Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer
Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐...
Saved in:
Published in | EMBO molecular medicine Vol. 14; no. 1; pp. e14502 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.01.2022
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages.
In vivo
, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors.
Synopsis
Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages.
Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages.
ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming.
Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model.
Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice.
Graphical Abstract
Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. |
---|---|
AbstractList | Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors. Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors. Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Synopsis Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages. ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming. Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model. Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice. Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Abstract Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo , Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Synopsis Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Carfilzomib, together with two other protease inhibitors, was identified as capable of reprogramming M2 into M1 macrophages. ER stress‐IRE1a‐TRAF2‐NF‐kappa B axis was found responsible for the reprogramming. Carfilzomib treatment effectively shrinks autochthonous lung cancers in a transgenic mouse model. Carfilzomib synergized with PD‐1 antibody to completely regress autochthonous lung cancers in mice. Graphical Abstract Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor‐associated macrophage (TAM), a type of M2‐polarized macrophage, eliminates or suppresses T‐cell‐mediated anti‐tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti‐tumor therapy. Here, we conducted a high‐throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF‐κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo , Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1‐like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD‐1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD‐1 inhibitors for patients with solid tumors. Tumor‐associated macrophages (TAMs) are highly immunosuppressive. A high‐throughput drug screening was performed to identify FDA‐approved drugs that can reprogram TAMs into immunostimulatory M1 macrophages. |
Author | Luan, Zhidong Li, Yingchang Huang, Yadong Chen, Liang Liu, Jin Liang, Jinxia Zhou, Penghui Chen, Wensheng Yang, Tong Xu, Qigui Li, Bo Yuan, Sujing Zhou, Qian Wang, Weida Xia, Zhongjun Fan, Zhenzhen Xu, Meng |
AuthorAffiliation | 6 Guangdong Province Key Laboratory of Bioengineering Medicine Jinan University Guangzhou China 2 MOE Key Laboratory of Glucolipid Metabolic Diseases Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine College of Chinese Medicine Research Guangdong Pharmaceutical University Guangzhou China 1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China 3 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou China 4 Department of Oncology The First Affiliated Hospital Jinan University Guangzhou China 5 Translational medicine laboratory People’s Hospital of Yangjiang City Guangdong China |
AuthorAffiliation_xml | – name: 1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China – name: 6 Guangdong Province Key Laboratory of Bioengineering Medicine Jinan University Guangzhou China – name: 3 State Key Laboratory of Oncology in Southern China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou China – name: 4 Department of Oncology The First Affiliated Hospital Jinan University Guangzhou China – name: 2 MOE Key Laboratory of Glucolipid Metabolic Diseases Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine College of Chinese Medicine Research Guangdong Pharmaceutical University Guangzhou China – name: 5 Translational medicine laboratory People’s Hospital of Yangjiang City Guangdong China |
Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-2249-0739 surname: Zhou fullname: Zhou, Qian email: zhouqian_whu@163.com organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 2 givenname: Jinxia surname: Liang fullname: Liang, Jinxia organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 3 givenname: Tong surname: Yang fullname: Yang, Tong organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 4 givenname: Jin surname: Liu fullname: Liu, Jin organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 5 givenname: Bo surname: Li fullname: Li, Bo organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University – sequence: 6 givenname: Yingchang surname: Li fullname: Li, Yingchang organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 7 givenname: Zhenzhen orcidid: 0000-0002-3769-5286 surname: Fan fullname: Fan, Zhenzhen organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University – sequence: 8 givenname: Weida surname: Wang fullname: Wang, Weida organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center – sequence: 9 givenname: Wensheng surname: Chen fullname: Chen, Wensheng organization: Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Department of Oncology, The First Affiliated Hospital, Jinan University – sequence: 10 givenname: Sujing surname: Yuan fullname: Yuan, Sujing organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center – sequence: 11 givenname: Meng surname: Xu fullname: Xu, Meng organization: Department of Oncology, The First Affiliated Hospital, Jinan University – sequence: 12 givenname: Qigui surname: Xu fullname: Xu, Qigui organization: Translational medicine laboratory, People’s Hospital of Yangjiang City – sequence: 13 givenname: Zhidong surname: Luan fullname: Luan, Zhidong organization: Translational medicine laboratory, People’s Hospital of Yangjiang City – sequence: 14 givenname: Zhongjun surname: Xia fullname: Xia, Zhongjun organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center – sequence: 15 givenname: Penghui orcidid: 0000-0003-0519-461X surname: Zhou fullname: Zhou, Penghui organization: State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center – sequence: 16 givenname: Yadong orcidid: 0000-0002-8879-3273 surname: Huang fullname: Huang, Yadong organization: Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University – sequence: 17 givenname: Liang orcidid: 0000-0001-7300-6604 surname: Chen fullname: Chen, Liang email: chenliang@jnu.edu.cn organization: Department of Oncology, The First Affiliated Hospital, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34898004$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiH7AmRtaiQuXtLbX9tockFBUoFIjLnC2vPY4cVjbwbtbFH49TlNCWwk4eeR53ndm7DmtjmKKUFUvMTrHjDByASGEc4IIxpQh8qQ6wS1rZ5QLenSIW35cnQ7DGiHOOBbPquOGCikQoieVmuvsfP8zBd_VIdmp1yMM9TiFlOvgTU4Qb3xOMUAc6zHVmzSWyBeq9iFMEWqzAvNtk_wuv4KsN9vaFbHR0UB-Xj11uh_gxd15Vn39cPll_ml2_fnj1fz99cywVpKZIS0WurRFDHMdSGucwwDSdQxZ7qjVmHHRtZRwYYGzRqJGMIccsdxIp5uz6mrva5Neq032QeetStqr24uUl0rn0ZselGaAgAlricPU2EY0BuuGGM6Elo1mxevd3mszdQGsKfNm3T8wfZiJfqWW6UaJlkoqm2Lw5s4gp-8TDKMKfjDQ9zpCmgZFOJKUtVjKgr5-hK7TlGN5qkJhQbHAeEe9ut_RoZXf_1iAiz1QPmwYMrgDgpG63RS12xR12JSiYI8Uxo969Gk3ku__oXu71_3wPWz_V0ZdLhaL-2K0Fw9FF5eQ_0z7t3q_AN3U5fI |
CitedBy_id | crossref_primary_10_3390_ijms232415879 crossref_primary_10_1002_1878_0261_13595 crossref_primary_10_3389_fimmu_2022_915094 crossref_primary_10_3389_fgene_2022_896064 crossref_primary_10_1002_jbt_23431 crossref_primary_10_1038_s44321_025_00200_y crossref_primary_10_1016_j_clml_2023_03_016 crossref_primary_10_1002_advs_202409895 crossref_primary_10_1007_s13346_022_01194_7 crossref_primary_10_1016_j_intimp_2025_114024 crossref_primary_10_1016_j_canlet_2025_217613 crossref_primary_10_32604_or_2023_030770 crossref_primary_10_1002_cbin_12110 crossref_primary_10_1038_s41467_023_43283_2 crossref_primary_10_18632_aging_205502 crossref_primary_10_1038_s41598_022_17645_7 crossref_primary_10_1186_s13046_023_02742_w crossref_primary_10_1016_j_actbio_2023_03_002 crossref_primary_10_1016_j_devcel_2024_10_010 crossref_primary_10_3390_cells11213473 crossref_primary_10_1002_ctm2_1344 crossref_primary_10_1186_s40164_023_00456_5 crossref_primary_10_1080_14728222_2023_2259097 crossref_primary_10_1101_cshperspect_a041411 crossref_primary_10_3389_fimmu_2023_1160340 crossref_primary_10_1007_s11010_022_04461_w crossref_primary_10_1186_s12943_023_01926_4 crossref_primary_10_1080_13543776_2023_2272648 crossref_primary_10_3390_cancers14153788 crossref_primary_10_1038_s41392_023_01365_z crossref_primary_10_1007_s43657_023_00154_6 |
Cites_doi | 10.1038/s41467-018-05348-5 10.1248/bpb.26.931 10.1371/journal.pone.0085834 10.1186/s12964-018-0262-x 10.1038/nature21409 10.1152/ajpcell.2000.278.2.C259 10.1182/blood-2012-02-413260 10.1038/nri3671 10.1189/jlb.68.1.131 10.1038/nm1093 10.1038/nrm3270 10.1038/nature19834 10.1182/blood-2007-01-065888 10.3389/fimmu.2018.01930 10.2353/ajpath.2010.090879 10.4049/jimmunol.196.Supp.189.14 10.1038/s41467-021-21066-x 10.3389/fimmu.2019.01084 10.1038/nm.3337 10.3389/fimmu.2019.02215 10.4049/jimmunol.119.3.950 10.1016/S0092-8674(88)91043-4 10.1016/j.it.2019.02.003 10.1186/1471-2172-9-49 10.1038/nrclinonc.2016.217 10.1200/EDBK_280795 10.1128/MCB.15.1.59 10.1016/j.it.2004.09.015 10.1182/blood-2005-08-3531 10.1002/art.24882 10.1023/A:1014416616687 10.1016/j.immuni.2014.06.010 10.1038/s41467-020-17670-y 10.1016/j.ccell.2016.02.004 10.1038/s41591-019-0374-x 10.1002/ijc.24556 10.1038/ni1511 10.3389/fcell.2020.617879 10.3389/fmolb.2019.00011 10.1016/j.immuni.2015.02.005 10.1016/j.ccr.2014.05.016 10.1128/MCB.26.8.3071-3084.2006 10.1038/nri3789 10.1182/blood-2007-01-068031 10.1016/j.smim.2016.03.017 10.1038/nature08622 10.3389/fphys.2017.00837 10.1158/1078-0432.CCR-16-3133 10.1111/ejh.12749 10.1016/j.cell.2010.03.014 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021 The Authors. Published under the terms of the CC BY 4.0 license 2021 The Authors. Published under the terms of the CC BY 4.0 license. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.15252/emmm.202114502 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Qian Zhou et al |
EISSN | 1757-4684 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a5e0e58dd2f14cd383c1a32c658a93a5 PMC8749493 34898004 10_15252_emmm_202114502 EMMM202114502 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NSFC grantid: 81972778; 31800723; 81972778; 81772648 – fundername: GuangZhou Basic and Applied Basic Research Foundation grantid: 202102020512 – fundername: The fundamental research funds for the central universities grantid: 21619101 funderid: 10.13039/501100012226 – fundername: GuangDong Basic and Applied Basic Research Foundation grantid: 2021A1515010461 – fundername: GuangDong Basic and Applied Basic Research Foundation funderid: 2021A1515010461 – fundername: NSFC funderid: 81972778; 31800723; 81972778; 81772648 – fundername: GuangZhou Basic and Applied Basic Research Foundation funderid: 202102020512 – fundername: The fundamental research funds for the central universities funderid: 21619101 – fundername: ; grantid: 21619101 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAJSJ AAMMB AASML AAZKR ABOCM ABUWG ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AFBPY AFKRA AGXDD AHMBA AIAGR AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBLON EBS EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR KQ8 LH4 LK8 M48 M7P NAO NNB O9- OIG OK1 OVD P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 AAHHS ABJNI ACCFJ ADPDF ADZOD AEEZP AEQDE AIWBW AJBDE M~E OVEED RHF AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5792-c2718a3482c5fbe9dcff1ee9fb50d6f4da1568b74268de65390385f0f2d6c9fa3 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:29:38 EDT 2025 Thu Aug 21 14:06:45 EDT 2025 Fri Jul 11 01:39:00 EDT 2025 Wed Aug 13 07:49:54 EDT 2025 Mon Jul 21 06:06:00 EDT 2025 Tue Jul 01 01:53:03 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Wed Jan 22 16:26:18 EST 2025 Tue Aug 12 01:11:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | tumor‐associated macrophage M2 macrophage tumor microenvironment M1 macrophage immunotherapy tumor-associated macrophage |
Language | English |
License | Attribution 2021 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5792-c2718a3482c5fbe9dcff1ee9fb50d6f4da1568b74268de65390385f0f2d6c9fa3 |
Notes | These authors contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3769-5286 0000-0003-0519-461X 0000-0002-2249-0739 0000-0001-7300-6604 0000-0002-8879-3273 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.202114502 |
PMID | 34898004 |
PQID | 2618418119 |
PQPubID | 866378 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5e0e58dd2f14cd383c1a32c658a93a5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8749493 proquest_miscellaneous_2609457199 proquest_journals_2618418119 pubmed_primary_34898004 crossref_primary_10_15252_emmm_202114502 crossref_citationtrail_10_15252_emmm_202114502 wiley_primary_10_15252_emmm_202114502_EMMM202114502 springer_journals_10_15252_emmm_202114502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 11 January 2022 |
PublicationDateYYYYMMDD | 2022-01-11 |
PublicationDate_xml | – month: 01 year: 2022 text: 11 January 2022 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2015; 15 2017; 7 2012; 120 2017; 8 2019; 6 2000; 278 2020; 40 1995; 15 2009; 60 2019; 10 2000; 68 2004; 25 2017; 23 2008; 9 1988; 54 2016; 96 2010; 141 2014; 25 2020; 11 2014; 41 2012; 13 2004; 10 2013; 19 2020; 8 2018; 9 2015; 27 2021; 12 2019; 40 2016; 539 2017; 14 2015; 42 2007; 110 2006; 26 2002; 22 2019; 25 2007; 8 1977; 119 2010; 176 2009; 462 2014; 14 2003; 26 2014; 9 2016; 29 2006; 107 2017; 543 2018; 16 2009; 125 2016; 196 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Wang C‐Y (e_1_2_10_48_1) 2017; 7 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 14 start-page: 392 year: 2014 end-page: 404 article-title: Monocytes and macrophages: developmental pathways and tissue homeostasis publication-title: Nat Rev Immunol – volume: 10 start-page: 1084 year: 2019 article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS‐) vs. alternatively activated macrophages publication-title: Front Immunol – volume: 13 start-page: 89 year: 2012 end-page: 102 article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond publication-title: Nat Rev Mol Cell Biol – volume: 196 start-page: 189.14‐189.14 year: 2016 article-title: Specific transcription factors distinctly regulate kinetics of and gene expression publication-title: J Immunol – volume: 462 start-page: 1070 year: 2009 end-page: 1074 article-title: Novel mutant‐selective EGFR kinase inhibitors against EGFR T790M publication-title: Nature – volume: 9 start-page: 49 year: 2008 article-title: Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice publication-title: BMC Immunol – volume: 119 start-page: 950 year: 1977 end-page: 954 article-title: Antibody‐dependent killing of erythrocyte and tumor targets by macrophage‐related cell lines: enhancement by PPD and LPS publication-title: J Immunol – volume: 8 start-page: 837 year: 2017 article-title: The origins and functions of tissue‐resident macrophages in kidney development publication-title: Front Physiol – volume: 7 start-page: 2103 year: 2017 end-page: 2120 article-title: PSMB5 plays a dual role in cancer development and immunosuppression publication-title: Am J Cancer Res – volume: 543 start-page: 428 year: 2017 end-page: 432 article-title: Class IIa HDAC inhibition reduces breast tumours and metastases through anti‐tumour macrophages publication-title: Nature – volume: 22 start-page: 51 year: 2002 end-page: 56 article-title: The IL‐2/IL‐15 receptor systems: targets for immunotherapy publication-title: J Clin Immunol – volume: 26 start-page: 3071 year: 2006 end-page: 3084 article-title: Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha‐mediated NF‐kappaB activation and down‐regulation of TRAF2 expression publication-title: Mol Cell Biol – volume: 10 start-page: 942 year: 2004 end-page: 949 article-title: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival publication-title: Nat Med – volume: 278 start-page: C259 year: 2000 end-page: C267 article-title: Sodium 4‐phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508‐CFTR publication-title: Am J Physiol Cell Physiol – volume: 15 start-page: 58 year: 1995 end-page: 68 article-title: Monocyte expression of the human prointerleukin 1 beta gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi‐1/PU.1 publication-title: Mol Cell Biol – volume: 110 start-page: 587 year: 2007 end-page: 595 article-title: Tumor‐derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes publication-title: Blood – volume: 68 start-page: 131 year: 2000 end-page: 136 article-title: Proteasome‐mediated regulation of interleukin‐1beta turnover and export in human monocytes publication-title: J Leukoc Biol – volume: 19 start-page: 1264 year: 2013 end-page: 1272 article-title: CSF‐1R inhibition alters macrophage polarization and blocks glioma progression publication-title: Nat Med – volume: 29 start-page: 285 year: 2016 end-page: 296 article-title: Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD‐L1 blockade publication-title: Cancer Cell – volume: 539 start-page: 437 year: 2016 end-page: 442 article-title: PI3Kgamma is a molecular switch that controls immune suppression publication-title: Nature – volume: 8 start-page: 1086 year: 2007 end-page: 1094 article-title: Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17‐producing T cell responses publication-title: Nat Immunol – volume: 10 start-page: 2215 year: 2019 article-title: Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers publication-title: Front Immunol – volume: 25 start-page: 846 year: 2014 end-page: 859 article-title: Targeting tumor‐associated macrophages with anti‐CSF‐1R antibody reveals a strategy for cancer therapy publication-title: Cancer Cell – volume: 54 start-page: 777 year: 1988 end-page: 785 article-title: Introduction of soluble protein into the class I pathway of antigen processing and presentation publication-title: Cell – volume: 40 start-page: 310 year: 2019 end-page: 327 article-title: Targeting tumor‐associated macrophages in cancer publication-title: Trends Immunol – volume: 120 start-page: 4246 year: 2012 end-page: 4255 article-title: Chemokine‐mediated tissue recruitment of CXCR3+ CD4+ T cells plays a major role in the pathogenesis of chronic GVHD publication-title: Blood – volume: 9 start-page: 1930 year: 2018 article-title: Chemokine‐induced macrophage polarization in inflammatory conditions publication-title: Front Immunol – volume: 12 start-page: 773 year: 2021 article-title: High‐throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming publication-title: Nat Commun – volume: 40 start-page: 372 year: 2020 end-page: 384 article-title: Checkpoint blockade in lung cancer with driver mutation: choose the road wisely publication-title: Am Soc Clin Oncol Educ Book – volume: 176 start-page: 2972 year: 2010 end-page: 2985 article-title: Tumor progression stage and anatomical site regulate tumor‐associated macrophage and bone marrow‐derived monocyte polarization publication-title: Am J Pathol – volume: 110 start-page: 3281 year: 2007 end-page: 3290 article-title: Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin‐proteasome pathway, against preclinical models of multiple myeloma publication-title: Blood – volume: 107 start-page: 4907 year: 2006 end-page: 4916 article-title: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells publication-title: Blood – volume: 23 start-page: 4242 year: 2017 end-page: 4250 article-title: Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate publication-title: Clin Cancer Res – volume: 9 start-page: 2943 year: 2018 article-title: Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects publication-title: Nat Commun – volume: 41 start-page: 49 year: 2014 end-page: 61 article-title: Tumor‐associated macrophages: from mechanisms to therapy publication-title: Immunity – volume: 9 year: 2014 article-title: Btk regulates macrophage polarization in response to lipopolysaccharide publication-title: PLoS One – volume: 141 start-page: 39 year: 2010 end-page: 51 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell – volume: 6 start-page: 11 year: 2019 article-title: Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1 publication-title: Front Mol Biosci – volume: 16 start-page: 54 year: 2018 article-title: Nrf2 activation drive macrophages polarization and cancer cell epithelial‐mesenchymal transition during interaction publication-title: Cell Commun Signal – volume: 15 start-page: 73 year: 2015 end-page: 86 article-title: Immune cell promotion of metastasis publication-title: Nat Rev Immunol – volume: 42 start-page: 419 year: 2015 end-page: 430 article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization publication-title: Immunity – volume: 25 start-page: 677 year: 2004 end-page: 686 article-title: The chemokine system in diverse forms of macrophage activation and polarization publication-title: Trends Immunol – volume: 25 start-page: 656 year: 2019 end-page: 666 article-title: Siglec‐15 as an immune suppressor and potential target for normalization cancer immunotherapy publication-title: Nat Med – volume: 14 start-page: 399 year: 2017 end-page: 416 article-title: Tumour‐associated macrophages as treatment targets in oncology publication-title: Nat Rev Clin Oncol – volume: 27 start-page: 369 year: 2015 end-page: 378 article-title: Development and function of tissue resident macrophages in mice publication-title: Semin Immunol – volume: 11 start-page: 3801 year: 2020 article-title: A decade of immune‐checkpoint inhibitors in cancer therapy publication-title: Nat Commun – volume: 125 start-page: 1640 year: 2009 end-page: 1648 article-title: Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients publication-title: Int J Cancer – volume: 26 start-page: 931 year: 2003 end-page: 935 article-title: Activation signal of nuclear factor‐kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor‐associated factor 2 publication-title: Biol Pharm Bull – volume: 8 start-page: 617879 year: 2020 article-title: Tissue‐resident macrophage development and function publication-title: Front Cell Dev Biol – volume: 60 start-page: 3303 year: 2009 end-page: 3313 article-title: DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes publication-title: Arthritis Rheum – volume: 96 start-page: 564 year: 2016 end-page: 577 article-title: A practical review on carfilzomib in multiple myeloma publication-title: Eur J Haematol – ident: e_1_2_10_46_1 doi: 10.1038/s41467-018-05348-5 – ident: e_1_2_10_16_1 doi: 10.1248/bpb.26.931 – ident: e_1_2_10_31_1 doi: 10.1371/journal.pone.0085834 – ident: e_1_2_10_7_1 doi: 10.1186/s12964-018-0262-x – ident: e_1_2_10_9_1 doi: 10.1038/nature21409 – ident: e_1_2_10_43_1 doi: 10.1152/ajpcell.2000.278.2.C259 – ident: e_1_2_10_4_1 doi: 10.1182/blood-2012-02-413260 – ident: e_1_2_10_8_1 doi: 10.1038/nri3671 – ident: e_1_2_10_28_1 doi: 10.1189/jlb.68.1.131 – ident: e_1_2_10_5_1 doi: 10.1038/nm1093 – ident: e_1_2_10_11_1 doi: 10.1038/nrm3270 – ident: e_1_2_10_15_1 doi: 10.1038/nature19834 – ident: e_1_2_10_23_1 doi: 10.1182/blood-2007-01-065888 – ident: e_1_2_10_44_1 doi: 10.3389/fimmu.2018.01930 – ident: e_1_2_10_40_1 doi: 10.2353/ajpath.2010.090879 – ident: e_1_2_10_36_1 doi: 10.4049/jimmunol.196.Supp.189.14 – ident: e_1_2_10_12_1 doi: 10.1038/s41467-021-21066-x – ident: e_1_2_10_34_1 doi: 10.3389/fimmu.2019.01084 – ident: e_1_2_10_37_1 doi: 10.1038/nm.3337 – ident: e_1_2_10_18_1 doi: 10.3389/fimmu.2019.02215 – ident: e_1_2_10_39_1 doi: 10.4049/jimmunol.119.3.950 – ident: e_1_2_10_27_1 doi: 10.1016/S0092-8674(88)91043-4 – ident: e_1_2_10_35_1 doi: 10.1016/j.it.2019.02.003 – ident: e_1_2_10_24_1 doi: 10.1186/1471-2172-9-49 – ident: e_1_2_10_25_1 doi: 10.1038/nrclinonc.2016.217 – ident: e_1_2_10_3_1 doi: 10.1200/EDBK_280795 – ident: e_1_2_10_21_1 doi: 10.1128/MCB.15.1.59 – ident: e_1_2_10_26_1 doi: 10.1016/j.it.2004.09.015 – ident: e_1_2_10_33_1 doi: 10.1182/blood-2005-08-3531 – ident: e_1_2_10_10_1 doi: 10.1002/art.24882 – ident: e_1_2_10_47_1 doi: 10.1023/A:1014416616687 – ident: e_1_2_10_32_1 doi: 10.1016/j.immuni.2014.06.010 – ident: e_1_2_10_42_1 doi: 10.1038/s41467-020-17670-y – ident: e_1_2_10_45_1 doi: 10.1016/j.ccell.2016.02.004 – ident: e_1_2_10_49_1 doi: 10.1038/s41591-019-0374-x – ident: e_1_2_10_51_1 doi: 10.1002/ijc.24556 – ident: e_1_2_10_6_1 doi: 10.1038/ni1511 – ident: e_1_2_10_50_1 doi: 10.3389/fcell.2020.617879 – ident: e_1_2_10_2_1 doi: 10.3389/fmolb.2019.00011 – ident: e_1_2_10_14_1 doi: 10.1016/j.immuni.2015.02.005 – ident: e_1_2_10_41_1 doi: 10.1016/j.ccr.2014.05.016 – ident: e_1_2_10_13_1 doi: 10.1128/MCB.26.8.3071-3084.2006 – ident: e_1_2_10_20_1 doi: 10.1038/nri3789 – ident: e_1_2_10_22_1 doi: 10.1182/blood-2007-01-068031 – ident: e_1_2_10_19_1 doi: 10.1016/j.smim.2016.03.017 – ident: e_1_2_10_52_1 doi: 10.1038/nature08622 – ident: e_1_2_10_30_1 doi: 10.3389/fphys.2017.00837 – volume: 7 start-page: 2103 year: 2017 ident: e_1_2_10_48_1 article-title: PSMB5 plays a dual role in cancer development and immunosuppression publication-title: Am J Cancer Res – ident: e_1_2_10_17_1 doi: 10.1158/1078-0432.CCR-16-3133 – ident: e_1_2_10_29_1 doi: 10.1111/ejh.12749 – ident: e_1_2_10_38_1 doi: 10.1016/j.cell.2010.03.014 |
SSID | ssj0065618 |
Score | 2.4782047 |
Snippet | Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective... Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective... Abstract Impressive clinical benefit is seen in clinic with PD‐1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e14502 |
SubjectTerms | Animals Antibodies Antigen (tumor-associated) Bone marrow Cancer therapies Cellular Reprogramming Cytokines Drug dosages EMBO03 EMBO19 Endoribonucleases Experiments FDA approval Humans Immune checkpoint Immune Checkpoint Inhibitors - pharmacology Immune system immunotherapy Inhibitor drugs Kinases Ligands Lung cancer Lung Neoplasms - drug therapy Lymphocytes Lymphocytes T M1 macrophage M2 macrophage Macrophages Mice Mice, Transgenic Multiple myeloma Oligopeptides - pharmacology Patients Protein folding Protein Serine-Threonine Kinases Proteins Solid tumors Targeted cancer therapy TRAF2 protein Transgenic animals Transgenic mice Tumor cells Tumor Microenvironment Tumor necrosis factor-TNF Tumor-Associated Macrophages - immunology Tumors tumor‐associated macrophage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQpSIuiJYttFRG4gCH0NiJnfhYqlYVUjhRqTfL8SIimuTpNe9Qfj0z2egTVL30mHgsOfONMzNeviHkowuJLDJr48oYEWfSJHEVgoplYLn3SWV4wHXI8ru8uMy-XYmrO6W-8EzYSA88Ku7YCJ94UTjHA8usg4TKMpNyC57TqNQM7KXg8-ZkavwHQ5AyrOyBb8xhALmcSH0EF_zYNw1eQYfMJxPTasrsjwba_v_Fmv8emVz2Tbej2sEtnb8gz6d4kp6M37FHnvh2n-yOFSZv98nTcto7f0n0qVmH-vp319QVbTqHdbv8De03TbemDZ7Lu3PpjfYdXXU9HiUCKVrjLRJPAWD7a9XV2D6yEVCIealFy1m_IpfnZz9OL-KpvEJsRa54bDn4JYPkNlaEyitnQ2Deq1CJxMmQOQO5XVFB7iwL55HCFncRQxK4k1YFk74mO23X-reEAhAJg_5OpllmggPgjQWwUu4M_EKyiHyZlaztxD2OJTCuNeYgiIpGVPSCSkQ-LR1WI-3G_aJfEbVFDPmyhxdgRXqyIv2QFUXkcMZcT5P4RnMshgMREFMR-bA0w_TDPRXT-m6DMpAfi5wpkHkzmsgyElCtgngcvj7fMp6toW63tPXPgeK7yJE1KI3I59nM_g7rXj2kgx0-pC99Vpbl8vTuMbR3QJ5xvBWSsJixQ7LTrzf-PcRqfXU0TMs_0Ns7TQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9UwDI9gCMQFwfgqDBQkDnAoa9KmHycE06YJqZyY9G5Rmg-otraPvr7D9tdjt2nHEwyObVzJjZ3Yjp2fCXlrXJTmidZhpZQIk1RFYeVcEaaOZdZGleIOzyHLr-npWfJlJVb-wG3jyyrnPXHcqE2n8Yz8kGNnEjBHrPi4_hli1yjMrvoWGrfJHYQuw5KubLUEXOCqjOd7YCEzYCNLPbSP4IIf2qbBi-gQ_yTCn6nMVmkE7_-bx_ln4eSSPd31bUfjdPKQPPBeJf00qcEjcsu2--Tu1Gfycp_cK30G_TGRR6p39cVV19QVbTqD3bvshg7bputpg9V5v119o0NH192ABUVARWu8S2IpiFmfr7saxydMAgqeL9WoP_0TcnZy_O3oNPRNFkItsoKHmoN1Ughxo4WrbGG0c8zawlUiMqlLjIIIL68ggk5zYxHIFnOJLnLcpLpwKn5K9tqutc8JLWIVMfjepHGSKGdA_EprE8fcKNhIkoB8mCdZao9Ajo0wLiRGIigViVKRi1QC8m75YD2Bb9xM-hmltpAhavb4ouu_S78IpRI2siI3hjuWAGN5rJmKuQYvTAHzIiAHs8ylX8obea14AXmzDMMixMyKam23RRqIkkXGCqB5NqnIwglMbQFeOfx9tqM8O6zujrT1jxHoO88QOygOyPtZza7ZunEe4lEP_zdf8rgsy-Xpxb9__CW5z_HWR8RCxg7I3tBv7SvwxYbq9bjgfgE5ijJm priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgLgvJo2oKMxAEOgdiOneRYVq0qpHCiUm-W44eIaJLVNnuAX89Mkk0b0Qpx3PVkM-sZx99kPN8Q8t6FROWptXFljIxTZZK4CqGIVWCZ90lleMD3kOU3dX6Rfr2UlxNJEtbC3M7fSy75Z980WDAOcUoqkTTyoWRCofuu1Gr3yAVMMrzIg60wg_tlauLwueMHFtvPwNJ_F7T8-4TknCZdgthhFzp7Rp5O8JGejPZ-Th74dp88GhtK_tonj8spVf6C6JXZhPrqd9fUFW06h226_DXtt023oQ0ew7tV40b7jq67Hk8OgRStsWjEU7Cn_bnuahwfyQcoQFxq0VE2L8nF2en31Xk8dVOIrcwKHlsO25BBLhsrQ-ULZ0Ng3hehkolTIXUGQrm8glBZ5c4jYy0mDUMSuFO2CEa8Intt1_oDQgthEgbXOyXS1AQHdjbWOiG4M_DESCPyaTfJ2k5U49jx4kpjyIFW0WgVPVslIh_mC9Yjy8b9ol_QarMY0mMPX4DX6Gm1aSN94mXuHA8sBcVyYZkR3ALcMqC8jMjxzuZ6WrPXmmPvGwA8rIjIu3kYVhumUEzruy3KQDgsM1aAzOvRRWZNYGoLgN_w77OF8yxUXY609Y-B0TvPkCRIROTjzs1u1Lp3HsTgh_-aL31aluX86fA_7nBEnnCs9UhYzNgx2es3W_8GEFhfvR1W3x_j8yrf priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9YwDI_QEIgLgvHqNlCQOMCh0KRJH8dt2jQhFXFgErcozQMq1vZTv34H9tfP7gsqmJA4tnEqN7YTO4l_JuSN9VGSCWPCUmsZikRHYel9Hiaepc5FpeYe9yGLT8nFpfj4Vc63CTEXZsSHWDbc0DKG-RoNXJfbuWIPooa6usZUcohghEQ4ybuYYIvw-Vx8nidj8FaGLT5YJFPgJE0mdB_8xIf1B1YL04Df_zen88-7k8sB6tq9Hdan80fk4eRY0uNREx6TO67ZJ_fGUpM_98n9YjpEf0LUqe58dXXd1lVJ69ZiAS-3pf2ubjta4wW937LfaN_STdvjnSKgohWmkzgKkjY_Nm2F7SMsAQXnlxpUoe4puTw_-3J6EU51FkIj05yHhsMCpRHlxkhfutwa75lzuS9lZBMvrIYgLyshiE4y6xDLFo8TfeS5TUzudfyM7DVt414Qmsc6YtDfJrEQ2lvQAG2MjWNuNcwlIiDv50FWZgIhx1oYVwqDEZSKQqmoRSoBebt02Iz4G7eTnqDUFjIEzh5etN03Ndmh0tJFTmbWcs8EMJbFhumYG3DENDAvA3I0y1xN1rxVHKvigCvE8oC8XprBDvFwRTeu3SENBMoyZTnQPB9VZOEEhjYHxxz-Pl0pz4rVdUtTfR-wvrMU4YPigLyb1ewXW7eOQzzo4b_GS50VRbE8HfxXr0PygGM-SMRCxo7IXt_t3Evw0vry1WCHNzxQNlw priority: 102 providerName: Wiley-Blackwell |
Title | Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer |
URI | https://link.springer.com/article/10.15252/emmm.202114502 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.202114502 https://www.ncbi.nlm.nih.gov/pubmed/34898004 https://www.proquest.com/docview/2618418119 https://www.proquest.com/docview/2609457199 https://pubmed.ncbi.nlm.nih.gov/PMC8749493 https://doaj.org/article/a5e0e58dd2f14cd383c1a32c658a93a5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF-0RfFFtH5F67GCD_qQmt1svh5E7HGlCClFPLi3sNkPDV6Sa5qD1r_emSSXenhFXw5yuwmT-cjM7Oz-hpC32nphLJRycykDV4TSc3NrEze0LDLGyyW3uA6ZnoWnc_FlESxu2gENDLzcmdphP6l5szy6urj-BAb_cejewz-YssRD5ZDLiACBJffBLUVopakYSwoQt3SLfeAuI6ApCgecnx0P2HJRHZL_rvDz712UYyl1O9DtPNXJI_JwCDHp514nHpM7pjog9_qmk9cH5H46lNOfkGwqG1ssf9VlkdOy1tjKy1zSdl3WDS1xq94f5-BoW9NV3eLuIphFCzxYYijIXP1c1QWO9wAFFMJgqlCZmqdkfjL7Nj11h44LrgqihLuKg6uSiHejApubRCtrmTGJzQNPh1ZoCelenEM6HcbaIKotFhatZ7kOVWKl_4zsVXVlXhCa-NJjcL8OfSGk1aALUint-1xL-KoIhxxtmJypAY4cu2IsM0xLUCoZSiUbpeKQd-MNqx6J4_apxyi1cRpCaHd_1M33bLDITAbGM0GsNbdMAGGxr5j0uYKQTALxgUMONzLPNmqZceyPA0ERSxzyZhwGi8Qyi6xMvcY5kDIHEUtgzvNeRUZKgLUJhOjw9tGW8myRuj1SFT861O84QiAh3yHvN2p2Q9atfPA7PfwXv7JZmqbj1cv_Z_Qr8oDjcRCPuYwdkr22WZvXEKS1-YTc5eIcfqNFNCH7x7Oz869wNQ2nk27ZY9IZ52-8UT4f |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrTheEJRroYCRQIKH0MSJczwgRMtWW9qsEGqlvqWOD1jRbJY9hMqP4jcyk6usoPDUx8STyPZ8Hs94PDMAz7V1wzhQysmlFE4QStfJrU2c0HqRMW4uuaVzyHQUDo-CD8fieA1-trEwdK2ylYmVoNalojPyLU6VSXA78pK3028OVY0i72pbQqOGxb45-44m2_zN3nvk7wvOdweHO0OnqSrgKBEl3FEcxbGknC5K2NwkWlnrGZPYXLg6tIGWaNLEOZqMYawNZW4l55l1LdehSqz08b9XYD3w0ZTpwfr2YPTxUyv7UTmqThRxT45w4FHYJBMSXPAtUxQU-o4WVyCaU5x2H6zKBfxNx_3zqmbnr13VpqvtcPcW3Gz0WPauBt5tWDOTDbhaV7Y824BraeOzvwPZjpzZ8emPshjnrCg11Qszc7ZYFuWMFXQf8LdgO7Yo2bRc0BUmpGJjil4xDIGlvk7LMbXXWRAY6tpMEWJnd-HoUhhwD3qTcmIeAEt86Xr4vQ79IJBWI-CkUtr3uZYouoI-vG4nOVNNznMqvXGake1DXMmIK1nHlT687D6Y1uk-LibdJq51ZJSnu3pRzj5nzbLPpDCuEbHW3HoBdiz2lSd9rlDvk9h50YfNludZIzzm2TnU-_Csa8ZlT74cOTHlkmjQLheRlyDN_RoiXU9wahO0A3D00Qp4Vrq62jIZf6lSi8cRZSvy-_Cqhdl5ty6cB7_C4f_mKxukado9Pfz3wJ_C9eFhepAd7I32H8ENTjEnrud43ib0FrOleYya4CJ_0iw_BieXveJ_AfwzcUs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKqHpBUF6BAosEEhxMvGuvHweEoG3UUlJxoFJu2_U-aERtBycRKp_G1zHjV4mgcOox3nE0npmdndl5EfLcOD9KQq29TCnhhZHyvcy51Isci631M8Ud3kOOj6L94_DDREzWyM-uFgbTKjudWCtqU2q8Ix9ynEwCxxFLh65Ni_i0O3o7--bhBCmMtHbjNBoRObTn38F9m7852AVev-B8tPd5Z99rJwx4WsQp9zQH1aywv4sWLrOp0c4xa1OXCd9ELjQK3JskA_cxSozFLq4YSHO-4ybSqVMB_O81cj0OBMM9Fk96Zw_MpPpuEU7nGEgQR21bIcEFH9o8xyJ48L1C0d7ndCdiPTjgb9bun0mbfeR21a6uD8bRLXKztWjpu0YEb5M1W2yRG82My_MtsjFuo_d3iNxRlZue_SjzaUbz0uDkMDuni2VeVjTHzMDfyu7ooqSzcoHJTABFp1jHYimImP46K6e43vRDoGB1U42yW90lx1dC_ntkvSgL-4DQNFA-g_dNFIShcgZET2ltgoAbBUosHJDXHZGlbruf4xCOM4leEHJFIldkz5UBedm_MGsaf1wO-h651oNhx-76QVl9ka0CkEpY34rEGO5YCIglgWYq4BosQAXIiwHZ7nguWzUylxdCPyDP-mVQABjVUYUtlwgDHrqIWQow9xsR6TEB0qbgEcDXxyvCs4Lq6koxPa2bjCcx9i0KBuRVJ2YXaF1Kh6CWw__RS-6Nx-P-18N_f_hTsgH7XH48ODp8RDY5Fp_4zGNsm6wvqqV9DCbhIntS7z1KTq56s_8CBpN0Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carfilzomib+modulates+tumor+microenvironment+to+potentiate+immune+checkpoint+therapy+for+cancer&rft.jtitle=EMBO+molecular+medicine&rft.au=Zhou%2C+Qian&rft.au=Liang%2C+Jinxia&rft.au=Yang%2C+Tong&rft.au=Liu%2C+Jin&rft.date=2022-01-11&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=14&rft.issue=1&rft_id=info:doi/10.15252%2Femmm.202114502&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_emmm_202114502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |