Arctic Tundra Plant Dieback Can Alter Surface N 2 O Fluxes and Interact With Summer Warming to Increase Soil Nitrogen Retention

In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 10; p. e17549
Main Authors Xu, Wenyi, Elberling, Bo, Li, Dan, Ambus, Per Lennart
Format Journal Article
LanguageEnglish
Published England 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open‐top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N‐15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH 4 and N 2 O uptake after the plant dieback. With time, surface N 2 O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15 N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15 N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ −50%) and nitrification rates (~ −70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO 3 − significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem‐climate feedback.
AbstractList In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open-top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N-15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH and N O uptake after the plant dieback. With time, surface N O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ -50%) and nitrification rates (~ -70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem-climate feedback.
In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open‐top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N‐15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH 4 and N 2 O uptake after the plant dieback. With time, surface N 2 O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15 N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15 N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ −50%) and nitrification rates (~ −70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO 3 − significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem‐climate feedback.
Author Xu, Wenyi
Li, Dan
Elberling, Bo
Ambus, Per Lennart
Author_xml – sequence: 1
  givenname: Wenyi
  orcidid: 0000-0002-9516-4395
  surname: Xu
  fullname: Xu, Wenyi
  organization: Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden, Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark
– sequence: 2
  givenname: Bo
  orcidid: 0000-0002-6023-885X
  surname: Elberling
  fullname: Elberling, Bo
  organization: Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark
– sequence: 3
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: College of Urban Construction Nanjing Tech University Nanjing China
– sequence: 4
  givenname: Per Lennart
  surname: Ambus
  fullname: Ambus, Per Lennart
  organization: Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39450939$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPwkAUhScGIw9d-AfM3boozqPTdpYERUkIGCFh2cyrWG2nZDokuvKvW0S9m3OT8-UsviHqucZZhK4JHpPu7nZajUnKY3GGBoQlPKJxlvSOP48jggnro2HbvmGMGcXJBeozEXMsmBigr4nXodSwOTjjJTxX0gW4L62S-h2m0sGkCtbD-uALqS0sgcIKZtXhw7YgnYG562qpA2zL8Nphdd3RW-nr0u0gNF2vvZWthXVTVrAsg2921sGLDdaFsnGX6LyQVWuvfnOENrOHzfQpWqwe59PJItI8FVGhRGxMJjiLs8wwnhlKCU84TbVIeKEIMZilJLWJwpjQlFlMeYEVzlIlMiPYCN2cZvcHVVuT731ZS_-Z_4nogNsToH3Ttt4W_wjB-VFy3knOfySzb8NfbNE
Cites_doi 10.1029/2021JG006600
10.1038/nature13604
10.1890/03-0084
10.1016/j.geoderma.2021.115559
10.1016/j.soilbio.2015.11.008
10.1088/1748-9326/11/8/084001
10.1007/s00442-009-1427-5
10.1016/j.soilbio.2013.07.003
10.1016/j.soilbio.2023.109013
10.1111/gcb.15306
10.1023/A:1019681606112
10.1111/1365-2745.12820
10.1029/2018JG004518
10.1016/j.still.2007.12.005
10.1111/j.1469-8137.2012.04254.x
10.1021/acs.est.2c05228
10.1007/s10021-019-00384-8
10.1088/1748-9326/11/11/115002
10.1016/j.soilbio.2019.107605
10.1098/rstb.2013.0122
10.1111/brv.12105
10.1038/s43017-020-0063-9
10.1080/15230430.2002.12003497
10.1007/s11104-008-9596-2
10.1016/j.jes.2014.05.005
10.1111/plb.12015
10.1111/gcb.16222
10.1002/2016JG003546
10.1111/gcb.14500
10.1088/1748-9326/aa579d
10.1016/j.soilbio.2012.03.019
10.1007/s11104-017-3322-x
10.1002/2016JG003554
10.1890/ES13-00281.1
10.1111/j.1365-2486.2012.02770.x
10.1007/s10533-023-01098-9
10.1016/j.scitotenv.2021.150990
10.18637/jss.v067.i01
10.1890/03-8002
10.1016/j.soilbio.2008.05.013
10.1111/gcb.13007
10.1016/j.catena.2013.08.002
10.1016/j.soilbio.2007.03.001
10.1088/1748-9326/abf28b
10.1111/1365-2745.12924
10.1007/s00300-023-03209-6
10.1071/SR99005
10.1007/s11104-008-9540-5
10.1007/s00425-017-2813-6
10.1016/j.soilbio.2019.107698
10.1111/gcb.13563
10.2307/3237077
10.1007/s10021-015-9924-3
10.1016/j.soilbio.2004.05.013
10.1111/1365-2745.13062
10.1016/j.soilbio.2021.108346
10.1007/s10021-014-9768-2
10.1038/s43247-023-01143-3
10.1111/gcb.14859
10.1016/j.soilbio.2024.109319
10.1088/1748-9326/9/8/084006
10.1038/nclimate1465
10.1038/nclimate2940
10.1016/j.soilbio.2014.04.009
10.1016/0038-0717(85)90144-0
10.1016/j.soilbio.2021.108356
10.1111/nph.13832
10.1038/s41558-019-0688-1
10.1007/s00248-021-01733-8
10.1007/s00442-008-0962-9
10.1016/j.soilbio.2016.12.013
10.3389/fpls.2018.01258
10.2478/s11756-010-0007-9
10.1016/j.rse.2016.12.018
10.1111/j.1365-2486.2011.02578.x
10.1016/j.soilbio.2004.01.003
10.1016/0003-2670(91)87215-S
10.1088/1748-9326/aabff3
10.1016/j.geoderma.2012.06.002
10.3390/rs5094229
10.1016/j.soilbio.2016.02.008
10.1111/j.1365-2486.2011.02424.x
10.1111/j.1365-2486.2008.01541.x
10.1007/s10021-018-0323-4
10.1007/s11104-008-9599-z
10.1016/j.scitotenv.2021.152077
10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2
10.1038/s43247-022-00498-3
ContentType Journal Article
Copyright 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1111/gcb.17549
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
ExternalDocumentID 39450939
10_1111_gcb_17549
Genre Journal Article
GeographicLocations Arctic Regions
Greenland
GeographicLocations_xml – name: Arctic Regions
– name: Greenland
GrantInformation_xml – fundername: Danmarks Grundforskningsfond
  grantid: CENPERM100
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CITATION
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
WRC
WUP
ID FETCH-LOGICAL-c579-fb94dd8953488d358d22156527c965fb11d03717e6b001273e025f0b087b98d93
ISSN 1354-1013
IngestDate Wed Feb 19 02:12:47 EST 2025
Tue Jul 01 05:24:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords gross nitrogen transformation
nitrous oxide
arctic tundra
methane
summer warming
vegetation cutting
nitrogen‐15 tracing
Language English
License 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c579-fb94dd8953488d358d22156527c965fb11d03717e6b001273e025f0b087b98d93
ORCID 0000-0002-9516-4395
0000-0002-6023-885X
PMID 39450939
ParticipantIDs pubmed_primary_39450939
crossref_primary_10_1111_gcb_17549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-00
2024-Oct
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Fox J. (e_1_2_10_36_1) 2019
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – ident: e_1_2_10_18_1
  doi: 10.1029/2021JG006600
– ident: e_1_2_10_42_1
  doi: 10.1038/nature13604
– ident: e_1_2_10_60_1
  doi: 10.1890/03-0084
– ident: e_1_2_10_32_1
  doi: 10.1016/j.geoderma.2021.115559
– ident: e_1_2_10_61_1
  doi: 10.1016/j.soilbio.2015.11.008
– ident: e_1_2_10_63_1
  doi: 10.1088/1748-9326/11/8/084001
– ident: e_1_2_10_37_1
  doi: 10.1007/s00442-009-1427-5
– ident: e_1_2_10_75_1
  doi: 10.1016/j.soilbio.2013.07.003
– ident: e_1_2_10_88_1
  doi: 10.1016/j.soilbio.2023.109013
– ident: e_1_2_10_65_1
  doi: 10.1111/gcb.15306
– ident: e_1_2_10_70_1
  doi: 10.1023/A:1019681606112
– ident: e_1_2_10_4_1
  doi: 10.1111/1365-2745.12820
– ident: e_1_2_10_72_1
  doi: 10.1029/2018JG004518
– ident: e_1_2_10_57_1
  doi: 10.1016/j.still.2007.12.005
– ident: e_1_2_10_82_1
  doi: 10.1111/j.1469-8137.2012.04254.x
– ident: e_1_2_10_52_1
– ident: e_1_2_10_48_1
  doi: 10.1021/acs.est.2c05228
– ident: e_1_2_10_49_1
– ident: e_1_2_10_40_1
  doi: 10.1007/s10021-019-00384-8
– ident: e_1_2_10_56_1
  doi: 10.1088/1748-9326/11/11/115002
– ident: e_1_2_10_78_1
  doi: 10.1016/j.soilbio.2019.107605
– ident: e_1_2_10_17_1
  doi: 10.1098/rstb.2013.0122
– ident: e_1_2_10_86_1
  doi: 10.1111/brv.12105
– ident: e_1_2_10_84_1
  doi: 10.1038/s43017-020-0063-9
– ident: e_1_2_10_93_1
  doi: 10.1080/15230430.2002.12003497
– ident: e_1_2_10_7_1
  doi: 10.1007/s11104-008-9596-2
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jes.2014.05.005
– ident: e_1_2_10_66_1
  doi: 10.1111/plb.12015
– ident: e_1_2_10_38_1
  doi: 10.1111/gcb.16222
– ident: e_1_2_10_43_1
  doi: 10.1002/2016JG003546
– ident: e_1_2_10_81_1
  doi: 10.1111/gcb.14500
– ident: e_1_2_10_50_1
  doi: 10.1088/1748-9326/aa579d
– ident: e_1_2_10_16_1
  doi: 10.1016/j.soilbio.2012.03.019
– ident: e_1_2_10_68_1
  doi: 10.1007/s11104-017-3322-x
– ident: e_1_2_10_92_1
  doi: 10.1002/2016JG003554
– ident: e_1_2_10_27_1
  doi: 10.1890/ES13-00281.1
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1365-2486.2012.02770.x
– ident: e_1_2_10_73_1
  doi: 10.1007/s10533-023-01098-9
– ident: e_1_2_10_87_1
  doi: 10.1016/j.scitotenv.2021.150990
– ident: e_1_2_10_5_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_10_74_1
  doi: 10.1890/03-8002
– ident: e_1_2_10_77_1
  doi: 10.1016/j.soilbio.2008.05.013
– ident: e_1_2_10_12_1
  doi: 10.1111/gcb.13007
– ident: e_1_2_10_2_1
  doi: 10.1016/j.catena.2013.08.002
– ident: e_1_2_10_51_1
  doi: 10.1016/j.soilbio.2007.03.001
– ident: e_1_2_10_55_1
  doi: 10.1088/1748-9326/abf28b
– ident: e_1_2_10_85_1
  doi: 10.1111/1365-2745.12924
– ident: e_1_2_10_3_1
  doi: 10.1007/s00300-023-03209-6
– ident: e_1_2_10_29_1
  doi: 10.1071/SR99005
– ident: e_1_2_10_45_1
  doi: 10.1007/s11104-008-9540-5
– ident: e_1_2_10_11_1
  doi: 10.1007/s00425-017-2813-6
– ident: e_1_2_10_80_1
– ident: e_1_2_10_69_1
  doi: 10.1016/j.soilbio.2019.107698
– ident: e_1_2_10_83_1
  doi: 10.1111/gcb.13563
– ident: e_1_2_10_54_1
  doi: 10.2307/3237077
– ident: e_1_2_10_9_1
  doi: 10.1007/s10021-015-9924-3
– ident: e_1_2_10_23_1
  doi: 10.1016/j.soilbio.2004.05.013
– ident: e_1_2_10_39_1
  doi: 10.1111/1365-2745.13062
– ident: e_1_2_10_44_1
  doi: 10.1016/j.soilbio.2021.108346
– ident: e_1_2_10_79_1
  doi: 10.1007/s10021-014-9768-2
– ident: e_1_2_10_31_1
  doi: 10.1038/s43247-023-01143-3
– ident: e_1_2_10_46_1
  doi: 10.1111/gcb.14859
– ident: e_1_2_10_71_1
  doi: 10.1016/j.soilbio.2024.109319
– ident: e_1_2_10_8_1
  doi: 10.1088/1748-9326/9/8/084006
– ident: e_1_2_10_34_1
  doi: 10.1038/nclimate1465
– ident: e_1_2_10_90_1
  doi: 10.1038/nclimate2940
– ident: e_1_2_10_53_1
  doi: 10.1016/j.soilbio.2014.04.009
– ident: e_1_2_10_15_1
  doi: 10.1016/0038-0717(85)90144-0
– ident: e_1_2_10_89_1
  doi: 10.1016/j.soilbio.2021.108356
– ident: e_1_2_10_26_1
  doi: 10.1111/nph.13832
– ident: e_1_2_10_59_1
  doi: 10.1038/s41558-019-0688-1
– ident: e_1_2_10_35_1
  doi: 10.1007/s00248-021-01733-8
– ident: e_1_2_10_21_1
  doi: 10.1007/s00442-008-0962-9
– ident: e_1_2_10_24_1
  doi: 10.1016/j.soilbio.2016.12.013
– ident: e_1_2_10_30_1
  doi: 10.3389/fpls.2018.01258
– ident: e_1_2_10_33_1
  doi: 10.2478/s11756-010-0007-9
– ident: e_1_2_10_91_1
  doi: 10.1016/j.rse.2016.12.018
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1365-2486.2011.02578.x
– ident: e_1_2_10_41_1
  doi: 10.1016/j.soilbio.2004.01.003
– ident: e_1_2_10_76_1
  doi: 10.1016/0003-2670(91)87215-S
– ident: e_1_2_10_64_1
  doi: 10.1088/1748-9326/aabff3
– volume-title: An R Companion to Applied Regression (Third)
  year: 2019
  ident: e_1_2_10_36_1
– ident: e_1_2_10_62_1
  doi: 10.1016/j.geoderma.2012.06.002
– ident: e_1_2_10_6_1
  doi: 10.3390/rs5094229
– ident: e_1_2_10_13_1
  doi: 10.1016/j.soilbio.2016.02.008
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1365-2486.2011.02424.x
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1365-2486.2008.01541.x
– ident: e_1_2_10_58_1
  doi: 10.1007/s10021-018-0323-4
– ident: e_1_2_10_28_1
  doi: 10.1007/s11104-008-9599-z
– ident: e_1_2_10_47_1
  doi: 10.1016/j.scitotenv.2021.152077
– ident: e_1_2_10_14_1
  doi: 10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2
– ident: e_1_2_10_67_1
  doi: 10.1038/s43247-022-00498-3
SSID ssj0003206
Score 2.4561825
Snippet In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air...
SourceID pubmed
crossref
SourceType Index Database
StartPage e17549
SubjectTerms Arctic Regions
Biomass
Climate Change
Global Warming
Greenland
Methane - analysis
Methane - metabolism
Nitrogen - analysis
Nitrogen - metabolism
Nitrogen Isotopes - analysis
Nitrous Oxide - analysis
Nitrous Oxide - metabolism
Plants - metabolism
Seasons
Soil - chemistry
Temperature
Tundra
Title Arctic Tundra Plant Dieback Can Alter Surface N 2 O Fluxes and Interact With Summer Warming to Increase Soil Nitrogen Retention
URI https://www.ncbi.nlm.nih.gov/pubmed/39450939
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIv0ygMygCdEPAStUqdOD8eS7VpQqyToIi-VbFjj2pdMmWJxHiBP53zj6QrIDR4iVrLbqJ-n8938XdnQl5JXwVsLNKh4ooNccVjOOeEQEBiRlUSKRrq3OGTWXT8KXy3YIte78cN1VJT85H49se8kv9BFdsQV50l-w_Idj-KDfgZ8cUrIozXW2E8qXSGkzdvirzKzPlDNdowyTNx7k1x4k70VjjahkplOH1nHvVOvaN181VeORmwTj8WujRD_cXT78Ow9-dMq2POtE-KtkNL1qX3sVytkTN1VeKjICK11UjedGzt2QEuj9hzpZ1aNBeNkfLJ4nq10YpwU2jLWJq3ZacLavPeOyJe8MaeJaA39enrif8el4a2MpN7XUHDTvjWWtiA6TabgDqSrk1L7UJXE9uZZbdd4-jn_8Xcnwk-Qi_Ilj7dLqn9y1LXCRDb0AeHLs3QO-QuxUDDBOUfNgXIAmpOZ-0e2tWm0lqw7q5bHs1WbGJ8lPke2XXBBUwsUx6Qniz65J49bvS6T_YPN1mN2M2Z9as-GZwgpGVlusEbmK5XGMeYbw_Jd0sysCQDQzJwJAMkGRiSgSMZzIDCKViSAZIMWpKBJhlYkoEjGdQltCQDTTJoSQYdyR6R-dHhfHo8dKd2DAWL9ZxPwzxPUhbg0pAHLMkpepURo7FII6b4eJzrKpGxjIw_HwcSvW7lcz-JeZrkabBPdoqykE8IZDTiUUypyHx02tFx8nmSjVXmyzyMVOQPyMv2j19e2tosy9-AHZDHFpKuS5CG6CUH6dPbDD8g9zcsfkZ26qqRz9ENrfkLw5SfM7qGXQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arctic+Tundra+Plant+Dieback+Can+Alter+Surface+N+2+O+Fluxes+and+Interact+With+Summer+Warming+to+Increase+Soil+Nitrogen+Retention&rft.jtitle=Global+change+biology&rft.au=Xu%2C+Wenyi&rft.au=Elberling%2C+Bo&rft.au=Li%2C+Dan&rft.au=Ambus%2C+Per%C2%A0Lennart&rft.date=2024-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1111%2Fgcb.17549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_17549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon