Ethanolamine‐phosphate on the second mannose is a preferential bridge for some GPI‐anchored proteins

Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 23; no. 7; pp. e54352 - n/a
Main Authors Ishida, Mizuki, Maki, Yuta, Ninomiya, Akinori, Takada, Yoko, Campeau, Philippe, Kinoshita, Taroh, Murakami, Yoshiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.07.2022
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is the bridge between GPI and the protein and the second (EthN‐P‐Man2) is removed after GPI‐protein attachment. However, EthN‐P‐Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN‐P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN‐P on Man2 is the preferential bridge in some GPI‐APs, among them, the Ect‐5’‐nucleotidase and Netrin G2. We find that CD59, a GPI‐AP, is attached via EthN‐P‐Man2 both in PIGB ‐knockout cells, in which GPI lacks Man3, and with a small fraction in wild‐type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations. Synopsis This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG. In cells that lack either the third mannose in GPI (PIGB‐KO) or the EthN‐P linked to the third mannose (PIGO‐KO), the GPI‐anchored proteins CD59 and DAF are attached to EthN‐P linked to the second mannose, allowing their membrane localization at low levels. Approximately 10% of CD59 on wild‐type HEK293 cells are similarly attached to the second mannose via EthN‐P. NT5E and NetrinG2, in contrast to CD59, are preferentially attached to the EthN‐P linked to the second mannose. Graphical Abstract This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG.
AbstractList Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is the bridge between GPI and the protein and the second (EthN‐P‐Man2) is removed after GPI‐protein attachment. However, EthN‐P‐Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN‐P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN‐P on Man2 is the preferential bridge in some GPI‐APs, among them, the Ect‐5’‐nucleotidase and Netrin G2. We find that CD59, a GPI‐AP, is attached via EthN‐P‐Man2 both in PIGB ‐knockout cells, in which GPI lacks Man3, and with a small fraction in wild‐type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations. image This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG. In cells that lack either the third mannose in GPI (PIGB‐KO) or the EthN‐P linked to the third mannose (PIGO‐KO), the GPI‐anchored proteins CD59 and DAF are attached to EthN‐P linked to the second mannose, allowing their membrane localization at low levels. Approximately 10% of CD59 on wild‐type HEK293 cells are similarly attached to the second mannose via EthN‐P. NT5E and NetrinG2, in contrast to CD59, are preferentially attached to the EthN‐P linked to the second mannose.
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is the bridge between GPI and the protein and the second (EthN‐P‐Man2) is removed after GPI‐protein attachment. However, EthN‐P‐Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN‐P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN‐P on Man2 is the preferential bridge in some GPI‐APs, among them, the Ect‐5’‐nucleotidase and Netrin G2. We find that CD59, a GPI‐AP, is attached via EthN‐P‐Man2 both in PIGB ‐knockout cells, in which GPI lacks Man3, and with a small fraction in wild‐type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations. This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG.
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine-phosphate (EthN-P). It is postulated that EthN-P on the third mannose (EthN-P-Man3) is the bridge between GPI and the protein and the second (EthN-P-Man2) is removed after GPI-protein attachment. However, EthN-P-Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN-P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN-P on Man2 is the preferential bridge in some GPI-APs, among them, the Ect-5'-nucleotidase and Netrin G2. We find that CD59, a GPI-AP, is attached via EthN-P-Man2 both in PIGB-knockout cells, in which GPI lacks Man3, and with a small fraction in wild-type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations.
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is the bridge between GPI and the protein and the second (EthN‐P‐Man2) is removed after GPI‐protein attachment. However, EthN‐P‐Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN‐P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN‐P on Man2 is the preferential bridge in some GPI‐APs, among them, the Ect‐5’‐nucleotidase and Netrin G2. We find that CD59, a GPI‐AP, is attached via EthN‐P‐Man2 both in PIGB‐knockout cells, in which GPI lacks Man3, and with a small fraction in wild‐type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations. Synopsis This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG. In cells that lack either the third mannose in GPI (PIGB‐KO) or the EthN‐P linked to the third mannose (PIGO‐KO), the GPI‐anchored proteins CD59 and DAF are attached to EthN‐P linked to the second mannose, allowing their membrane localization at low levels. Approximately 10% of CD59 on wild‐type HEK293 cells are similarly attached to the second mannose via EthN‐P. NT5E and NetrinG2, in contrast to CD59, are preferentially attached to the EthN‐P linked to the second mannose. This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG.
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three mannoses, which in mammals, are all modified by ethanolamine‐phosphate (EthN‐P). It is postulated that EthN‐P on the third mannose (EthN‐P‐Man3) is the bridge between GPI and the protein and the second (EthN‐P‐Man2) is removed after GPI‐protein attachment. However, EthN‐P‐Man2 may not be always transient, as mutations of PIGG, the enzyme that transfers EthN‐P to Man2, result in inherited GPI deficiencies (IGDs), characterized by neuronal dysfunctions. Here, we show that EthN‐P on Man2 is the preferential bridge in some GPI‐APs, among them, the Ect‐5’‐nucleotidase and Netrin G2. We find that CD59, a GPI‐AP, is attached via EthN‐P‐Man2 both in PIGB ‐knockout cells, in which GPI lacks Man3, and with a small fraction in wild‐type cells. Our findings modify the current view of GPI anchoring and provide a mechanistic basis for IGDs caused by PIGG mutations. Synopsis This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG. In cells that lack either the third mannose in GPI (PIGB‐KO) or the EthN‐P linked to the third mannose (PIGO‐KO), the GPI‐anchored proteins CD59 and DAF are attached to EthN‐P linked to the second mannose, allowing their membrane localization at low levels. Approximately 10% of CD59 on wild‐type HEK293 cells are similarly attached to the second mannose via EthN‐P. NT5E and NetrinG2, in contrast to CD59, are preferentially attached to the EthN‐P linked to the second mannose. Graphical Abstract This study challenges the dogma that GPI‐anchored proteins are always attached to the third mannose in GPI via an ethanolamine‐phosphate (EthN‐P) bridge by providing evidence for an alternative attachment to the second mannose via EthN‐P. Some proteins preferentially use the alternative mode of attachment to GPI, highlighting the importance of the EthN‐P transferred to the second mannose by PIGG.
Author Ishida, Mizuki
Kinoshita, Taroh
Murakami, Yoshiko
Takada, Yoko
Ninomiya, Akinori
Campeau, Philippe
Maki, Yuta
AuthorAffiliation 1 Yabumoto Department of Intractable Disease Research Research Institute for Microbial Diseases Osaka University Suita Japan
3 Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Japan
7 Center for Infectious Disease Education and Research Osaka University Suita Japan
6 Department of Pediatrics CHU Sainte‐Justine and University of Montreal Montreal QC Canada
2 Department of Chemistry Osaka University Toyonaka Japan
4 Central Instrumentation Laboratory Research Institute for Microbial Diseases Osaka University Suita Japan
5 WPI Immunology Frontier Research Center Osaka University Suita Japan
AuthorAffiliation_xml – name: 1 Yabumoto Department of Intractable Disease Research Research Institute for Microbial Diseases Osaka University Suita Japan
– name: 5 WPI Immunology Frontier Research Center Osaka University Suita Japan
– name: 6 Department of Pediatrics CHU Sainte‐Justine and University of Montreal Montreal QC Canada
– name: 7 Center for Infectious Disease Education and Research Osaka University Suita Japan
– name: 4 Central Instrumentation Laboratory Research Institute for Microbial Diseases Osaka University Suita Japan
– name: 2 Department of Chemistry Osaka University Toyonaka Japan
– name: 3 Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Japan
Author_xml – sequence: 1
  givenname: Mizuki
  surname: Ishida
  fullname: Ishida, Mizuki
  organization: Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University
– sequence: 2
  givenname: Yuta
  orcidid: 0000-0002-5838-302X
  surname: Maki
  fullname: Maki, Yuta
  organization: Department of Chemistry, Osaka University, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University
– sequence: 3
  givenname: Akinori
  orcidid: 0000-0001-6133-3835
  surname: Ninomiya
  fullname: Ninomiya, Akinori
  organization: Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University
– sequence: 4
  givenname: Yoko
  surname: Takada
  fullname: Takada, Yoko
  organization: WPI Immunology Frontier Research Center, Osaka University
– sequence: 5
  givenname: Philippe
  orcidid: 0000-0001-9713-7107
  surname: Campeau
  fullname: Campeau, Philippe
  organization: Department of Pediatrics, CHU Sainte‐Justine and University of Montreal
– sequence: 6
  givenname: Taroh
  orcidid: 0000-0001-7166-7257
  surname: Kinoshita
  fullname: Kinoshita, Taroh
  organization: Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, WPI Immunology Frontier Research Center, Osaka University, Center for Infectious Disease Education and Research, Osaka University
– sequence: 7
  givenname: Yoshiko
  orcidid: 0000-0002-4870-5734
  surname: Murakami
  fullname: Murakami, Yoshiko
  email: yoshiko@biken.osaka-u.ac.jp
  organization: Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, WPI Immunology Frontier Research Center, Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35603428$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEYhYNU7Ieu3UnAjZvb5mOSybgQtFxroaKUCu5CbvLOnZSZZJrMVbrzJ_gb-0uaem9rLRRXCeQ5J-d9zy7aCjEAQi8p2aeCCXYAwyLtM8KoqLhgT9AOrWQz47RWW5s7Y_T7NtrN-ZwQIppaPUPbXEjCK6Z2UDefOhNibwYf4OrX77GLeezMBDgGPHWAM9gYHB5MCDED9hkbPCZoIUGYvOnxInm3BNzGhHMcAB99PS4-JtguJnCFjRP4kJ-jp63pM7zYnHvo28f52eGn2cmXo-PD9yczK-qGzVgjW8MIt0BFywwloiqRhXVU8RpI44ixVixASu6sYa1snCTONqR2smLO8D30bu07rhYDOFtSJtPrMfnBpEsdjdf_vgTf6WX8oRsmeK1YMXizMUjxYgV50oPPFvreBIirrJmUilFFhCzo6wfoeVylUMYrlKq4IlUlCvXqfqK7KLclFECsAZtizmW32vrJTD7eBPS9pkT_KVvflK3vyi66gwe6W-vHFW_Xip--h8v_4Xr--cPpfTFZi3PRhSWkv9M-9t81CqnQXg
CitedBy_id crossref_primary_10_3390_biom13050855
crossref_primary_10_1038_s41467_023_41281_y
crossref_primary_10_1093_glycob_cwae061
crossref_primary_10_4052_tigg_2331_1E
crossref_primary_10_1016_j_jbc_2022_102640
crossref_primary_10_3724_abbs_2024128
crossref_primary_10_1002_ana_27113
crossref_primary_10_4052_tigg_2331_1J
Cites_doi 10.1002/j.1460-2075.1996.tb00800.x
10.1074/jbc.M405081200
10.1074/jbc.M413755200
10.1371/journal.pgen.1004320
10.1002/pmic.200900437
10.1126/science.3340856
10.1074/jbc.M001913200
10.1074/jbc.RA120.014643
10.1074/jbc.272.25.15834
10.1016/j.ajhg.2012.05.004
10.1093/nar/gkv1145
10.1098/rsob.190290
10.1016/j.ajhg.2019.06.009
10.1074/mcp.TIR118.000900
10.1038/s41436-021-01215-9
10.1002/humu.23945
10.1016/j.ajhg.2013.12.012
10.1016/j.ajhg.2016.02.007
10.1074/jbc.M405232200
10.1212/WNL.0b013e3182a8411a
10.1104/pp.103.021170
10.1016/j.cell.2009.08.040
10.1038/s41467-020-14678-2
10.1194/jlr.R062760
10.1093/nar/gku989
10.1093/hmg/ddv331
10.1083/jcb.201012074
10.1016/j.ajhg.2020.03.001
10.1016/j.ajhg.2012.02.010
10.1152/ajpcell.00285.2019
10.1016/0092-8674(89)90684-3
10.1021/acs.jproteome.5b00932
10.1002/humu.23268
10.1126/science.1231143
10.1074/jbc.272.11.7229
10.1093/oxfordjournals.molbev.a004208
10.1136/jmedgenet-2013-102156
10.1016/j.ajhg.2019.05.019
10.1093/hmg/ddx077
10.1038/ng.653
10.1073/pnas.94.23.12580
10.1083/jcb.129.3.629
10.1074/jbc.M313755200
10.1136/jmedgenet-2013-101654
10.1002/humu.23420
10.1038/333269a0
10.1136/jmg.2010.087114
10.1016/0092-8674(91)90039-2
10.1091/mbc.E02-12-0794
10.1016/j.biochi.2019.09.007
10.1002/j.1460-2075.1996.tb01048.x
10.1016/j.ajhg.2011.11.031
10.4161/cc.28761
10.1136/jmedgenet-2016-104202
10.1016/j.ajhg.2013.03.011
10.1016/j.ajhg.2019.09.025
10.1038/s41467-017-02799-0
10.1006/jmbi.2000.3577
10.1093/emboj/20.15.4088
10.1016/j.ajhg.2018.08.014
10.1016/S0021-9258(18)37349-6
10.1083/jcb.201706135
10.1016/j.ajhg.2017.09.020
10.1093/hmg/ddu030
10.1038/nm1410
ContentType Journal Article
Copyright The Author(s) 2022
2022 The Authors
2022 The Authors.
2022 EMBO
Copyright_xml – notice: The Author(s) 2022
– notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.202154352
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Mizuki Ishida et al
EISSN 1469-3178
EndPage n/a
ExternalDocumentID PMC9253782
35603428
10_15252_embr_202154352
EMBR202154352
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Health, Labor and Welfare (MHLW)
  grantid: 20FC1025
  funderid: 10.13039/501100003478
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: 21ek0109418h0003
  funderid: 10.13039/100009619
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP21H02415; JP17H06422
  funderid: 10.13039/501100001691
– fundername: Mizutani Foundation for Glycoscience (MFG)
  funderid: 10.13039/100009578
– fundername: KOSE Cosmetology Research Foundation
– fundername: Ministry of Health, Labor and Welfare (MHLW)
  funderid: 20FC1025
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  funderid: JP21H02415; JP17H06422
– fundername: Japan Agency for Medical Research and Development (AMED)
  funderid: 21ek0109418h0003
– fundername: Mizutani Foundation for Glycoscience (MFG)
– fundername: ;
– fundername: ;
  grantid: 21ek0109418h0003
– fundername: ;
  grantid: JP21H02415; JP17H06422
– fundername: ;
  grantid: 20FC1025
GroupedDBID ---
-DZ
0R~
1OC
24P
29G
2WC
33P
36B
39C
53G
5GY
5VS
70F
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
ZGI
ZZTAW
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5792-296fa203ce15f2a10549785cd1837e09d0acc5be663dca2f69d60dc907d642da3
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 18:36:47 EDT 2025
Thu Jul 10 17:23:44 EDT 2025
Fri Jul 25 11:11:49 EDT 2025
Wed Feb 19 02:23:42 EST 2025
Thu Apr 24 23:01:32 EDT 2025
Tue Jul 01 02:32:13 EDT 2025
Wed Jan 22 16:25:30 EST 2025
Fri Feb 21 02:37:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords PIGB
mass spectrometry
CD73
inherited GPI deficiency
PIGG
Language English
License 2022 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5792-296fa203ce15f2a10549785cd1837e09d0acc5be663dca2f69d60dc907d642da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5838-302X
0000-0001-7166-7257
0000-0002-4870-5734
0000-0001-6133-3835
0000-0001-9713-7107
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.202154352
PMID 35603428
PQID 2684380445
PQPubID 26169
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9253782
proquest_miscellaneous_2668218056
proquest_journals_2684380445
pubmed_primary_35603428
crossref_citationtrail_10_15252_embr_202154352
crossref_primary_10_15252_embr_202154352
wiley_primary_10_15252_embr_202154352_EMBR202154352
springer_journals_10_15252_embr_202154352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 05 July 2022
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 05 July 2022
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Johnston, Gropman, Sapp, Teer, Martin, Liu, Yuan, Ye, Cheng, Brodsky (CR23) 2012; 90
Fujita, Maeda, Ra, Yamaguchi, Taguchi, Kinoshita (CR12) 2009; 139
Vizcaíno, Csordas, del‐Toro, Dianes, Griss, Lavidas, Mayer, Perez‐Riverol, Reisinger, Ternent (CR64) 2016; 44
Edvardson, Murakami, Nguyen, Shahrour, St‐Denis, Shaag, Damseh, Le Deist, Bryceson, Abu‐Libdeh (CR8) 2017; 54
Shishioh, Hong, Ohishi, Ashida, Maeda, Kinoshita (CR58) 2005; 280
Zhao, Halvardson, Knaus, Georgii‐Hemming, Baeck, Krawitz, Thuresson, Feuk (CR67) 2017; 38
Muniz, Riezman (CR43) 2016; 57
Ohishi, Inoue, Kinoshita (CR52) 2001; 20
Hong, Maeda, Watanabe, Inoue, Ohishi, Kinoshita (CR19) 2000; 275
Krawitz, Murakami, Hecht, Krüger, Holder, Mortier, Delle Chiaie, De Baere, Thompson, Roscioli (CR28) 2012; 91
Liu, Guo, Hirata, Rong, Motooka, Kitajima, Murakami, Gao, Nakamura, Kinoshita (CR34) 2018; 217
Knaus, Kortüm, Kleefstra, Stray‐Pedersen, Đukić, Murakami, Gerstner, van Bokhoven, Iqbal, Horn (CR27) 2019; 105
Masterson, Doering, Hart, Englund (CR37) 1989; 56
Krawitz, Schweiger, Rödelsperger, Marcelis, Kölsch, Meisel, Stephani, Kinoshita, Murakami, Bauer (CR30) 2010; 42
Johnstone, Nguyen, Murakami, Kernohan, Tétreault, Goldsmith, Doja, Wagner, Huang, Hartley (CR24) 2017; 26
Makrythanasis, Kato, Zaki, Saitsu, Nakamura, Santoni, Miyatake, Nakashima, Issa, Guipponi (CR35) 2016; 98
Fujita, Watanabe, Jaensch, Romanova‐Michaelides, Satoh, Kato, Riezman, Yamaguchi, Maeda, Kinoshita (CR13) 2011; 194
Wang, Maeda, Liu, Takada, Ninomiya, Hirata, Fujita, Murakami, Kinoshita (CR65) 2020; 11
Almeida, Murakami, Layton, Hillmen, Sellick, Maeda, Richards, Patterson, Kotsianidis, Mollica (CR1) 2006; 12
Nguyen, Murakami, Wigby, Baratang, Rousseau, St‐Denis, Rosenfeld, Laniewski, Jones, Iglesias (CR49) 2018; 103
Meier, Beck, Grassl, Lubeck, Park, Raether, Mann (CR39) 2015; 14
Debierre‐Grockiego, Smith, Delbecq, Ducournau, Lantier, Schmidt, Brès, Dimier‐Poisson, Schwarz, Cornillot (CR6) 2019; 167
Minor, Alcedo, Battaglia, Snider (CR41) 2019; 317
Tanaka, Maeda, Tashima, Kinoshita (CR60) 2004; 279
Chiyonobu, Inoue, Morimoto, Kinoshita, Murakami (CR4) 2014; 51
Martin, Kim, Pagnamenta, Murakami, Carvill, Meyer, Copley, Rimmer, Barcia, Fleming (CR36) 2014; 23
Hong, Ohishi, Kang, Tanaka, Inoue, Nishimura, Maeda, Kinoshita (CR20) 2003; 14
Homans, Ferguson, Dwek, Rademacher, Anand, Williams (CR18) 1988; 333
Murakami, Tawamie, Maeda, Büttner, Buchert, Radwan, Schaffer, Sticht, Aigner, Reis (CR45) 2014; 10
Ng, Hackmann, Jones, Eroshkin, He, Wiliams, Bhide, Cantagrel, Gleeson, Paller (CR47) 2012; 90
Heimer, Woerden, Barel, Marek‐Yagel, Kol, Munting, Borghei, Atawneh, Nissenkorn, Rechavi (CR16) 2020; 41
Ilkovski, Pagnamenta, O'Grady, Kinoshita, Howard, Lek, Thomas, Turner, Christodoulou, Sillence (CR22) 2015; 24
Moody‐Haupt, Patterson, Mirelman, McConville (CR42) 2000; 297
Searle (CR57) 2010; 10
Takahashi, Inoue, Ohishi, Maeda, Nakamura, Endo, Fujita, Takeda, Kinoshita (CR59) 1996; 15
Ferguson, Homans, Dwek, Rademacher (CR11) 1988; 239
Howard, Pagnamenta, Haas, Fischer, Hecht, Keays, Knight, Kölsch, Krüger, Leiz (CR21) 2014; 94
Nguyen, Murakami, Sheridan, Ehresmann, Rousseau, St‐Denis, Chai, Ajeawung, Fairbrother, Reimschisel (CR48) 2017; 101
Rudd, Morgan, Wormald, Harvey, van den Berg, Davis, Ferguson, Dwek (CR56) 1997; 272
Hamburger, Egerton, Riezman (CR15) 1995; 129
Murakami, Nguyen, Baratang, Raju, Knaus, Ellard, Jones, Lace, Rousseau, Ajeawung (CR44) 2019; 105
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (CR5) 2013; 339
Oriol, Martinez‐Duncker, Chantret, Mollicone, Codogno (CR53) 2002; 19
Borner, Lilley, Stevens, Dupree (CR3) 2003; 132
UniProt (CR63) 2015; 43
Eisenhaber, Eisenhaber, Kwang, Gruber, Eisenhaber (CR9) 2014; 13
Nakamura, Inoue, Watanabe, Takahashi, Takeda, Stevens, Kinoshita (CR46) 1997; 272
Tremblay‐Laganière, Maroofian, Nguyen, Karimiani, Kirmani, Akbar, Ibrahim, Afroze, Doosti, Ashrafzadeh (CR62) 2021; 23
Lee, Fujita, Nakanishi, Miyata, Ikawa, Maeda, Murakami, Kinoshita (CR33) 2020; 295
Benghezal, Benachour, Rusconi, Aebi, Conzelmann (CR2) 1996; 15
Roberts, Myher, Kuksis, Low, Rosenberry (CR55) 1988; 263
Fujita, Yoko‐o, Okamoto, Jigami (CR14) 2004; 279
Yu, Nagarajan, Knez, Udenfriend, Chen, Medof (CR66) 1997; 94
Ferguson, Hart, Kinoshita, Varki, Cummings, Esko, Stanley, Hart, Aebi, Darvill, Kinoshita, Packer, Prestegard (CR10) 2015
Hirata, Mishra, Nakamura, Saito, Motooka, Takada, Kanzawa, Murakami, Maeda, Fujita (CR17) 2018; 9
Meier, Brunner, Koch, Koch, Lubeck, Krause, Goedecke, Decker, Kosinski, Park (CR40) 2018; 17
Kuki, Takahashi, Okazaki, Kawawaki, Ehara, Inoue, Kinoshita, Murakami (CR31) 2013; 81
Nozaki, Ohishi, Yamada, Kinoshita, Nagy, Takeda (CR51) 1999; 79
Dias, Punetha, Zheng, Mazaheri, Rad, Efthymiou, Petersen, Dehghani, Pehlivan, Partlow (CR7) 2019; 105
Maydan, Noyman, Har‐Zahav, Neriah, Pasmanik‐Chor, Yeheskel, Albin‐Kaplanski, Maya, Magal, Birk (CR38) 2011; 48
Taron, Colussi, Grimme, Orlean, Taron (CR61) 2004; 279
Kinoshita (CR25) 2020; 10
Pagnamenta, Murakami, Anzilotti, Titheradge, Oates, Morton, Kinoshita, Study, Kini, Taylor (CR54) 2018; 39
Krawitz, Murakami, Rieß, Hietala, Krüger, Zhu, Kinoshita, Mundlos, Hecht, Robinson (CR29) 2013; 92
Kitamura, Sato, Arai, Miyajima (CR26) 1991; 66
Nguyen, Murakami, Mobilio, Niceta, Zampino, Philippe, Moutton, Zaki, James, Musaev (CR50) 2020; 106
Kvarnung, Nilsson, Lindstrand, Korenke, Chiang, Blennow, Bergmann, Stodberg, Makitie, Anderlid (CR32) 2013; 50
2010; 10
2021; 23
2002; 19
1997; 272
2003; 14
2000; 297
1988; 263
2020; 11
2020; 10
2011; 194
2014; 23
2019; 167
2018; 9
2018; 39
1997; 94
2020; 295
2018; 217
2017; 38
2013; 50
2015; 43
1995; 129
1988; 333
2014; 13
2019; 317
2014; 51
2014; 94
2014; 10
2016; 44
2015; 14
2006; 12
2017; 26
2020; 41
2018; 103
2016; 98
2019; 105
2020; 106
2013; 92
2000; 275
1996; 15
2003; 132
2016; 57
2001; 20
2009; 139
2015; 24
2005; 280
2012; 91
2010; 42
2018; 17
2012; 90
1989; 56
2004; 279
2013; 339
1991; 66
2017; 54
1999; 79
2013; 81
2015
2011; 48
2017; 101
1988; 239
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Nozaki M (e_1_2_9_52_1) 1999; 79
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Ferguson MAJ (e_1_2_9_11_1) 2015
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  start-page: 1780
  year: 2003
  end-page: 1789
  ident: CR20
  article-title: Human PIG‐U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI‐anchors to proteins
  publication-title: Mol Biol Cell
– volume: 57
  start-page: 352
  year: 2016
  end-page: 360
  ident: CR43
  article-title: Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface
  publication-title: J Lipid Res
– volume: 105
  start-page: 395
  year: 2019
  end-page: 402
  ident: CR27
  article-title: Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies
  publication-title: Am J Hum Genet
– volume: 129
  start-page: 629
  year: 1995
  end-page: 639
  ident: CR15
  article-title: Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins
  publication-title: J Cell Biol
– volume: 94
  start-page: 12580
  year: 1997
  end-page: 12585
  ident: CR66
  article-title: The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase
  publication-title: Proc Natl Acad Sci USA
– volume: 272
  start-page: 7229
  year: 1997
  end-page: 7244
  ident: CR56
  article-title: The glycosylation of the complement regulatory protein, human erythrocyte CD59
  publication-title: J Biol Chem
– volume: 132
  start-page: 568
  year: 2003
  end-page: 577
  ident: CR3
  article-title: Identification of glycosylphosphatidylinositol‐anchored proteins in Arabidopsis. A proteomic and genomic analysis
  publication-title: Plant Physiol
– volume: 317
  start-page: C1079
  year: 2019
  end-page: C1092
  ident: CR41
  article-title: Cell type‐ and tissue‐specific functions of ecto‐5'‐nucleotidase (CD73)
  publication-title: Am J Physiol Cell Physiol
– volume: 194
  start-page: 61
  year: 2011
  end-page: 75
  ident: CR13
  article-title: Sorting of GPI‐anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI
  publication-title: J Cell Biol
– volume: 217
  start-page: 585
  year: 2018
  end-page: 599
  ident: CR34
  article-title: N‐Glycan‐dependent protein folding and endoplasmic reticulum retention regulate GPI‐anchor processing
  publication-title: J Cell Biol
– volume: 38
  start-page: 1394
  year: 2017
  end-page: 1401
  ident: CR67
  article-title: Reduced cell surface levels of GPI‐linked markers in a new case with PIGG loss of function
  publication-title: Hum Mutat
– volume: 13
  start-page: 1912
  year: 2014
  end-page: 1917
  ident: CR9
  article-title: Transamidase subunit GAA1/GPAA1 is a M28 family metallo‐peptide‐synthetase that catalyzes the peptide bond formation between the substrate protein's omega‐site and the GPI lipid anchor's phosphoethanolamine
  publication-title: Cell Cycle
– volume: 48
  start-page: 383
  year: 2011
  end-page: 389
  ident: CR38
  article-title: Multiple congenital anomalies‐hypotonia‐seizures syndrome is caused by a mutation in PIGN
  publication-title: J Med Genet
– volume: 19
  start-page: 1451
  year: 2002
  end-page: 1463
  ident: CR53
  article-title: Common origin and evolution of glycosyltransferases using Dol‐P‐monosaccharides as donor substrate
  publication-title: Mol Biol Evol
– volume: 26
  start-page: 1706
  year: 2017
  end-page: 1715
  ident: CR24
  article-title: Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy
  publication-title: Hum Mol Genet
– volume: 23
  start-page: 1873
  year: 2021
  end-page: 1881
  ident: CR62
  article-title: PIGG variant pathogenicity assessment reveals characteristic features within 19 families
  publication-title: Genet Med
– volume: 139
  start-page: 352
  year: 2009
  end-page: 365
  ident: CR12
  article-title: GPI glycan remodeling by PGAP5 regulates transport of GPI‐anchored proteins from the ER to the Golgi
  publication-title: Cell
– volume: 9
  start-page: 405
  year: 2018
  ident: CR17
  article-title: Identification of a Golgi GPI‐N‐acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain
  publication-title: Nat Commun
– volume: 94
  start-page: 278
  year: 2014
  end-page: 287
  ident: CR21
  article-title: Mutations in PGAP3 impair GPI‐anchor maturation and lead to intellectual disability with hyperphosphatasia and additional phenotypic features
  publication-title: Am J Hum Genet
– volume: 42
  start-page: 827
  year: 2010
  end-page: 829
  ident: CR30
  article-title: Identity‐by‐descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome
  publication-title: Nat Genet
– volume: 279
  start-page: 14256
  year: 2004
  end-page: 14263
  ident: CR60
  article-title: Inositol deacylation of glycosylphosphatidylinositol‐anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
  publication-title: J Biol Chem
– volume: 92
  start-page: 584
  year: 2013
  end-page: 589
  ident: CR29
  article-title: PGAP2 mutations, affecting the GPI‐anchor‐synthesis pathway, cause hyperphosphatasia with mental retardation syndrome
  publication-title: Am J Hum Genet
– volume: 15
  start-page: 4254
  year: 1996
  end-page: 4261
  ident: CR59
  article-title: PIG‐B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor
  publication-title: EMBO J
– volume: 15
  start-page: 6575
  year: 1996
  end-page: 6583
  ident: CR2
  article-title: Yeast Gpi8p is essential for GPI anchor attachment onto proteins
  publication-title: EMBO J
– volume: 279
  start-page: 36083
  year: 2004
  end-page: 36092
  ident: CR61
  article-title: Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors
  publication-title: J Biol Chem
– volume: 44
  start-page: D447
  year: 2016
  end-page: D456
  ident: CR64
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Res
– volume: 272
  start-page: 15834
  year: 1997
  end-page: 15840
  ident: CR46
  article-title: Expression cloning of PIG‐L, a candidate N‐acetylglucosaminyl‐phosphatidylinositol deacetylase
  publication-title: J Biol Chem
– volume: 14
  start-page: 5378
  year: 2015
  end-page: 5387
  ident: CR39
  article-title: Parallel accumulation‐serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device
  publication-title: J Proteome Res
– volume: 17
  start-page: 2534
  year: 2018
  end-page: 2545
  ident: CR40
  article-title: Online parallel accumulation‐serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer
  publication-title: Mol Cell Proteomics
– volume: 43
  start-page: D204
  year: 2015
  end-page: D212
  ident: CR63
  article-title: UniProt: a hub for protein information
  publication-title: Nucleic Acids Res
– volume: 54
  start-page: 196
  year: 2017
  end-page: 201
  ident: CR8
  article-title: Mutations in the phosphatidylinositol glycan C (PIGC) gene are associated with epilepsy and intellectual disability
  publication-title: J Med Genet
– volume: 39
  start-page: 822
  year: 2018
  end-page: 826
  ident: CR54
  article-title: A homozygous variant disrupting the PIGH start‐codon is associated with developmental delay, epilepsy, and microcephaly
  publication-title: Hum Mutat
– volume: 24
  start-page: 6146
  year: 2015
  end-page: 6159
  ident: CR22
  article-title: Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
  publication-title: Hum Mol Genet
– volume: 105
  start-page: 384
  year: 2019
  end-page: 394
  ident: CR44
  article-title: Mutations in PIGB cause an inherited GPI biosynthesis defect with an axonal neuropathy and metabolic abnormality in severe cases
  publication-title: Am J Hum Genet
– volume: 10
  year: 2014
  ident: CR45
  article-title: Null mutation in PGAP1 impairing GPI‐anchor maturation in patients with intellectual disability and encephalopathy
  publication-title: PLoS Genet
– volume: 280
  start-page: 9728
  year: 2005
  end-page: 9734
  ident: CR58
  article-title: GPI7 is the second partner of PIG‐F and involved in modification of glycosylphosphatidylinositol
  publication-title: J Biol Chem
– volume: 275
  start-page: 20911
  year: 2000
  end-page: 20919
  ident: CR19
  article-title: Requirement of PIG‐F and PIG‐O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
  publication-title: J Biol Chem
– volume: 56
  start-page: 793
  year: 1989
  end-page: 800
  ident: CR37
  article-title: A novel pathway for glycan assembly: biosynthesis of the glycosyl‐phosphatidylinositol anchor of the trypanosome variant surface glycoprotein
  publication-title: Cell
– volume: 239
  start-page: 753
  year: 1988
  end-page: 759
  ident: CR11
  article-title: Glycosyl‐phosphatidylinositol moiety that anchors variant surface glycoprotein to the membrane
  publication-title: Science
– volume: 12
  start-page: 846
  year: 2006
  end-page: 851
  ident: CR1
  article-title: Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency
  publication-title: Nat Med
– start-page: 137
  year: 2015
  end-page: 150
  ident: CR10
  article-title: Glycosylphosphatidylinositol anchors
  publication-title: Essentials of glycobiology
– volume: 79
  start-page: 293
  year: 1999
  end-page: 299
  ident: CR51
  article-title: Developmental abnormalities of glycosylphosphatidylinositol‐anchor‐deficient embryos revealed by Cre/loxP system
  publication-title: Lab Invest
– volume: 105
  start-page: 1048
  year: 2019
  end-page: 1056
  ident: CR7
  article-title: Homozygous missense variants in NTNG2, encoding a presynaptic netrin‐G2 adhesion protein, lead to a distinct neurodevelopmental disorder
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 1265
  year: 2010
  end-page: 1269
  ident: CR57
  article-title: Scaffold: a bioinformatic tool for validating MS/MS‐based proteomic studies
  publication-title: Proteomics
– volume: 91
  start-page: 146
  year: 2012
  end-page: 151
  ident: CR28
  article-title: Mutations in PIGO, a member of the GPI‐anchor‐synthesis pathway, cause hyperphosphatasia with mental retardation
  publication-title: Am J Hum Genet
– volume: 98
  start-page: 615
  year: 2016
  end-page: 626
  ident: CR35
  article-title: Pathogenic variants in PIGG cause intellectual disability with seizures and Hypotonia
  publication-title: Am J Hum Genet
– volume: 297
  start-page: 409
  year: 2000
  end-page: 420
  ident: CR42
  article-title: The major surface antigens of Entamoeba histolytica trophozoites are GPI‐anchored proteophosphoglycans
  publication-title: J Mol Biol
– volume: 167
  start-page: 135
  year: 2019
  end-page: 144
  ident: CR6
  article-title: Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2‐biased cytokine profiles in antigen presenting cells
  publication-title: Biochimie
– volume: 10
  start-page: 190290
  year: 2020
  ident: CR25
  article-title: Biosynthesis and biology of mammalian GPI‐anchored proteins
  publication-title: Open Biol
– volume: 279
  start-page: 51869
  year: 2004
  end-page: 51879
  ident: CR14
  article-title: GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation
  publication-title: J Biol Chem
– volume: 333
  start-page: 269
  year: 1988
  end-page: 272
  ident: CR18
  article-title: Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy‐1 glycoprotein
  publication-title: Nature
– volume: 41
  start-page: 476
  year: 2020
  end-page: 486
  ident: CR16
  article-title: Netrin‐G2 dysfunction causes a Rett‐like phenotype with areflexia
  publication-title: Hum Mutat
– volume: 263
  start-page: 18766
  year: 1988
  end-page: 18775
  ident: CR55
  article-title: Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol‐specific phospholipase C
  publication-title: J Biol Chem
– volume: 106
  start-page: 484
  year: 2020
  end-page: 495
  ident: CR50
  article-title: Bi‐allelic variants in the GPI transamidase subunit PIGK cause a neurodevelopmental syndrome with hypotonia, cerebellar atrophy, and epilepsy
  publication-title: Am J Hum Genet
– volume: 103
  start-page: 602
  year: 2018
  end-page: 611
  ident: CR49
  article-title: Mutations in PIGS, encoding a GPI transamidase, cause a neurological syndrome ranging from fetal akinesia to epileptic encephalopathy
  publication-title: Am J Hum Genet
– volume: 90
  start-page: 295
  year: 2012
  end-page: 300
  ident: CR23
  article-title: The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria
  publication-title: Am J Hum Genet
– volume: 50
  start-page: 521
  year: 2013
  end-page: 528
  ident: CR32
  article-title: A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT
  publication-title: J Med Genet
– volume: 101
  start-page: 856
  year: 2017
  end-page: 865
  ident: CR48
  article-title: Mutations in GPAA1, encoding a GPI transamidase complex protein, cause developmental delay, epilepsy, cerebellar atrophy, and osteopenia
  publication-title: Am J Hum Genet
– volume: 295
  start-page: 14501
  year: 2020
  end-page: 14509
  ident: CR33
  article-title: PGAP6, a GPI‐specific phospholipase A2, has narrow substrate specificity against GPI‐anchored proteins
  publication-title: J Biol Chem
– volume: 66
  start-page: 1165
  year: 1991
  end-page: 1174
  ident: CR26
  article-title: Expression cloning of the human IL‐3 receptor cDNA reveals a shared beta subunit for the human IL‐3 and GM‐CSF receptors
  publication-title: Cell
– volume: 23
  start-page: 3200
  year: 2014
  end-page: 3211
  ident: CR36
  article-title: Clinical whole‐genome sequencing in severe early‐onset epilepsy reveals new genes and improves molecular diagnosis
  publication-title: Hum Mol Genet
– volume: 11
  start-page: 860
  year: 2020
  ident: CR65
  article-title: Cross‐talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER‐associated degradation
  publication-title: Nat Commun
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR5
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 90
  start-page: 685
  year: 2012
  end-page: 688
  ident: CR47
  article-title: Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome
  publication-title: Am J Hum Genet
– volume: 51
  start-page: 203
  year: 2014
  end-page: 207
  ident: CR4
  article-title: Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome
  publication-title: J Med Genet
– volume: 81
  start-page: 1467
  year: 2013
  end-page: 1469
  ident: CR31
  article-title: Case report on vitamin B6 responsive epilepsy due to inherited GPI deficiency
  publication-title: Neurology
– volume: 20
  start-page: 4088
  year: 2001
  end-page: 4098
  ident: CR52
  article-title: PIG‐S and PIG‐T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
  publication-title: EMBO J
– volume: 279
  start-page: 51869
  year: 2004
  end-page: 51879
  article-title: GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation
  publication-title: J Biol Chem
– volume: 317
  start-page: C1079
  year: 2019
  end-page: C1092
  article-title: Cell type‐ and tissue‐specific functions of ecto‐5'‐nucleotidase (CD73)
  publication-title: Am J Physiol Cell Physiol
– volume: 38
  start-page: 1394
  year: 2017
  end-page: 1401
  article-title: Reduced cell surface levels of GPI‐linked markers in a new case with PIGG loss of function
  publication-title: Hum Mutat
– volume: 139
  start-page: 352
  year: 2009
  end-page: 365
  article-title: GPI glycan remodeling by PGAP5 regulates transport of GPI‐anchored proteins from the ER to the Golgi
  publication-title: Cell
– volume: 42
  start-page: 827
  year: 2010
  end-page: 829
  article-title: Identity‐by‐descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome
  publication-title: Nat Genet
– volume: 19
  start-page: 1451
  year: 2002
  end-page: 1463
  article-title: Common origin and evolution of glycosyltransferases using Dol‐P‐monosaccharides as donor substrate
  publication-title: Mol Biol Evol
– volume: 50
  start-page: 521
  year: 2013
  end-page: 528
  article-title: A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT
  publication-title: J Med Genet
– volume: 54
  start-page: 196
  year: 2017
  end-page: 201
  article-title: Mutations in the phosphatidylinositol glycan C (PIGC) gene are associated with epilepsy and intellectual disability
  publication-title: J Med Genet
– volume: 10
  start-page: 1265
  year: 2010
  end-page: 1269
  article-title: Scaffold: a bioinformatic tool for validating MS/MS‐based proteomic studies
  publication-title: Proteomics
– volume: 92
  start-page: 584
  year: 2013
  end-page: 589
  article-title: PGAP2 mutations, affecting the GPI‐anchor‐synthesis pathway, cause hyperphosphatasia with mental retardation syndrome
  publication-title: Am J Hum Genet
– volume: 15
  start-page: 4254
  year: 1996
  end-page: 4261
  article-title: PIG‐B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor
  publication-title: EMBO J
– volume: 10
  year: 2014
  article-title: Null mutation in PGAP1 impairing GPI‐anchor maturation in patients with intellectual disability and encephalopathy
  publication-title: PLoS Genet
– volume: 272
  start-page: 7229
  year: 1997
  end-page: 7244
  article-title: The glycosylation of the complement regulatory protein, human erythrocyte CD59
  publication-title: J Biol Chem
– volume: 90
  start-page: 685
  year: 2012
  end-page: 688
  article-title: Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome
  publication-title: Am J Hum Genet
– volume: 280
  start-page: 9728
  year: 2005
  end-page: 9734
  article-title: GPI7 is the second partner of PIG‐F and involved in modification of glycosylphosphatidylinositol
  publication-title: J Biol Chem
– volume: 13
  start-page: 1912
  year: 2014
  end-page: 1917
  article-title: Transamidase subunit GAA1/GPAA1 is a M28 family metallo‐peptide‐synthetase that catalyzes the peptide bond formation between the substrate protein's omega‐site and the GPI lipid anchor's phosphoethanolamine
  publication-title: Cell Cycle
– volume: 94
  start-page: 278
  year: 2014
  end-page: 287
  article-title: Mutations in PGAP3 impair GPI‐anchor maturation and lead to intellectual disability with hyperphosphatasia and additional phenotypic features
  publication-title: Am J Hum Genet
– volume: 295
  start-page: 14501
  year: 2020
  end-page: 14509
  article-title: PGAP6, a GPI‐specific phospholipase A2, has narrow substrate specificity against GPI‐anchored proteins
  publication-title: J Biol Chem
– volume: 217
  start-page: 585
  year: 2018
  end-page: 599
  article-title: N‐Glycan‐dependent protein folding and endoplasmic reticulum retention regulate GPI‐anchor processing
  publication-title: J Cell Biol
– volume: 20
  start-page: 4088
  year: 2001
  end-page: 4098
  article-title: PIG‐S and PIG‐T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
  publication-title: EMBO J
– volume: 105
  start-page: 1048
  year: 2019
  end-page: 1056
  article-title: Homozygous missense variants in NTNG2, encoding a presynaptic netrin‐G2 adhesion protein, lead to a distinct neurodevelopmental disorder
  publication-title: Am J Hum Genet
– volume: 90
  start-page: 295
  year: 2012
  end-page: 300
  article-title: The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria
  publication-title: Am J Hum Genet
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 132
  start-page: 568
  year: 2003
  end-page: 577
  article-title: Identification of glycosylphosphatidylinositol‐anchored proteins in Arabidopsis. A proteomic and genomic analysis
  publication-title: Plant Physiol
– volume: 194
  start-page: 61
  year: 2011
  end-page: 75
  article-title: Sorting of GPI‐anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI
  publication-title: J Cell Biol
– volume: 14
  start-page: 1780
  year: 2003
  end-page: 1789
  article-title: Human PIG‐U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI‐anchors to proteins
  publication-title: Mol Biol Cell
– volume: 66
  start-page: 1165
  year: 1991
  end-page: 1174
  article-title: Expression cloning of the human IL‐3 receptor cDNA reveals a shared beta subunit for the human IL‐3 and GM‐CSF receptors
  publication-title: Cell
– volume: 297
  start-page: 409
  year: 2000
  end-page: 420
  article-title: The major surface antigens of Entamoeba histolytica trophozoites are GPI‐anchored proteophosphoglycans
  publication-title: J Mol Biol
– volume: 57
  start-page: 352
  year: 2016
  end-page: 360
  article-title: Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface
  publication-title: J Lipid Res
– volume: 239
  start-page: 753
  year: 1988
  end-page: 759
  article-title: Glycosyl‐phosphatidylinositol moiety that anchors variant surface glycoprotein to the membrane
  publication-title: Science
– volume: 333
  start-page: 269
  year: 1988
  end-page: 272
  article-title: Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy‐1 glycoprotein
  publication-title: Nature
– volume: 17
  start-page: 2534
  year: 2018
  end-page: 2545
  article-title: Online parallel accumulation‐serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer
  publication-title: Mol Cell Proteomics
– volume: 9
  start-page: 405
  year: 2018
  article-title: Identification of a Golgi GPI‐N‐acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain
  publication-title: Nat Commun
– volume: 94
  start-page: 12580
  year: 1997
  end-page: 12585
  article-title: The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase
  publication-title: Proc Natl Acad Sci USA
– volume: 275
  start-page: 20911
  year: 2000
  end-page: 20919
  article-title: Requirement of PIG‐F and PIG‐O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
  publication-title: J Biol Chem
– volume: 24
  start-page: 6146
  year: 2015
  end-page: 6159
  article-title: Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
  publication-title: Hum Mol Genet
– volume: 279
  start-page: 14256
  year: 2004
  end-page: 14263
  article-title: Inositol deacylation of glycosylphosphatidylinositol‐anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
  publication-title: J Biol Chem
– volume: 103
  start-page: 602
  year: 2018
  end-page: 611
  article-title: Mutations in PIGS, encoding a GPI transamidase, cause a neurological syndrome ranging from fetal akinesia to epileptic encephalopathy
  publication-title: Am J Hum Genet
– volume: 272
  start-page: 15834
  year: 1997
  end-page: 15840
  article-title: Expression cloning of PIG‐L, a candidate N‐acetylglucosaminyl‐phosphatidylinositol deacetylase
  publication-title: J Biol Chem
– volume: 279
  start-page: 36083
  year: 2004
  end-page: 36092
  article-title: Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors
  publication-title: J Biol Chem
– volume: 167
  start-page: 135
  year: 2019
  end-page: 144
  article-title: Babesia divergens glycosylphosphatidylinositols modulate blood coagulation and induce Th2‐biased cytokine profiles in antigen presenting cells
  publication-title: Biochimie
– start-page: 137
  year: 2015
  end-page: 150
– volume: 105
  start-page: 384
  year: 2019
  end-page: 394
  article-title: Mutations in PIGB cause an inherited GPI biosynthesis defect with an axonal neuropathy and metabolic abnormality in severe cases
  publication-title: Am J Hum Genet
– volume: 14
  start-page: 5378
  year: 2015
  end-page: 5387
  article-title: Parallel accumulation‐serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device
  publication-title: J Proteome Res
– volume: 15
  start-page: 6575
  year: 1996
  end-page: 6583
  article-title: Yeast Gpi8p is essential for GPI anchor attachment onto proteins
  publication-title: EMBO J
– volume: 51
  start-page: 203
  year: 2014
  end-page: 207
  article-title: Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome
  publication-title: J Med Genet
– volume: 98
  start-page: 615
  year: 2016
  end-page: 626
  article-title: Pathogenic variants in PIGG cause intellectual disability with seizures and Hypotonia
  publication-title: Am J Hum Genet
– volume: 105
  start-page: 395
  year: 2019
  end-page: 402
  article-title: Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies
  publication-title: Am J Hum Genet
– volume: 23
  start-page: 3200
  year: 2014
  end-page: 3211
  article-title: Clinical whole‐genome sequencing in severe early‐onset epilepsy reveals new genes and improves molecular diagnosis
  publication-title: Hum Mol Genet
– volume: 23
  start-page: 1873
  year: 2021
  end-page: 1881
  article-title: PIGG variant pathogenicity assessment reveals characteristic features within 19 families
  publication-title: Genet Med
– volume: 79
  start-page: 293
  year: 1999
  end-page: 299
  article-title: Developmental abnormalities of glycosylphosphatidylinositol‐anchor‐deficient embryos revealed by Cre/loxP system
  publication-title: Lab Invest
– volume: 81
  start-page: 1467
  year: 2013
  end-page: 1469
  article-title: Case report on vitamin B6 responsive epilepsy due to inherited GPI deficiency
  publication-title: Neurology
– volume: 12
  start-page: 846
  year: 2006
  end-page: 851
  article-title: Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency
  publication-title: Nat Med
– volume: 48
  start-page: 383
  year: 2011
  end-page: 389
  article-title: Multiple congenital anomalies‐hypotonia‐seizures syndrome is caused by a mutation in PIGN
  publication-title: J Med Genet
– volume: 43
  start-page: D204
  year: 2015
  end-page: D212
  article-title: UniProt: a hub for protein information
  publication-title: Nucleic Acids Res
– volume: 101
  start-page: 856
  year: 2017
  end-page: 865
  article-title: Mutations in GPAA1, encoding a GPI transamidase complex protein, cause developmental delay, epilepsy, cerebellar atrophy, and osteopenia
  publication-title: Am J Hum Genet
– volume: 44
  start-page: D447
  year: 2016
  end-page: D456
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Res
– volume: 41
  start-page: 476
  year: 2020
  end-page: 486
  article-title: Netrin‐G2 dysfunction causes a Rett‐like phenotype with areflexia
  publication-title: Hum Mutat
– volume: 26
  start-page: 1706
  year: 2017
  end-page: 1715
  article-title: Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy
  publication-title: Hum Mol Genet
– volume: 91
  start-page: 146
  year: 2012
  end-page: 151
  article-title: Mutations in PIGO, a member of the GPI‐anchor‐synthesis pathway, cause hyperphosphatasia with mental retardation
  publication-title: Am J Hum Genet
– volume: 11
  start-page: 860
  year: 2020
  article-title: Cross‐talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER‐associated degradation
  publication-title: Nat Commun
– volume: 56
  start-page: 793
  year: 1989
  end-page: 800
  article-title: A novel pathway for glycan assembly: biosynthesis of the glycosyl‐phosphatidylinositol anchor of the trypanosome variant surface glycoprotein
  publication-title: Cell
– volume: 106
  start-page: 484
  year: 2020
  end-page: 495
  article-title: Bi‐allelic variants in the GPI transamidase subunit PIGK cause a neurodevelopmental syndrome with hypotonia, cerebellar atrophy, and epilepsy
  publication-title: Am J Hum Genet
– volume: 263
  start-page: 18766
  year: 1988
  end-page: 18775
  article-title: Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol‐specific phospholipase C
  publication-title: J Biol Chem
– volume: 129
  start-page: 629
  year: 1995
  end-page: 639
  article-title: Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins
  publication-title: J Cell Biol
– volume: 10
  start-page: 190290
  year: 2020
  article-title: Biosynthesis and biology of mammalian GPI‐anchored proteins
  publication-title: Open Biol
– volume: 39
  start-page: 822
  year: 2018
  end-page: 826
  article-title: A homozygous variant disrupting the PIGH start‐codon is associated with developmental delay, epilepsy, and microcephaly
  publication-title: Hum Mutat
– ident: e_1_2_9_60_1
  doi: 10.1002/j.1460-2075.1996.tb00800.x
– ident: e_1_2_9_62_1
  doi: 10.1074/jbc.M405081200
– ident: e_1_2_9_59_1
  doi: 10.1074/jbc.M413755200
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pgen.1004320
– ident: e_1_2_9_58_1
  doi: 10.1002/pmic.200900437
– ident: e_1_2_9_12_1
  doi: 10.1126/science.3340856
– ident: e_1_2_9_20_1
  doi: 10.1074/jbc.M001913200
– ident: e_1_2_9_34_1
  doi: 10.1074/jbc.RA120.014643
– ident: e_1_2_9_47_1
  doi: 10.1074/jbc.272.25.15834
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ajhg.2012.05.004
– ident: e_1_2_9_65_1
  doi: 10.1093/nar/gkv1145
– ident: e_1_2_9_26_1
  doi: 10.1098/rsob.190290
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ajhg.2019.06.009
– ident: e_1_2_9_41_1
  doi: 10.1074/mcp.TIR118.000900
– ident: e_1_2_9_63_1
  doi: 10.1038/s41436-021-01215-9
– ident: e_1_2_9_17_1
  doi: 10.1002/humu.23945
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ajhg.2013.12.012
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ajhg.2016.02.007
– ident: e_1_2_9_15_1
  doi: 10.1074/jbc.M405232200
– ident: e_1_2_9_32_1
  doi: 10.1212/WNL.0b013e3182a8411a
– ident: e_1_2_9_4_1
  doi: 10.1104/pp.103.021170
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cell.2009.08.040
– ident: e_1_2_9_66_1
  doi: 10.1038/s41467-020-14678-2
– ident: e_1_2_9_44_1
  doi: 10.1194/jlr.R062760
– ident: e_1_2_9_64_1
  doi: 10.1093/nar/gku989
– ident: e_1_2_9_23_1
  doi: 10.1093/hmg/ddv331
– ident: e_1_2_9_14_1
  doi: 10.1083/jcb.201012074
– ident: e_1_2_9_51_1
  doi: 10.1016/j.ajhg.2020.03.001
– ident: e_1_2_9_48_1
  doi: 10.1016/j.ajhg.2012.02.010
– ident: e_1_2_9_42_1
  doi: 10.1152/ajpcell.00285.2019
– start-page: 137
  volume-title: Essentials of glycobiology
  year: 2015
  ident: e_1_2_9_11_1
– ident: e_1_2_9_38_1
  doi: 10.1016/0092-8674(89)90684-3
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jproteome.5b00932
– ident: e_1_2_9_68_1
  doi: 10.1002/humu.23268
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1231143
– ident: e_1_2_9_57_1
  doi: 10.1074/jbc.272.11.7229
– ident: e_1_2_9_54_1
  doi: 10.1093/oxfordjournals.molbev.a004208
– ident: e_1_2_9_5_1
  doi: 10.1136/jmedgenet-2013-102156
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ajhg.2019.05.019
– ident: e_1_2_9_25_1
  doi: 10.1093/hmg/ddx077
– ident: e_1_2_9_31_1
  doi: 10.1038/ng.653
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.94.23.12580
– ident: e_1_2_9_16_1
  doi: 10.1083/jcb.129.3.629
– ident: e_1_2_9_61_1
  doi: 10.1074/jbc.M313755200
– ident: e_1_2_9_33_1
  doi: 10.1136/jmedgenet-2013-101654
– volume: 79
  start-page: 293
  year: 1999
  ident: e_1_2_9_52_1
  article-title: Developmental abnormalities of glycosylphosphatidylinositol‐anchor‐deficient embryos revealed by Cre/loxP system
  publication-title: Lab Invest
– ident: e_1_2_9_55_1
  doi: 10.1002/humu.23420
– ident: e_1_2_9_19_1
  doi: 10.1038/333269a0
– ident: e_1_2_9_39_1
  doi: 10.1136/jmg.2010.087114
– ident: e_1_2_9_27_1
  doi: 10.1016/0092-8674(91)90039-2
– ident: e_1_2_9_21_1
  doi: 10.1091/mbc.E02-12-0794
– ident: e_1_2_9_7_1
  doi: 10.1016/j.biochi.2019.09.007
– ident: e_1_2_9_3_1
  doi: 10.1002/j.1460-2075.1996.tb01048.x
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ajhg.2011.11.031
– ident: e_1_2_9_10_1
  doi: 10.4161/cc.28761
– ident: e_1_2_9_9_1
  doi: 10.1136/jmedgenet-2016-104202
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ajhg.2013.03.011
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ajhg.2019.09.025
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-017-02799-0
– ident: e_1_2_9_43_1
  doi: 10.1006/jmbi.2000.3577
– ident: e_1_2_9_53_1
  doi: 10.1093/emboj/20.15.4088
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ajhg.2018.08.014
– ident: e_1_2_9_56_1
  doi: 10.1016/S0021-9258(18)37349-6
– ident: e_1_2_9_35_1
  doi: 10.1083/jcb.201706135
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ajhg.2017.09.020
– ident: e_1_2_9_37_1
  doi: 10.1093/hmg/ddu030
– ident: e_1_2_9_2_1
  doi: 10.1038/nm1410
SSID ssj0005978
Score 2.4215975
Snippet Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI‐APs) on the cell surface. The core glycan of GPI precursor has three...
Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor many proteins (GPI-APs) on the cell surface. The core glycan of GPI precursor has three...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e54352
SubjectTerms Animals
Attachment
CD59 antigen
CD73
Cell surface
EMBO20
EMBO24
Ethanolamine
Ethanolamines - metabolism
Glycan
Glycolipids
Glycosylphosphatidylinositol
Glycosylphosphatidylinositols - genetics
Glycosylphosphatidylinositols - metabolism
GPI-Linked Proteins - genetics
inherited GPI deficiency
Localization
Mammals - metabolism
Mannose
Mannose - metabolism
mass spectrometry
Mutation
Nucleotidase
Phosphates
PIGB
PIGG
Proteins
Title Ethanolamine‐phosphate on the second mannose is a preferential bridge for some GPI‐anchored proteins
URI https://link.springer.com/article/10.15252/embr.202154352
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202154352
https://www.ncbi.nlm.nih.gov/pubmed/35603428
https://www.proquest.com/docview/2684380445
https://www.proquest.com/docview/2668218056
https://pubmed.ncbi.nlm.nih.gov/PMC9253782
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hIhAXVMpPQ0tlJA5wCCR27KyP7WpLQVpAiEp7ixzbq6zUdVZNe-itj8Az8iTMJNmUVakQx8iOHWdmPN_45xuAN96hE9OpiVFXbIweooy14T5GX1KOVJ543y4NTL-ok9Ps80zOepIkugvz5_695JJ_8MuSaDvRM6Fjx7n2vkxFTjkaxmp8c5ZDt1MuWr3GTtNZz-HzlwY23c8tTHn7aOSwP7qJXlv3c7wNj3vcyA47QT-Bez7swIMuk-TVDjyc9nvkT6Ga0Go4RqxLfPx1_XNV1c2qQkjJ6sAQ7rGGYmDHliaEuvFs0TDDVn26EbT3M9Zd4mIIZ1lTLz37-O0TtoPqUdXn3rGW2mERmmdwejz5MT6J-3wKsZW55jHXam54IqxP5ZwbRFaUXk5ah2ad-0S7xFgrS48gxFnD50o7lTiL4bPDKMUZ8Ry2Qh38LjCnDLdmjpJ0GE-ltnSuzCwvc6GyxJs0gvfr31zYnmyccl6cFRR0kFwKkksxyCWCt8MLq45n4-6q-2u5Fb3BNQWR1ohRkmUygtdDMZoK7X-Y4OtLqqNGiGgQ8kXwohPz0JdA5CcwFIsg31CAoQLRcG-WhEXV0nFrLgXirAjerVXl5rPuHIJodelfQy0m06Pvw9PL_-hhDx5xuqhBC9FyH7Yuzi_9K4RPF-VBazoHtBr59Tf6-RUd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VW_G4ICivQAEjcYBDIHFiJz4uaMt26VYIWmlvkWN7lZW6zqppD9z4CfxGfgnjxEm1KhXiaNnxIzPj-cZjzwC8MRqVmIhliLyiQtQQZSgkNSHqkjLnWWRMezQwP-bT03S2YIsdiPu3MO1t994l2e7UPkcP_WDWpQvgiToKVTzuurs54zkbwe54PPs-u7rXIdrtF3cAgROIFz6ez1-62FZF1_Dl9WuSg690G8m2qujgPtzzGJKMO6I_gB1j9-BWl1Xyxx7cnnt_-UOoJu5kHK3XNRZ___y1qepmUyG8JLUlCP1I4-xhTdbS2roxZNUQSTY-9QjK_hnpHnQRhLakqdeGfP56iP0gq1T1udGkDfOwss0jOD2YnHyahj63QqhYJmhIBV9KGiXKxGxJJaIsl2qOKY0inplI6EgqxUqDgEQrSZdcaB5phaa0RotFy-QxjGxtzVMgmkuq5BKpqtG2ilWpdZkqWmYJTyMj4wDe97-5UD7wuMt_cVY4A8TRpXB0KQa6BPB2-GDTxdy4uel-T7fCC19TuAA2SR6lKQvg9VCNYuN8IdKa-tK14TmiG4R_ATzpyDyMlSAKTNAsCyDbYoChgQvJvV1jV1UbmltQliDmCuBdzypX07pxCUnLS_9aajGZf_w2lJ79xwiv4M70ZH5UHB0ef3kOd6l7wOEOqNk-jC7OL80LhFUX5UsvSH8AHi8cgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFL2qqIrYVC0tkEJbV2JRFoHESZzxsp3OFFoGIQTS7CLHdpSRZpyIDAt2fALf2C_pdV5oRBHq0orjPO617zl-nAuwrxUGMe4LF31FuhghUpcLql2MJemAxZ7W9dTA5IwdX4W_ptG03ZtTdbvduyXJ5kyDVWkyy6NSZV2-HnqkF6kV88R4heEeR-CXSFN8y72GbPiww4PXAzGOBRxfxZ-2yj7_aGA1KD1Cmo83TParpquYtg5K4zfwukWT5Ftj_rfwQptNeNXkl7zdhPVJu3L-DvKRnSNHHrvA4p-7-zIvqjJHoEkKQxAEksoyY0UWwpii0mRWEUHKNgkJjgJz0hztIghySVUsNPl5foLtoNPkxbVWpBZ8mJnqPVyNR5fDY7fNsuDKKObUpZxlgnqB1H6UUYF4yyadi6TCzh5rjytPSBmlGqGJkoJmjCvmKYmkWiF3USLYgjVTGL0DRDFBpcjQvgpZli9TpdJQ0jQOWOhp4Ttw2P3mRLYS5DYTxjyxVMTaJbF2SXq7OPC1v6Fs1DeerrrX2S1pu2GVWCmbYOCFYeTAl_4ydiC7KiKMLm5sHTZAnINA0IHtxsz9swLEgwESNAfiFQfoK1hx7tUrZpbXIt2cRgGiLwcOOld5eK0nPyGofem5T01Gk-8XfenDfzzhM6yf_xgnpydnv3dhg9qTHHamOtqDteX1jf6I-GqZfqp70V8b7R9b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethanolamine-phosphate+on+the+second+mannose+is+a+preferential+bridge+for+some+GPI-anchored+proteins&rft.jtitle=EMBO+reports&rft.au=Ishida%2C+Mizuki&rft.au=Maki%2C+Yuta&rft.au=Ninomiya%2C+Akinori&rft.au=Takada%2C+Yoko&rft.date=2022-07-05&rft.eissn=1469-3178&rft.volume=23&rft.issue=7&rft.spage=e54352&rft_id=info:doi/10.15252%2Fembr.202154352&rft_id=info%3Apmid%2F35603428&rft.externalDocID=35603428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon