Arctic Tundra Plant Dieback Can Alter Surface N 2 O Fluxes and Interact With Summer Warming to Increase Soil Nitrogen Retention
In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated...
Saved in:
Published in | Global change biology Vol. 30; no. 10; p. e17549 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open‐top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N‐15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH 4 and N 2 O uptake after the plant dieback. With time, surface N 2 O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15 N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15 N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ −50%) and nitrification rates (~ −70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO 3 − significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem‐climate feedback. |
---|---|
AbstractList | In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open-top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N-15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH
and N
O uptake after the plant dieback. With time, surface N
O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of
N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their
N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ -50%) and nitrification rates (~ -70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO
significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem-climate feedback. In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open‐top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N‐15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH 4 and N 2 O uptake after the plant dieback. With time, surface N 2 O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15 N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15 N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ −50%) and nitrification rates (~ −70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO 3 − significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem‐climate feedback. |
Author | Xu, Wenyi Li, Dan Elberling, Bo Ambus, Per Lennart |
Author_xml | – sequence: 1 givenname: Wenyi orcidid: 0000-0002-9516-4395 surname: Xu fullname: Xu, Wenyi organization: Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden, Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 2 givenname: Bo orcidid: 0000-0002-6023-885X surname: Elberling fullname: Elberling, Bo organization: Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 3 givenname: Dan surname: Li fullname: Li, Dan organization: College of Urban Construction Nanjing Tech University Nanjing China – sequence: 4 givenname: Per Lennart surname: Ambus fullname: Ambus, Per Lennart organization: Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39450939$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtPwkAUhScGIw9d-AfM3boozqPTdpYERUkIGCFh2cyrWG2nZDokuvKvW0S9m3OT8-UsviHqucZZhK4JHpPu7nZajUnKY3GGBoQlPKJxlvSOP48jggnro2HbvmGMGcXJBeozEXMsmBigr4nXodSwOTjjJTxX0gW4L62S-h2m0sGkCtbD-uALqS0sgcIKZtXhw7YgnYG562qpA2zL8Nphdd3RW-nr0u0gNF2vvZWthXVTVrAsg2921sGLDdaFsnGX6LyQVWuvfnOENrOHzfQpWqwe59PJItI8FVGhRGxMJjiLs8wwnhlKCU84TbVIeKEIMZilJLWJwpjQlFlMeYEVzlIlMiPYCN2cZvcHVVuT731ZS_-Z_4nogNsToH3Ttt4W_wjB-VFy3knOfySzb8NfbNE |
Cites_doi | 10.1029/2021JG006600 10.1038/nature13604 10.1890/03-0084 10.1016/j.geoderma.2021.115559 10.1016/j.soilbio.2015.11.008 10.1088/1748-9326/11/8/084001 10.1007/s00442-009-1427-5 10.1016/j.soilbio.2013.07.003 10.1016/j.soilbio.2023.109013 10.1111/gcb.15306 10.1023/A:1019681606112 10.1111/1365-2745.12820 10.1029/2018JG004518 10.1016/j.still.2007.12.005 10.1111/j.1469-8137.2012.04254.x 10.1021/acs.est.2c05228 10.1007/s10021-019-00384-8 10.1088/1748-9326/11/11/115002 10.1016/j.soilbio.2019.107605 10.1098/rstb.2013.0122 10.1111/brv.12105 10.1038/s43017-020-0063-9 10.1080/15230430.2002.12003497 10.1007/s11104-008-9596-2 10.1016/j.jes.2014.05.005 10.1111/plb.12015 10.1111/gcb.16222 10.1002/2016JG003546 10.1111/gcb.14500 10.1088/1748-9326/aa579d 10.1016/j.soilbio.2012.03.019 10.1007/s11104-017-3322-x 10.1002/2016JG003554 10.1890/ES13-00281.1 10.1111/j.1365-2486.2012.02770.x 10.1007/s10533-023-01098-9 10.1016/j.scitotenv.2021.150990 10.18637/jss.v067.i01 10.1890/03-8002 10.1016/j.soilbio.2008.05.013 10.1111/gcb.13007 10.1016/j.catena.2013.08.002 10.1016/j.soilbio.2007.03.001 10.1088/1748-9326/abf28b 10.1111/1365-2745.12924 10.1007/s00300-023-03209-6 10.1071/SR99005 10.1007/s11104-008-9540-5 10.1007/s00425-017-2813-6 10.1016/j.soilbio.2019.107698 10.1111/gcb.13563 10.2307/3237077 10.1007/s10021-015-9924-3 10.1016/j.soilbio.2004.05.013 10.1111/1365-2745.13062 10.1016/j.soilbio.2021.108346 10.1007/s10021-014-9768-2 10.1038/s43247-023-01143-3 10.1111/gcb.14859 10.1016/j.soilbio.2024.109319 10.1088/1748-9326/9/8/084006 10.1038/nclimate1465 10.1038/nclimate2940 10.1016/j.soilbio.2014.04.009 10.1016/0038-0717(85)90144-0 10.1016/j.soilbio.2021.108356 10.1111/nph.13832 10.1038/s41558-019-0688-1 10.1007/s00248-021-01733-8 10.1007/s00442-008-0962-9 10.1016/j.soilbio.2016.12.013 10.3389/fpls.2018.01258 10.2478/s11756-010-0007-9 10.1016/j.rse.2016.12.018 10.1111/j.1365-2486.2011.02578.x 10.1016/j.soilbio.2004.01.003 10.1016/0003-2670(91)87215-S 10.1088/1748-9326/aabff3 10.1016/j.geoderma.2012.06.002 10.3390/rs5094229 10.1016/j.soilbio.2016.02.008 10.1111/j.1365-2486.2011.02424.x 10.1111/j.1365-2486.2008.01541.x 10.1007/s10021-018-0323-4 10.1007/s11104-008-9599-z 10.1016/j.scitotenv.2021.152077 10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2 10.1038/s43247-022-00498-3 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1111/gcb.17549 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
ExternalDocumentID | 39450939 10_1111_gcb_17549 |
Genre | Journal Article |
GeographicLocations | Arctic Regions Greenland |
GeographicLocations_xml | – name: Arctic Regions – name: Greenland |
GrantInformation_xml | – fundername: Danmarks Grundforskningsfond grantid: CENPERM100 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CITATION COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT CGR CUY CVF ECM EIF ESX NPM WRC WUP |
ID | FETCH-LOGICAL-c579-fb94dd8953488d358d22156527c965fb11d03717e6b001273e025f0b087b98d93 |
ISSN | 1354-1013 |
IngestDate | Wed Feb 19 02:12:47 EST 2025 Tue Jul 01 05:24:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | gross nitrogen transformation nitrous oxide arctic tundra methane summer warming vegetation cutting nitrogen‐15 tracing |
Language | English |
License | 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c579-fb94dd8953488d358d22156527c965fb11d03717e6b001273e025f0b087b98d93 |
ORCID | 0000-0002-9516-4395 0000-0002-6023-885X |
PMID | 39450939 |
ParticipantIDs | pubmed_primary_39450939 crossref_primary_10_1111_gcb_17549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-00 2024-Oct |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2024 |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Fox J. (e_1_2_10_36_1) 2019 e_1_2_10_91_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 e_1_2_10_89_1 |
References_xml | – ident: e_1_2_10_18_1 doi: 10.1029/2021JG006600 – ident: e_1_2_10_42_1 doi: 10.1038/nature13604 – ident: e_1_2_10_60_1 doi: 10.1890/03-0084 – ident: e_1_2_10_32_1 doi: 10.1016/j.geoderma.2021.115559 – ident: e_1_2_10_61_1 doi: 10.1016/j.soilbio.2015.11.008 – ident: e_1_2_10_63_1 doi: 10.1088/1748-9326/11/8/084001 – ident: e_1_2_10_37_1 doi: 10.1007/s00442-009-1427-5 – ident: e_1_2_10_75_1 doi: 10.1016/j.soilbio.2013.07.003 – ident: e_1_2_10_88_1 doi: 10.1016/j.soilbio.2023.109013 – ident: e_1_2_10_65_1 doi: 10.1111/gcb.15306 – ident: e_1_2_10_70_1 doi: 10.1023/A:1019681606112 – ident: e_1_2_10_4_1 doi: 10.1111/1365-2745.12820 – ident: e_1_2_10_72_1 doi: 10.1029/2018JG004518 – ident: e_1_2_10_57_1 doi: 10.1016/j.still.2007.12.005 – ident: e_1_2_10_82_1 doi: 10.1111/j.1469-8137.2012.04254.x – ident: e_1_2_10_52_1 – ident: e_1_2_10_48_1 doi: 10.1021/acs.est.2c05228 – ident: e_1_2_10_49_1 – ident: e_1_2_10_40_1 doi: 10.1007/s10021-019-00384-8 – ident: e_1_2_10_56_1 doi: 10.1088/1748-9326/11/11/115002 – ident: e_1_2_10_78_1 doi: 10.1016/j.soilbio.2019.107605 – ident: e_1_2_10_17_1 doi: 10.1098/rstb.2013.0122 – ident: e_1_2_10_86_1 doi: 10.1111/brv.12105 – ident: e_1_2_10_84_1 doi: 10.1038/s43017-020-0063-9 – ident: e_1_2_10_93_1 doi: 10.1080/15230430.2002.12003497 – ident: e_1_2_10_7_1 doi: 10.1007/s11104-008-9596-2 – ident: e_1_2_10_19_1 doi: 10.1016/j.jes.2014.05.005 – ident: e_1_2_10_66_1 doi: 10.1111/plb.12015 – ident: e_1_2_10_38_1 doi: 10.1111/gcb.16222 – ident: e_1_2_10_43_1 doi: 10.1002/2016JG003546 – ident: e_1_2_10_81_1 doi: 10.1111/gcb.14500 – ident: e_1_2_10_50_1 doi: 10.1088/1748-9326/aa579d – ident: e_1_2_10_16_1 doi: 10.1016/j.soilbio.2012.03.019 – ident: e_1_2_10_68_1 doi: 10.1007/s11104-017-3322-x – ident: e_1_2_10_92_1 doi: 10.1002/2016JG003554 – ident: e_1_2_10_27_1 doi: 10.1890/ES13-00281.1 – ident: e_1_2_10_20_1 doi: 10.1111/j.1365-2486.2012.02770.x – ident: e_1_2_10_73_1 doi: 10.1007/s10533-023-01098-9 – ident: e_1_2_10_87_1 doi: 10.1016/j.scitotenv.2021.150990 – ident: e_1_2_10_5_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_10_74_1 doi: 10.1890/03-8002 – ident: e_1_2_10_77_1 doi: 10.1016/j.soilbio.2008.05.013 – ident: e_1_2_10_12_1 doi: 10.1111/gcb.13007 – ident: e_1_2_10_2_1 doi: 10.1016/j.catena.2013.08.002 – ident: e_1_2_10_51_1 doi: 10.1016/j.soilbio.2007.03.001 – ident: e_1_2_10_55_1 doi: 10.1088/1748-9326/abf28b – ident: e_1_2_10_85_1 doi: 10.1111/1365-2745.12924 – ident: e_1_2_10_3_1 doi: 10.1007/s00300-023-03209-6 – ident: e_1_2_10_29_1 doi: 10.1071/SR99005 – ident: e_1_2_10_45_1 doi: 10.1007/s11104-008-9540-5 – ident: e_1_2_10_11_1 doi: 10.1007/s00425-017-2813-6 – ident: e_1_2_10_80_1 – ident: e_1_2_10_69_1 doi: 10.1016/j.soilbio.2019.107698 – ident: e_1_2_10_83_1 doi: 10.1111/gcb.13563 – ident: e_1_2_10_54_1 doi: 10.2307/3237077 – ident: e_1_2_10_9_1 doi: 10.1007/s10021-015-9924-3 – ident: e_1_2_10_23_1 doi: 10.1016/j.soilbio.2004.05.013 – ident: e_1_2_10_39_1 doi: 10.1111/1365-2745.13062 – ident: e_1_2_10_44_1 doi: 10.1016/j.soilbio.2021.108346 – ident: e_1_2_10_79_1 doi: 10.1007/s10021-014-9768-2 – ident: e_1_2_10_31_1 doi: 10.1038/s43247-023-01143-3 – ident: e_1_2_10_46_1 doi: 10.1111/gcb.14859 – ident: e_1_2_10_71_1 doi: 10.1016/j.soilbio.2024.109319 – ident: e_1_2_10_8_1 doi: 10.1088/1748-9326/9/8/084006 – ident: e_1_2_10_34_1 doi: 10.1038/nclimate1465 – ident: e_1_2_10_90_1 doi: 10.1038/nclimate2940 – ident: e_1_2_10_53_1 doi: 10.1016/j.soilbio.2014.04.009 – ident: e_1_2_10_15_1 doi: 10.1016/0038-0717(85)90144-0 – ident: e_1_2_10_89_1 doi: 10.1016/j.soilbio.2021.108356 – ident: e_1_2_10_26_1 doi: 10.1111/nph.13832 – ident: e_1_2_10_59_1 doi: 10.1038/s41558-019-0688-1 – ident: e_1_2_10_35_1 doi: 10.1007/s00248-021-01733-8 – ident: e_1_2_10_21_1 doi: 10.1007/s00442-008-0962-9 – ident: e_1_2_10_24_1 doi: 10.1016/j.soilbio.2016.12.013 – ident: e_1_2_10_30_1 doi: 10.3389/fpls.2018.01258 – ident: e_1_2_10_33_1 doi: 10.2478/s11756-010-0007-9 – ident: e_1_2_10_91_1 doi: 10.1016/j.rse.2016.12.018 – ident: e_1_2_10_25_1 doi: 10.1111/j.1365-2486.2011.02578.x – ident: e_1_2_10_41_1 doi: 10.1016/j.soilbio.2004.01.003 – ident: e_1_2_10_76_1 doi: 10.1016/0003-2670(91)87215-S – ident: e_1_2_10_64_1 doi: 10.1088/1748-9326/aabff3 – volume-title: An R Companion to Applied Regression (Third) year: 2019 ident: e_1_2_10_36_1 – ident: e_1_2_10_62_1 doi: 10.1016/j.geoderma.2012.06.002 – ident: e_1_2_10_6_1 doi: 10.3390/rs5094229 – ident: e_1_2_10_13_1 doi: 10.1016/j.soilbio.2016.02.008 – ident: e_1_2_10_10_1 doi: 10.1111/j.1365-2486.2011.02424.x – ident: e_1_2_10_22_1 doi: 10.1111/j.1365-2486.2008.01541.x – ident: e_1_2_10_58_1 doi: 10.1007/s10021-018-0323-4 – ident: e_1_2_10_28_1 doi: 10.1007/s11104-008-9599-z – ident: e_1_2_10_47_1 doi: 10.1016/j.scitotenv.2021.152077 – ident: e_1_2_10_14_1 doi: 10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2 – ident: e_1_2_10_67_1 doi: 10.1038/s43247-022-00498-3 |
SSID | ssj0003206 |
Score | 2.4561825 |
Snippet | In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air... |
SourceID | pubmed crossref |
SourceType | Index Database |
StartPage | e17549 |
SubjectTerms | Arctic Regions Biomass Climate Change Global Warming Greenland Methane - analysis Methane - metabolism Nitrogen - analysis Nitrogen - metabolism Nitrogen Isotopes - analysis Nitrous Oxide - analysis Nitrous Oxide - metabolism Plants - metabolism Seasons Soil - chemistry Temperature Tundra |
Title | Arctic Tundra Plant Dieback Can Alter Surface N 2 O Fluxes and Interact With Summer Warming to Increase Soil Nitrogen Retention |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39450939 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIv0ygMygCdEPAStUqdOD8eS7VpQqyToIi-VbFjj2pdMmWJxHiBP53zj6QrIDR4iVrLbqJ-n8938XdnQl5JXwVsLNKh4ooNccVjOOeEQEBiRlUSKRrq3OGTWXT8KXy3YIte78cN1VJT85H49se8kv9BFdsQV50l-w_Idj-KDfgZ8cUrIozXW2E8qXSGkzdvirzKzPlDNdowyTNx7k1x4k70VjjahkplOH1nHvVOvaN181VeORmwTj8WujRD_cXT78Ow9-dMq2POtE-KtkNL1qX3sVytkTN1VeKjICK11UjedGzt2QEuj9hzpZ1aNBeNkfLJ4nq10YpwU2jLWJq3ZacLavPeOyJe8MaeJaA39enrif8el4a2MpN7XUHDTvjWWtiA6TabgDqSrk1L7UJXE9uZZbdd4-jn_8Xcnwk-Qi_Ilj7dLqn9y1LXCRDb0AeHLs3QO-QuxUDDBOUfNgXIAmpOZ-0e2tWm0lqw7q5bHs1WbGJ8lPke2XXBBUwsUx6Qniz65J49bvS6T_YPN1mN2M2Z9as-GZwgpGVlusEbmK5XGMeYbw_Jd0sysCQDQzJwJAMkGRiSgSMZzIDCKViSAZIMWpKBJhlYkoEjGdQltCQDTTJoSQYdyR6R-dHhfHo8dKd2DAWL9ZxPwzxPUhbg0pAHLMkpepURo7FII6b4eJzrKpGxjIw_HwcSvW7lcz-JeZrkabBPdoqykE8IZDTiUUypyHx02tFx8nmSjVXmyzyMVOQPyMv2j19e2tosy9-AHZDHFpKuS5CG6CUH6dPbDD8g9zcsfkZ26qqRz9ENrfkLw5SfM7qGXQ |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arctic+Tundra+Plant+Dieback+Can+Alter+Surface+N+2+O+Fluxes+and+Interact+With+Summer+Warming+to+Increase+Soil+Nitrogen+Retention&rft.jtitle=Global+change+biology&rft.au=Xu%2C+Wenyi&rft.au=Elberling%2C+Bo&rft.au=Li%2C+Dan&rft.au=Ambus%2C+Per%C2%A0Lennart&rft.date=2024-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1111%2Fgcb.17549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_17549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |