The Mevalonate Pathway Is Indispensable for Adipocyte Survival

The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 9; pp. 175 - 191
Main Authors Yeh, Yu-Sheng, Jheng, Huei-Fen, Iwase, Mari, Kim, Minji, Mohri, Shinsuke, Kwon, Jungin, Kawarasaki, Satoko, Li, Yongjia, Takahashi, Haruya, Ara, Takeshi, Nomura, Wataru, Kawada, Teruo, Goto, Tsuyoshi
Format Journal Article
LanguageEnglish
Published United States Elsevier 30.11.2018
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2018.10.019

Cover

Loading…
Abstract The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover.
AbstractList The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover. : Pathophysiology; Molecular Mechanism of Behavior; Diabetology; Specialized Functions of Cells Subject Areas: Pathophysiology, Molecular Mechanism of Behavior, Diabetology, Specialized Functions of Cells
The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover.
The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover. • HMGCR deficiency in adipocytes causes lipodystrophy • HMGCR deficiency in adipocytes triggers several metabolic disorders • Cholesterol and pioglitazone cannot improve HMGCR-deficiency-induced lipodystrophy • GGPP is critical for adipocyte survival by regulating apoptosis Pathophysiology; Molecular Mechanism of Behavior; Diabetology; Specialized Functions of Cells
The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover.The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover.
Author Li, Yongjia
Takahashi, Haruya
Goto, Tsuyoshi
Kawarasaki, Satoko
Jheng, Huei-Fen
Iwase, Mari
Kwon, Jungin
Nomura, Wataru
Yeh, Yu-Sheng
Mohri, Shinsuke
Kawada, Teruo
Ara, Takeshi
Kim, Minji
AuthorAffiliation 2 Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
1 Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
AuthorAffiliation_xml – name: 1 Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
– name: 2 Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
Author_xml – sequence: 1
  givenname: Yu-Sheng
  orcidid: 0000-0002-0099-2690
  surname: Yeh
  fullname: Yeh, Yu-Sheng
– sequence: 2
  givenname: Huei-Fen
  surname: Jheng
  fullname: Jheng, Huei-Fen
– sequence: 3
  givenname: Mari
  surname: Iwase
  fullname: Iwase, Mari
– sequence: 4
  givenname: Minji
  surname: Kim
  fullname: Kim, Minji
– sequence: 5
  givenname: Shinsuke
  surname: Mohri
  fullname: Mohri, Shinsuke
– sequence: 6
  givenname: Jungin
  surname: Kwon
  fullname: Kwon, Jungin
– sequence: 7
  givenname: Satoko
  surname: Kawarasaki
  fullname: Kawarasaki, Satoko
– sequence: 8
  givenname: Yongjia
  surname: Li
  fullname: Li, Yongjia
– sequence: 9
  givenname: Haruya
  surname: Takahashi
  fullname: Takahashi, Haruya
– sequence: 10
  givenname: Takeshi
  surname: Ara
  fullname: Ara, Takeshi
– sequence: 11
  givenname: Wataru
  surname: Nomura
  fullname: Nomura, Wataru
– sequence: 12
  givenname: Teruo
  surname: Kawada
  fullname: Kawada, Teruo
– sequence: 13
  givenname: Tsuyoshi
  orcidid: 0000-0003-1283-147X
  surname: Goto
  fullname: Goto, Tsuyoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30396151$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuEzEUtVARLaE_wALNkk2CHzMee1OpqgqNVAQSZW3dsa8bR5NxsCdB-Xs8TYtaFkiWfHV8HrbPW3IyxAEJec_oglEmP60XIduw4JSpAiwo06_IGW-UnlNa85Nn8yk5z3lNKeVl1Vq-IaeCCi1Zw87Ixd0Kq6-4hz4OMGL1HcbVbzhUy1wtBxfyFocMXY-Vj6m6dGEb7aHQfuzSPhTRO_LaQ5_x_HGfkZ-fr--ubua3374sry5v57Zp1Tj3jdMICm3jhGYoW1ULob2UWlsE2zrhtZVOIm2d5dTKDriXZWqwplxqMSPLo6-LsDbbFDaQDiZCMA9ATPcG0hhsj4aLTnVILTQSaqFQMYmWOlt74SWFtnhdHL22u26DzuIwJuhfmL48GcLK3Me9kZwLLqbLfHw0SPHXDvNoNqUL7HsYMO6y4az8L-VNeeOMfHie9TfkqYBCUEeCTTHnhN7YMMIY4hQdesOomeo2azPVbaa6J6zUXaT8H-mT-39EfwB7pa93
CitedBy_id crossref_primary_10_1111_dme_15214
crossref_primary_10_3389_fimmu_2020_598566
crossref_primary_10_1111_bph_16363
crossref_primary_10_1007_s10725_022_00818_9
crossref_primary_10_1016_j_bbadis_2021_166144
crossref_primary_10_1186_s12864_021_08173_1
crossref_primary_10_18632_aging_102056
crossref_primary_10_1074_jbc_RA119_011658
crossref_primary_10_1161_ATVBAHA_122_317320
crossref_primary_10_1186_s13287_021_02337_2
crossref_primary_10_1002_jmv_26743
crossref_primary_10_1038_s41598_021_91534_3
crossref_primary_10_1016_j_bbcan_2020_188351
crossref_primary_10_1146_annurev_biochem_081820_101010
crossref_primary_10_1194_jlr_RA120001006
crossref_primary_10_2337_db19_1239
crossref_primary_10_3389_fcell_2020_577259
crossref_primary_10_1093_bbb_zbad041
crossref_primary_10_1111_bph_17309
crossref_primary_10_3390_nu14204365
crossref_primary_10_3390_nu14245314
crossref_primary_10_1016_j_isci_2023_106161
crossref_primary_10_3389_fimmu_2022_827603
crossref_primary_10_1016_j_tips_2021_10_001
crossref_primary_10_1172_JCI185340
crossref_primary_10_3390_nu12061848
crossref_primary_10_1016_j_ejmech_2019_111905
crossref_primary_10_3389_fgene_2022_841639
crossref_primary_10_1016_j_abb_2020_108365
crossref_primary_10_3389_fgene_2023_1093882
crossref_primary_10_1016_j_canlet_2022_215761
crossref_primary_10_2147_DMSO_S269916
crossref_primary_10_1016_j_bbrc_2020_08_032
crossref_primary_10_1074_jbc_RA120_015020
crossref_primary_10_1096_fj_202300850RR
crossref_primary_10_1111_ocr_12620
crossref_primary_10_3390_metabo11090574
crossref_primary_10_1016_j_ejphar_2023_175682
crossref_primary_10_1002_1873_3468_13430
crossref_primary_10_1016_j_ejphar_2019_05_029
crossref_primary_10_1016_j_yjmcc_2023_12_008
crossref_primary_10_7554_eLife_72989
Cites_doi 10.1038/343425a0
10.1016/j.taap.2007.05.013
10.1016/S0195-668X(02)00419-0
10.1177/2047487314550804
10.1161/ATVBAHA.111.240754
10.1038/sj.leu.2402476
10.1172/JCI13103
10.1073/pnas.0306743102
10.1016/j.yexcr.2017.02.034
10.2337/db11-0915
10.1016/S0022-2275(20)37830-5
10.1038/nrendo.2015.189
10.1111/j.1572-0241.2005.00234.x
10.1073/pnas.1118215109
10.1038/90984
10.1074/jbc.M113.536920
10.1016/j.bbrc.2015.09.065
10.1111/j.1365-2125.2012.04403.x
10.2337/diabetes.50.6.1440
10.1016/j.tips.2015.04.014
10.2337/db16-0212
10.1210/jc.2016-2466
10.1016/j.jacl.2013.04.001
10.1073/pnas.0702254104
10.1038/43448
10.1038/srep44841
10.1038/nrc.2016.76
10.1194/jlr.R700004-JLR200
10.1074/jbc.M113.534172
10.1016/j.cmet.2011.02.005
10.1016/j.jacl.2015.11.010
10.1042/BJ20101939
10.1900/RDS.2004.1.193
10.1101/gad.12.20.3168
10.1001/jama.289.13.1681
10.1074/jbc.M300043200
10.1016/j.intimp.2006.08.006
10.1038/ajg.2017.170
10.2337/db16-0213
10.1172/JCI7901
10.2337/diabetes.51.9.2727
10.1194/jlr.M300508-JLR200
10.1016/j.cell.2016.02.058
10.1038/nrc1751
10.1038/nm1262
10.1038/emboj.2011.277
10.1016/j.bbrc.2016.08.119
10.1007/s11886-013-0461-4
10.1038/nature06902
10.3389/fchem.2014.00050
10.1016/S0022-2275(20)41331-8
10.1038/nrd.2016.75
10.1016/j.metabol.2014.02.014
ContentType Journal Article
Copyright Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Authors 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.10.019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 191
ExternalDocumentID oai_doaj_org_article_23b8be0ca56a438e816ec0dc4f3f60a7
PMC6223239
30396151
10_1016_j_isci_2018_10_019
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AACTN
NPM
7X8
5PM
ID FETCH-LOGICAL-c578t-f5d9ea8ec5d391e6784339f6699ceac7d3f9c6d6e07dc20c6ba2f6c205e402693
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:19:11 EDT 2025
Thu Aug 21 18:19:54 EDT 2025
Fri Jul 11 04:14:58 EDT 2025
Mon Mar 03 15:04:21 EST 2025
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diabetology
Molecular Mechanism of Behavior
Pathophysiology
Specialized Functions of Cells
Language English
License Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-f5d9ea8ec5d391e6784339f6699ceac7d3f9c6d6e07dc20c6ba2f6c205e402693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ORCID 0000-0002-0099-2690
0000-0003-1283-147X
OpenAccessLink https://doaj.org/article/23b8be0ca56a438e816ec0dc4f3f60a7
PMID 30396151
PQID 2130302543
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_23b8be0ca56a438e816ec0dc4f3f60a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6223239
proquest_miscellaneous_2130302543
pubmed_primary_30396151
crossref_citationtrail_10_1016_j_isci_2018_10_019
crossref_primary_10_1016_j_isci_2018_10_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier
Publisher_xml – name: Elsevier
References Hegele (10.1016/j.isci.2018.10.019_bib23) 2007; 48
Guo (10.1016/j.isci.2018.10.019_bib22) 2012; 61
Moutinho (10.1016/j.isci.2018.10.019_bib32) 2017; 360
Eguchi (10.1016/j.isci.2018.10.019_bib14) 2011; 13
Goto (10.1016/j.isci.2018.10.019_bib19) 2011; 438
Guerra (10.1016/j.isci.2018.10.019_bib20) 2001; 108
Alizadeh (10.1016/j.isci.2018.10.019_bib1) 2017; 7
Bang (10.1016/j.isci.2018.10.019_bib3) 2014; 16
Bonetti (10.1016/j.isci.2018.10.019_bib5) 2003; 24
Tanoli (10.1016/j.isci.2018.10.019_bib43) 2004; 45
Krause (10.1016/j.isci.2018.10.019_bib26) 1984; 25
Ebihara (10.1016/j.isci.2018.10.019_bib13) 2001; 50
Guo (10.1016/j.isci.2018.10.019_bib21) 2007; 104
Shimomura (10.1016/j.isci.2018.10.019_bib40) 1999; 401
Softic (10.1016/j.isci.2018.10.019_bib41) 2016; 65
Fasshauer (10.1016/j.isci.2018.10.019_bib15) 2015; 36
Gavrilova (10.1016/j.isci.2018.10.019_bib17) 2000; 105
Mullen (10.1016/j.isci.2018.10.019_bib33) 2016; 16
Kusminski (10.1016/j.isci.2018.10.019_bib27) 2016; 15
Demierre (10.1016/j.isci.2018.10.019_bib12) 2005; 5
Moitra (10.1016/j.isci.2018.10.019_bib31) 1998; 12
Brown (10.1016/j.isci.2018.10.019_bib8) 2016; 101
van der Burgh (10.1016/j.isci.2018.10.019_bib47) 2014; 289
Yu (10.1016/j.isci.2018.10.019_bib52) 2011; 30
Auer (10.1016/j.isci.2018.10.019_bib2) 2016; 23
Kamal (10.1016/j.isci.2018.10.019_bib25) 2017; 112
Bays (10.1016/j.isci.2018.10.019_bib4) 2013; 7
Jones (10.1016/j.isci.2018.10.019_bib24) 2005; 102
Yeh (10.1016/j.isci.2018.10.019_bib51) 2016; 478
Yamauchi (10.1016/j.isci.2018.10.019_bib50) 2001; 7
Colombo (10.1016/j.isci.2018.10.019_bib11) 2002; 51
Spalding (10.1016/j.isci.2018.10.019_bib42) 2008; 453
Thompson (10.1016/j.isci.2018.10.019_bib45) 2003; 289
Osaki (10.1016/j.isci.2018.10.019_bib36) 2015; 466
Gavrilova (10.1016/j.isci.2018.10.019_bib16) 2003; 278
Pajvani (10.1016/j.isci.2018.10.019_bib37) 2005; 11
No (10.1016/j.isci.2018.10.019_bib35) 2012; 109
Shamir (10.1016/j.isci.2018.10.019_bib39) 2016; 164
Goldstein (10.1016/j.isci.2018.10.019_bib18) 1990; 343
Boucher (10.1016/j.isci.2018.10.019_bib6) 2016; 65
Chao (10.1016/j.isci.2018.10.019_bib10) 2004; 1
Tavintharan (10.1016/j.isci.2018.10.019_bib44) 2007; 223
Tristano (10.1016/j.isci.2018.10.019_bib46) 2006; 6
Nagashima (10.1016/j.isci.2018.10.019_bib34) 2012; 32
Casey (10.1016/j.isci.2018.10.019_bib9) 1992; 33
Li (10.1016/j.isci.2018.10.019_bib29) 2014; 289
Wong (10.1016/j.isci.2018.10.019_bib49) 2002; 16
Zaharan (10.1016/j.isci.2018.10.019_bib53) 2013; 75
Brault (10.1016/j.isci.2018.10.019_bib7) 2014; 63
Park (10.1016/j.isci.2018.10.019_bib38) 2014; 2
Ludtke (10.1016/j.isci.2018.10.019_bib30) 2005; 100
Wadhera (10.1016/j.isci.2018.10.019_bib48) 2016; 10
Lackey (10.1016/j.isci.2018.10.019_bib28) 2016; 12
References_xml – volume: 343
  start-page: 425
  year: 1990
  ident: 10.1016/j.isci.2018.10.019_bib18
  article-title: Regulation of the mevalonate pathway
  publication-title: Nature
  doi: 10.1038/343425a0
– volume: 223
  start-page: 173
  year: 2007
  ident: 10.1016/j.isci.2018.10.019_bib44
  article-title: Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: a possible role in statin-induced hepatotoxicity?
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2007.05.013
– volume: 24
  start-page: 225
  year: 2003
  ident: 10.1016/j.isci.2018.10.019_bib5
  article-title: Statin effects beyond lipid lowering–are they clinically relevant?
  publication-title: Eur. Heart J.
  doi: 10.1016/S0195-668X(02)00419-0
– volume: 23
  start-page: 88
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib2
  article-title: Muscle- and skeletal-related side-effects of statins: tip of the iceberg?
  publication-title: Eur. J. Prev. Cardiol.
  doi: 10.1177/2047487314550804
– volume: 32
  start-page: 1824
  year: 2012
  ident: 10.1016/j.isci.2018.10.019_bib34
  article-title: Liver-specific deletion of 3-hydroxy-3-methylglutaryl coenzyme A reductase causes hepatic steatosis and death
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.111.240754
– volume: 16
  start-page: 508
  year: 2002
  ident: 10.1016/j.isci.2018.10.019_bib49
  article-title: HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2402476
– volume: 108
  start-page: 1205
  year: 2001
  ident: 10.1016/j.isci.2018.10.019_bib20
  article-title: Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI13103
– volume: 102
  start-page: 6207
  year: 2005
  ident: 10.1016/j.isci.2018.10.019_bib24
  article-title: Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0306743102
– volume: 360
  start-page: 55
  year: 2017
  ident: 10.1016/j.isci.2018.10.019_bib32
  article-title: The mevalonate pathway in neurons: it's not just about cholesterol
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2017.02.034
– volume: 61
  start-page: 2414
  year: 2012
  ident: 10.1016/j.isci.2018.10.019_bib22
  article-title: Myostatin inhibition prevents diabetes and hyperphagia in a mouse model of lipodystrophy
  publication-title: Diabetes
  doi: 10.2337/db11-0915
– volume: 25
  start-page: 97
  year: 1984
  ident: 10.1016/j.isci.2018.10.019_bib26
  article-title: Adipose tissue and cholesterol metabolism
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)37830-5
– volume: 12
  start-page: 15
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib28
  article-title: Regulation of metabolism by the innate immune system
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2015.189
– volume: 100
  start-page: 2218
  year: 2005
  ident: 10.1016/j.isci.2018.10.019_bib30
  article-title: Hepatic steatosis in Dunnigan-type familial partial lipodystrophy
  publication-title: Am. J. Gastroenterol.
  doi: 10.1111/j.1572-0241.2005.00234.x
– volume: 109
  start-page: 4058
  year: 2012
  ident: 10.1016/j.isci.2018.10.019_bib35
  article-title: Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1118215109
– volume: 7
  start-page: 941
  year: 2001
  ident: 10.1016/j.isci.2018.10.019_bib50
  article-title: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
  publication-title: Nat. Med.
  doi: 10.1038/90984
– volume: 289
  start-page: 5000
  year: 2014
  ident: 10.1016/j.isci.2018.10.019_bib47
  article-title: Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.536920
– volume: 466
  start-page: 536
  year: 2015
  ident: 10.1016/j.isci.2018.10.019_bib36
  article-title: Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: a model for statin-induced myopathy
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.09.065
– volume: 75
  start-page: 1118
  year: 2013
  ident: 10.1016/j.isci.2018.10.019_bib53
  article-title: Statins and risk of treated incident diabetes in a primary care population
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/j.1365-2125.2012.04403.x
– volume: 50
  start-page: 1440
  year: 2001
  ident: 10.1016/j.isci.2018.10.019_bib13
  article-title: Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.6.1440
– volume: 36
  start-page: 461
  year: 2015
  ident: 10.1016/j.isci.2018.10.019_bib15
  article-title: Adipokines in health and disease
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2015.04.014
– volume: 65
  start-page: 2201
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib6
  article-title: Differential roles of insulin and IGF-1 receptors in adipose tissue development and function
  publication-title: Diabetes
  doi: 10.2337/db16-0212
– volume: 101
  start-page: 4500
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib8
  article-title: The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2016-2466
– volume: 7
  start-page: 304
  year: 2013
  ident: 10.1016/j.isci.2018.10.019_bib4
  article-title: Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2013.04.001
– volume: 104
  start-page: 10022
  year: 2007
  ident: 10.1016/j.isci.2018.10.019_bib21
  article-title: Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0702254104
– volume: 401
  start-page: 73
  year: 1999
  ident: 10.1016/j.isci.2018.10.019_bib40
  article-title: Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy
  publication-title: Nature
  doi: 10.1038/43448
– volume: 7
  start-page: 44841
  year: 2017
  ident: 10.1016/j.isci.2018.10.019_bib1
  article-title: Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep44841
– volume: 16
  start-page: 718
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib33
  article-title: The interplay between cell signalling and the mevalonate pathway in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.76
– volume: 48
  start-page: 1433
  year: 2007
  ident: 10.1016/j.isci.2018.10.019_bib23
  article-title: Thematic review series: adipocyte Biology. Lipodystrophies: windows on adipose biology and metabolism
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R700004-JLR200
– volume: 289
  start-page: 747
  year: 2014
  ident: 10.1016/j.isci.2018.10.019_bib29
  article-title: De novo synthesis of steroids and oxysterols in adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.534172
– volume: 13
  start-page: 249
  year: 2011
  ident: 10.1016/j.isci.2018.10.019_bib14
  article-title: Transcriptional control of adipose lipid handling by IRF4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.02.005
– volume: 10
  start-page: 472
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib48
  article-title: A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2015.11.010
– volume: 438
  start-page: 111
  year: 2011
  ident: 10.1016/j.isci.2018.10.019_bib19
  article-title: Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARgamma agonist
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101939
– volume: 1
  start-page: 193
  year: 2004
  ident: 10.1016/j.isci.2018.10.019_bib10
  article-title: A case of acquired generalized lipodystrophy with cerebellar degeneration and type 2 diabetes mellitus. The review of diabetic studies
  publication-title: Rev. Diabet. Stud.
  doi: 10.1900/RDS.2004.1.193
– volume: 12
  start-page: 3168
  year: 1998
  ident: 10.1016/j.isci.2018.10.019_bib31
  article-title: Life without white fat: a transgenic mouse
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.20.3168
– volume: 289
  start-page: 1681
  year: 2003
  ident: 10.1016/j.isci.2018.10.019_bib45
  article-title: Statin-associated myopathy
  publication-title: JAMA
  doi: 10.1001/jama.289.13.1681
– volume: 278
  start-page: 34268
  year: 2003
  ident: 10.1016/j.isci.2018.10.019_bib16
  article-title: Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300043200
– volume: 6
  start-page: 1833
  year: 2006
  ident: 10.1016/j.isci.2018.10.019_bib46
  article-title: Immunomodulatory effects of statins and autoimmune rheumatic diseases: novel intracellular mechanism involved
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2006.08.006
– volume: 112
  start-page: 1495
  year: 2017
  ident: 10.1016/j.isci.2018.10.019_bib25
  article-title: Beneficial effects of statins on the rates of hepatic fibrosis, hepatic decompensation, and mortality in chronic liver disease: a systematic review and meta-analysis
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2017.170
– volume: 65
  start-page: 2187
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib41
  article-title: Lipodystrophy due to adipose tissue-specific insulin receptor knockout results in progressive NAFLD
  publication-title: Diabetes
  doi: 10.2337/db16-0213
– volume: 105
  start-page: 271
  year: 2000
  ident: 10.1016/j.isci.2018.10.019_bib17
  article-title: Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI7901
– volume: 51
  start-page: 2727
  year: 2002
  ident: 10.1016/j.isci.2018.10.019_bib11
  article-title: Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.9.2727
– volume: 45
  start-page: 941
  year: 2004
  ident: 10.1016/j.isci.2018.10.019_bib43
  article-title: Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M300508-JLR200
– volume: 164
  start-page: 1302
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib39
  article-title: SnapShot: timescales in cell biology
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.058
– volume: 5
  start-page: 930
  year: 2005
  ident: 10.1016/j.isci.2018.10.019_bib12
  article-title: Statins and cancer prevention
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1751
– volume: 11
  start-page: 797
  year: 2005
  ident: 10.1016/j.isci.2018.10.019_bib37
  article-title: Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy
  publication-title: Nat. Med.
  doi: 10.1038/nm1262
– volume: 30
  start-page: 3754
  year: 2011
  ident: 10.1016/j.isci.2018.10.019_bib52
  article-title: Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.277
– volume: 478
  start-page: 1317
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib51
  article-title: Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.08.119
– volume: 16
  start-page: 461
  year: 2014
  ident: 10.1016/j.isci.2018.10.019_bib3
  article-title: Statin treatment, new-onset diabetes, and other adverse effects: a systematic review
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-013-0461-4
– volume: 453
  start-page: 783
  year: 2008
  ident: 10.1016/j.isci.2018.10.019_bib42
  article-title: Dynamics of fat cell turnover in humans
  publication-title: Nature
  doi: 10.1038/nature06902
– volume: 2
  start-page: 50
  year: 2014
  ident: 10.1016/j.isci.2018.10.019_bib38
  article-title: Human isoprenoid synthase enzymes as therapeutic targets
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2014.00050
– volume: 33
  start-page: 1731
  year: 1992
  ident: 10.1016/j.isci.2018.10.019_bib9
  article-title: Biochemistry of protein prenylation
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)41331-8
– volume: 15
  start-page: 639
  year: 2016
  ident: 10.1016/j.isci.2018.10.019_bib27
  article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.75
– volume: 63
  start-page: 735
  year: 2014
  ident: 10.1016/j.isci.2018.10.019_bib7
  article-title: Statin treatment and new-onset diabetes: a review of proposed mechanisms
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.02.014
SSID ssj0002002496
Score 2.2831044
Snippet The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however,...
The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 175
Title The Mevalonate Pathway Is Indispensable for Adipocyte Survival
URI https://www.ncbi.nlm.nih.gov/pubmed/30396151
https://www.proquest.com/docview/2130302543
https://pubmed.ncbi.nlm.nih.gov/PMC6223239
https://doaj.org/article/23b8be0ca56a438e816ec0dc4f3f60a7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA_iky-i-FW_qOCbVNOmSZsXYYpDBUXQwd5Kmg-cSDfchuy_9y7tRieiL76VNEnD3SV319z9jpBTVuaOZ1RHiTE0SlVpojw1ZcRcopgTlufaR_k-itteet_n_VapL4wJq-GBa8JdJDBbaalWXKiU5TaPhdXU6NTBVFT5PHLQeS1n6s1fryEUnq8sxzEmCESzyZipg7sw4xXjuvJzDO1CmJ2WVvLg_T9ZnN8DJ1uaqLtB1hsTMuzUS98kK7baIpfA7_ABsbvxd7gNn8Cy-1Sz8G4c3lVmMB6Bu4pZUiEYqWHHDEZDPYNuz1M4KmDQNul1b16ub6OmNkKkYY9NIseNtCq3mhsmYwsqJ2VMOiGk1HCWZoY5qYURlmZGJ1SLUiVOwBO34DEKyXbIajWs7B4J89hRqlRMFXcpBw9DqASOQKeMy0rGsoDEc9oUugEOx_oV78U8QuytQHoWSE9sA3oG5GwxZlTDZvza-wpJvuiJkNe-AQShaASh-EsQAnIyZ1gBWwTvPVRlh9NxkaCe9ln_AdmtGbj4FLyRaNQFJFti7dJalt9Ug1cPwy3AskqY3P-PxR-QNaRHjSl5SFYnH1N7BNbOpDz2gv0FCXn9Og
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mevalonate+Pathway+Is+Indispensable+for+Adipocyte+Survival&rft.jtitle=iScience&rft.au=Yeh%2C+Yu-Sheng&rft.au=Jheng%2C+Huei-Fen&rft.au=Iwase%2C+Mari&rft.au=Kim%2C+Minji&rft.date=2018-11-30&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=9&rft.spage=175&rft.epage=191&rft_id=info:doi/10.1016%2Fj.isci.2018.10.019&rft_id=info%3Apmid%2F30396151&rft.externalDocID=PMC6223239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon