The relationship between species replacement, dissimilarity derived from nestedness, and nestedness
Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I revi...
Saved in:
Published in | Global ecology and biogeography Vol. 21; no. 12; pp. 1223 - 1232 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2012
Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation: The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions: Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity. |
---|---|
AbstractList | Aim
Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (
Baselga, 2010
,
Global Ecology and Biogeography
,
19
, 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts.
Innovation
The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed.
Main conclusions
Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity. Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134—143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation: The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions: Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity. Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134-143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness-resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness-resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple-site situations. Finally the concepts of nestedness and nestedness-resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta-diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple-site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple-site attributes of dissimilarity. [PUBLICATION ABSTRACT] ABSTRACT Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global Ecology and Biogeography, 19, 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity. |
Author | Baselga, Andrés |
Author_xml | – sequence: 1 givenname: Andrés surname: Baselga fullname: Baselga, Andrés |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26615899$$DView record in Pascal Francis |
BookMark | eNqNkUtr3DAUhU1JoXn0JxQMpdBF7OgxekEpNNNkUkjbRac0O6HI10SuLbuSp5n599HEYRKyihbSFeeceyW-g2zP9x6yLMeoxGmdNCWecV5IQmVJEMYlQoLxcv0q298Je7uaXL3JDmJsEEJsxvh-Zpc3kAdozeh6H2_ckF_DeAvg8ziAdRCTOLTGQgd-PM4rF6PrXGuCGzd5BcH9hyqvQ9_lHuIIVdrjcW589eR-lL2uTRvh7cN5mP0-P1vOL4rLn4tv8y-XhWVC8YJUGGFra2INFcQqLKlF7LpGDBjHnEpWEWksBVFbggWrpCLVDBRDpsbYAj3MPk59h9D_W6XxunPRQtsaD_0qakyYEFRJRJL1_TNr06-CT6_TGCvBmWREJteHB5eJ1rR1MN66qIfgOhM2mnCOmVQq-eTks6GPMUC9s2Ckt5R0o7cA9BaG3lLS95T0OkU_P4taN97DGINx7UsafJoa3LoWNi8erBdnp6lI8XdTvIljHx6_Rmn63QwlvZh0l2iud7oJfzUXVDD958dCL8-vTn-pr9_1nN4BuLPG0g |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_3389_fevo_2020_605176 crossref_primary_10_1111_1365_2664_13638 crossref_primary_10_1111_ddi_12600 crossref_primary_10_1098_rspb_2016_0128 crossref_primary_10_1098_rspb_2020_0777 crossref_primary_10_1650_CONDOR_16_116_1 crossref_primary_10_1016_j_rmb_2015_07_001 crossref_primary_10_1016_j_envpol_2023_121022 crossref_primary_10_1111_ecog_03711 crossref_primary_10_1007_s42690_020_00257_x crossref_primary_10_1016_j_gecco_2019_e00658 crossref_primary_10_1098_rspb_2019_1887 crossref_primary_10_1111_jbi_13460 crossref_primary_10_1007_s00442_021_05025_3 crossref_primary_10_1111_fwb_12981 crossref_primary_10_1111_fwb_12980 crossref_primary_10_3390_ani14081240 crossref_primary_10_1016_j_actao_2019_04_001 crossref_primary_10_1016_j_ecolind_2019_105535 crossref_primary_10_1016_j_jnc_2025_126826 crossref_primary_10_3390_plants12173060 crossref_primary_10_1007_s10750_023_05440_y crossref_primary_10_1016_j_ecoinf_2019_05_009 crossref_primary_10_1111_fwb_13714 crossref_primary_10_1016_j_ecolind_2021_107573 crossref_primary_10_1007_s10531_023_02634_7 crossref_primary_10_1111_jbi_12239 crossref_primary_10_1007_s00442_015_3342_2 crossref_primary_10_1016_j_ecoleng_2017_04_052 crossref_primary_10_3354_meps10877 crossref_primary_10_1146_annurev_environ_102014_021415 crossref_primary_10_3389_fevo_2023_1199874 crossref_primary_10_1111_jbi_12243 crossref_primary_10_1111_jbi_12241 crossref_primary_10_1038_s41598_021_84511_3 crossref_primary_10_1016_j_ijpara_2017_01_006 crossref_primary_10_1111_avsc_12255 crossref_primary_10_1007_s00572_016_0737_9 crossref_primary_10_3389_fenvs_2022_1022776 crossref_primary_10_7717_peerj_11096 crossref_primary_10_1016_j_ecolind_2018_09_039 crossref_primary_10_3390_ani12131626 crossref_primary_10_1111_ddi_12986 crossref_primary_10_1016_j_japb_2020_11_005 crossref_primary_10_1098_rspb_2012_1651 crossref_primary_10_1111_jbi_13559 crossref_primary_10_1111_ddi_12507 crossref_primary_10_1016_j_ecolind_2022_108618 crossref_primary_10_3389_fevo_2022_740371 crossref_primary_10_3390_fishes9060222 crossref_primary_10_3390_d16010011 crossref_primary_10_1007_s13744_021_00901_2 crossref_primary_10_1098_rspb_2013_3246 crossref_primary_10_1080_15627020_2023_2188121 crossref_primary_10_1111_fwb_12885 crossref_primary_10_1016_j_ecolind_2023_110044 crossref_primary_10_1016_j_actao_2023_103911 crossref_primary_10_1002_ece3_10993 crossref_primary_10_1111_nph_17434 crossref_primary_10_1111_ddi_12752 crossref_primary_10_1111_ecog_05904 crossref_primary_10_1371_journal_pone_0281483 crossref_primary_10_1111_j_2041_210X_2012_00224_x crossref_primary_10_1016_j_jenvman_2023_118374 crossref_primary_10_1111_1365_2745_13118 crossref_primary_10_1002_ece3_7811 crossref_primary_10_1007_s10641_024_01538_x crossref_primary_10_1111_btp_12660 crossref_primary_10_1002_aqc_4005 crossref_primary_10_1002_ldr_4595 crossref_primary_10_1093_jmammal_gyz178 crossref_primary_10_1016_j_biocon_2019_108323 crossref_primary_10_1111_jbi_13436 crossref_primary_10_1111_jbi_13793 crossref_primary_10_1016_j_envres_2025_121432 crossref_primary_10_1111_fwb_12533 crossref_primary_10_1007_s10452_021_09912_y crossref_primary_10_1016_j_gecco_2025_e03438 crossref_primary_10_1016_j_copbio_2023_102917 crossref_primary_10_1371_journal_pone_0082905 crossref_primary_10_1111_ddi_12763 crossref_primary_10_1111_fwb_12899 crossref_primary_10_1016_j_scitotenv_2024_177222 crossref_primary_10_1111_jvs_12381 crossref_primary_10_1128_mBio_00602_12 crossref_primary_10_1590_0001_3765202120200094 crossref_primary_10_1111_jbi_13543 crossref_primary_10_1111_jbi_13786 crossref_primary_10_1016_j_palaeo_2022_111362 crossref_primary_10_1111_2041_210X_12029 crossref_primary_10_1111_2041_210X_12388 crossref_primary_10_1111_2041_210X_14324 crossref_primary_10_1007_s10841_019_00162_w crossref_primary_10_1111_1365_2745_12050 crossref_primary_10_1111_pala_12272 crossref_primary_10_1371_journal_pone_0303539 crossref_primary_10_1111_fwb_13873 crossref_primary_10_3389_fmars_2017_00404 crossref_primary_10_1016_j_ecolind_2024_112467 crossref_primary_10_3958_059_048_0212 crossref_primary_10_1007_s10841_021_00310_1 crossref_primary_10_1111_ddi_12896 crossref_primary_10_1186_s40064_016_2831_z crossref_primary_10_1590_0001_3765202220201079 crossref_primary_10_1371_journal_pone_0109642 crossref_primary_10_3398_064_078_0411 crossref_primary_10_1002_ece3_2389 crossref_primary_10_1016_j_ecolind_2021_108504 crossref_primary_10_1002_aqc_4062 crossref_primary_10_1371_journal_pone_0139031 crossref_primary_10_1007_s13157_021_01487_6 crossref_primary_10_3390_d16030154 crossref_primary_10_34019_2596_3325_2018_v19_24683 crossref_primary_10_1111_jbi_13772 crossref_primary_10_1038_s43247_023_00875_6 crossref_primary_10_1016_j_scitotenv_2023_165193 crossref_primary_10_1007_s10841_021_00346_3 crossref_primary_10_1007_s10841_019_00194_2 crossref_primary_10_1111_cobi_13142 crossref_primary_10_1111_geb_12921 crossref_primary_10_1111_jse_13166 crossref_primary_10_1111_fwb_13406 crossref_primary_10_1655_0018_0831_76_2_121 crossref_primary_10_1111_1365_2745_70003 crossref_primary_10_1111_ddi_12785 crossref_primary_10_1590_s2179_975x10023 crossref_primary_10_1016_j_pocean_2022_102788 crossref_primary_10_1080_01650521_2022_2117530 crossref_primary_10_1111_een_12988 crossref_primary_10_1016_j_actao_2023_103960 crossref_primary_10_3398_064_076_0206 crossref_primary_10_1038_s41598_022_24600_z crossref_primary_10_1080_0269249X_2019_1585960 crossref_primary_10_1111_ddi_13514 crossref_primary_10_3390_biology11060886 crossref_primary_10_3390_f9090567 crossref_primary_10_1016_j_ppees_2016_10_001 crossref_primary_10_1111_jbi_13879 crossref_primary_10_1017_S0959270922000119 crossref_primary_10_1002_ece3_5669 crossref_primary_10_1111_ecog_01231 crossref_primary_10_1007_s10531_020_01940_8 crossref_primary_10_1007_s10750_018_3722_9 crossref_primary_10_1111_oik_05910 crossref_primary_10_1002_ecy_3188 crossref_primary_10_7717_peerj_6197 crossref_primary_10_1111_jse_13172 crossref_primary_10_1007_s12224_025_09460_5 crossref_primary_10_1038_s41467_018_07592_1 crossref_primary_10_1111_pala_12250 crossref_primary_10_3389_fevo_2023_1131403 crossref_primary_10_1111_pala_12375 crossref_primary_10_1080_23818107_2023_2172453 crossref_primary_10_1655_HERPETOLOGICA_D_22_00031 crossref_primary_10_1007_s10531_016_1063_4 crossref_primary_10_1111_jbi_13869 crossref_primary_10_1016_j_indic_2024_100579 crossref_primary_10_1111_1755_0998_12900 crossref_primary_10_1111_jbi_12303 crossref_primary_10_1002_ecy_4168 crossref_primary_10_3389_fevo_2023_1084949 crossref_primary_10_1111_j_1600_0587_2012_07671_x crossref_primary_10_1111_fwb_13302 crossref_primary_10_1002_ecm_70008 crossref_primary_10_1007_s13744_016_0461_3 crossref_primary_10_1016_j_biocon_2017_09_021 crossref_primary_10_1016_j_ecoleng_2013_12_054 crossref_primary_10_3354_meps13081 crossref_primary_10_1002_ece3_8150 crossref_primary_10_1016_j_scitotenv_2024_176854 crossref_primary_10_1016_j_dsr2_2013_01_018 crossref_primary_10_1098_rspb_2022_2450 crossref_primary_10_3389_fmars_2021_734036 crossref_primary_10_7717_peerj_18343 crossref_primary_10_1007_s11629_022_7838_z crossref_primary_10_1038_s41559_021_01513_0 crossref_primary_10_1002_ece3_8158 crossref_primary_10_1016_j_ppees_2023_125731 crossref_primary_10_1186_s12862_024_02328_w crossref_primary_10_3390_d14020138 crossref_primary_10_1002_ece3_2852 crossref_primary_10_1017_S0007485318000676 crossref_primary_10_1111_geb_12629 crossref_primary_10_1371_journal_pone_0195991 crossref_primary_10_1016_j_pld_2019_12_003 crossref_primary_10_1007_s10750_024_05690_4 crossref_primary_10_1016_j_scitotenv_2023_165324 crossref_primary_10_1016_j_fooweb_2021_e00193 crossref_primary_10_3897_zookeys_817_29337 crossref_primary_10_1111_btp_12619 crossref_primary_10_1002_ldr_3690 crossref_primary_10_1016_j_catena_2024_108224 crossref_primary_10_1038_s41396_019_0396_x crossref_primary_10_1007_s00027_022_00922_y crossref_primary_10_3389_fevo_2024_1339946 crossref_primary_10_7717_peerj_1946 crossref_primary_10_1111_aec_12641 crossref_primary_10_7717_peerj_7013 crossref_primary_10_3389_fpls_2017_01465 crossref_primary_10_1007_s10750_014_1841_5 crossref_primary_10_1111_jbi_12523 crossref_primary_10_1111_oik_10269 crossref_primary_10_1016_j_physrep_2019_04_001 crossref_primary_10_1111_icad_12593 crossref_primary_10_1007_s11368_022_03329_2 crossref_primary_10_1007_s10750_023_05202_w crossref_primary_10_1111_fwb_12354 crossref_primary_10_1111_fwb_13322 crossref_primary_10_3897_zookeys_597_6792 crossref_primary_10_3390_biology11121794 crossref_primary_10_1007_s10531_019_01880_y crossref_primary_10_1038_s41598_020_68340_4 crossref_primary_10_18307_2018_0518 crossref_primary_10_1007_s10750_022_04842_8 crossref_primary_10_1002_ece3_8293 crossref_primary_10_1111_1462_2920_14463 crossref_primary_10_1007_s11252_022_01258_z crossref_primary_10_1111_jbi_12505 crossref_primary_10_1017_S0031182020002061 crossref_primary_10_1007_s42974_020_00005_8 crossref_primary_10_1093_icesjms_fsad139 crossref_primary_10_3390_insects14030235 crossref_primary_10_1111_aec_12974 crossref_primary_10_1111_jbi_12869 crossref_primary_10_1016_j_ecoinf_2016_01_002 crossref_primary_10_1016_j_gecco_2022_e02110 crossref_primary_10_1186_s13071_016_1918_2 crossref_primary_10_3390_biology11071064 crossref_primary_10_1002_cyto_a_23965 crossref_primary_10_1111_jvs_12922 crossref_primary_10_1111_icad_12464 crossref_primary_10_1111_btp_12716 crossref_primary_10_1111_1462_2920_16400 crossref_primary_10_1098_rspb_2019_2311 crossref_primary_10_1093_femsec_fiab129 crossref_primary_10_1007_s00442_018_4288_y crossref_primary_10_1111_gcb_15225 crossref_primary_10_1111_ddi_13445 crossref_primary_10_12688_f1000research_4831_1 crossref_primary_10_1371_journal_pone_0081847 crossref_primary_10_1016_j_watbs_2025_100379 crossref_primary_10_1016_j_marenvres_2019_05_006 crossref_primary_10_1111_ele_12494 crossref_primary_10_1016_j_apsoil_2016_08_001 crossref_primary_10_1016_j_ecss_2015_03_003 crossref_primary_10_1111_jbi_12979 crossref_primary_10_1002_rra_4223 crossref_primary_10_1016_j_jenvman_2018_04_059 crossref_primary_10_1007_s11273_023_09933_4 crossref_primary_10_1002_ece3_4704 crossref_primary_10_1111_jbi_13710 crossref_primary_10_1590_0001_3765202420230194 crossref_primary_10_1126_sciadv_ado5249 crossref_primary_10_1016_j_watres_2020_116631 crossref_primary_10_1007_s42974_024_00205_6 crossref_primary_10_1111_2041_210X_12415 crossref_primary_10_1002_ecs2_3475 crossref_primary_10_1111_gcb_13117 crossref_primary_10_1111_een_12686 crossref_primary_10_1007_s11252_020_00936_0 crossref_primary_10_1111_jbi_12844 crossref_primary_10_1111_jbi_12964 crossref_primary_10_1016_j_apsoil_2025_105966 crossref_primary_10_1016_j_ecolind_2024_112290 crossref_primary_10_3897_BDJ_13_e145093 crossref_primary_10_1111_jbi_12970 crossref_primary_10_1590_0102_33062020abb0360 crossref_primary_10_1002_ece3_2535 crossref_primary_10_1016_j_heliyon_2021_e06563 crossref_primary_10_1007_s13127_019_00411_5 crossref_primary_10_1016_j_scitotenv_2019_04_124 crossref_primary_10_1002_ece3_4718 crossref_primary_10_1016_j_rsma_2023_103171 crossref_primary_10_1016_j_tree_2018_04_012 crossref_primary_10_1038_srep22125 crossref_primary_10_1007_s10531_019_01791_y crossref_primary_10_1111_een_12795 crossref_primary_10_3389_fevo_2023_1231553 crossref_primary_10_3958_059_047_0309 crossref_primary_10_1371_journal_pone_0105202 crossref_primary_10_1016_j_jnc_2014_07_005 crossref_primary_10_1111_jbi_12839 crossref_primary_10_1098_rspb_2015_3027 crossref_primary_10_3389_fmars_2022_975089 crossref_primary_10_1111_aec_12963 crossref_primary_10_1371_journal_pone_0256637 crossref_primary_10_3390_land12051090 crossref_primary_10_1111_aec_12969 crossref_primary_10_1016_j_ecss_2025_109204 crossref_primary_10_1111_2041_210X_12438 crossref_primary_10_1111_2041_210X_12558 crossref_primary_10_1002_ece3_5816 crossref_primary_10_1111_j_1600_0587_2012_00124_x crossref_primary_10_1002_eap_3073 crossref_primary_10_1016_j_jhazmat_2022_128587 crossref_primary_10_3390_d16040224 crossref_primary_10_1371_journal_pone_0127692 crossref_primary_10_1111_2041_210X_12310 crossref_primary_10_1002_ecs2_4540 crossref_primary_10_1007_s10980_021_01253_3 crossref_primary_10_1080_24750263_2023_2289585 crossref_primary_10_1016_j_marenvres_2024_106502 crossref_primary_10_1111_gcb_16405 crossref_primary_10_1111_ecog_02607 crossref_primary_10_1007_s10531_014_0738_y crossref_primary_10_1111_ddi_12029 crossref_primary_10_1016_j_ecolind_2019_105726 crossref_primary_10_1007_s10531_024_03005_6 crossref_primary_10_1111_ecog_01753 crossref_primary_10_1111_1365_2656_12478 crossref_primary_10_1371_journal_pone_0147058 crossref_primary_10_1111_fwb_13372 crossref_primary_10_3389_fmars_2021_654141 crossref_primary_10_1073_pnas_2302440120 crossref_primary_10_3389_fmars_2021_740781 crossref_primary_10_1007_s10584_023_03526_z crossref_primary_10_3390_su14020887 crossref_primary_10_1002_ecs2_4535 crossref_primary_10_1111_1365_2664_12443 crossref_primary_10_3389_ffgc_2023_1019277 crossref_primary_10_1002_ecs2_3547 crossref_primary_10_1007_s42690_021_00471_1 crossref_primary_10_3390_insects11010025 crossref_primary_10_1002_ajb2_1848 crossref_primary_10_1007_s10531_024_02844_7 crossref_primary_10_1038_srep34544 crossref_primary_10_1007_s10750_018_3632_x crossref_primary_10_1016_j_ecolind_2021_108489 crossref_primary_10_1111_jbi_12810 crossref_primary_10_1002_ece3_4984 crossref_primary_10_1139_cjz_2019_0002 crossref_primary_10_1515_cdem_2016_0006 crossref_primary_10_3389_fpls_2018_00387 crossref_primary_10_1016_j_envpol_2024_125335 crossref_primary_10_1007_s10841_015_9795_0 crossref_primary_10_1371_journal_pone_0131728 crossref_primary_10_1139_cjz_2019_0008 crossref_primary_10_1007_s10531_024_02966_y crossref_primary_10_1016_j_scitotenv_2020_139641 crossref_primary_10_1073_pnas_1522279113 crossref_primary_10_1002_ecs2_4760 crossref_primary_10_1111_ddi_13241 crossref_primary_10_1111_2041_210X_12693 crossref_primary_10_3389_fmicb_2022_774514 crossref_primary_10_1007_s10750_025_05811_7 crossref_primary_10_1128_msystems_01331_23 crossref_primary_10_1002_eap_1540 crossref_primary_10_1111_geb_12226 crossref_primary_10_1007_s42690_024_01244_2 crossref_primary_10_1038_s41559_018_0699_8 crossref_primary_10_3389_fmars_2020_00591 crossref_primary_10_1016_j_ecolind_2020_106769 crossref_primary_10_3390_d14040259 crossref_primary_10_1007_s11160_019_09548_0 crossref_primary_10_1016_j_geobios_2024_09_002 crossref_primary_10_1016_j_gecco_2023_e02573 crossref_primary_10_1016_j_ecss_2024_109066 crossref_primary_10_1111_j_1365_2486_2012_02772_x crossref_primary_10_3389_fenvs_2023_1051295 crossref_primary_10_1002_rra_4199 crossref_primary_10_1111_let_12337 crossref_primary_10_1111_gcbb_12279 crossref_primary_10_1007_s11629_020_6125_0 crossref_primary_10_1111_geb_12581 crossref_primary_10_1016_j_rsma_2024_103896 crossref_primary_10_1016_j_pecon_2021_11_004 crossref_primary_10_1111_ddi_13025 crossref_primary_10_1002_eap_2981 crossref_primary_10_1007_s10750_014_1930_5 crossref_primary_10_1016_j_foreco_2018_06_006 crossref_primary_10_1111_ele_13886 crossref_primary_10_1016_j_actatropica_2020_105542 crossref_primary_10_1016_j_envint_2024_108482 crossref_primary_10_1007_s13127_013_0161_3 crossref_primary_10_1002_eap_2867 crossref_primary_10_1007_s13157_020_01355_9 crossref_primary_10_1016_j_scitotenv_2024_170360 crossref_primary_10_1016_j_envpol_2022_120102 crossref_primary_10_1016_j_gecco_2022_e02191 crossref_primary_10_1016_j_ecolind_2012_01_009 crossref_primary_10_1111_ecog_04117 crossref_primary_10_3389_fevo_2021_620062 crossref_primary_10_1111_ens_12263 crossref_primary_10_1111_ecog_05440 crossref_primary_10_1002_ecy_4300 crossref_primary_10_1007_s00027_019_0658_8 crossref_primary_10_1111_ele_12319 crossref_primary_10_1111_geb_12330 crossref_primary_10_1111_1462_2920_13566 crossref_primary_10_1016_j_ecolmodel_2021_109826 crossref_primary_10_1111_ele_13852 crossref_primary_10_1111_geb_12207 crossref_primary_10_1371_journal_pone_0308698 crossref_primary_10_1590_1678_4766e2021022 crossref_primary_10_1007_s10750_019_3961_4 crossref_primary_10_1016_j_ecolind_2020_106540 crossref_primary_10_1111_geb_12200 crossref_primary_10_1038_s41467_018_06291_1 crossref_primary_10_1111_geb_12561 crossref_primary_10_1016_j_limno_2014_03_001 crossref_primary_10_1111_geb_12680 crossref_primary_10_1007_s10709_012_9670_9 crossref_primary_10_1590_0001_3765202120201926 crossref_primary_10_1016_j_heliyon_2025_e41821 crossref_primary_10_1016_j_scitotenv_2016_10_106 crossref_primary_10_1111_geb_12677 crossref_primary_10_1002_ecs2_4957 crossref_primary_10_1002_lno_10445 crossref_primary_10_1016_j_ecolind_2024_113052 crossref_primary_10_5209_BOCM_53196 crossref_primary_10_3389_fpls_2022_1086185 crossref_primary_10_1007_s10682_020_10036_2 crossref_primary_10_1016_j_ecocom_2014_11_008 crossref_primary_10_1002_ece3_2800 crossref_primary_10_1007_s13127_016_0290_6 crossref_primary_10_3390_microorganisms8081129 crossref_primary_10_1007_s00114_020_1665_2 crossref_primary_10_1163_15707563_bja10055 crossref_primary_10_1038_s42003_021_01805_y crossref_primary_10_1016_j_rsma_2020_101341 crossref_primary_10_1016_j_actao_2018_06_001 crossref_primary_10_1016_j_marpolbul_2021_113270 crossref_primary_10_3390_d14050384 crossref_primary_10_3390_insects14110851 crossref_primary_10_1038_s41467_018_05690_8 crossref_primary_10_3390_f10040332 crossref_primary_10_1007_s00027_022_00890_3 crossref_primary_10_1016_j_flora_2018_12_005 crossref_primary_10_1371_journal_pone_0287893 crossref_primary_10_1007_s12224_022_09411_4 crossref_primary_10_1007_s10531_017_1467_9 crossref_primary_10_1007_s11160_019_09580_0 crossref_primary_10_1111_geb_12141 crossref_primary_10_1111_jvs_12707 crossref_primary_10_3390_insects13070652 crossref_primary_10_1017_S0266467420000188 crossref_primary_10_1016_j_ufug_2022_127614 crossref_primary_10_1016_j_ufug_2021_127212 crossref_primary_10_1111_ele_13720 crossref_primary_10_1002_lno_12401 crossref_primary_10_3389_fmars_2022_829285 crossref_primary_10_1016_j_foreco_2025_122522 crossref_primary_10_1016_j_quascirev_2016_07_034 crossref_primary_10_1186_s40663_019_0207_x crossref_primary_10_1016_j_ecss_2023_108603 crossref_primary_10_1371_journal_pone_0160438 crossref_primary_10_1002_eap_2828 crossref_primary_10_1111_1440_1703_12086 crossref_primary_10_1371_journal_pone_0234830 crossref_primary_10_3390_w12071984 crossref_primary_10_1038_s41467_025_56176_3 crossref_primary_10_1111_mec_15666 crossref_primary_10_1007_s10530_022_02742_5 crossref_primary_10_1111_ecog_03067 crossref_primary_10_1002_iroh_201601850 crossref_primary_10_1016_j_pedobi_2021_150771 crossref_primary_10_1111_icad_12434 crossref_primary_10_1111_jvs_12711 crossref_primary_10_1111_icad_12670 crossref_primary_10_1016_j_ecss_2014_08_025 crossref_primary_10_1142_S021800142352002X crossref_primary_10_1002_edn3_140 crossref_primary_10_1016_j_gecco_2015_09_002 crossref_primary_10_3389_fmars_2020_00216 crossref_primary_10_1007_s11356_024_33694_z crossref_primary_10_1016_j_ecolind_2019_01_041 crossref_primary_10_3390_w11040680 crossref_primary_10_1093_molbev_msaa122 crossref_primary_10_1007_s42690_020_00186_9 crossref_primary_10_1111_ele_70008 crossref_primary_10_1590_1519_6984_181514 crossref_primary_10_1016_j_gecco_2022_e02161 crossref_primary_10_3390_d14100795 crossref_primary_10_1016_j_palaeo_2015_11_016 crossref_primary_10_3390_insects15010039 crossref_primary_10_1002_ecs2_1782 crossref_primary_10_1016_j_flora_2021_151937 crossref_primary_10_1093_jmammal_gyaa128 crossref_primary_10_1002_ecs2_3964 crossref_primary_10_1002_ecs2_3963 crossref_primary_10_3389_fpls_2025_1536731 crossref_primary_10_1111_geb_13208 crossref_primary_10_1016_j_scitotenv_2024_170148 crossref_primary_10_1111_aec_13078 crossref_primary_10_1111_geb_12598 crossref_primary_10_1111_geb_12478 crossref_primary_10_3389_fevo_2021_727879 crossref_primary_10_1007_s00227_019_3470_z crossref_primary_10_1111_rec_13556 crossref_primary_10_3390_d13020059 crossref_primary_10_1111_icad_12774 crossref_primary_10_1002_ece3_70010 crossref_primary_10_1016_j_actao_2019_02_004 crossref_primary_10_1017_S0266467419000105 crossref_primary_10_1017_S026646742400021X crossref_primary_10_1093_ee_nvad037 crossref_primary_10_1111_aec_13080 crossref_primary_10_1002_eap_2476 crossref_primary_10_1016_j_actao_2015_06_006 crossref_primary_10_1093_jpe_rtaa038 crossref_primary_10_1038_s41598_019_51610_1 crossref_primary_10_1002_ece3_8710 crossref_primary_10_1002_ecy_1666 crossref_primary_10_1016_j_pld_2023_10_003 crossref_primary_10_1111_btp_13143 crossref_primary_10_1016_j_marpolbul_2023_115946 crossref_primary_10_1016_j_ecolind_2021_107868 crossref_primary_10_1016_j_ecolind_2020_107212 crossref_primary_10_1007_s10531_021_02305_5 crossref_primary_10_1007_s10750_016_2713_y crossref_primary_10_1016_j_jenvman_2022_115885 crossref_primary_10_1111_jbi_14152 crossref_primary_10_1016_j_biocon_2017_05_012 crossref_primary_10_1111_jbi_14153 crossref_primary_10_1007_s10841_016_9930_6 crossref_primary_10_1073_pnas_1916923117 crossref_primary_10_1007_s10750_018_3825_3 crossref_primary_10_1017_S0025315419000675 crossref_primary_10_1071_MF16067 crossref_primary_10_1016_j_jembe_2019_151244 crossref_primary_10_1128_mbio_03535_22 crossref_primary_10_7717_peerj_12590 crossref_primary_10_1093_biolinnean_blab112 crossref_primary_10_1111_ecog_05723 crossref_primary_10_1111_ecog_04753 crossref_primary_10_1111_ecog_04510 crossref_primary_10_1111_jbi_14029 crossref_primary_10_1111_1365_2664_12950 crossref_primary_10_1016_j_gecco_2021_e01634 crossref_primary_10_1016_j_scitotenv_2022_154926 crossref_primary_10_2139_ssrn_4164012 crossref_primary_10_1111_1440_1703_12209 crossref_primary_10_1016_j_marenvres_2023_105974 crossref_primary_10_1016_j_watres_2023_120149 crossref_primary_10_1111_1365_2745_13406 crossref_primary_10_17129_botsci_2770 crossref_primary_10_1111_ecog_01398 crossref_primary_10_1016_j_ecolind_2021_107407 crossref_primary_10_1016_j_foreco_2020_118765 crossref_primary_10_1038_s41598_021_03128_8 crossref_primary_10_1146_annurev_ecolsys_120213_091640 crossref_primary_10_3389_fpls_2020_00421 crossref_primary_10_1016_j_jenvman_2022_115743 crossref_primary_10_1111_1440_1703_12213 crossref_primary_10_1177_1940082919882203 crossref_primary_10_1007_s10750_020_04459_9 crossref_primary_10_1111_jbi_12194 crossref_primary_10_1007_s10531_016_1103_0 crossref_primary_10_1007_s12526_017_0791_3 crossref_primary_10_1086_697925 crossref_primary_10_1111_geb_13005 crossref_primary_10_1016_j_watres_2021_117587 crossref_primary_10_1016_j_sajb_2013_03_020 crossref_primary_10_1002_edn3_241 crossref_primary_10_1051_kmae_2018034 crossref_primary_10_1016_j_fishres_2018_10_007 crossref_primary_10_1016_j_marenvres_2020_105153 crossref_primary_10_1002_ece3_10487 crossref_primary_10_1016_j_foreco_2023_121281 crossref_primary_10_1111_fwb_13902 crossref_primary_10_1098_rspb_2021_0343 crossref_primary_10_1016_j_gecco_2014_12_004 crossref_primary_10_1093_biolinnean_blaa059 crossref_primary_10_1111_ddi_12926 crossref_primary_10_3897_natureconservation_37_37145 crossref_primary_10_7717_peerj_14585 crossref_primary_10_1016_j_algal_2024_103701 crossref_primary_10_1016_j_ufug_2020_126908 crossref_primary_10_2139_ssrn_4004036 crossref_primary_10_1016_j_ecoinf_2020_101195 crossref_primary_10_1111_boj_12495 crossref_primary_10_1038_s41598_022_11739_y crossref_primary_10_1016_j_ecolind_2017_07_010 crossref_primary_10_1016_j_ecolind_2024_111888 crossref_primary_10_1371_journal_pone_0158519 crossref_primary_10_1111_oik_09653 crossref_primary_10_1016_j_jenvman_2024_120490 crossref_primary_10_1007_s10531_018_1503_4 crossref_primary_10_1016_j_aquaculture_2020_735424 crossref_primary_10_7717_peerj_17967 crossref_primary_10_1007_s00442_021_04981_0 crossref_primary_10_1016_j_foreco_2024_122303 crossref_primary_10_1016_j_marenvres_2016_05_015 crossref_primary_10_1016_j_ecolmodel_2024_110750 crossref_primary_10_1111_mec_16471 crossref_primary_10_1016_j_gecco_2024_e03352 crossref_primary_10_1038_s41598_023_48440_7 crossref_primary_10_3390_d14070555 crossref_primary_10_1016_j_pld_2024_07_011 crossref_primary_10_1016_j_ympev_2019_03_011 crossref_primary_10_1111_jbi_12284 crossref_primary_10_1016_j_ufug_2022_127468 crossref_primary_10_1186_s40663_020_00252_1 crossref_primary_10_1016_j_actao_2021_103768 crossref_primary_10_1007_s10531_023_02566_2 crossref_primary_10_1016_j_baae_2018_03_009 crossref_primary_10_1007_s10750_015_2515_7 crossref_primary_10_1016_j_scitotenv_2024_177165 crossref_primary_10_3389_fcosc_2022_902887 crossref_primary_10_1098_rspb_2023_1424 crossref_primary_10_1371_journal_pone_0127913 crossref_primary_10_1111_1365_2745_13442 crossref_primary_10_1111_jbi_13007 crossref_primary_10_1016_j_ecolind_2020_106221 crossref_primary_10_1016_j_gecco_2024_e03200 crossref_primary_10_1111_jbi_13245 crossref_primary_10_1186_s41936_023_00326_w crossref_primary_10_1016_j_ecoinf_2018_01_001 crossref_primary_10_3390_biology9080199 crossref_primary_10_1111_geb_13294 crossref_primary_10_1007_s10661_023_12090_z crossref_primary_10_1007_s10530_018_1874_1 crossref_primary_10_1002_ece3_7215 crossref_primary_10_1016_j_palaeo_2016_05_032 crossref_primary_10_3390_w14233805 crossref_primary_10_3390_ani13111775 crossref_primary_10_1038_srep36169 crossref_primary_10_3354_meps13129 crossref_primary_10_1007_s00035_016_0173_7 crossref_primary_10_1007_s00442_019_04535_5 crossref_primary_10_1111_jbi_12266 crossref_primary_10_1111_j_1466_8238_2012_00773_x crossref_primary_10_1111_rec_14367 crossref_primary_10_1002_ecy_2940 crossref_primary_10_1111_1440_1703_12149 crossref_primary_10_1111_jbi_14684 crossref_primary_10_1111_oik_10401 crossref_primary_10_3389_fenvs_2021_701653 crossref_primary_10_3389_fmars_2019_00129 |
Cites_doi | 10.1098/rspb.1996.0087 10.2307/1943563 10.2307/5518 10.1111/j.1600-0587.2009.05880.x 10.1111/j.1466-8238.2011.00694.x 10.1111/j.1469-8137.1912.tb05611.x 10.1111/j.1461-0248.2011.01589.x 10.1111/j.1466-8238.2009.00490.x 10.1002/9780470999592 10.1111/j.1600-0706.2008.17053.x 10.1111/j.1466-8238.2011.00671.x 10.1098/rsbl.2007.0449 10.1111/j.1461-0248.2011.01634.x 10.1111/j.1461-0248.2010.01552.x 10.1111/j.1600-0706.2011.19451.x 10.1046/j.1365-2656.2003.00710.x 10.1046/j.0021-8790.2001.00563.x 10.1111/j.0906-7590.2007.04817.x 10.1007/BF00317469 10.1111/j.0030-1299.2008.16644.x 10.2475/ajs.241.1.1 10.1098/rsbl.2006.0553 10.1111/j.1466-8238.2011.00709.x 10.1890/06-1736.1 10.1111/j.1365-2656.2010.01771.x |
ContentType | Journal Article |
Copyright | Copyright © 2012 Blackwell Publishing Ltd 2012 Blackwell Publishing Ltd 2014 INIST-CNRS Copyright © 2012 Blackwell Publishing |
Copyright_xml | – notice: Copyright © 2012 Blackwell Publishing Ltd – notice: 2012 Blackwell Publishing Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2012 Blackwell Publishing |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K |
DOI | 10.1111/j.1466-8238.2011.00756.x |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 1466-822X |
EndPage | 1232 |
ExternalDocumentID | 2824742321 26615899 10_1111_j_1466_8238_2011_00756_x GEB756 23326640 ark_67375_WNG_TFXBS9DM_C |
Genre | reviewArticle |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c5796-2d101ccf2ca372c9183c05bf05e5616385d28ac3e7fc2175d892d4e950af11ce3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Thu Jul 10 21:33:00 EDT 2025 Mon Jul 14 07:40:48 EDT 2025 Mon Jul 21 09:13:28 EDT 2025 Tue Jul 01 01:46:03 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Jan 22 16:50:57 EST 2025 Thu Jul 03 21:09:22 EDT 2025 Wed Oct 30 09:52:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Nested subset Turnover species replacement Biogeography nestedness Beta diversity Ecology Replacement spatial turnover richness differences dissimilarity Species richness |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5796-2d101ccf2ca372c9183c05bf05e5616385d28ac3e7fc2175d892d4e950af11ce3 |
Notes | ArticleID:GEB756 ark:/67375/WNG-TFXBS9DM-C istex:ED15A28B4DAE832B8B63F69CCC0F3D9BCD295455 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1466-8238.2011.00756.x |
PQID | 1197658528 |
PQPubID | 1066347 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1257739802 proquest_journals_1197658528 pascalfrancis_primary_26615899 crossref_primary_10_1111_j_1466_8238_2011_00756_x crossref_citationtrail_10_1111_j_1466_8238_2011_00756_x wiley_primary_10_1111_j_1466_8238_2011_00756_x_GEB756 jstor_primary_23326640 istex_primary_ark_67375_WNG_TFXBS9DM_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Podani, J. & Schmera, D. (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638. Gaston, K.J. & Blackburn, T.M. (2000) Pattern and process in macroecology. Blackwell Science, Oxford. Svenning, J.C., Fløjgaard, C. & Baselga, A. (2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402. Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. Soininen, J., McDonald, R. & Hillebrand, H. (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12. Sørensen, T.A. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1-34. Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645. Koleff, P., Gaston, K.J. & Lennon, J.K. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382. Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50. Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239. Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. & Oberdorff, T. (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14, 325-334. Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280-338. Almeida-Neto, M., Frensel, D.M.B. & Ulrich, W. (2012) Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00709.x. Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158. Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C. & Swenson, N.G. (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19-28. Wright, D.H. & Reeves, J.H. (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416-428. Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143. Carvalho, J.C., Cardoso, P. & Gomes, P. (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00694.x. Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2009) A consumer's guide to nestedness analysis. Oikos, 118, 3-17. Diserud, O.H. & Ødegaard, F. (2007) A multiple-site similarity measure. Biology Letters, 3, 20-22. Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439. Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31. Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748. Tuomisto, H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22. Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588. Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. & Diniz-Filho, J.A.F. (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197. 2001; 70 2010; 33 1992; 92 1960; 30 2012 1948; 5 2010; 19 2000 2011; 80 2008; 117 1943; 241 1996; 263 2011; 14 2007; 3 2007; 30 1912; 11 2009; 118 2003; 72 2007; 88 2012; 21 1992; 61 2011; 120 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 Sørensen T.A. (e_1_2_10_21_1) 1948; 5 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – reference: Svenning, J.C., Fløjgaard, C. & Baselga, A. (2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402. – reference: Tuomisto, H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22. – reference: Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J.B., Stegen, J.C. & Swenson, N.G. (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19-28. – reference: Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588. – reference: Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439. – reference: Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280-338. – reference: Sørensen, T.A. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 5, 1-34. – reference: Harrison, S., Ross, S.J. & Lawton, J.H. (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158. – reference: Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748. – reference: Carvalho, J.C., Cardoso, P. & Gomes, P. (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00694.x. – reference: Simpson, G.G. (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31. – reference: Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist, 11, 37-50. – reference: Podani, J. & Schmera, D. (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638. – reference: Wright, D.H. & Reeves, J.H. (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416-428. – reference: Koleff, P., Gaston, K.J. & Lennon, J.K. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology, 72, 367-382. – reference: Lennon, J.J., Koleff, P., Greenwood, J.J.D. & Gaston, K.J. (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. – reference: Diserud, O.H. & Ødegaard, F. (2007) A multiple-site similarity measure. Biology Letters, 3, 20-22. – reference: Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2009) A consumer's guide to nestedness analysis. Oikos, 118, 3-17. – reference: Almeida-Neto, M., Frensel, D.M.B. & Ulrich, W. (2012) Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography, doi: 10.1111/j.1466-8238.2011.00709.x. – reference: Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S. & Diniz-Filho, J.A.F. (2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197. – reference: Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227-1239. – reference: Baselga, A., Jiménez-Valverde, A. & Niccolini, G. (2007) A multiple-site similarity measure independent of richness. Biology Letters, 3, 642-645. – reference: Gaston, K.J. & Blackburn, T.M. (2000) Pattern and process in macroecology. Blackwell Science, Oxford. – reference: Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143. – reference: Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. & Oberdorff, T. (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14, 325-334. – reference: Soininen, J., McDonald, R. & Hillebrand, H. (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12. – volume: 14 start-page: 19 year: 2011 end-page: 28 article-title: Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist publication-title: Ecology Letters – volume: 19 start-page: 134 year: 2010 end-page: 143 article-title: Partitioning the turnover and nestedness components of beta diversity publication-title: Global Ecology and Biogeography – volume: 263 start-page: 579 year: 1996 end-page: 588 article-title: Mapping variations in the strength and breadth of biogeographic transition zones using species turnover publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 21 start-page: 191 year: 2012 end-page: 197 article-title: Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity publication-title: Global Ecology and Biogeography – volume: 33 start-page: 2 year: 2010 end-page: 22 article-title: A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity publication-title: Ecography – volume: 92 start-page: 416 year: 1992 end-page: 428 article-title: On the meaning and measurement of nestedness of species assemblages publication-title: Oecologia – volume: 120 start-page: 1625 year: 2011 end-page: 1638 article-title: A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data publication-title: Oikos – year: 2012 article-title: Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010) publication-title: Global Ecology and Biogeography – year: 2012 article-title: Determining the relative roles of species replacement and species richness differences in generating beta‐diversity patterns publication-title: Global Ecology and Biogeography – volume: 11 start-page: 37 year: 1912 end-page: 50 article-title: The distribution of the flora in the alpine zone publication-title: New Phytologist – volume: 72 start-page: 367 year: 2003 end-page: 382 article-title: Measuring beta diversity for presence–absence data publication-title: Journal of Animal Ecology – year: 2000 – volume: 61 start-page: 151 year: 1992 end-page: 158 article-title: Beta‐diversity on geographic gradients in Britain publication-title: Journal of Animal Ecology – volume: 88 start-page: 2427 year: 2007 end-page: 2439 article-title: Partitioning diversity into independent alpha and beta components publication-title: Ecology – volume: 3 start-page: 642 year: 2007 end-page: 645 article-title: A multiple‐site similarity measure independent of richness publication-title: Biology Letters – volume: 14 start-page: 325 year: 2011 end-page: 334 article-title: Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes publication-title: Ecology Letters – volume: 80 start-page: 393 year: 2011 end-page: 402 article-title: Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction publication-title: Journal of Animal Ecology – volume: 14 start-page: 741 year: 2011 end-page: 748 article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles publication-title: Ecology Letters – volume: 3 start-page: 20 year: 2007 end-page: 22 article-title: A multiple‐site similarity measure publication-title: Biology Letters – volume: 30 start-page: 3 year: 2007 end-page: 12 article-title: The distance decay of similarity in ecological communities publication-title: Ecography – volume: 70 start-page: 966 year: 2001 end-page: 979 article-title: The geographical structure of British bird distributions: diversity, spatial turnover and scale publication-title: Journal of Animal Ecology – volume: 118 start-page: 3 year: 2009 end-page: 17 article-title: A consumer's guide to nestedness analysis publication-title: Oikos – volume: 30 start-page: 280 year: 1960 end-page: 338 article-title: Vegetation of the Siskiyou Mountains, Oregon and California publication-title: Ecological Monographs – volume: 5 start-page: 1 year: 1948 end-page: 34 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons publication-title: Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter – volume: 241 start-page: 1 year: 1943 end-page: 31 article-title: Mammals and the nature of continents publication-title: American Journal of Science – volume: 117 start-page: 1227 year: 2008 end-page: 1239 article-title: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement publication-title: Oikos – ident: e_1_2_10_26_1 doi: 10.1098/rspb.1996.0087 – ident: e_1_2_10_25_1 doi: 10.2307/1943563 – ident: e_1_2_10_11_1 doi: 10.2307/5518 – ident: e_1_2_10_23_1 doi: 10.1111/j.1600-0587.2009.05880.x – ident: e_1_2_10_7_1 doi: 10.1111/j.1466-8238.2011.00694.x – ident: e_1_2_10_13_1 doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: e_1_2_10_17_1 doi: 10.1111/j.1461-0248.2011.01589.x – ident: e_1_2_10_5_1 doi: 10.1111/j.1466-8238.2009.00490.x – ident: e_1_2_10_10_1 doi: 10.1002/9780470999592 – ident: e_1_2_10_24_1 doi: 10.1111/j.1600-0706.2008.17053.x – ident: e_1_2_10_9_1 doi: 10.1111/j.1466-8238.2011.00671.x – ident: e_1_2_10_6_1 doi: 10.1098/rsbl.2007.0449 – ident: e_1_2_10_12_1 doi: 10.1111/j.1461-0248.2011.01634.x – ident: e_1_2_10_4_1 doi: 10.1111/j.1461-0248.2010.01552.x – volume: 5 start-page: 1 year: 1948 ident: e_1_2_10_21_1 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons publication-title: Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter – ident: e_1_2_10_18_1 doi: 10.1111/j.1600-0706.2011.19451.x – ident: e_1_2_10_15_1 doi: 10.1046/j.1365-2656.2003.00710.x – ident: e_1_2_10_16_1 doi: 10.1046/j.0021-8790.2001.00563.x – ident: e_1_2_10_20_1 doi: 10.1111/j.0906-7590.2007.04817.x – ident: e_1_2_10_27_1 doi: 10.1007/BF00317469 – ident: e_1_2_10_3_1 doi: 10.1111/j.0030-1299.2008.16644.x – ident: e_1_2_10_19_1 doi: 10.2475/ajs.241.1.1 – ident: e_1_2_10_8_1 doi: 10.1098/rsbl.2006.0553 – ident: e_1_2_10_2_1 doi: 10.1111/j.1466-8238.2011.00709.x – ident: e_1_2_10_14_1 doi: 10.1890/06-1736.1 – ident: e_1_2_10_22_1 doi: 10.1111/j.1365-2656.2010.01771.x |
SSID | ssj0005456 |
Score | 2.579461 |
Snippet | Aim: Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global... ABSTRACT Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga,... Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 ,... Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness (Baselga, 2010, Global... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1223 |
SubjectTerms | Animal and plant ecology Animal ecology Animal nesting Animal, plant and microbial ecology Beta diversity Biodiversity Biogeography Biological and medical sciences Compost dissimilarity Fundamental and applied biological sciences. Psychology General aspects MACROECOLOGICAL METHODS nestedness Population ecology Resultants richness differences spatial turnover Species Species diversity species replacement Studies Synecology Zero |
Title | The relationship between species replacement, dissimilarity derived from nestedness, and nestedness |
URI | https://api.istex.fr/ark:/67375/WNG-TFXBS9DM-C/fulltext.pdf https://www.jstor.org/stable/23326640 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1466-8238.2011.00756.x https://www.proquest.com/docview/1197658528 https://www.proquest.com/docview/1257739802 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIiQuQAsrAqUyEuLUrLJOHMdH2u62qtQeoBV7sxzHEastabUPVPj1zDiPbSoOFeotm3giZXYe3yTfjAE-pdLkhZUpIjfBw0QZE6pcqFBmWOAiIs9jTx4_O09PLpPTqZg2_CfqhannQ3Qv3MgzfLwmBzf58r6Tp2GGOaeZxInZLx0SniTqFuGjr5tJUgQU6kYjEuHTPqnnnzfqZaqnpPTblrRIDEqzRCWW9e4XPXh6F-T6LDV5CfP2-Wpyyny4XuVD--fe6MfHUcAreNGAWfaltr5teOKqHXg29oOwf-_AYLzposNlTRhZvgaLxskWLQ3vx-yGNXQxRo2fWLvjRU8WI8l9RpyB2c8Z1uBYMrACfeaXKxg1xrDKv66lcL3PTFXc-f0GLifji8OTsNntIbTUDxvyAqODtSW3JpbcKow1NhJ5GQmHGA_DhCh4ZmzsZGmxjhJFpniROCUiU45G1sUD2KquK_cWmMzKRJUR5hSbJWUqcml5GWdFbGKFZ00Asv1ntW1GodOOHFe6VxKlmnSrSbfa61bfBjDqJG_qcSAPkPnsjacTMIs50emk0N_Pj_XFZHrwTR2d6cMABt66uoU8RnCdJlEAez1z2yxAdCWwYg5gt7U_3cSgpaYPxIgvBc8C-NhdxuhBn4RM5a7XuAYjtoxVFvEAhDe2Bz-WPh4f4MG7_5R7D8_xLK-ZQbuwtVqs3QfEd6t8z3vuX6dOQDA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgguFApRTUtZJMSpjpy11-s90pI0QJMDpCK31Xpti6jFrfJAhV_PzPqRpuJQIW5JvBPJ43l8s_5mFuBtLE2aWRkjchPcj5QxvkqF8mWCBS4i8jR05PHROB6eR5-mYlofB0S9MNV8iHbDjTzDxWtycNqQvuvlsZ9g0qlHcWL6i7sIKLfpgG9XX31Zz5IiqFC1GpEMn27Sev76Txu5apvUftPQFolDaRaoxqI6_2IDoN6GuS5PDXbgsrnDip5y0V0t0679fWf4439SwVN4UuNZ9r4ywGfwIC934WHfzcL-tQud_rqRDpfVkWTxHCzaJ5s3TLzvs2tWM8YY9X5i-Y4XHV-MJI8Y0QZmP2ZYhmPVwDJ0m595xqg3hpVux5Yi9hEzZXbr-ws4H_QnJ0O_PvDBt9QS6_MMA4S1BbcmlNwqDDc2EGkRiBxhHkYKkfHE2DCXhcVSSmSJ4lmUKxGYotezediBrfKqzPeAyaSIVBFgWrFJVMQilZYXYZKFJlT4q_FANo9W23oaOh3Kcak3qqJYk2416VY73eobD3qt5HU1EeQeMu-c9bQCZn5BjDop9LfxqZ4Mpsdf1YeRPvGg48yrXchDxNdxFHhwuGFv6wUIsAQWzR4cNAao6zC00PSOGCGm4IkHb9rLGEDorZAp86sVrsGgLUOVBNwD4azt3relT_vH-OHlP8q9hkfDyehMn30cf96Hx7iCV0ShA9hazlf5K4R7y_TQufEfnZpESw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9Nm4Z44WNQLTCGkRBPS5U6cWw_srXd-FiFYBN9sxw7EVUhq_qBBn89Zydpl4mHCfHWNHeRcrk7_y753Rngdcp1Zg1PEbkxGiZS61BmTIZcYIGLiDyLPXn8fJSeXSbvx2xc859cL0w1H2L9ws1Fhs_XLsBntrgd5GkocM2pJ3Hi6pd2EU_uJGkknIf3P29GSTmkUHUaOR06brN6_nql1lK146x-3bAWHYVSL9CKRbX9RQuf3kS5fpkaPoRpc4MVO2XaXS2zrvl9a_bj_7HAI3hQo1nytnK_x7CVl3uwO_CTsH_tQWewaaNDsTqPLJ6AQe8k84aH920yIzVfjLjOTyze8aRniznNI-JIA5MfEyzCsWYgFoPmZ26J64whpX9f6_L1EdGlvXH8FC6Hg4uTs7De7iE0riE2pBbTgzEFNTrm1EhMNiZiWRGxHEEe5glmqdAmznlhsJBiVkhqk1yySBe9nsnjDmyXV2W-D4SLIpFFhIuKEUmRsowbWsTCxjqW-K8OgDdPVpl6FrrbkuO7atVEqXK2Vc62yttWXQfQW2vOqnkgd9B5451nraDnU8en40x9HZ2qi-H4-Ivsn6uTADreu9aCNEZ0nSZRAIctd9sIILxiWDIHcND4n6qT0EK5L8QIMBkVAbxan8b04b4J6TK_WqEMpmweSxHRAJh3tjvfljodHOOPZ_-o9xLufeoP1cd3ow_P4T4K0IoldADby_kqf4FYb5kd-iD-A6nwQwM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relationship+between+species+replacement%2C+dissimilarity+derived+from+nestedness%2C+and+nestedness&rft.jtitle=Global+ecology+and+biogeography&rft.au=Baselga%2C+Andres&rft.date=2012-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=21&rft.issue=12&rft.spage=1223&rft.epage=1232&rft_id=info:doi/10.1111%2Fj.1466-8238.2011.00756.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |