Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer

Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 14; no. 1; pp. e14502 - n/a
Main Authors Zhou, Qian, Liang, Jinxia, Yang, Tong, Liu, Jin, Li, Bo, Li, Yingchang, Fan, Zhenzhen, Wang, Weida, Chen, Wensheng, Yuan, Sujing, Xu, Meng, Xu, Qigui, Luan, Zhidong, Xia, Zhongjun, Zhou, Penghui, Huang, Yadong, Chen, Liang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.01.2022
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo , Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Synopsis Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages. ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming. Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model. Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice. Graphical Abstract Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages.
AbstractList Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.
Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.
Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Synopsis Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages. ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming. Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model. Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice. Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages.
Abstract Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors.
Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo , Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Synopsis Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages. ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming. Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model. Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice. Graphical Abstract Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages.
Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo , Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages.
Author Luan, Zhidong
Li, Yingchang
Huang, Yadong
Chen, Liang
Liu, Jin
Liang, Jinxia
Zhou, Penghui
Chen, Wensheng
Yang, Tong
Xu, Qigui
Li, Bo
Yuan, Sujing
Zhou, Qian
Wang, Weida
Xia, Zhongjun
Fan, Zhenzhen
Xu, Meng
AuthorAffiliation 6 Guangdong Province Key Laboratory of Bioengineering Medicine Jinan University Guangzhou China
2 MOE Key Laboratory of Glucolipid Metabolic Diseases Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine College of Chinese Medicine Research Guangdong Pharmaceutical University Guangzhou China
1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
3 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou China
4 Department of Oncology The First Affiliated Hospital Jinan University Guangzhou China
5 Translational medicine laboratory People’s Hospital of Yangjiang City Guangdong China
AuthorAffiliation_xml – name: 1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
– name: 6 Guangdong Province Key Laboratory of Bioengineering Medicine Jinan University Guangzhou China
– name: 3 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou China
– name: 4 Department of Oncology The First Affiliated Hospital Jinan University Guangzhou China
– name: 2 MOE Key Laboratory of Glucolipid Metabolic Diseases Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine College of Chinese Medicine Research Guangdong Pharmaceutical University Guangzhou China
– name: 5 Translational medicine laboratory People’s Hospital of Yangjiang City Guangdong China
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-2249-0739
  surname: Zhou
  fullname: Zhou, Qian
  email: zhouqian_whu@163.com
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 2
  givenname: Jinxia
  surname: Liang
  fullname: Liang, Jinxia
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 3
  givenname: Tong
  surname: Yang
  fullname: Yang, Tong
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 4
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 5
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University
– sequence: 6
  givenname: Yingchang
  surname: Li
  fullname: Li, Yingchang
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 7
  givenname: Zhenzhen
  orcidid: 0000-0002-3769-5286
  surname: Fan
  fullname: Fan, Zhenzhen
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University
– sequence: 8
  givenname: Weida
  surname: Wang
  fullname: Wang, Weida
  organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center
– sequence: 9
  givenname: Wensheng
  surname: Chen
  fullname: Chen, Wensheng
  organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Department of Oncology, The First Affiliated Hospital, Jinan University
– sequence: 10
  givenname: Sujing
  surname: Yuan
  fullname: Yuan, Sujing
  organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center
– sequence: 11
  givenname: Meng
  surname: Xu
  fullname: Xu, Meng
  organization: Department of Oncology, The First Affiliated Hospital, Jinan University
– sequence: 12
  givenname: Qigui
  surname: Xu
  fullname: Xu, Qigui
  organization: Translational medicine laboratory, People’s Hospital of Yangjiang City
– sequence: 13
  givenname: Zhidong
  surname: Luan
  fullname: Luan, Zhidong
  organization: Translational medicine laboratory, People’s Hospital of Yangjiang City
– sequence: 14
  givenname: Zhongjun
  surname: Xia
  fullname: Xia, Zhongjun
  organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center
– sequence: 15
  givenname: Penghui
  orcidid: 0000-0003-0519-461X
  surname: Zhou
  fullname: Zhou, Penghui
  organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center
– sequence: 16
  givenname: Yadong
  orcidid: 0000-0002-8879-3273
  surname: Huang
  fullname: Huang, Yadong
  organization: Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University
– sequence: 17
  givenname: Liang
  orcidid: 0000-0001-7300-6604
  surname: Chen
  fullname: Chen, Liang
  email: chenliang@jnu.edu.cn
  organization: Department of Oncology, The First Affiliated Hospital, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34898004$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiH7AmRtaiQuXtLbX9tockFBUoFIjLnC2vPY4cVjbwbtbFH49TlNCWwk4eeR53ndm7DmtjmKKUFUvMTrHjDByASGEc4IIxpQh8qQ6wS1rZ5QLenSIW35cnQ7DGiHOOBbPquOGCikQoieVmuvsfP8zBd_VIdmp1yMM9TiFlOvgTU4Qb3xOMUAc6zHVmzSWyBeq9iFMEWqzAvNtk_wuv4KsN9vaFbHR0UB-Xj11uh_gxd15Vn39cPll_ml2_fnj1fz99cywVpKZIS0WurRFDHMdSGucwwDSdQxZ7qjVmHHRtZRwYYGzRqJGMIccsdxIp5uz6mrva5Neq032QeetStqr24uUl0rn0ZselGaAgAlricPU2EY0BuuGGM6Elo1mxevd3mszdQGsKfNm3T8wfZiJfqWW6UaJlkoqm2Lw5s4gp-8TDKMKfjDQ9zpCmgZFOJKUtVjKgr5-hK7TlGN5qkJhQbHAeEe9ut_RoZXf_1iAiz1QPmwYMrgDgpG63RS12xR12JSiYI8Uxo969Gk3ku__oXu71_3wPWz_V0ZdLhaL-2K0Fw9FF5eQ_0z7t3q_AN3U5fI
CitedBy_id crossref_primary_10_3390_ijms232415879
crossref_primary_10_1002_1878_0261_13595
crossref_primary_10_3389_fimmu_2022_915094
crossref_primary_10_3389_fgene_2022_896064
crossref_primary_10_1002_jbt_23431
crossref_primary_10_1038_s44321_025_00200_y
crossref_primary_10_1016_j_clml_2023_03_016
crossref_primary_10_1002_advs_202409895
crossref_primary_10_1007_s13346_022_01194_7
crossref_primary_10_1016_j_intimp_2025_114024
crossref_primary_10_1016_j_canlet_2025_217613
crossref_primary_10_32604_or_2023_030770
crossref_primary_10_1002_cbin_12110
crossref_primary_10_1038_s41467_023_43283_2
crossref_primary_10_18632_aging_205502
crossref_primary_10_1038_s41598_022_17645_7
crossref_primary_10_1186_s13046_023_02742_w
crossref_primary_10_1016_j_actbio_2023_03_002
crossref_primary_10_1016_j_devcel_2024_10_010
crossref_primary_10_3390_cells11213473
crossref_primary_10_1002_ctm2_1344
crossref_primary_10_1186_s40164_023_00456_5
crossref_primary_10_1080_14728222_2023_2259097
crossref_primary_10_1101_cshperspect_a041411
crossref_primary_10_3389_fimmu_2023_1160340
crossref_primary_10_1007_s11010_022_04461_w
crossref_primary_10_1186_s12943_023_01926_4
crossref_primary_10_1080_13543776_2023_2272648
crossref_primary_10_3390_cancers14153788
crossref_primary_10_1038_s41392_023_01365_z
crossref_primary_10_1007_s43657_023_00154_6
Cites_doi 10.1038/s41467-018-05348-5
10.1248/bpb.26.931
10.1371/journal.pone.0085834
10.1186/s12964-018-0262-x
10.1038/nature21409
10.1152/ajpcell.2000.278.2.C259
10.1182/blood-2012-02-413260
10.1038/nri3671
10.1189/jlb.68.1.131
10.1038/nm1093
10.1038/nrm3270
10.1038/nature19834
10.1182/blood-2007-01-065888
10.3389/fimmu.2018.01930
10.2353/ajpath.2010.090879
10.4049/jimmunol.196.Supp.189.14
10.1038/s41467-021-21066-x
10.3389/fimmu.2019.01084
10.1038/nm.3337
10.3389/fimmu.2019.02215
10.4049/jimmunol.119.3.950
10.1016/S0092-8674(88)91043-4
10.1016/j.it.2019.02.003
10.1186/1471-2172-9-49
10.1038/nrclinonc.2016.217
10.1200/EDBK_280795
10.1128/MCB.15.1.59
10.1016/j.it.2004.09.015
10.1182/blood-2005-08-3531
10.1002/art.24882
10.1023/A:1014416616687
10.1016/j.immuni.2014.06.010
10.1038/s41467-020-17670-y
10.1016/j.ccell.2016.02.004
10.1038/s41591-019-0374-x
10.1002/ijc.24556
10.1038/ni1511
10.3389/fcell.2020.617879
10.3389/fmolb.2019.00011
10.1016/j.immuni.2015.02.005
10.1016/j.ccr.2014.05.016
10.1128/MCB.26.8.3071-3084.2006
10.1038/nri3789
10.1182/blood-2007-01-068031
10.1016/j.smim.2016.03.017
10.1038/nature08622
10.3389/fphys.2017.00837
10.1158/1078-0432.CCR-16-3133
10.1111/ejh.12749
10.1016/j.cell.2010.03.014
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors. Published under the terms of the CC BY 4.0 license
2021 The Authors. Published under the terms of the CC BY 4.0 license.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.15252/emmm.202114502
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Qian Zhou et al
EISSN 1757-4684
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a5e0e58dd2f14cd383c1a32c658a93a5
PMC8749493
34898004
10_15252_emmm_202114502
EMMM202114502
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 81972778; 31800723; 81972778; 81772648
– fundername: GuangZhou Basic and Applied Basic Research Foundation
  grantid: 202102020512
– fundername: The fundamental research funds for the central universities
  grantid: 21619101
  funderid: 10.13039/501100012226
– fundername: GuangDong Basic and Applied Basic Research Foundation
  grantid: 2021A1515010461
– fundername: GuangDong Basic and Applied Basic Research Foundation
  funderid: 2021A1515010461
– fundername: NSFC
  funderid: 81972778; 31800723; 81972778; 81772648
– fundername: GuangZhou Basic and Applied Basic Research Foundation
  funderid: 202102020512
– fundername: The fundamental research funds for the central universities
  funderid: 21619101
– fundername: ;
  grantid: 21619101
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AASML
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
KQ8
LH4
LK8
M48
M7P
NAO
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
AAHHS
ABJNI
ACCFJ
ADPDF
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
M~E
OVEED
RHF
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5792-c2718a3482c5fbe9dcff1ee9fb50d6f4da1568b74268de65390385f0f2d6c9fa3
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:29:38 EDT 2025
Thu Aug 21 14:06:45 EDT 2025
Fri Jul 11 01:39:00 EDT 2025
Wed Aug 13 07:49:54 EDT 2025
Mon Jul 21 06:06:00 EDT 2025
Tue Jul 01 01:53:03 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Wed Jan 22 16:26:18 EST 2025
Tue Aug 12 01:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords tumor‐associated macrophage
M2 macrophage
tumor microenvironment
M1 macrophage
immunotherapy
tumor-associated macrophage
Language English
License Attribution
2021 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5792-c2718a3482c5fbe9dcff1ee9fb50d6f4da1568b74268de65390385f0f2d6c9fa3
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3769-5286
0000-0003-0519-461X
0000-0002-2249-0739
0000-0001-7300-6604
0000-0002-8879-3273
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.202114502
PMID 34898004
PQID 2618418119
PQPubID 866378
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_a5e0e58dd2f14cd383c1a32c658a93a5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8749493
proquest_miscellaneous_2609457199
proquest_journals_2618418119
pubmed_primary_34898004
crossref_primary_10_15252_emmm_202114502
crossref_citationtrail_10_15252_emmm_202114502
wiley_primary_10_15252_emmm_202114502_EMMM202114502
springer_journals_10_15252_emmm_202114502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11 January 2022
PublicationDateYYYYMMDD 2022-01-11
PublicationDate_xml – month: 01
  year: 2022
  text: 11 January 2022
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2022
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2015; 15
2017; 7
2012; 120
2017; 8
2019; 6
2000; 278
2020; 40
1995; 15
2009; 60
2019; 10
2000; 68
2004; 25
2017; 23
2008; 9
1988; 54
2016; 96
2010; 141
2014; 25
2020; 11
2014; 41
2012; 13
2004; 10
2013; 19
2020; 8
2018; 9
2015; 27
2021; 12
2019; 40
2016; 539
2017; 14
2015; 42
2007; 110
2006; 26
2002; 22
2019; 25
2007; 8
1977; 119
2010; 176
2009; 462
2014; 14
2003; 26
2014; 9
2016; 29
2006; 107
2017; 543
2018; 16
2009; 125
2016; 196
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Wang C‐Y (e_1_2_10_48_1) 2017; 7
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 14
  start-page: 392
  year: 2014
  end-page: 404
  article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis
  publication-title: Nat Rev Immunol
– volume: 10
  start-page: 1084
  year: 2019
  article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS‐) vs. alternatively activated macrophages
  publication-title: Front Immunol
– volume: 13
  start-page: 89
  year: 2012
  end-page: 102
  article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond
  publication-title: Nat Rev Mol Cell Biol
– volume: 196
  start-page: 189.14‐189.14
  year: 2016
  article-title: Specific transcription factors distinctly regulate kinetics of and gene expression
  publication-title: J Immunol
– volume: 462
  start-page: 1070
  year: 2009
  end-page: 1074
  article-title: Novel mutant‐selective EGFR kinase inhibitors against EGFR T790M
  publication-title: Nature
– volume: 9
  start-page: 49
  year: 2008
  article-title: Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice
  publication-title: BMC Immunol
– volume: 119
  start-page: 950
  year: 1977
  end-page: 954
  article-title: Antibody‐dependent killing of erythrocyte and tumor targets by macrophage‐related cell lines: enhancement by PPD and LPS
  publication-title: J Immunol
– volume: 8
  start-page: 837
  year: 2017
  article-title: The origins and functions of tissue‐resident macrophages in kidney development
  publication-title: Front Physiol
– volume: 7
  start-page: 2103
  year: 2017
  end-page: 2120
  article-title: PSMB5 plays a dual role in cancer development and immunosuppression
  publication-title: Am J Cancer Res
– volume: 543
  start-page: 428
  year: 2017
  end-page: 432
  article-title: Class IIa HDAC inhibition reduces breast tumours and metastases through anti‐tumour macrophages
  publication-title: Nature
– volume: 22
  start-page: 51
  year: 2002
  end-page: 56
  article-title: The IL‐2/IL‐15 receptor systems: targets for immunotherapy
  publication-title: J Clin Immunol
– volume: 26
  start-page: 3071
  year: 2006
  end-page: 3084
  article-title: Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha‐mediated NF‐kappaB activation and down‐regulation of TRAF2 expression
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 942
  year: 2004
  end-page: 949
  article-title: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival
  publication-title: Nat Med
– volume: 278
  start-page: C259
  year: 2000
  end-page: C267
  article-title: Sodium 4‐phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508‐CFTR
  publication-title: Am J Physiol Cell Physiol
– volume: 15
  start-page: 58
  year: 1995
  end-page: 68
  article-title: Monocyte expression of the human prointerleukin 1 beta gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi‐1/PU.1
  publication-title: Mol Cell Biol
– volume: 110
  start-page: 587
  year: 2007
  end-page: 595
  article-title: Tumor‐derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes
  publication-title: Blood
– volume: 68
  start-page: 131
  year: 2000
  end-page: 136
  article-title: Proteasome‐mediated regulation of interleukin‐1beta turnover and export in human monocytes
  publication-title: J Leukoc Biol
– volume: 19
  start-page: 1264
  year: 2013
  end-page: 1272
  article-title: CSF‐1R inhibition alters macrophage polarization and blocks glioma progression
  publication-title: Nat Med
– volume: 29
  start-page: 285
  year: 2016
  end-page: 296
  article-title: Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD‐L1 blockade
  publication-title: Cancer Cell
– volume: 539
  start-page: 437
  year: 2016
  end-page: 442
  article-title: PI3Kgamma is a molecular switch that controls immune suppression
  publication-title: Nature
– volume: 8
  start-page: 1086
  year: 2007
  end-page: 1094
  article-title: Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17‐producing T cell responses
  publication-title: Nat Immunol
– volume: 10
  start-page: 2215
  year: 2019
  article-title: Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers
  publication-title: Front Immunol
– volume: 25
  start-page: 846
  year: 2014
  end-page: 859
  article-title: Targeting tumor‐associated macrophages with anti‐CSF‐1R antibody reveals a strategy for cancer therapy
  publication-title: Cancer Cell
– volume: 54
  start-page: 777
  year: 1988
  end-page: 785
  article-title: Introduction of soluble protein into the class I pathway of antigen processing and presentation
  publication-title: Cell
– volume: 40
  start-page: 310
  year: 2019
  end-page: 327
  article-title: Targeting tumor‐associated macrophages in cancer
  publication-title: Trends Immunol
– volume: 120
  start-page: 4246
  year: 2012
  end-page: 4255
  article-title: Chemokine‐mediated tissue recruitment of CXCR3+ CD4+ T cells plays a major role in the pathogenesis of chronic GVHD
  publication-title: Blood
– volume: 9
  start-page: 1930
  year: 2018
  article-title: Chemokine‐induced macrophage polarization in inflammatory conditions
  publication-title: Front Immunol
– volume: 12
  start-page: 773
  year: 2021
  article-title: High‐throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming
  publication-title: Nat Commun
– volume: 40
  start-page: 372
  year: 2020
  end-page: 384
  article-title: Checkpoint blockade in lung cancer with driver mutation: choose the road wisely
  publication-title: Am Soc Clin Oncol Educ Book
– volume: 176
  start-page: 2972
  year: 2010
  end-page: 2985
  article-title: Tumor progression stage and anatomical site regulate tumor‐associated macrophage and bone marrow‐derived monocyte polarization
  publication-title: Am J Pathol
– volume: 110
  start-page: 3281
  year: 2007
  end-page: 3290
  article-title: Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin‐proteasome pathway, against preclinical models of multiple myeloma
  publication-title: Blood
– volume: 107
  start-page: 4907
  year: 2006
  end-page: 4916
  article-title: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells
  publication-title: Blood
– volume: 23
  start-page: 4242
  year: 2017
  end-page: 4250
  article-title: Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate
  publication-title: Clin Cancer Res
– volume: 9
  start-page: 2943
  year: 2018
  article-title: Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects
  publication-title: Nat Commun
– volume: 41
  start-page: 49
  year: 2014
  end-page: 61
  article-title: Tumor‐associated macrophages: from mechanisms to therapy
  publication-title: Immunity
– volume: 9
  year: 2014
  article-title: Btk regulates macrophage polarization in response to lipopolysaccharide
  publication-title: PLoS One
– volume: 141
  start-page: 39
  year: 2010
  end-page: 51
  article-title: Macrophage diversity enhances tumor progression and metastasis
  publication-title: Cell
– volume: 6
  start-page: 11
  year: 2019
  article-title: Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1
  publication-title: Front Mol Biosci
– volume: 16
  start-page: 54
  year: 2018
  article-title: Nrf2 activation drive macrophages polarization and cancer cell epithelial‐mesenchymal transition during interaction
  publication-title: Cell Commun Signal
– volume: 15
  start-page: 73
  year: 2015
  end-page: 86
  article-title: Immune cell promotion of metastasis
  publication-title: Nat Rev Immunol
– volume: 42
  start-page: 419
  year: 2015
  end-page: 430
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
– volume: 25
  start-page: 677
  year: 2004
  end-page: 686
  article-title: The chemokine system in diverse forms of macrophage activation and polarization
  publication-title: Trends Immunol
– volume: 25
  start-page: 656
  year: 2019
  end-page: 666
  article-title: Siglec‐15 as an immune suppressor and potential target for normalization cancer immunotherapy
  publication-title: Nat Med
– volume: 14
  start-page: 399
  year: 2017
  end-page: 416
  article-title: Tumour‐associated macrophages as treatment targets in oncology
  publication-title: Nat Rev Clin Oncol
– volume: 27
  start-page: 369
  year: 2015
  end-page: 378
  article-title: Development and function of tissue resident macrophages in mice
  publication-title: Semin Immunol
– volume: 11
  start-page: 3801
  year: 2020
  article-title: A decade of immune‐checkpoint inhibitors in cancer therapy
  publication-title: Nat Commun
– volume: 125
  start-page: 1640
  year: 2009
  end-page: 1648
  article-title: Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients
  publication-title: Int J Cancer
– volume: 26
  start-page: 931
  year: 2003
  end-page: 935
  article-title: Activation signal of nuclear factor‐kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor‐associated factor 2
  publication-title: Biol Pharm Bull
– volume: 8
  start-page: 617879
  year: 2020
  article-title: Tissue‐resident macrophage development and function
  publication-title: Front Cell Dev Biol
– volume: 60
  start-page: 3303
  year: 2009
  end-page: 3313
  article-title: DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes
  publication-title: Arthritis Rheum
– volume: 96
  start-page: 564
  year: 2016
  end-page: 577
  article-title: A practical review on carfilzomib in multiple myeloma
  publication-title: Eur J Haematol
– ident: e_1_2_10_46_1
  doi: 10.1038/s41467-018-05348-5
– ident: e_1_2_10_16_1
  doi: 10.1248/bpb.26.931
– ident: e_1_2_10_31_1
  doi: 10.1371/journal.pone.0085834
– ident: e_1_2_10_7_1
  doi: 10.1186/s12964-018-0262-x
– ident: e_1_2_10_9_1
  doi: 10.1038/nature21409
– ident: e_1_2_10_43_1
  doi: 10.1152/ajpcell.2000.278.2.C259
– ident: e_1_2_10_4_1
  doi: 10.1182/blood-2012-02-413260
– ident: e_1_2_10_8_1
  doi: 10.1038/nri3671
– ident: e_1_2_10_28_1
  doi: 10.1189/jlb.68.1.131
– ident: e_1_2_10_5_1
  doi: 10.1038/nm1093
– ident: e_1_2_10_11_1
  doi: 10.1038/nrm3270
– ident: e_1_2_10_15_1
  doi: 10.1038/nature19834
– ident: e_1_2_10_23_1
  doi: 10.1182/blood-2007-01-065888
– ident: e_1_2_10_44_1
  doi: 10.3389/fimmu.2018.01930
– ident: e_1_2_10_40_1
  doi: 10.2353/ajpath.2010.090879
– ident: e_1_2_10_36_1
  doi: 10.4049/jimmunol.196.Supp.189.14
– ident: e_1_2_10_12_1
  doi: 10.1038/s41467-021-21066-x
– ident: e_1_2_10_34_1
  doi: 10.3389/fimmu.2019.01084
– ident: e_1_2_10_37_1
  doi: 10.1038/nm.3337
– ident: e_1_2_10_18_1
  doi: 10.3389/fimmu.2019.02215
– ident: e_1_2_10_39_1
  doi: 10.4049/jimmunol.119.3.950
– ident: e_1_2_10_27_1
  doi: 10.1016/S0092-8674(88)91043-4
– ident: e_1_2_10_35_1
  doi: 10.1016/j.it.2019.02.003
– ident: e_1_2_10_24_1
  doi: 10.1186/1471-2172-9-49
– ident: e_1_2_10_25_1
  doi: 10.1038/nrclinonc.2016.217
– ident: e_1_2_10_3_1
  doi: 10.1200/EDBK_280795
– ident: e_1_2_10_21_1
  doi: 10.1128/MCB.15.1.59
– ident: e_1_2_10_26_1
  doi: 10.1016/j.it.2004.09.015
– ident: e_1_2_10_33_1
  doi: 10.1182/blood-2005-08-3531
– ident: e_1_2_10_10_1
  doi: 10.1002/art.24882
– ident: e_1_2_10_47_1
  doi: 10.1023/A:1014416616687
– ident: e_1_2_10_32_1
  doi: 10.1016/j.immuni.2014.06.010
– ident: e_1_2_10_42_1
  doi: 10.1038/s41467-020-17670-y
– ident: e_1_2_10_45_1
  doi: 10.1016/j.ccell.2016.02.004
– ident: e_1_2_10_49_1
  doi: 10.1038/s41591-019-0374-x
– ident: e_1_2_10_51_1
  doi: 10.1002/ijc.24556
– ident: e_1_2_10_6_1
  doi: 10.1038/ni1511
– ident: e_1_2_10_50_1
  doi: 10.3389/fcell.2020.617879
– ident: e_1_2_10_2_1
  doi: 10.3389/fmolb.2019.00011
– ident: e_1_2_10_14_1
  doi: 10.1016/j.immuni.2015.02.005
– ident: e_1_2_10_41_1
  doi: 10.1016/j.ccr.2014.05.016
– ident: e_1_2_10_13_1
  doi: 10.1128/MCB.26.8.3071-3084.2006
– ident: e_1_2_10_20_1
  doi: 10.1038/nri3789
– ident: e_1_2_10_22_1
  doi: 10.1182/blood-2007-01-068031
– ident: e_1_2_10_19_1
  doi: 10.1016/j.smim.2016.03.017
– ident: e_1_2_10_52_1
  doi: 10.1038/nature08622
– ident: e_1_2_10_30_1
  doi: 10.3389/fphys.2017.00837
– volume: 7
  start-page: 2103
  year: 2017
  ident: e_1_2_10_48_1
  article-title: PSMB5 plays a dual role in cancer development and immunosuppression
  publication-title: Am J Cancer Res
– ident: e_1_2_10_17_1
  doi: 10.1158/1078-0432.CCR-16-3133
– ident: e_1_2_10_29_1
  doi: 10.1111/ejh.12749
– ident: e_1_2_10_38_1
  doi: 10.1016/j.cell.2010.03.014
SSID ssj0065618
Score 2.4782047
Snippet Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective...
Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective...
Abstract Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e14502
SubjectTerms Animals
Antibodies
Antigen (tumor-associated)
Bone marrow
Cancer therapies
Cellular Reprogramming
Cytokines
Drug dosages
EMBO03
EMBO19
Endoribonucleases
Experiments
FDA approval
Humans
Immune checkpoint
Immune Checkpoint Inhibitors - pharmacology
Immune system
immunotherapy
Inhibitor drugs
Kinases
Ligands
Lung cancer
Lung Neoplasms - drug therapy
Lymphocytes
Lymphocytes T
M1 macrophage
M2 macrophage
Macrophages
Mice
Mice, Transgenic
Multiple myeloma
Oligopeptides - pharmacology
Patients
Protein folding
Protein Serine-Threonine Kinases
Proteins
Solid tumors
Targeted cancer therapy
TRAF2 protein
Transgenic animals
Transgenic mice
Tumor cells
Tumor Microenvironment
Tumor necrosis factor-TNF
Tumor-Associated Macrophages - immunology
Tumors
tumor‐associated macrophage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQpSIuiJYttFRG4gCH0NiJnfhYqlYVUjhRqTfL8SIimuTpNe9Qfj0z2egTVL30mHgsOfONMzNeviHkowuJLDJr48oYEWfSJHEVgoplYLn3SWV4wHXI8ru8uMy-XYmrO6W-8EzYSA88Ku7YCJ94UTjHA8usg4TKMpNyC57TqNQM7KXg8-ZkavwHQ5AyrOyBb8xhALmcSH0EF_zYNw1eQYfMJxPTasrsjwba_v_Fmv8emVz2Tbej2sEtnb8gz6d4kp6M37FHnvh2n-yOFSZv98nTcto7f0n0qVmH-vp319QVbTqHdbv8De03TbemDZ7Lu3PpjfYdXXU9HiUCKVrjLRJPAWD7a9XV2D6yEVCIealFy1m_IpfnZz9OL-KpvEJsRa54bDn4JYPkNlaEyitnQ2Deq1CJxMmQOQO5XVFB7iwL55HCFncRQxK4k1YFk74mO23X-reEAhAJg_5OpllmggPgjQWwUu4M_EKyiHyZlaztxD2OJTCuNeYgiIpGVPSCSkQ-LR1WI-3G_aJfEbVFDPmyhxdgRXqyIv2QFUXkcMZcT5P4RnMshgMREFMR-bA0w_TDPRXT-m6DMpAfi5wpkHkzmsgyElCtgngcvj7fMp6toW63tPXPgeK7yJE1KI3I59nM_g7rXj2kgx0-pC99Vpbl8vTuMbR3QJ5xvBWSsJixQ7LTrzf-PcRqfXU0TMs_0Ns7TQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9UwDI9gCMQFwfgqDBQkDnAoa9KmHycE06YJqZyY9G5Rmg-otraPvr7D9tdjt2nHEwyObVzJjZ3Yjp2fCXlrXJTmidZhpZQIk1RFYeVcEaaOZdZGleIOzyHLr-npWfJlJVb-wG3jyyrnPXHcqE2n8Yz8kGNnEjBHrPi4_hli1yjMrvoWGrfJHYQuw5KubLUEXOCqjOd7YCEzYCNLPbSP4IIf2qbBi-gQ_yTCn6nMVmkE7_-bx_ln4eSSPd31bUfjdPKQPPBeJf00qcEjcsu2--Tu1Gfycp_cK30G_TGRR6p39cVV19QVbTqD3bvshg7bputpg9V5v119o0NH192ABUVARWu8S2IpiFmfr7saxydMAgqeL9WoP_0TcnZy_O3oNPRNFkItsoKHmoN1Ughxo4WrbGG0c8zawlUiMqlLjIIIL68ggk5zYxHIFnOJLnLcpLpwKn5K9tqutc8JLWIVMfjepHGSKGdA_EprE8fcKNhIkoB8mCdZao9Ajo0wLiRGIigViVKRi1QC8m75YD2Bb9xM-hmltpAhavb4ouu_S78IpRI2siI3hjuWAGN5rJmKuQYvTAHzIiAHs8ylX8obea14AXmzDMMixMyKam23RRqIkkXGCqB5NqnIwglMbQFeOfx9tqM8O6zujrT1jxHoO88QOygOyPtZza7ZunEe4lEP_zdf8rgsy-Xpxb9__CW5z_HWR8RCxg7I3tBv7SvwxYbq9bjgfgE5ijJm
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgLgvJo2oKMxAEOgdiOneRYVq0qpHCiUm-W44eIaJLVNnuAX89Mkk0b0Qpx3PVkM-sZx99kPN8Q8t6FROWptXFljIxTZZK4CqGIVWCZ90lleMD3kOU3dX6Rfr2UlxNJEtbC3M7fSy75Z980WDAOcUoqkTTyoWRCofuu1Gr3yAVMMrzIg60wg_tlauLwueMHFtvPwNJ_F7T8-4TknCZdgthhFzp7Rp5O8JGejPZ-Th74dp88GhtK_tonj8spVf6C6JXZhPrqd9fUFW06h226_DXtt023oQ0ew7tV40b7jq67Hk8OgRStsWjEU7Cn_bnuahwfyQcoQFxq0VE2L8nF2en31Xk8dVOIrcwKHlsO25BBLhsrQ-ULZ0Ng3hehkolTIXUGQrm8glBZ5c4jYy0mDUMSuFO2CEa8Intt1_oDQgthEgbXOyXS1AQHdjbWOiG4M_DESCPyaTfJ2k5U49jx4kpjyIFW0WgVPVslIh_mC9Yjy8b9ol_QarMY0mMPX4DX6Gm1aSN94mXuHA8sBcVyYZkR3ALcMqC8jMjxzuZ6WrPXmmPvGwA8rIjIu3kYVhumUEzruy3KQDgsM1aAzOvRRWZNYGoLgN_w77OF8yxUXY609Y-B0TvPkCRIROTjzs1u1Lp3HsTgh_-aL31aluX86fA_7nBEnnCs9UhYzNgx2es3W_8GEFhfvR1W3x_j8yrf
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9YwDI_QEIgLgvHqNlCQOMCh0KRJH8dt2jQhFXFgErcozQMq1vZTv34H9tfP7gsqmJA4tnEqN7YTO4l_JuSN9VGSCWPCUmsZikRHYel9Hiaepc5FpeYe9yGLT8nFpfj4Vc63CTEXZsSHWDbc0DKG-RoNXJfbuWIPooa6usZUcohghEQ4ybuYYIvw-Vx8nidj8FaGLT5YJFPgJE0mdB_8xIf1B1YL04Df_zen88-7k8sB6tq9Hdan80fk4eRY0uNREx6TO67ZJ_fGUpM_98n9YjpEf0LUqe58dXXd1lVJ69ZiAS-3pf2ubjta4wW937LfaN_STdvjnSKgohWmkzgKkjY_Nm2F7SMsAQXnlxpUoe4puTw_-3J6EU51FkIj05yHhsMCpRHlxkhfutwa75lzuS9lZBMvrIYgLyshiE4y6xDLFo8TfeS5TUzudfyM7DVt414Qmsc6YtDfJrEQ2lvQAG2MjWNuNcwlIiDv50FWZgIhx1oYVwqDEZSKQqmoRSoBebt02Iz4G7eTnqDUFjIEzh5etN03Ndmh0tJFTmbWcs8EMJbFhumYG3DENDAvA3I0y1xN1rxVHKvigCvE8oC8XprBDvFwRTeu3SENBMoyZTnQPB9VZOEEhjYHxxz-Pl0pz4rVdUtTfR-wvrMU4YPigLyb1ewXW7eOQzzo4b_GS50VRbE8HfxXr0PygGM-SMRCxo7IXt_t3Evw0vry1WCHNzxQNlw
  priority: 102
  providerName: Wiley-Blackwell
Title Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer
URI https://link.springer.com/article/10.15252/emmm.202114502
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.202114502
https://www.ncbi.nlm.nih.gov/pubmed/34898004
https://www.proquest.com/docview/2618418119
https://www.proquest.com/docview/2609457199
https://pubmed.ncbi.nlm.nih.gov/PMC8749493
https://doaj.org/article/a5e0e58dd2f14cd383c1a32c658a93a5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF-0RfFFtH5F67GCD_qQmt1svh5E7HGlCClFPLi3sNkPDV6Sa5qD1r_emSSXenhFXw5yuwmT-cjM7Oz-hpC32nphLJRycykDV4TSc3NrEze0LDLGyyW3uA6ZnoWnc_FlESxu2gENDLzcmdphP6l5szy6urj-BAb_cejewz-YssRD5ZDLiACBJffBLUVopakYSwoQt3SLfeAuI6ApCgecnx0P2HJRHZL_rvDz712UYyl1O9DtPNXJI_JwCDHp514nHpM7pjog9_qmk9cH5H46lNOfkGwqG1ssf9VlkdOy1tjKy1zSdl3WDS1xq94f5-BoW9NV3eLuIphFCzxYYijIXP1c1QWO9wAFFMJgqlCZmqdkfjL7Nj11h44LrgqihLuKg6uSiHejApubRCtrmTGJzQNPh1ZoCelenEM6HcbaIKotFhatZ7kOVWKl_4zsVXVlXhCa-NJjcL8OfSGk1aALUint-1xL-KoIhxxtmJypAY4cu2IsM0xLUCoZSiUbpeKQd-MNqx6J4_apxyi1cRpCaHd_1M33bLDITAbGM0GsNbdMAGGxr5j0uYKQTALxgUMONzLPNmqZceyPA0ERSxzyZhwGi8Qyi6xMvcY5kDIHEUtgzvNeRUZKgLUJhOjw9tGW8myRuj1SFT861O84QiAh3yHvN2p2Q9atfPA7PfwXv7JZmqbj1cv_Z_Qr8oDjcRCPuYwdkr22WZvXEKS1-YTc5eIcfqNFNCH7x7Oz869wNQ2nk27ZY9IZ52-8UT4f
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrTheEJRroYCRQIKH0MSJczwgRMtWW9qsEGqlvqWOD1jRbJY9hMqP4jcyk6usoPDUx8STyPZ8Hs94PDMAz7V1wzhQysmlFE4QStfJrU2c0HqRMW4uuaVzyHQUDo-CD8fieA1-trEwdK2ylYmVoNalojPyLU6VSXA78pK3028OVY0i72pbQqOGxb45-44m2_zN3nvk7wvOdweHO0OnqSrgKBEl3FEcxbGknC5K2NwkWlnrGZPYXLg6tIGWaNLEOZqMYawNZW4l55l1LdehSqz08b9XYD3w0ZTpwfr2YPTxUyv7UTmqThRxT45w4FHYJBMSXPAtUxQU-o4WVyCaU5x2H6zKBfxNx_3zqmbnr13VpqvtcPcW3Gz0WPauBt5tWDOTDbhaV7Y824BraeOzvwPZjpzZ8emPshjnrCg11Qszc7ZYFuWMFXQf8LdgO7Yo2bRc0BUmpGJjil4xDIGlvk7LMbXXWRAY6tpMEWJnd-HoUhhwD3qTcmIeAEt86Xr4vQ79IJBWI-CkUtr3uZYouoI-vG4nOVNNznMqvXGake1DXMmIK1nHlT687D6Y1uk-LibdJq51ZJSnu3pRzj5nzbLPpDCuEbHW3HoBdiz2lSd9rlDvk9h50YfNludZIzzm2TnU-_Csa8ZlT74cOTHlkmjQLheRlyDN_RoiXU9wahO0A3D00Qp4Vrq62jIZf6lSi8cRZSvy-_Cqhdl5ty6cB7_C4f_mKxukado9Pfz3wJ_C9eFhepAd7I32H8ENTjEnrud43ib0FrOleYya4CJ_0iw_BieXveJ_AfwzcUs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKqHpBUF6BAosEEhxMvGuvHweEoG3UUlJxoFJu2_U-aERtBycRKp_G1zHjV4mgcOox3nE0npmdndl5EfLcOD9KQq29TCnhhZHyvcy51Isci631M8Ud3kOOj6L94_DDREzWyM-uFgbTKjudWCtqU2q8Ix9ynEwCxxFLh65Ni_i0O3o7--bhBCmMtHbjNBoRObTn38F9m7852AVev-B8tPd5Z99rJwx4WsQp9zQH1aywv4sWLrOp0c4xa1OXCd9ELjQK3JskA_cxSozFLq4YSHO-4ybSqVMB_O81cj0OBMM9Fk96Zw_MpPpuEU7nGEgQR21bIcEFH9o8xyJ48L1C0d7ndCdiPTjgb9bun0mbfeR21a6uD8bRLXKztWjpu0YEb5M1W2yRG82My_MtsjFuo_d3iNxRlZue_SjzaUbz0uDkMDuni2VeVjTHzMDfyu7ooqSzcoHJTABFp1jHYimImP46K6e43vRDoGB1U42yW90lx1dC_ntkvSgL-4DQNFA-g_dNFIShcgZET2ltgoAbBUosHJDXHZGlbruf4xCOM4leEHJFIldkz5UBedm_MGsaf1wO-h651oNhx-76QVl9ka0CkEpY34rEGO5YCIglgWYq4BosQAXIiwHZ7nguWzUylxdCPyDP-mVQABjVUYUtlwgDHrqIWQow9xsR6TEB0qbgEcDXxyvCs4Lq6koxPa2bjCcx9i0KBuRVJ2YXaF1Kh6CWw__RS-6Nx-P-18N_f_hTsgH7XH48ODp8RDY5Fp_4zGNsm6wvqqV9DCbhIntS7z1KTq56s_8CBpN0Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carfilzomib+modulates+tumor+microenvironment+to+potentiate+immune+checkpoint+therapy+for+cancer&rft.jtitle=EMBO+molecular+medicine&rft.au=Zhou%2C+Qian&rft.au=Liang%2C+Jinxia&rft.au=Yang%2C+Tong&rft.au=Liu%2C+Jin&rft.date=2022-01-11&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=14&rft.issue=1&rft_id=info:doi/10.15252%2Femmm.202114502&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_emmm_202114502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon