
crossref_primary_10_1002_ece3_8293
crossref_primary_10_1111_1462_2920_14463
crossref_primary_10_1007_s11252_022_01258_z
crossref_primary_10_1111_jbi_12505
crossref_primary_10_1017_S0031182020002061
crossref_primary_10_1007_s42974_020_00005_8
crossref_primary_10_1093_icesjms_fsad139
crossref_primary_10_3390_insects14030235
crossref_primary_10_1111_aec_12974
crossref_primary_10_1111_jbi_12869
crossref_primary_10_1016_j_ecoinf_2016_01_002
crossref_primary_10_1016_j_gecco_2022_e02110
crossref_primary_10_1186_s13071_016_1918_2
crossref_primary_10_3390_biology11071064
crossref_primary_10_1002_cyto_a_23965
crossref_primary_10_1111_jvs_12922
crossref_primary_10_1111_icad_12464
crossref_primary_10_1111_btp_12716
crossref_primary_10_1111_1462_2920_16400
crossref_primary_10_1098_rspb_2019_2311
crossref_primary_10_1093_femsec_fiab129
crossref_primary_10_1007_s00442_018_4288_y
crossref_primary_10_1111_gcb_15225
crossref_primary_10_1111_ddi_13445
crossref_primary_10_12688_f1000research_4831_1
crossref_primary_10_1371_journal_pone_0081847
crossref_primary_10_1016_j_watbs_2025_100379
crossref_primary_10_1016_j_marenvres_2019_05_006
crossref_primary_10_1111_ele_12494
crossref_primary_10_1016_j_apsoil_2016_08_001
crossref_primary_10_1016_j_ecss_2015_03_003
crossref_primary_10_1111_jbi_12979
crossref_primary_10_1002_rra_4223
crossref_primary_10_1016_j_jenvman_2018_04_059
crossref_primary_10_1007_s11273_023_09933_4
crossref_primary_10_1002_ece3_4704
crossref_primary_10_1111_jbi_13710
crossref_primary_10_1590_0001_3765202420230194
crossref_primary_10_1126_sciadv_ado5249
crossref_primary_10_1016_j_watres_2020_116631
crossref_primary_10_1007_s42974_024_00205_6
crossref_primary_10_1111_2041_210X_12415
crossref_primary_10_1002_ecs2_3475
crossref_primary_10_1111_gcb_13117
crossref_primary_10_1111_een_12686
crossref_primary_10_1007_s11252_020_00936_0
crossref_primary_10_1111_jbi_12844
crossref_primary_10_1111_jbi_12964
crossref_primary_10_1016_j_apsoil_2025_105966
crossref_primary_10_1016_j_ecolind_2024_112290
crossref_primary_10_3897_BDJ_13_e145093
crossref_primary_10_1111_jbi_12970
crossref_primary_10_1590_0102_33062020abb0360
crossref_primary_10_1002_ece3_2535
crossref_primary_10_1016_j_heliyon_2021_e06563
crossref_primary_10_1007_s13127_019_00411_5
crossref_primary_10_1016_j_scitotenv_2019_04_124
crossref_primary_10_1002_ece3_4718
crossref_primary_10_1016_j_rsma_2023_103171
crossref_primary_10_1016_j_tree_2018_04_012
crossref_primary_10_1038_srep22125
crossref_primary_10_1007_s10531_019_01791_y
crossref_primary_10_1111_een_12795
crossref_primary_10_3389_fevo_2023_1231553
crossref_primary_10_3958_059_047_0309
crossref_primary_10_1371_journal_pone_0105202
crossref_primary_10_1016_j_jnc_2014_07_005
crossref_primary_10_1111_jbi_12839
crossref_primary_10_1098_rspb_2015_3027
crossref_primary_10_3389_fmars_2022_975089
crossref_primary_10_1111_aec_12963
crossref_primary_10_1371_journal_pone_0256637
crossref_primary_10_3390_land12051090
crossref_primary_10_1111_aec_12969
crossref_primary_10_1016_j_ecss_2025_109204
crossref_primary_10_1111_2041_210X_12438
crossref_primary_10_1111_2041_210X_12558
crossref_primary_10_1002_ece3_5816
crossref_primary_10_1111_j_1600_0587_2012_00124_x
crossref_primary_10_1002_eap_3073
crossref_primary_10_1016_j_jhazmat_2022_128587
crossref_primary_10_3390_d16040224
crossref_primary_10_1371_journal_pone_0127692
crossref_primary_10_1111_2041_210X_12310
crossref_primary_10_1002_ecs2_4540
crossref_primary_10_1007_s10980_021_01253_3
crossref_primary_10_1080_24750263_2023_2289585
crossref_primary_10_1016_j_marenvres_2024_106502
crossref_primary_10_1111_gcb_16405
crossref_primary_10_1111_ecog_02607
crossref_primary_10_1007_s10531_014_0738_y
crossref_primary_10_1111_ddi_12029
crossref_primary_10_1016_j_ecolind_2019_105726
crossref_primary_10_1007_s10531_024_03005_6
crossref_primary_10_1111_ecog_01753
crossref_primary_10_1111_1365_2656_12478
crossref_primary_10_1371_journal_pone_0147058
crossref_primary_10_1111_fwb_13372
crossref_primary_10_3389_fmars_2021_654141
crossref_primary_10_1073_pnas_2302440120
crossref_primary_10_3389_fmars_2021_740781
crossref_primary_10_1007_s10584_023_03526_z
crossref_primary_10_3390_su14020887
crossref_primary_10_1002_ecs2_4535
crossref_primary_10_1111_1365_2664_12443
crossref_primary_10_3389_ffgc_2023_1019277
crossref_primary_10_1002_ecs2_3547
crossref_primary_10_1007_s42690_021_00471_1
crossref_primary_10_3390_insects11010025
crossref_primary_10_1002_ajb2_1848
crossref_primary_10_1007_s10531_024_02844_7
crossref_primary_10_1038_srep34544
crossref_primary_10_1007_s10750_018_3632_x
crossref_primary_10_1016_j_ecolind_2021_108489
crossref_primary_10_1111_jbi_12810
crossref_primary_10_1002_ece3_4984
crossref_primary_10_1139_cjz_2019_0002
crossref_primary_10_1515_cdem_2016_0006
crossref_primary_10_3389_fpls_2018_00387
crossref_primary_10_1016_j_envpol_2024_125335
crossref_primary_10_1007_s10841_015_9795_0
crossref_primary_10_1371_journal_pone_0131728
crossref_primary_10_1139_cjz_2019_0008
crossref_primary_10_1007_s10531_024_02966_y
crossref_primary_10_1016_j_scitotenv_2020_139641
crossref_primary_10_1073_pnas_1522279113
crossref_primary_10_1002_ecs2_4760
crossref_primary_10_1111_ddi_13241
crossref_primary_10_1111_2041_210X_12693
crossref_primary_10_3389_fmicb_2022_774514
crossref_primary_10_1007_s10750_025_05811_7
crossref_primary_10_1128_msystems_01331_23
crossref_primary_10_1002_eap_1540
crossref_primary_10_1111_geb_12226
crossref_primary_10_1007_s42690_024_01244_2
crossref_primary_10_1038_s41559_018_0699_8
crossref_primary_10_3389_fmars_2020_00591
crossref_primary_10_1016_j_ecolind_2020_106769
crossref_primary_10_3390_d14040259
crossref_primary_10_1007_s11160_019_09548_0
crossref_primary_10_1016_j_geobios_2024_09_002
crossref_primary_10_1016_j_gecco_2023_e02573
crossref_primary_10_1016_j_ecss_2024_109066
crossref_primary_10_1111_j_1365_2486_2012_02772_x
crossref_primary_10_3389_fenvs_2023_1051295
crossref_primary_10_1002_rra_4199
crossref_primary_10_1111_let_12337
crossref_primary_10_1111_gcbb_12279
crossref_primary_10_1007_s11629_020_6125_0
crossref_primary_10_1111_geb_12581
crossref_primary_10_1016_j_rsma_2024_103896
crossref_primary_10_1016_j_pecon_2021_11_004
crossref_primary_10_1111_ddi_13025
crossref_primary_10_1002_eap_2981
crossref_primary_10_1007_s10750_014_1930_5
crossref_primary_10_1016_j_foreco_2018_06_006
crossref_primary_10_1111_ele_13886
crossref_primary_10_1016_j_actatropica_2020_105542
crossref_primary_10_1016_j_envint_2024_108482
crossref_primary_10_1007_s13127_013_0161_3
crossref_primary_10_1002_eap_2867
crossref_primary_10_1007_s13157_020_01355_9
crossref_primary_10_1016_j_scitotenv_2024_170360
crossref_primary_10_1016_j_envpol_2022_120102
crossref_primary_10_1016_j_gecco_2022_e02191
crossref_primary_10_1016_j_ecolind_2012_01_009
crossref_primary_10_1111_ecog_04117
crossref_primary_10_3389_fevo_2021_620062
crossref_primary_10_1111_ens_12263
crossref_primary_10_1111_ecog_05440
crossref_primary_10_1002_ecy_4300
crossref_primary_10_1007_s00027_019_0658_8
crossref_primary_10_1111_ele_12319
crossref_primary_10_1111_geb_12330
crossref_primary_10_1111_1462_2920_13566
crossref_primary_10_1016_j_ecolmodel_2021_109826
crossref_primary_10_1111_ele_13852
crossref_primary_10_1111_geb_12207
crossref_primary_10_1371_journal_pone_0308698
crossref_primary_10_1590_1678_4766e2021022
crossref_primary_10_1007_s10750_019_3961_4
crossref_primary_10_1016_j_ecolind_2020_106540
crossref_primary_10_1111_geb_12200
crossref_primary_10_1038_s41467_018_06291_1
crossref_primary_10_1111_geb_12561
crossref_primary_10_1016_j_limno_2014_03_001
crossref_primary_10_1111_geb_12680
crossref_primary_10_1007_s10709_012_9670_9
crossref_primary_10_1590_0001_3765202120201926
crossref_primary_10_1016_j_heliyon_2025_e41821
crossref_primary_10_1016_j_scitotenv_2016_10_106
crossref_primary_10_1111_geb_12677
crossref_primary_10_1002_ecs2_4957
crossref_primary_10_1002_lno_10445
crossref_primary_10_1016_j_ecolind_2024_113052
crossref_primary_10_5209_BOCM_53196
crossref_primary_10_3389_fpls_2022_1086185
crossref_primary_10_1007_s10682_020_10036_2
crossref_primary_10_1016_j_ecocom_2014_11_008
crossref_primary_10_1002_ece3_2800
crossref_primary_10_1007_s13127_016_0290_6
crossref_primary_10_3390_microorganisms8081129
crossref_primary_10_1007_s00114_020_1665_2
crossref_primary_10_1163_15707563_bja10055
crossref_primary_10_1038_s42003_021_01805_y
crossref_primary_10_1016_j_rsma_2020_101341
crossref_primary_10_1016_j_actao_2018_06_001
crossref_primary_10_1016_j_marpolbul_2021_113270
crossref_primary_10_3390_d14050384
crossref_primary_10_3390_insects14110851
crossref_primary_10_1038_s41467_018_05690_8
crossref_primary_10_3390_f10040332
crossref_primary_10_1007_s00027_022_00890_3
crossref_primary_10_1016_j_flora_2018_12_005
crossref_primary_10_1371_journal_pone_0287893
crossref_primary_10_1007_s12224_022_09411_4
crossref_primary_10_1007_s10531_017_1467_9
crossref_primary_10_1007_s11160_019_09580_0
crossref_primary_10_1111_geb_12141
crossref_primary_10_1111_jvs_12707
crossref_primary_10_3390_insects13070652
crossref_primary_10_1017_S0266467420000188
crossref_primary_10_1016_j_ufug_2022_127614
crossref_primary_10_1016_j_ufug_2021_127212
crossref_primary_10_1111_ele_13720
crossref_primary_10_1002_lno_12401
crossref_primary_10_3389_fmars_2022_829285
crossref_primary_10_1016_j_foreco_2025_122522
crossref_primary_10_1016_j_quascirev_2016_07_034
crossref_primary_10_1186_s40663_019_0207_x
crossref_primary_10_1016_j_ecss_2023_108603
crossref_primary_10_1371_journal_pone_0160438
crossref_primary_10_1002_eap_2828
crossref_primary_10_1111_1440_1703_12086
crossref_primary_10_1371_journal_pone_0234830
crossref_primary_10_3390_w12071984
crossref_primary_10_1038_s41467_025_56176_3
crossref_primary_10_1111_mec_15666
crossref_primary_10_1007_s10530_022_02742_5
crossref_primary_10_1111_ecog_03067
crossref_primary_10_1002_iroh_201601850
crossref_primary_10_1016_j_pedobi_2021_150771
crossref_primary_10_1111_icad_12434
crossref_primary_10_1111_jvs_12711
crossref_primary_10_1111_icad_12670
crossref_primary_10_1016_j_ecss_2014_08_025
crossref_primary_10_1142_S021800142352002X
crossref_primary_10_1002_edn3_140
crossref_primary_10_1016_j_gecco_2015_09_002
crossref_primary_10_3389_fmars_2020_00216
crossref_primary_10_1007_s11356_024_33694_z
crossref_primary_10_1016_j_ecolind_2019_01_041
crossref_primary_10_3390_w11040680
crossref_primary_10_1093_molbev_msaa122
crossref_primary_10_1007_s42690_020_00186_9
crossref_primary_10_1111_ele_70008
crossref_primary_10_1590_1519_6984_181514
crossref_primary_10_1016_j_gecco_2022_e02161
crossref_primary_10_3390_d14100795
crossref_primary_10_1016_j_palaeo_2015_11_016
crossref_primary_10_3390_insects15010039
crossref_primary_10_1002_ecs2_1782
crossref_primary_10_1016_j_flora_2021_151937
crossref_primary_10_1093_jmammal_gyaa128
crossref_primary_10_1002_ecs2_3964
crossref_primary_10_1002_ecs2_3963
crossref_primary_10_3389_fpls_2025_1536731
crossref_primary_10_1111_geb_13208
crossref_primary_10_1016_j_scitotenv_2024_170148
crossref_primary_10_1111_aec_13078
crossref_primary_10_1111_geb_12598
crossref_primary_10_1111_geb_12478
crossref_primary_10_3389_fevo_2021_727879
crossref_primary_10_1007_s00227_019_3470_z
crossref_primary_10_1111_rec_13556
crossref_primary_10_3390_d13020059
crossref_primary_10_1111_icad_12774
crossref_primary_10_1002_ece3_70010
crossref_primary_10_1016_j_actao_2019_02_004
crossref_primary_10_1017_S0266467419000105
crossref_primary_10_1017_S026646742400021X
crossref_primary_10_1093_ee_nvad037
crossref_primary_10_1111_aec_13080
crossref_primary_10_1002_eap_2476
crossref_primary_10_1016_j_actao_2015_06_006
crossref_primary_10_1093_jpe_rtaa038
crossref_primary_10_1038_s41598_019_51610_1
crossref_primary_10_1002_ece3_8710
crossref_primary_10_1002_ecy_1666
crossref_primary_10_1016_j_pld_2023_10_003
crossref_primary_10_1111_btp_13143
crossref_primary_10_1016_j_marpolbul_2023_115946
crossref_primary_10_1016_j_ecolind_2021_107868
crossref_primary_10_1016_j_ecolind_2020_107212
crossref_primary_10_1007_s10531_021_02305_5
crossref_primary_10_1007_s10750_016_2713_y
crossref_primary_10_1016_j_jenvman_2022_115885
crossref_primary_10_1111_jbi_14152
crossref_primary_10_1016_j_biocon_2017_05_012
crossref_primary_10_1111_jbi_14153
crossref_primary_10_1007_s10841_016_9930_6
crossref_primary_10_1073_pnas_1916923117
crossref_primary_10_1007_s10750_018_3825_3
crossref_primary_10_1017_S0025315419000675
crossref_primary_10_1071_MF16067
crossref_primary_10_1016_j_jembe_2019_151244
crossref_primary_10_1128_mbio_03535_22
crossref_primary_10_7717_peerj_12590
crossref_primary_10_1093_biolinnean_blab112
crossref_primary_10_1111_ecog_05723
crossref_primary_10_1111_ecog_04753
crossref_primary_10_1111_ecog_04510
crossref_primary_10_1111_jbi_14029
crossref_primary_10_1111_1365_2664_12950
crossref_primary_10_1016_j_gecco_2021_e01634
crossref_primary_10_1016_j_scitotenv_2022_154926
crossref_primary_10_2139_ssrn_4164012
crossref_primary_10_1111_1440_1703_12209
crossref_primary_10_1016_j_marenvres_2023_105974
crossref_primary_10_1016_j_watres_2023_120149
crossref_primary_10_1111_1365_2745_13406
crossref_primary_10_17129_botsci_2770
crossref_primary_10_1111_ecog_01398
crossref_primary_10_1016_j_ecolind_2021_107407
crossref_primary_10_1016_j_foreco_2020_118765
crossref_primary_10_1038_s41598_021_03128_8
crossref_primary_10_1146_annurev_ecolsys_120213_091640
crossref_primary_10_3389_fpls_2020_00421
crossref_primary_10_1016_j_jenvman_2022_115743
crossref_primary_10_1111_1440_1703_12213
crossref_primary_10_1177_1940082919882203
crossref_primary_10_1007_s10750_020_04459_9
crossref_primary_10_1111_jbi_12194
crossref_primary_10_1007_s10531_016_1103_0
crossref_primary_10_1007_s12526_017_0791_3
crossref_primary_10_1086_697925
crossref_primary_10_1111_geb_13005
crossref_primary_10_1016_j_watres_2021_117587
crossref_primary_10_1016_j_sajb_2013_03_020
crossref_primary_10_1002_edn3_241
crossref_primary_10_1051_kmae_2018034
crossref_primary_10_1016_j_fishres_2018_10_007
crossref_primary_10_1016_j_marenvres_2020_105153
crossref_primary_10_1002_ece3_10487
crossref_primary_10_1016_j_foreco_2023_121281
crossref_primary_10_1111_fwb_13902
crossref_primary_10_1098_rspb_2021_0343
crossref_primary_10_1016_j_gecco_2014_12_004
crossref_primary_10_1093_biolinnean_blaa059
crossref_primary_10_1111_ddi_12926
crossref_primary_10_3897_natureconservation_37_37145
crossref_primary_10_7717_peerj_14585
crossref_primary_10_1016_j_algal_2024_103701
crossref_primary_10_1016_j_ufug_2020_126908
crossref_primary_10_2139_ssrn_4004036
crossref_primary_10_1016_j_ecoinf_2020_101195
crossref_primary_10_1111_boj_12495
crossref_primary_10_1038_s41598_022_11739_y
crossref_primary_10_1016_j_ecolind_2017_07_010
crossref_primary_10_1016_j_ecolind_2024_111888
crossref_primary_10_1371_journal_pone_0158519
crossref_primary_10_1111_oik_09653
crossref_primary_10_1016_j_jenvman_2024_120490
crossref_primary_10_1007_s10531_018_1503_4
crossref_primary_10_1016_j_aquaculture_2020_735424
crossref_primary_10_7717_peerj_17967
crossref_primary_10_1007_s00442_021_04981_0
crossref_primary_10_1016_j_foreco_2024_122303
crossref_primary_10_1016_j_marenvres_2016_05_015
crossref_primary_10_1016_j_ecolmodel_2024_110750
crossref_primary_10_1111_mec_16471
crossref_primary_10_1016_j_gecco_2024_e03352
crossref_primary_10_1038_s41598_023_48440_7
crossref_primary_10_3390_d14070555
crossref_primary_10_1016_j_pld_2024_07_011
crossref_primary_10_1016_j_ympev_2019_03_011
crossref_primary_10_1111_jbi_12284
crossref_primary_10_1016_j_ufug_2022_127468
crossref_primary_10_1186_s40663_020_00252_1
crossref_primary_10_1016_j_actao_2021_103768
crossref_primary_10_1007_s10531_023_02566_2
crossref_primary_10_1016_j_baae_2018_03_009
crossref_primary_10_1007_s10750_015_2515_7
crossref_primary_10_1016_j_scitotenv_2024_177165
crossref_primary_10_3389_fcosc_2022_902887
crossref_primary_10_1098_rspb_2023_1424
crossref_primary_10_1371_journal_pone_0127913
crossref_primary_10_1111_1365_2745_13442
crossref_primary_10_1111_jbi_13007
crossref_primary_10_1016_j_ecolind_2020_106221
crossref_primary_10_1016_j_gecco_2024_e03200
crossref_primary_10_1111_jbi_13245
crossref_primary_10_1186_s41936_023_00326_w
crossref_primary_10_1016_j_ecoinf_2018_01_001
crossref_primary_10_3390_biology9080199
crossref_primary_10_1111_geb_13294
crossref_primary_10_1007_s10661_023_12090_z
crossref_primary_10_1007_s10530_018_1874_1
crossref_primary_10_1002_ece3_7215
crossref_primary_10_1016_j_palaeo_2016_05_032
crossref_primary_10_3390_w14233805
crossref_primary_10_3390_ani13111775
crossref_primary_10_1038_srep36169
crossref_primary_10_3354_meps13129
crossref_primary_10_1007_s00035_016_0173_7
crossref_primary_10_1007_s00442_019_04535_5
crossref_primary_10_1111_jbi_12266
crossref_primary_10_1111_j_1466_8238_2012_00773_x
crossref_primary_10_1111_rec_14367
crossref_primary_10_1002_ecy_2940
crossref_primary_10_1111_1440_1703_12149
crossref_primary_10_1111_jbi_14684
crossref_primary_10_1111_oik_10401
crossref_primary_10_3389_fenvs_2021_701653
crossref_primary_10_3389_fmars_2019_00129
Cites_doi 10.1098/rspb.1996.0087
10.2307/1943563
10.2307/5518
10.1111/j.1600-0587.2009.05880.x
10.1111/j.1466-8238.2011.00694.x
10.1111/j.1469-8137.1912.tb05611.x
10.1111/j.1461-0248.2011.01589.x
10.1111/j.1466-8238.2009.00490.x
10.1002/9780470999592
10.1111/j.1600-0706.2008.17053.x
10.1111/j.1466-8238.2011.00671.x
10.1098/rsbl.2007.0449
10.1111/j.1461-0248.2011.01634.x
10.1111/j.1461-0248.2010.01552.x
10.1111/j.1600-0706.2011.19451.x
10.1046/j.1365-2656.2003.00710.x
10.1046/j.0021-8790.2001.00563.x
10.1111/j.0906-7590.2007.04817.x
10.1007/BF00317469
10.1111/j.0030-1299.2008.16644.x
10.2475/ajs.241.1.1
10.1098/rsbl.2006.0553
10.1111/j.1466-8238.2011.00709.x
10.1890/06-1736.1
10.1111/j.1365-2656.2010.01771.x
ContentType Journal Article
Copyright Copyright © 2012 Blackwell Publishing Ltd
2012 Blackwell Publishing Ltd
2014 INIST-CNRS
Copyright © 2012 Blackwell Publishing
Copyright_xml – notice: Copyright © 2012 Blackwell Publishing Ltd
– notice: 2012 Blackwell Publishing Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Blackwell Publishing
DBID BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
DOI 10.1111/j.1466-8238.2011.00756.x
DatabaseName Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts
Ecology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 1232
ExternalDocumentID 2824742321
26615899
10_1111_j_1466_8238_2011_00756_x
GEB756
23326640
ark_67375_WNG_TFXBS9DM_C
Genre reviewArticle
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
ID FETCH-LOGICAL-c5796-2d101ccf2ca372c9183c05bf05e5616385d28ac3e7fc2175d892d4e950af11ce3
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Thu Jul 10 21:33:00 EDT 2025
Mon Jul 14 07:40:48 EDT 2025
Mon Jul 21 09:13:28 EDT 2025
Tue Jul 01 01:46:03 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Jan 22 16:50:57 EST 2025
Thu Jul 03 21:09:22 EDT 2025
Wed Oct 30 09:52:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Nested subset
Turnover
species replacement
Biogeography
nestedness
Beta diversity
Ecology
Replacement
spatial turnover
richness differences
dissimilarity
Species richness
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5796-2d101ccf2ca372c9183c05bf05e5616385d28ac3e7fc2175d892d4e950af11ce3
Notes ArticleID:GEB756
ark:/67375/WNG-TFXBS9DM-C
istex:ED15A28B4DAE832B8B63F69CCC0F3D9BCD295455
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1466-8238.2011.00756.x
PQID 1197658528
PQPubID 1066347
PageCount 10
ParticipantIDs proquest_miscellaneous_1257739802
proquest_journals_1197658528
pascalfrancis_primary_26615899
crossref_primary_10_1111_j_1466_8238_2011_00756_x
crossref_citationtrail_10_1111_j_1466_8238_2011_00756_x
wiley_primary_10_1111_j_1466_8238_2011_00756_x_GEB756
jstor_primary_23326640
istex_primary_ark_67375_WNG_TFXBS9DM_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Podani, J. & Schmera, D. (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
Gaston, K.J. & Blackburn, T.M. (2000) Pattern and process in macroecology. Blackwell Science, Oxford.
Svenning, J.C., Fløjgaard, C. & Baselga, A. (2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402.
Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
Soininen, J., McDonald, R. & Hillebrand, H. (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12.
Sørensen, T.A. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1-34.
Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645.
Koleff, P., Gaston, K.J. & Lennon, J.K. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382.
Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50.
Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239.
Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. & Oberdorff, T. (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14, 325-334.
Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280-338.
Almeida-Neto, M., Frensel, D.M.B. & Ulrich, W. (2012) Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00709.x.
Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C. & Swenson, N.G. (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19-28.
Wright, D.H. & Reeves, J.H. (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416-428.
Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
Carvalho, J.C., Cardoso, P. & Gomes, P. (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00694.x.
Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2009) A consumer's guide to nestedness analysis. Oikos, 118, 3-17.
Diserud, O.H. & Ødegaard, F. (2007) A multiple-site similarity measure. Biology Letters, 3, 20-22.
Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439.
Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31.
Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748.
Tuomisto, H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22.
Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588.
Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. & Diniz-Filho, J.A.F. (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197.
2001; 70
2010; 33
1992; 92
1960; 30
2012
1948; 5
2010; 19
2000
2011; 80
2008; 117
1943; 241
1996; 263
2011; 14
2007; 3
2007; 30
1912; 11
2009; 118
2003; 72
2007; 88
2012; 21
1992; 61
2011; 120
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
Sørensen T.A. (e_1_2_10_21_1) 1948; 5
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: Svenning, J.C., Fløjgaard, C. & Baselga, A. (2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402.
– reference: Tuomisto, H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22.
– reference: Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C. & Swenson, N.G. (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19-28.
– reference: Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588.
– reference: Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439.
– reference: Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280-338.
– reference: Sørensen, T.A. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1-34.
– reference: Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
– reference: Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748.
– reference: Carvalho, J.C., Cardoso, P. & Gomes, P. (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00694.x.
– reference: Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31.
– reference: Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50.
– reference: Podani, J. & Schmera, D. (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
– reference: Wright, D.H. & Reeves, J.H. (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416-428.
– reference: Koleff, P., Gaston, K.J. & Lennon, J.K. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382.
– reference: Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
– reference: Diserud, O.H. & Ødegaard, F. (2007) A multiple-site similarity measure. Biology Letters, 3, 20-22.
– reference: Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2009) A consumer's guide to nestedness analysis. Oikos, 118, 3-17.
– reference: Almeida-Neto, M., Frensel, D.M.B. & Ulrich, W. (2012) Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00709.x.
– reference: Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. & Diniz-Filho, J.A.F. (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197.
– reference: Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239.
– reference: Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645.
– reference: Gaston, K.J. & Blackburn, T.M. (2000) Pattern and process in macroecology. Blackwell Science, Oxford.
– reference: Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
– reference: Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. & Oberdorff, T. (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14, 325-334.
– reference: Soininen, J., McDonald, R. & Hillebrand, H. (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12.
– volume: 14
  start-page: 19
  year: 2011
  end-page: 28
  article-title: Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist
  publication-title: Ecology Letters
– volume: 19
  start-page: 134
  year: 2010
  end-page: 143
  article-title: Partitioning the turnover and nestedness components of beta diversity
  publication-title: Global Ecology and Biogeography
– volume: 263
  start-page: 579
  year: 1996
  end-page: 588
  article-title: Mapping variations in the strength and breadth of biogeographic transition zones using species turnover
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 21
  start-page: 191
  year: 2012
  end-page: 197
  article-title: Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity
  publication-title: Global Ecology and Biogeography
– volume: 33
  start-page: 2
  year: 2010
  end-page: 22
  article-title: A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity
  publication-title: Ecography
– volume: 92
  start-page: 416
  year: 1992
  end-page: 428
  article-title: On the meaning and measurement of nestedness of species assemblages
  publication-title: Oecologia
– volume: 120
  start-page: 1625
  year: 2011
  end-page: 1638
  article-title: A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data
  publication-title: Oikos
– year: 2012
  article-title: Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010)
  publication-title: Global Ecology and Biogeography
– year: 2012
  article-title: Determining the relative roles of species replacement and species richness differences in generating beta‐diversity patterns
  publication-title: Global Ecology and Biogeography
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytologist
– volume: 72
  start-page: 367
  year: 2003
  end-page: 382
  article-title: Measuring beta diversity for presence–absence data
  publication-title: Journal of Animal Ecology
– year: 2000
– volume: 61
  start-page: 151
  year: 1992
  end-page: 158
  article-title: Beta‐diversity on geographic gradients in Britain
  publication-title: Journal of Animal Ecology
– volume: 88
  start-page: 2427
  year: 2007
  end-page: 2439
  article-title: Partitioning diversity into independent alpha and beta components
  publication-title: Ecology
– volume: 3
  start-page: 642
  year: 2007
  end-page: 645
  article-title: A multiple‐site similarity measure independent of richness
  publication-title: Biology Letters
– volume: 14
  start-page: 325
  year: 2011
  end-page: 334
  article-title: Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes
  publication-title: Ecology Letters
– volume: 80
  start-page: 393
  year: 2011
  end-page: 402
  article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction
  publication-title: Journal of Animal Ecology
– volume: 14
  start-page: 741
  year: 2011
  end-page: 748
  article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles
  publication-title: Ecology Letters
– volume: 3
  start-page: 20
  year: 2007
  end-page: 22
  article-title: A multiple‐site similarity measure
  publication-title: Biology Letters
– volume: 30
  start-page: 3
  year: 2007
  end-page: 12
  article-title: The distance decay of similarity in ecological communities
  publication-title: Ecography
– volume: 70
  start-page: 966
  year: 2001
  end-page: 979
  article-title: The geographical structure of British bird distributions: diversity, spatial turnover and scale
  publication-title: Journal of Animal Ecology
– volume: 118
  start-page: 3
  year: 2009
  end-page: 17
  article-title: A consumer's guide to nestedness analysis
  publication-title: Oikos
– volume: 30
  start-page: 280
  year: 1960
  end-page: 338
  article-title: Vegetation of the Siskiyou Mountains, Oregon and California
  publication-title: Ecological Monographs
– volume: 5
  start-page: 1
  year: 1948
  end-page: 34
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons
  publication-title: Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter
– volume: 241
  start-page: 1
  year: 1943
  end-page: 31
  article-title: Mammals and the nature of continents
  publication-title: American Journal of Science
– volume: 117
  start-page: 1227
  year: 2008
  end-page: 1239
  article-title: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement
  publication-title: Oikos
– ident: e_1_2_10_26_1
  doi: 10.1098/rspb.1996.0087
– ident: e_1_2_10_25_1
  doi: 10.2307/1943563
– ident: e_1_2_10_11_1
  doi: 10.2307/5518
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1600-0587.2009.05880.x
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1466-8238.2011.00694.x
– ident: e_1_2_10_13_1
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1461-0248.2011.01589.x
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1466-8238.2009.00490.x
– ident: e_1_2_10_10_1
  doi: 10.1002/9780470999592
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1600-0706.2008.17053.x
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1466-8238.2011.00671.x
– ident: e_1_2_10_6_1
  doi: 10.1098/rsbl.2007.0449
– ident: e_1_2_10_12_1
  doi: 10.1111/j.1461-0248.2011.01634.x
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1461-0248.2010.01552.x
– volume: 5
  start-page: 1
  year: 1948
  ident: e_1_2_10_21_1
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons
  publication-title: Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter
– ident: e_1_2_10_18_1
  doi: 10.1111/j.1600-0706.2011.19451.x
– ident: e_1_2_10_15_1
  doi: 10.1046/j.1365-2656.2003.00710.x
– ident: e_1_2_10_16_1
  doi: 10.1046/j.0021-8790.2001.00563.x
– ident: e_1_2_10_20_1
  doi: 10.1111/j.0906-7590.2007.04817.x
– ident: e_1_2_10_27_1
  doi: 10.1007/BF00317469
– ident: e_1_2_10_3_1
  doi: 10.1111/j.0030-1299.2008.16644.x
– ident: e_1_2_10_19_1
  doi: 10.2475/ajs.241.1.1
– ident: e_1_2_10_8_1
  doi: 10.1098/rsbl.2006.0553
– ident: e_1_2_10_2_1
  doi: 10.1111/j.1466-8238.2011.00709.x
– ident: e_1_2_10_14_1
  doi: 10.1890/06-1736.1
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1365-2656.2010.01771.x
SSID ssj0005456
Score 2.579461
Snippet Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global...
ABSTRACT Aim  Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga,...
Aim  Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 ,...
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1223
SubjectTerms Animal and plant ecology
Animal ecology
Animal nesting
Animal, plant and microbial ecology
Beta diversity
Biodiversity
Biogeography
Biological and medical sciences
Compost
dissimilarity
Fundamental and applied biological sciences. Psychology
General aspects
MACROECOLOGICAL METHODS
nestedness
Population ecology
Resultants
richness differences
spatial turnover
Species
Species diversity
species replacement
Studies
Synecology
Zero
Title The relationship between species replacement, dissimilarity derived from nestedness, and nestedness
URI https://api.istex.fr/ark:/67375/WNG-TFXBS9DM-C/fulltext.pdf
https://www.jstor.org/stable/23326640
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1466-8238.2011.00756.x
https://www.proquest.com/docview/1197658528
https://www.proquest.com/docview/1257739802
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIiQuQAsrAqUyEuLUrLJOHMdH2u62qtQeoBV7sxzHEastabUPVPj1zDiPbSoOFeotm3giZXYe3yTfjAE-pdLkhZUpIjfBw0QZE6pcqFBmWOAiIs9jTx4_O09PLpPTqZg2_CfqhannQ3Qv3MgzfLwmBzf58r6Tp2GGOaeZxInZLx0SniTqFuGjr5tJUgQU6kYjEuHTPqnnnzfqZaqnpPTblrRIDEqzRCWW9e4XPXh6F-T6LDV5CfP2-Wpyyny4XuVD--fe6MfHUcAreNGAWfaltr5teOKqHXg29oOwf-_AYLzposNlTRhZvgaLxskWLQ3vx-yGNXQxRo2fWLvjRU8WI8l9RpyB2c8Z1uBYMrACfeaXKxg1xrDKv66lcL3PTFXc-f0GLifji8OTsNntIbTUDxvyAqODtSW3JpbcKow1NhJ5GQmHGA_DhCh4ZmzsZGmxjhJFpniROCUiU45G1sUD2KquK_cWmMzKRJUR5hSbJWUqcml5GWdFbGKFZ00Asv1ntW1GodOOHFe6VxKlmnSrSbfa61bfBjDqJG_qcSAPkPnsjacTMIs50emk0N_Pj_XFZHrwTR2d6cMABt66uoU8RnCdJlEAez1z2yxAdCWwYg5gt7U_3cSgpaYPxIgvBc8C-NhdxuhBn4RM5a7XuAYjtoxVFvEAhDe2Bz-WPh4f4MG7_5R7D8_xLK-ZQbuwtVqs3QfEd6t8z3vuX6dOQDA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgguFApRTUtZJMSpjpy11-s90pI0QJMDpCK31Xpti6jFrfJAhV_PzPqRpuJQIW5JvBPJ43l8s_5mFuBtLE2aWRkjchPcj5QxvkqF8mWCBS4i8jR05PHROB6eR5-mYlofB0S9MNV8iHbDjTzDxWtycNqQvuvlsZ9g0qlHcWL6i7sIKLfpgG9XX31Zz5IiqFC1GpEMn27Sev76Txu5apvUftPQFolDaRaoxqI6_2IDoN6GuS5PDXbgsrnDip5y0V0t0679fWf4439SwVN4UuNZ9r4ywGfwIC934WHfzcL-tQud_rqRDpfVkWTxHCzaJ5s3TLzvs2tWM8YY9X5i-Y4XHV-MJI8Y0QZmP2ZYhmPVwDJ0m595xqg3hpVux5Yi9hEzZXbr-ws4H_QnJ0O_PvDBt9QS6_MMA4S1BbcmlNwqDDc2EGkRiBxhHkYKkfHE2DCXhcVSSmSJ4lmUKxGYotezediBrfKqzPeAyaSIVBFgWrFJVMQilZYXYZKFJlT4q_FANo9W23oaOh3Kcak3qqJYk2416VY73eobD3qt5HU1EeQeMu-c9bQCZn5BjDop9LfxqZ4Mpsdf1YeRPvGg48yrXchDxNdxFHhwuGFv6wUIsAQWzR4cNAao6zC00PSOGCGm4IkHb9rLGEDorZAp86sVrsGgLUOVBNwD4azt3relT_vH-OHlP8q9hkfDyehMn30cf96Hx7iCV0ShA9hazlf5K4R7y_TQufEfnZpESw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9Nm4Z44WNQLTCGkRBPS5U6cWw_srXd-FiFYBN9sxw7EVUhq_qBBn89Zydpl4mHCfHWNHeRcrk7_y753Rngdcp1Zg1PEbkxGiZS61BmTIZcYIGLiDyLPXn8fJSeXSbvx2xc859cL0w1H2L9ws1Fhs_XLsBntrgd5GkocM2pJ3Hi6pd2EU_uJGkknIf3P29GSTmkUHUaOR06brN6_nql1lK146x-3bAWHYVSL9CKRbX9RQuf3kS5fpkaPoRpc4MVO2XaXS2zrvl9a_bj_7HAI3hQo1nytnK_x7CVl3uwO_CTsH_tQWewaaNDsTqPLJ6AQe8k84aH920yIzVfjLjOTyze8aRniznNI-JIA5MfEyzCsWYgFoPmZ26J64whpX9f6_L1EdGlvXH8FC6Hg4uTs7De7iE0riE2pBbTgzEFNTrm1EhMNiZiWRGxHEEe5glmqdAmznlhsJBiVkhqk1yySBe9nsnjDmyXV2W-D4SLIpFFhIuKEUmRsowbWsTCxjqW-K8OgDdPVpl6FrrbkuO7atVEqXK2Vc62yttWXQfQW2vOqnkgd9B5451nraDnU8en40x9HZ2qi-H4-Ivsn6uTADreu9aCNEZ0nSZRAIctd9sIILxiWDIHcND4n6qT0EK5L8QIMBkVAbxan8b04b4J6TK_WqEMpmweSxHRAJh3tjvfljodHOOPZ_-o9xLufeoP1cd3ow_P4T4K0IoldADby_kqf4FYb5kd-iD-A6nwQwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relationship+between+species+replacement%2C+dissimilarity+derived+from+nestedness%2C+and+nestedness&rft.jtitle=Global+ecology+and+biogeography&rft.au=Baselga%2C+Andres&rft.date=2012-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=21&rft.issue=12&rft.spage=1223&rft.epage=1232&rft_id=info:doi/10.1111%2Fj.1466-8238.2011.00756.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon