Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor

Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 14902 - 10
Main Authors Xu, Shicai, Zhan, Jian, Man, Baoyuan, Jiang, Shouzhen, Yue, Weiwei, Gao, Shoubao, Guo, Chengang, Liu, Hanping, Li, Zhenhua, Wang, Jihua, Zhou, Yaoqi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.03.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level.
AbstractList Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level.
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level.
ArticleNumber 14902
Author Wang, Jihua
Gao, Shoubao
Zhan, Jian
Li, Zhenhua
Zhou, Yaoqi
Xu, Shicai
Liu, Hanping
Yue, Weiwei
Guo, Chengang
Jiang, Shouzhen
Man, Baoyuan
Author_xml – sequence: 1
  givenname: Shicai
  surname: Xu
  fullname: Xu, Shicai
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University
– sequence: 2
  givenname: Jian
  surname: Zhan
  fullname: Zhan, Jian
  organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University
– sequence: 3
  givenname: Baoyuan
  surname: Man
  fullname: Man, Baoyuan
  organization: School of Physics and Electronics, Shandong Normal University
– sequence: 4
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  organization: School of Physics and Electronics, Shandong Normal University
– sequence: 5
  givenname: Weiwei
  surname: Yue
  fullname: Yue, Weiwei
  organization: School of Physics and Electronics, Shandong Normal University
– sequence: 6
  givenname: Shoubao
  surname: Gao
  fullname: Gao, Shoubao
  organization: School of Physics and Electronics, Shandong Normal University
– sequence: 7
  givenname: Chengang
  surname: Guo
  fullname: Guo, Chengang
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University
– sequence: 8
  givenname: Hanping
  surname: Liu
  fullname: Liu, Hanping
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University
– sequence: 9
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University
– sequence: 10
  givenname: Jihua
  surname: Wang
  fullname: Wang, Jihua
  email: jhw25336@126.com
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University
– sequence: 11
  givenname: Yaoqi
  surname: Zhou
  fullname: Zhou, Yaoqi
  email: yaoqi.zhou@griffith.edu.au
  organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Institute for Glycomics and School of Information and Communication Technology, Griffith University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28322227$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAQgC1UREvpiTuKxAUJAn4kG-eCVJVXpQok1Ls1sSdZL4692AlS-fV4N6XaVuCLrfHnzzMePyVHPngk5DmjbxkV8p3XYRwTq1rKH5ETTitWsoaLo4P1MTlLaUPzEC2TVfWEHHMpeB7NCYnfEVw52RGLiM5C57AwOGEcrYfJBl-EvuisN9YPxQ_rcbI67WIfvp4X65suWmN_L-CcdgwU4-wmW-o1eI-uGCJs1-gxS0JCn0J8Rh734BKe3c6n5PrTx-uLL-XVt8-XF-dXpa4bOZWGUqhAdqYTdd-aXtZM1qtaNCKH-KprWQ-MNboFzmgLQtIOpK6lkMZo6MUpuVy0JsBGbaMdId6oAFbtAyEOCmKuxqECQG5MJVpR9RWrQfKup1Rzhgx4zVl2vV9c27kb0Wj0UwR3T3p_x9u1GsIvVYtVVdEmC17dCmL4OWOa1GiTRufAY5iTYrJpVw0TcnfXywfoJszR55faU2JFc4mZenGY0V0qfzubgdcLoGNIKWJ_hzCqdl9HHXydTLMHtLbTvq25HOv-c-bNciZlsx8wHiT6D_wP-P3YpQ
CitedBy_id crossref_primary_10_1016_j_electacta_2024_145146
crossref_primary_10_1021_acsami_3c00202
crossref_primary_10_1021_acsomega_0c03917
crossref_primary_10_1016_j_talanta_2021_123197
crossref_primary_10_1021_acsnano_3c02537
crossref_primary_10_1039_C9NA00625G
crossref_primary_10_1021_acs_nanolett_0c01971
crossref_primary_10_1016_j_cej_2024_155355
crossref_primary_10_1038_s41377_018_0066_1
crossref_primary_10_1021_acs_nanolett_4c02518
crossref_primary_10_1149_1945_7111_ace336
crossref_primary_10_1364_OE_27_003000
crossref_primary_10_1515_revic_2023_0033
crossref_primary_10_1038_s41598_021_89367_1
crossref_primary_10_1364_PRJ_416815
crossref_primary_10_1039_D3AY02044D
crossref_primary_10_1016_j_snb_2018_02_149
crossref_primary_10_1021_acs_analchem_0c05245
crossref_primary_10_1038_s41467_018_07947_8
crossref_primary_10_1088_1367_2630_ac2e82
crossref_primary_10_1002_advs_201903003
crossref_primary_10_1002_smll_202202622
crossref_primary_10_1021_acsomega_3c03184
crossref_primary_10_1088_1361_648X_adb2d0
crossref_primary_10_1021_acs_jpcc_7b11128
crossref_primary_10_1016_j_snb_2020_128991
crossref_primary_10_1021_acsami_7b14820
crossref_primary_10_1142_S1793292020500393
crossref_primary_10_1039_C9NR02797A
crossref_primary_10_1021_acs_nanolett_9b02939
crossref_primary_10_1021_acsanm_3c00689
crossref_primary_10_1016_j_arabjc_2019_01_007
crossref_primary_10_1063_5_0024508
crossref_primary_10_1016_j_cej_2022_138228
crossref_primary_10_1155_2018_8146765
crossref_primary_10_1039_D3RA05932D
crossref_primary_10_3390_nano10030500
crossref_primary_10_1002_advs_202401796
crossref_primary_10_1038_s41563_024_01970_5
crossref_primary_10_1088_1361_6463_ab0f69
crossref_primary_10_1039_D1AN00394A
crossref_primary_10_1021_acs_nanolett_4c03989
crossref_primary_10_1007_s12274_018_2209_3
crossref_primary_10_1038_s41467_023_39721_w
crossref_primary_10_1002_inf2_12114
crossref_primary_10_1021_acsaelm_9b00840
crossref_primary_10_1002_adfm_201701837
crossref_primary_10_1021_acs_jpcc_0c01734
crossref_primary_10_3389_fphy_2023_1202132
crossref_primary_10_1021_acs_analchem_2c04433
crossref_primary_10_3389_fnins_2017_00466
crossref_primary_10_1002_elps_201900066
crossref_primary_10_1021_acs_analchem_1c00341
crossref_primary_10_1002_adma_202304119
crossref_primary_10_1088_1361_6463_aadcca
crossref_primary_10_1016_j_carbon_2021_06_003
crossref_primary_10_1039_D2SD00076H
crossref_primary_10_1021_acs_analchem_3c01257
crossref_primary_10_1186_s40824_021_00205_x
crossref_primary_10_35848_1347_4065_ad0c45
crossref_primary_10_1021_acsanm_1c03520
crossref_primary_10_1007_s11467_023_1281_7
crossref_primary_10_1016_j_carbon_2018_01_078
crossref_primary_10_1039_D3NA01112G
crossref_primary_10_1007_s00604_024_06345_w
crossref_primary_10_1038_s41467_017_01635_9
crossref_primary_10_1002_adfm_202405471
crossref_primary_10_3390_s17102161
crossref_primary_10_1002_anbr_202100140
crossref_primary_10_1039_C7TC04819J
crossref_primary_10_1021_acs_analchem_0c04105
crossref_primary_10_1016_j_snb_2019_01_133
crossref_primary_10_3390_cryst13020359
crossref_primary_10_3390_nano10081468
crossref_primary_10_3389_fbioe_2018_00029
crossref_primary_10_1016_j_isci_2021_103513
crossref_primary_10_1021_acssensors_0c01641
crossref_primary_10_1039_D2DT02630A
crossref_primary_10_1088_1361_6463_ab550b
crossref_primary_10_1088_1361_6528_abb7b5
crossref_primary_10_1016_j_snb_2023_134278
crossref_primary_10_3390_bios11110434
crossref_primary_10_1016_j_compbiomed_2021_104707
crossref_primary_10_1021_acsanm_4c06500
crossref_primary_10_1016_j_molliq_2024_126039
crossref_primary_10_1021_acs_accounts_4c00721
crossref_primary_10_1002_smll_202103983
crossref_primary_10_1016_j_talanta_2020_121766
crossref_primary_10_3390_bios11080273
crossref_primary_10_3390_nano14242014
crossref_primary_10_7567_1347_4065_ab0b37
crossref_primary_10_1016_j_ijbiomac_2018_05_216
crossref_primary_10_1021_acsami_7b13411
crossref_primary_10_1021_acsnano_3c11832
crossref_primary_10_3390_nano9081154
crossref_primary_10_1007_s11051_021_05295_1
crossref_primary_10_1021_acs_analchem_2c03399
crossref_primary_10_1021_acsomega_0c04429
crossref_primary_10_1021_acsanm_4c02932
crossref_primary_10_1039_D1RA04917H
crossref_primary_10_1364_OE_394564
crossref_primary_10_1063_5_0146656
crossref_primary_10_1016_j_apsusc_2017_09_113
crossref_primary_10_1021_acs_analchem_1c03129
crossref_primary_10_1515_nanoph_2022_0439
crossref_primary_10_1021_acsami_9b18973
crossref_primary_10_1021_acs_analchem_1c05309
crossref_primary_10_1088_2053_1583_ab41e0
crossref_primary_10_3390_molecules28124833
crossref_primary_10_1021_acs_nanolett_3c02915
crossref_primary_10_1002_elan_202100451
crossref_primary_10_1021_acsnano_0c04421
crossref_primary_10_1039_D4NR03852E
crossref_primary_10_1007_s10008_018_04172_7
crossref_primary_10_3390_bios12111050
crossref_primary_10_1088_1361_6528_abc0c8
crossref_primary_10_1016_j_snb_2018_05_099
crossref_primary_10_1016_j_mee_2022_111835
crossref_primary_10_1021_acs_analchem_1c04466
crossref_primary_10_1364_AO_397625
crossref_primary_10_46670_JSST_2024_33_3_139
crossref_primary_10_1016_j_ejps_2019_105036
crossref_primary_10_1088_1742_6596_2829_1_012005
crossref_primary_10_1021_acsaelm_0c00095
crossref_primary_10_1038_s41467_021_25253_8
crossref_primary_10_1039_C9CS00438F
crossref_primary_10_1016_j_apsusc_2020_146839
crossref_primary_10_1002_admt_201900615
crossref_primary_10_1109_TNB_2022_3182587
crossref_primary_10_1016_j_revip_2020_100044
crossref_primary_10_1038_s41598_017_11387_7
crossref_primary_10_1016_j_rineng_2024_103800
crossref_primary_10_1063_5_0171364
crossref_primary_10_1021_acs_nanolett_3c00743
crossref_primary_10_1016_j_microc_2024_111346
crossref_primary_10_1016_j_microc_2023_108432
crossref_primary_10_1002_adsr_202400091
crossref_primary_10_1021_acs_nanolett_7b01803
crossref_primary_10_3390_nano14020166
crossref_primary_10_1002_adfm_202303832
crossref_primary_10_1021_acsnano_0c06392
crossref_primary_10_3390_s21041335
crossref_primary_10_1016_j_apsusc_2018_07_132
crossref_primary_10_1186_s11671_020_3245_y
crossref_primary_10_1002_celc_201800934
crossref_primary_10_1021_acs_chemrev_1c00845
crossref_primary_10_1016_j_bios_2019_04_054
crossref_primary_10_1021_acssensors_2c01990
crossref_primary_10_1063_5_0019621
crossref_primary_10_1186_s11671_024_04054_0
crossref_primary_10_1016_j_matdes_2022_110920
crossref_primary_10_1016_j_measurement_2022_112202
crossref_primary_10_1080_10408398_2023_2208677
crossref_primary_10_1021_acsaelm_2c00624
crossref_primary_10_1021_acs_chemrev_8b00311
crossref_primary_10_1021_acsami_8b15036
crossref_primary_10_1016_j_colsurfa_2022_128507
crossref_primary_10_1021_acs_langmuir_4c03420
crossref_primary_10_1002_adma_201802084
crossref_primary_10_1016_j_apsusc_2020_148374
crossref_primary_10_1016_j_orgel_2018_07_032
crossref_primary_10_1039_C8BM01636D
crossref_primary_10_1116_6_0003783
crossref_primary_10_1109_JIOT_2022_3153637
crossref_primary_10_1021_acsanm_0c00353
crossref_primary_10_1002_aelm_202001214
crossref_primary_10_1016_j_snb_2019_02_021
crossref_primary_10_1063_1_5126452
crossref_primary_10_1016_j_apsusc_2020_145409
crossref_primary_10_1016_j_snb_2024_135672
crossref_primary_10_3390_mi11020220
crossref_primary_10_1016_j_prp_2023_154812
crossref_primary_10_1109_JSEN_2020_3043149
crossref_primary_10_1007_s41664_021_00201_z
crossref_primary_10_1039_C8OB00213D
crossref_primary_10_1149_1945_7111_ac4f24
crossref_primary_10_3390_nano14020226
crossref_primary_10_1016_j_vibspec_2018_07_010
crossref_primary_10_1021_acsanm_2c00665
crossref_primary_10_1021_acsnano_1c07094
crossref_primary_10_3390_s20123442
crossref_primary_10_1051_bioconf_20213002007
crossref_primary_10_1088_1361_6528_ab0f52
crossref_primary_10_1016_j_snb_2018_12_129
crossref_primary_10_1007_s40843_020_1577_y
crossref_primary_10_1016_j_apsusc_2019_05_181
crossref_primary_10_1002_cbic_202200282
crossref_primary_10_1007_s00216_021_03722_9
crossref_primary_10_3390_met11122054
crossref_primary_10_1021_acs_nanolett_2c00415
crossref_primary_10_1007_s11468_020_01313_5
crossref_primary_10_1021_acssensors_8b01604
crossref_primary_10_1093_nsr_nwae118
crossref_primary_10_1002_smll_202308857
crossref_primary_10_1021_acsanm_0c01457
crossref_primary_10_1021_jacs_2c06623
crossref_primary_10_3390_bios13121029
crossref_primary_10_1063_5_0056413
crossref_primary_10_1109_TCOMM_2024_3376593
crossref_primary_10_1039_D0AN00251H
crossref_primary_10_1039_D0NR03125A
crossref_primary_10_1088_1361_6528_ab98bc
crossref_primary_10_3390_nano11020545
crossref_primary_10_1016_j_measurement_2024_115499
crossref_primary_10_1109_JPROC_2019_2916081
crossref_primary_10_1021_acs_jpcc_4c00533
crossref_primary_10_1007_s00604_020_04630_y
crossref_primary_10_1039_D0SC00741B
crossref_primary_10_1039_D1AY00101A
crossref_primary_10_1038_s41467_020_18604_4
crossref_primary_10_1021_acsabm_4c01263
crossref_primary_10_1038_s41598_021_98609_1
crossref_primary_10_3390_nano9030374
crossref_primary_10_3390_electronics11203345
crossref_primary_10_1016_j_nantod_2021_101287
crossref_primary_10_1021_acsnano_0c02439
crossref_primary_10_1002_mds3_10121
crossref_primary_10_1038_s41596_023_00830_x
crossref_primary_10_1186_s11671_019_3048_1
crossref_primary_10_1021_acs_analchem_1c04781
crossref_primary_10_1088_2053_1583_ab6e88
crossref_primary_10_3390_bios14100465
crossref_primary_10_3390_s23063230
crossref_primary_10_20964_2020_02_62
crossref_primary_10_1016_j_snb_2020_128935
crossref_primary_10_1016_j_apsusc_2019_144303
crossref_primary_10_1039_C9AN00993K
crossref_primary_10_1021_acssensors_4c00322
crossref_primary_10_1016_j_cej_2025_159386
crossref_primary_10_1142_S1793292019300093
crossref_primary_10_1039_C9RA04302K
crossref_primary_10_1002_aisy_202000156
crossref_primary_10_1016_j_chemphys_2020_111048
crossref_primary_10_3390_chemosensors11020083
crossref_primary_10_1002_ange_202101261
crossref_primary_10_1016_j_snb_2018_05_043
crossref_primary_10_3390_bios13100925
crossref_primary_10_1016_j_ijleo_2018_07_088
crossref_primary_10_1002_adma_202104608
crossref_primary_10_1002_admt_201800174
crossref_primary_10_1016_j_snb_2021_131033
crossref_primary_10_1016_j_snb_2023_134746
crossref_primary_10_1021_acsabm_2c01045
crossref_primary_10_1021_acs_nanolett_1c02748
crossref_primary_10_1016_j_snb_2023_133651
crossref_primary_10_1021_acsanm_2c05063
crossref_primary_10_1021_acsami_3c06866
crossref_primary_10_1021_acs_nanolett_8b00572
crossref_primary_10_1021_acs_analchem_3c02433
crossref_primary_10_1002_anie_202101261
crossref_primary_10_1007_s00339_023_06646_6
crossref_primary_10_1021_jacs_1c06325
crossref_primary_10_1088_2053_1583_ad4b36
crossref_primary_10_1093_nar_gkac1113
crossref_primary_10_1016_j_surfcoat_2017_06_083
crossref_primary_10_1002_adfm_202213277
crossref_primary_10_3390_bios12050279
crossref_primary_10_1016_j_bios_2020_112128
crossref_primary_10_1016_j_snb_2020_128432
crossref_primary_10_1039_D4SD00317A
crossref_primary_10_1080_15421406_2019_1648052
crossref_primary_10_3390_s20040991
crossref_primary_10_1016_j_bios_2020_112123
crossref_primary_10_1016_j_apsusc_2020_145331
crossref_primary_10_1039_C9RA03765A
crossref_primary_10_1039_C7RA08246K
crossref_primary_10_3390_app142210109
crossref_primary_10_1002_adma_202304410
crossref_primary_10_3390_antiox10050765
crossref_primary_10_1016_j_bios_2018_04_053
crossref_primary_10_1039_D1SD00036E
crossref_primary_10_1021_acsomega_9b01975
crossref_primary_10_1093_nar_gkac1221
crossref_primary_10_1364_OE_385128
crossref_primary_10_1093_nar_gky1188
crossref_primary_10_1149_2_1231906jes
crossref_primary_10_1053_j_gastro_2020_02_033
crossref_primary_10_1021_acs_jpcb_0c09723
crossref_primary_10_1038_s41598_023_46164_2
crossref_primary_10_1016_j_snb_2020_128445
crossref_primary_10_1016_j_talanta_2021_122726
crossref_primary_10_1021_acsbiomaterials_8b00376
crossref_primary_10_1016_j_aca_2019_12_073
crossref_primary_10_1021_acsami_7b06490
crossref_primary_10_1039_D3NR01239E
crossref_primary_10_1021_acsanm_9b00350
crossref_primary_10_1021_acs_langmuir_1c00467
crossref_primary_10_1016_j_biortech_2025_132215
crossref_primary_10_1002_smtd_202401102
crossref_primary_10_1021_acssensors_8b00344
crossref_primary_10_3390_polym13010142
crossref_primary_10_1088_2632_959X_ab85b4
crossref_primary_10_1016_j_saa_2025_125797
crossref_primary_10_1142_S1793292024300056
crossref_primary_10_1016_j_mtcomm_2018_12_008
crossref_primary_10_1002_smll_202408961
crossref_primary_10_1080_05704928_2021_1910286
crossref_primary_10_3390_bios11060194
crossref_primary_10_1021_acs_nanolett_8b03818
crossref_primary_10_1021_acs_analchem_2c05398
crossref_primary_10_1021_acsanm_0c02482
crossref_primary_10_1002_advs_202305347
crossref_primary_10_1021_acssensors_4c03073
crossref_primary_10_1088_1361_6528_ad4e3d
crossref_primary_10_1021_acs_analchem_1c03786
crossref_primary_10_1038_s41528_022_00149_9
crossref_primary_10_1093_nar_gkac465
crossref_primary_10_1021_acs_analchem_8b02630
Cites_doi 10.1021/nl400976s
10.1006/abio.1999.4344
10.3109/07388551.2013.778228
10.1073/pnas.1018388108
10.1038/ncomms6461
10.7567/JJAP.52.110107
10.1002/anie.201102776
10.1504/IJENVH.2015.073210
10.1016/j.jbiotec.2012.03.024
10.1002/smll.200902379
10.2217/nnm.13.156
10.1038/nnano.2012.82
10.1038/nbt1138
10.1080/05704928.2014.923902
10.1021/nn301359y
10.1016/j.ssc.2008.02.024
10.1007/s00439-012-1188-9
10.1021/nl502366e
10.1016/j.bios.2010.01.009
10.1016/j.snb.2015.08.009
10.1038/ncomms7563
10.1039/C4CS00519H
10.1021/acs.chemrev.5b00608
10.1038/nrd838
10.1016/j.bios.2015.07.002
10.1166/jnn.2011.3885
10.1088/0957-4484/24/35/355502
10.1103/PhysRevB.75.205441
10.1021/nl034853b
10.1021/acsnano.5b05709
10.1021/jp301542w
10.1038/nchem.1589
10.1038/nmat1967
10.1038/ncomms5866
10.1002/adfm.201000724
10.1126/science.1234414
10.1038/srep10546
10.1126/science.1243879
10.1016/j.cell.2015.05.015
10.1038/ncomms1767
10.1126/science.1069883
10.1021/nl071792z
10.1038/nphys1689
10.1093/nar/gnh067
10.1093/dnares/2.6.285
10.1038/nature04235
10.1039/b816556d
10.1038/nnano.2010.89
10.1073/pnas.0406368102
10.1103/PhysRevB.91.205413
10.1038/ncomms3225
10.1038/nbt0198-40
10.1021/ja104850n
10.1038/ncomms11800
10.1002/wnan.1235
10.1021/ja065923u
10.3390/s150510380
10.1016/j.mattod.2015.04.003
10.1038/ncomms3619
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Mar 2017
Copyright © 2017, The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Mar 2017
– notice: Copyright © 2017, The Author(s) 2017 The Author(s)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/ncomms14902
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological science database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_aae2dd43934f415a82bf00c21e1a2521
PMC5364407
4321031425
28322227
10_1038_ncomms14902
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c578t-d00a4a8bdb35f9df8518565373bdb26b91fa117c9a2109a380ba8c5838ddcaf3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:09 EDT 2025
Thu Aug 21 14:34:22 EDT 2025
Thu Jul 10 21:10:15 EDT 2025
Wed Aug 13 04:08:10 EDT 2025
Thu Apr 03 07:08:28 EDT 2025
Tue Jul 01 02:31:38 EDT 2025
Thu Apr 24 23:09:45 EDT 2025
Fri Feb 21 02:39:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-d00a4a8bdb35f9df8518565373bdb26b91fa117c9a2109a380ba8c5838ddcaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms14902
PMID 28322227
PQID 1879360838
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_aae2dd43934f415a82bf00c21e1a2521
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5364407
proquest_miscellaneous_1879671381
proquest_journals_1879360838
pubmed_primary_28322227
crossref_primary_10_1038_ncomms14902
crossref_citationtrail_10_1038_ncomms14902
springer_journals_10_1038_ncomms14902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-21
PublicationDateYYYYMMDD 2017-03-21
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang (CR33) 2016; 11
Henry, Stevens, Sun, Kelso (CR52) 1999; 276
Fernández-Rossier, Palacios, Brey (CR51) 2007; 75
Chhowalla (CR23) 2013; 5
Lin (CR45) 2010; 6
Ramsay (CR4) 1998; 16
Papadopoulou, Bell (CR42) 2011; 50
Stern (CR57) 2007; 7
Tang, Wang, Li (CR39) 2015; 44
Saltzgaber (CR36) 2013; 24
Ye (CR50) 2011; 108
Mu, Droujinine, Rajan, Sawtelle, Reed (CR17) 2014; 14
Palaniappan (CR10) 2010; 25
Mazzei (CR40) 2015; 7
Hahm, Lieber (CR13) 2004; 4
Zuccaro (CR37) 2015; 9
Ohno, Okamoto, Maehashi, Matsumoto (CR47) 2013; 52
Viswanathan (CR28) 2015; 18
Mannoor (CR34) 2012; 3
Veigas, Fortunato, Baptista (CR8) 2015; 15
Schwierz (CR25) 2010; 5
Bonanni, Chua, Zhao, Sofer, Pumera (CR56) 2012; 6
Bunimovich (CR14) 2006; 128
Nam (CR38) 2015; 5
Heller (CR49) 2010; 132
Duan (CR18) 2012; 7
Cooper (CR5) 2002; 1
Rakhilin (CR35) 2016; 7
Dankerl (CR48) 2010; 20
Schneider (CR30) 2013; 4
Guo (CR3) 2015; 161
Hao (CR59) 2013; 342
Zhang, Lieber (CR9) 2016; 116
Bolotin (CR24) 2008; 146
Gotoh, Hasegawa, Shinohara, Shimizu, Tosu (CR41) 1995; 2
Talari, Movasaghi, Rehman, Rehman (CR43) 2015; 50
Yu, Yao, Knoll (CR6) 2004; 32
Zhang (CR21) 2010; 6
Jiang (CR29) 2013; 4
Duan, Rajan, Izadi, Reed (CR58) 2013; 8
Zhang (CR55) 2012; 160
Ziegler, Koch, Krockenberger, Grosshennig (CR2) 2012; 131
Wang, Chen, Lin, Fang, Lieber (CR15) 2005; 102
Zheng, Patolsky, Cui, Wang, Lieber (CR16) 2005; 23
Liu (CR44) 2014; 5
Johnson-Buck, Nangreave, Jiang, Yan, Walter (CR53) 2013; 13
Ganguly (CR12) 2009; 19
Zhang, Tan, Stormer, Kim (CR20) 2005; 438
Xu (CR31) 2014; 5
Xu (CR60) 2016; 222
Ahmed, Saaem, Wu, Brown (CR1) 2014; 34
Okuda (CR11) 2012; 116
Schedin (CR26) 2007; 6
Guo (CR46) 2011; 11
Davidson (CR7) 2002; 295
Song (CR27) 2016; 76
Froehlicher, Berciaud (CR54) 2015; 91
Rajan, Duan, Reed (CR19) 2013; 5
Chang (CR22) 2013; 340
Dontschuk (CR32) 2015; 6
L Zuccaro (BFncomms14902_CR37) 2015; 9
S Okuda (BFncomms14902_CR11) 2012; 116
MA Cooper (BFncomms14902_CR5) 2002; 1
MU Ahmed (BFncomms14902_CR1) 2014; 34
MS Mannoor (BFncomms14902_CR34) 2012; 3
X Duan (BFncomms14902_CR58) 2013; 8
L Tang (BFncomms14902_CR39) 2015; 44
Y Zhang (BFncomms14902_CR21) 2010; 6
E Stern (BFncomms14902_CR57) 2007; 7
A Bonanni (BFncomms14902_CR56) 2012; 6
MR Henry (BFncomms14902_CR52) 1999; 276
NK Rajan (BFncomms14902_CR19) 2013; 5
F Schwierz (BFncomms14902_CR25) 2010; 5
M Chhowalla (BFncomms14902_CR23) 2013; 5
YL Bunimovich (BFncomms14902_CR14) 2006; 128
J Fernández-Rossier (BFncomms14902_CR51) 2007; 75
ACS Talari (BFncomms14902_CR43) 2015; 50
N Dontschuk (BFncomms14902_CR32) 2015; 6
KI Bolotin (BFncomms14902_CR24) 2008; 146
Y Liu (BFncomms14902_CR44) 2014; 5
F Yu (BFncomms14902_CR6) 2004; 32
EH Davidson (BFncomms14902_CR7) 2002; 295
J Ye (BFncomms14902_CR50) 2011; 108
WU Wang (BFncomms14902_CR15) 2005; 102
I Heller (BFncomms14902_CR49) 2010; 132
LY Mu (BFncomms14902_CR17) 2014; 14
XF Zhang (BFncomms14902_CR33) 2016; 11
N Rakhilin (BFncomms14902_CR35) 2016; 7
F Schedin (BFncomms14902_CR26) 2007; 6
G Xu (BFncomms14902_CR31) 2014; 5
G Zheng (BFncomms14902_CR16) 2005; 23
S Jiang (BFncomms14902_CR29) 2013; 4
E Papadopoulou (BFncomms14902_CR42) 2011; 50
AQ Zhang (BFncomms14902_CR9) 2016; 116
M Dankerl (BFncomms14902_CR48) 2010; 20
X Duan (BFncomms14902_CR18) 2012; 7
A Ziegler (BFncomms14902_CR2) 2012; 131
JA Lin (BFncomms14902_CR45) 2010; 6
GF Schneider (BFncomms14902_CR30) 2013; 4
Y Ohno (BFncomms14902_CR47) 2013; 52
S Viswanathan (BFncomms14902_CR28) 2015; 18
H Nam (BFncomms14902_CR38) 2015; 5
F Mazzei (BFncomms14902_CR40) 2015; 7
A Palaniappan (BFncomms14902_CR10) 2010; 25
D Zhang (BFncomms14902_CR55) 2012; 160
A Johnson-Buck (BFncomms14902_CR53) 2013; 13
Y Hao (BFncomms14902_CR59) 2013; 342
F Guo (BFncomms14902_CR3) 2015; 161
Y Song (BFncomms14902_CR27) 2016; 76
G Ramsay (BFncomms14902_CR4) 1998; 16
SC Xu (BFncomms14902_CR60) 2016; 222
B Veigas (BFncomms14902_CR8) 2015; 15
A Ganguly (BFncomms14902_CR12) 2009; 19
J Hahm (BFncomms14902_CR13) 2004; 4
Y Zhang (BFncomms14902_CR20) 2005; 438
SR Guo (BFncomms14902_CR46) 2011; 11
G Froehlicher (BFncomms14902_CR54) 2015; 91
G Saltzgaber (BFncomms14902_CR36) 2013; 24
M Gotoh (BFncomms14902_CR41) 1995; 2
CZ Chang (BFncomms14902_CR22) 2013; 340
25410480 - Nat Commun. 2014 Nov 20;5:5461
20129773 - Biosens Bioelectron. 2010 Apr 15;25(8):1989-93
12120258 - Nat Rev Drug Discov. 2002 Jul;1(7):515-28
26445172 - ACS Nano. 2015 Nov 24;9(11):11166-76
23701430 - Nano Lett. 2013 Jun 12;13(6):2754-9
21774045 - Angew Chem Int Ed Engl. 2011 Sep 19;50(39):9058-61
16170313 - Nat Biotechnol. 2005 Oct;23(10):1294-301
25164567 - Nano Lett. 2014 Sep 10;14(9):5315-22
8867803 - DNA Res. 1995 Dec 31;2(6):285-93
23897672 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Nov-Dec;5(6):629-45
21770172 - J Nanosci Nanotechnol. 2011 Jun;11(6):5258-63
17165787 - J Am Chem Soc. 2006 Dec 20;128(50):16323-31
23917462 - Nanotechnology. 2013 Sep 6;24(35):355502
20473987 - Small. 2010 May 21;6(10):1150-5
20512128 - Nat Nanotechnol. 2010 Jul;5(7):487-96
26014289 - Sci Rep. 2015 May 27;5:10546
9447591 - Nat Biotechnol. 1998 Jan;16(1):40-4
23887829 - Nat Commun. 2013;4:2225
23511414 - Nat Chem. 2013 Apr;5(4):263-75
26144837 - Chem Soc Rev. 2015 Oct 7;44(19):6954-80
21077655 - J Am Chem Soc. 2010 Dec 8;132(48):17149-56
10603244 - Anal Biochem. 1999 Dec 15;276(2):204-14
17914853 - Nano Lett. 2007 Nov;7(11):3405-9
16281031 - Nature. 2005 Nov 10;438(7065):201-4
26187396 - Biosens Bioelectron. 2016 Feb 15;76:195-212
27270085 - Nat Commun. 2016 Jun 07;7:11800
15716362 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3208-12
22635097 - Nat Nanotechnol. 2012 May 27;7(6):401-7
26691648 - Chem Rev. 2016 Jan 13;116(1):215-57
23607309 - Crit Rev Biotechnol. 2014 Jun;34(2):180-96
22752797 - Hum Genet. 2012 Oct;131(10):1627-38
24156488 - Nanomedicine (Lond). 2013 Nov;8(11):1839-51
25189574 - Nat Commun. 2014 Sep 05;5:4866
15155822 - Nucleic Acids Res. 2004 May 20;32(9):e75
25946631 - Sensors (Basel). 2015 May 04;15(5):10380-98
26046443 - Cell. 2015 Jun 4;161(6):1437-52
17660825 - Nat Mater. 2007 Sep;6(9):652-5
22453836 - Nat Commun. 2012 Mar 27;3:763
22498436 - J Biotechnol. 2012 Aug 31;160(3-4):123-8
24158906 - Science. 2013 Nov 8;342(6159):720-3
23493424 - Science. 2013 Apr 12;340(6129):167-70
25800494 - Nat Commun. 2015 Mar 24;6:6563
21828007 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13002-6
24126320 - Nat Commun. 2013;4:2619
11872831 - Science. 2002 Mar 1;295(5560):1669-78
22992186 - ACS Nano. 2012 Oct 23;6(10):8546-51
References_xml – volume: 23
  start-page: 1294
  year: 2005
  end-page: 1301
  ident: CR16
  article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays
  publication-title: Nat. Biotechnol.
– volume: 18
  start-page: 513
  year: 2015
  end-page: 522
  ident: CR28
  article-title: Graphene-protein field effect biosensors: glucose sensing
  publication-title: Mater. Today
– volume: 6
  start-page: 652
  year: 2007
  end-page: 655
  ident: CR26
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
– volume: 75
  start-page: 205441
  year: 2007
  ident: CR51
  article-title: Electronic structure of gated graphene and graphene ribbons
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 205413
  year: 2015
  ident: CR54
  article-title: Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 401
  year: 2012
  end-page: 407
  ident: CR18
  article-title: Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 2754
  year: 2013
  end-page: 2759
  ident: CR53
  article-title: Multifactorial modulation of binding and dissociation kinetics on two-dimensional DNA nanostructures
  publication-title: Nano Lett.
– volume: 4
  start-page: 2619
  year: 2013
  ident: CR30
  article-title: Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6563
  year: 2015
  ident: CR32
  article-title: A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases
  publication-title: Nat. Commun.
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR20
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
– volume: 32
  start-page: 75
  year: 2004
  ident: CR6
  article-title: Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS)
  publication-title: Nucl. Acids Res.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 5
  ident: CR33
  article-title: Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor
  publication-title: Front. Phys.
– volume: 6
  start-page: 8546
  year: 2012
  end-page: 8551
  ident: CR56
  article-title: Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection
  publication-title: ACS Nano
– volume: 52
  start-page: 110107
  year: 2013
  ident: CR47
  article-title: Direct electrical detection of DNA hybridization based on electrolyte-gated graphene field-effect transistor
  publication-title: Jpn J. Appl. Phys.
– volume: 116
  start-page: 19490
  year: 2012
  end-page: 19495
  ident: CR11
  article-title: Horizontally aligned carbon nanotubes on a quartz substrate for chemical and biological sensing
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 11166
  year: 2015
  end-page: 11176
  ident: CR37
  article-title: Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene
  publication-title: ACS Nano
– volume: 161
  start-page: 1437
  year: 2015
  end-page: 1452
  ident: CR3
  article-title: The Transcriptome and DNA methylome landscapes of human primordial germ cells
  publication-title: Cell
– volume: 295
  start-page: 1669
  year: 2002
  end-page: 1678
  ident: CR7
  article-title: A genomic regulatory network for development
  publication-title: Science
– volume: 342
  start-page: 720
  year: 2013
  end-page: 723
  ident: CR59
  article-title: The role of surface oxygen in the growth of large single-crystal graphene on copper
  publication-title: Science
– volume: 5
  start-page: 5461
  year: 2014
  ident: CR44
  article-title: Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers
  publication-title: Nat. Commun.
– volume: 16
  start-page: 40
  year: 1998
  end-page: 44
  ident: CR4
  article-title: DNA chips: state-of-the-art
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 584
  year: 2010
  end-page: 588
  ident: CR21
  article-title: Crossover of the three-dimensional topological insulator Bi Se to the two-dimensional limit
  publication-title: Nat. Phys.
– volume: 5
  start-page: 487
  year: 2010
  end-page: 496
  ident: CR25
  article-title: Graphene transistors
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 629
  year: 2013
  end-page: 645
  ident: CR19
  article-title: Performance limitations for nanowire/nanoribbon biosensors
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 128
  start-page: 16323
  year: 2006
  end-page: 16331
  ident: CR14
  article-title: Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 285
  year: 1995
  end-page: 293
  ident: CR41
  article-title: A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor
  publication-title: DNA Res.
– volume: 108
  start-page: 13002
  year: 2011
  end-page: 13006
  ident: CR50
  article-title: Accessing the transport properties of graphene and its multilayers at high carrier density
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 20
  start-page: 3117
  year: 2010
  end-page: 3124
  ident: CR48
  article-title: Graphene solution-gated field-effect transistor array for sensing applications
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1150
  year: 2010
  end-page: 1155
  ident: CR45
  article-title: Gating of single-layer graphene with single-stranded deoxyribonucleic acids
  publication-title: Small
– volume: 5
  start-page: 10546
  year: 2015
  ident: CR38
  article-title: Multiple MoS transistors for sensing molecule interaction kinetics
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2225
  year: 2013
  ident: CR29
  article-title: Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity
  publication-title: Nat. Commun.
– volume: 160
  start-page: 123
  year: 2012
  end-page: 128
  ident: CR55
  article-title: Label-free and high-sensitive detection of Salmonella using a surface plasmon 645 resonance DNA-based biosensor
  publication-title: J. Biotechnol.
– volume: 116
  start-page: 215
  year: 2016
  end-page: 257
  ident: CR9
  article-title: Nano-bioelectronics
  publication-title: Chem. Rev.
– volume: 7
  start-page: 3405
  year: 2007
  end-page: 3409
  ident: CR57
  article-title: Importance of the Debye screening length on nanowire field effect transistor 641 sensors
  publication-title: Nano Lett.
– volume: 132
  start-page: 17149
  year: 2010
  end-page: 17156
  ident: CR49
  article-title: Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 351
  year: 2008
  end-page: 355
  ident: CR24
  article-title: Ultrahigh electron mobility in suspended graphene
  publication-title: Solid State Commun.
– volume: 24
  start-page: 355502
  year: 2013
  ident: CR36
  article-title: Scalable graphene field-effect sensors for specific protein detection
  publication-title: Nanotechnology
– volume: 5
  start-page: 263
  year: 2013
  end-page: 275
  ident: CR23
  article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
  publication-title: Nat. Chem.
– volume: 50
  start-page: 9058
  year: 2011
  end-page: 9061
  ident: CR42
  article-title: Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 19
  start-page: 928
  year: 2009
  end-page: 933
  ident: CR12
  article-title: Functionalized GaN nanowire-based electrode for direct label-free voltammetric detection of DNA hybridization
  publication-title: J. Mater. Chem.
– volume: 102
  start-page: 3208
  year: 2005
  end-page: 3212
  ident: CR15
  article-title: Label-free detection of small-molecule-protein interactions by using nanowire nanosensors
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 276
  start-page: 204
  year: 1999
  end-page: 214
  ident: CR52
  article-title: Real-time measurements of DNA hybridization on microparticles with fluorescence resonance energy transfer
  publication-title: Anal. Biochem.
– volume: 7
  start-page: 11800
  year: 2016
  ident: CR35
  article-title: Simultaneous optical and electrical in vivo analysis of the enteric nervous system
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5258
  year: 2011
  end-page: 5263
  ident: CR46
  article-title: Label free DNA detection using large area graphene based field effect transistor biosensors
  publication-title: J. Nanosci. Nanotechnol.
– volume: 34
  start-page: 180
  year: 2014
  end-page: 196
  ident: CR1
  article-title: Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine
  publication-title: Crit. Rev. Biotechnol.
– volume: 340
  start-page: 167
  year: 2013
  end-page: 170
  ident: CR22
  article-title: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
  publication-title: Science
– volume: 8
  start-page: 1839
  year: 2013
  end-page: 1851
  ident: CR58
  article-title: Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors
  publication-title: Nanomedicine
– volume: 15
  start-page: 10380
  year: 2015
  end-page: 10398
  ident: CR8
  article-title: Field effect sensors for nucleic acid detection: recent advances and future perspectives
  publication-title: Sensors
– volume: 131
  start-page: 1627
  year: 2012
  end-page: 1638
  ident: CR2
  article-title: Personalized medicine using DNA biomarkers: a review
  publication-title: Hum. Genet.
– volume: 222
  start-page: 1175
  year: 2016
  end-page: 1183
  ident: CR60
  article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering
  publication-title: Sensor Actuat. B Chem.
– volume: 5
  start-page: 4866
  year: 2014
  ident: CR31
  article-title: Electrophoretic and field-effect graphene for all-electrical DNA array technology
  publication-title: Nat. Commun.
– volume: 3
  start-page: 763
  year: 2012
  ident: CR34
  article-title: Graphene-based wireless bacteria detection on tooth enamel
  publication-title: Nat. Commun.
– volume: 44
  start-page: 6954
  year: 2015
  end-page: 6980
  ident: CR39
  article-title: The graphene/nucleic acid nanobiointerface
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 1989
  year: 2010
  end-page: 1993
  ident: CR10
  article-title: Aligned carbon nanotubes on quartz substrate for liquid gated biosensing
  publication-title: Biosens. Bioelectron.
– volume: 1
  start-page: 515
  year: 2002
  end-page: 528
  ident: CR5
  article-title: Optical biosensors in drug discovery
  publication-title: Nat. Rev. Drug. Discov.
– volume: 76
  start-page: 195
  year: 2016
  end-page: 212
  ident: CR27
  article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials
  publication-title: Biosens. Bioelectron.
– volume: 50
  start-page: 46
  year: 2015
  end-page: 111
  ident: CR43
  article-title: Raman spectroscopy of biological tissues
  publication-title: Appl. Spectrosc. Rev.
– volume: 4
  start-page: 51
  year: 2004
  end-page: 54
  ident: CR13
  article-title: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors
  publication-title: Nano Lett.
– volume: 7
  start-page: 261
  year: 2015
  end-page: 291
  ident: CR40
  article-title: Recent trends in electrochemical nanobiosensors for environmental analysis
  publication-title: Int. J. Environ. Health
– volume: 14
  start-page: 5315
  year: 2014
  end-page: 5322
  ident: CR17
  article-title: Direct, rapid, and label-free detection of enzyme substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors
  publication-title: Nano Lett.
– volume: 13
  start-page: 2754
  year: 2013
  ident: BFncomms14902_CR53
  publication-title: Nano Lett.
  doi: 10.1021/nl400976s
– volume: 276
  start-page: 204
  year: 1999
  ident: BFncomms14902_CR52
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1999.4344
– volume: 34
  start-page: 180
  year: 2014
  ident: BFncomms14902_CR1
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2013.778228
– volume: 108
  start-page: 13002
  year: 2011
  ident: BFncomms14902_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1018388108
– volume: 5
  start-page: 5461
  year: 2014
  ident: BFncomms14902_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6461
– volume: 52
  start-page: 110107
  year: 2013
  ident: BFncomms14902_CR47
  publication-title: Jpn J. Appl. Phys.
  doi: 10.7567/JJAP.52.110107
– volume: 50
  start-page: 9058
  year: 2011
  ident: BFncomms14902_CR42
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201102776
– volume: 7
  start-page: 261
  year: 2015
  ident: BFncomms14902_CR40
  publication-title: Int. J. Environ. Health
  doi: 10.1504/IJENVH.2015.073210
– volume: 160
  start-page: 123
  year: 2012
  ident: BFncomms14902_CR55
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.03.024
– volume: 6
  start-page: 1150
  year: 2010
  ident: BFncomms14902_CR45
  publication-title: Small
  doi: 10.1002/smll.200902379
– volume: 8
  start-page: 1839
  year: 2013
  ident: BFncomms14902_CR58
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.156
– volume: 7
  start-page: 401
  year: 2012
  ident: BFncomms14902_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.82
– volume: 23
  start-page: 1294
  year: 2005
  ident: BFncomms14902_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1138
– volume: 50
  start-page: 46
  year: 2015
  ident: BFncomms14902_CR43
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2014.923902
– volume: 6
  start-page: 8546
  year: 2012
  ident: BFncomms14902_CR56
  publication-title: ACS Nano
  doi: 10.1021/nn301359y
– volume: 146
  start-page: 351
  year: 2008
  ident: BFncomms14902_CR24
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
– volume: 131
  start-page: 1627
  year: 2012
  ident: BFncomms14902_CR2
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-012-1188-9
– volume: 14
  start-page: 5315
  year: 2014
  ident: BFncomms14902_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl502366e
– volume: 25
  start-page: 1989
  year: 2010
  ident: BFncomms14902_CR10
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.01.009
– volume: 222
  start-page: 1175
  year: 2016
  ident: BFncomms14902_CR60
  publication-title: Sensor Actuat. B Chem.
  doi: 10.1016/j.snb.2015.08.009
– volume: 6
  start-page: 6563
  year: 2015
  ident: BFncomms14902_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7563
– volume: 44
  start-page: 6954
  year: 2015
  ident: BFncomms14902_CR39
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00519H
– volume: 116
  start-page: 215
  year: 2016
  ident: BFncomms14902_CR9
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00608
– volume: 1
  start-page: 515
  year: 2002
  ident: BFncomms14902_CR5
  publication-title: Nat. Rev. Drug. Discov.
  doi: 10.1038/nrd838
– volume: 76
  start-page: 195
  year: 2016
  ident: BFncomms14902_CR27
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.07.002
– volume: 11
  start-page: 5258
  year: 2011
  ident: BFncomms14902_CR46
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.3885
– volume: 24
  start-page: 355502
  year: 2013
  ident: BFncomms14902_CR36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/35/355502
– volume: 75
  start-page: 205441
  year: 2007
  ident: BFncomms14902_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.205441
– volume: 4
  start-page: 51
  year: 2004
  ident: BFncomms14902_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl034853b
– volume: 9
  start-page: 11166
  year: 2015
  ident: BFncomms14902_CR37
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05709
– volume: 116
  start-page: 19490
  year: 2012
  ident: BFncomms14902_CR11
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp301542w
– volume: 5
  start-page: 263
  year: 2013
  ident: BFncomms14902_CR23
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 6
  start-page: 652
  year: 2007
  ident: BFncomms14902_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 5
  start-page: 4866
  year: 2014
  ident: BFncomms14902_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5866
– volume: 20
  start-page: 3117
  year: 2010
  ident: BFncomms14902_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000724
– volume: 340
  start-page: 167
  year: 2013
  ident: BFncomms14902_CR22
  publication-title: Science
  doi: 10.1126/science.1234414
– volume: 5
  start-page: 10546
  year: 2015
  ident: BFncomms14902_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep10546
– volume: 342
  start-page: 720
  year: 2013
  ident: BFncomms14902_CR59
  publication-title: Science
  doi: 10.1126/science.1243879
– volume: 161
  start-page: 1437
  year: 2015
  ident: BFncomms14902_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.015
– volume: 3
  start-page: 763
  year: 2012
  ident: BFncomms14902_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1767
– volume: 295
  start-page: 1669
  year: 2002
  ident: BFncomms14902_CR7
  publication-title: Science
  doi: 10.1126/science.1069883
– volume: 7
  start-page: 3405
  year: 2007
  ident: BFncomms14902_CR57
  publication-title: Nano Lett.
  doi: 10.1021/nl071792z
– volume: 6
  start-page: 584
  year: 2010
  ident: BFncomms14902_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1689
– volume: 32
  start-page: 75
  year: 2004
  ident: BFncomms14902_CR6
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gnh067
– volume: 2
  start-page: 285
  year: 1995
  ident: BFncomms14902_CR41
  publication-title: DNA Res.
  doi: 10.1093/dnares/2.6.285
– volume: 438
  start-page: 201
  year: 2005
  ident: BFncomms14902_CR20
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 19
  start-page: 928
  year: 2009
  ident: BFncomms14902_CR12
  publication-title: J. Mater. Chem.
  doi: 10.1039/b816556d
– volume: 5
  start-page: 487
  year: 2010
  ident: BFncomms14902_CR25
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.89
– volume: 102
  start-page: 3208
  year: 2005
  ident: BFncomms14902_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0406368102
– volume: 91
  start-page: 205413
  year: 2015
  ident: BFncomms14902_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.205413
– volume: 4
  start-page: 2225
  year: 2013
  ident: BFncomms14902_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3225
– volume: 16
  start-page: 40
  year: 1998
  ident: BFncomms14902_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0198-40
– volume: 132
  start-page: 17149
  year: 2010
  ident: BFncomms14902_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104850n
– volume: 7
  start-page: 11800
  year: 2016
  ident: BFncomms14902_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11800
– volume: 5
  start-page: 629
  year: 2013
  ident: BFncomms14902_CR19
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1235
– volume: 128
  start-page: 16323
  year: 2006
  ident: BFncomms14902_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065923u
– volume: 15
  start-page: 10380
  year: 2015
  ident: BFncomms14902_CR8
  publication-title: Sensors
  doi: 10.3390/s150510380
– volume: 11
  start-page: 1
  year: 2016
  ident: BFncomms14902_CR33
  publication-title: Front. Phys.
– volume: 18
  start-page: 513
  year: 2015
  ident: BFncomms14902_CR28
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.04.003
– volume: 4
  start-page: 2619
  year: 2013
  ident: BFncomms14902_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3619
– reference: 26187396 - Biosens Bioelectron. 2016 Feb 15;76:195-212
– reference: 15716362 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3208-12
– reference: 22752797 - Hum Genet. 2012 Oct;131(10):1627-38
– reference: 26144837 - Chem Soc Rev. 2015 Oct 7;44(19):6954-80
– reference: 23701430 - Nano Lett. 2013 Jun 12;13(6):2754-9
– reference: 24156488 - Nanomedicine (Lond). 2013 Nov;8(11):1839-51
– reference: 22498436 - J Biotechnol. 2012 Aug 31;160(3-4):123-8
– reference: 20473987 - Small. 2010 May 21;6(10):1150-5
– reference: 24126320 - Nat Commun. 2013;4:2619
– reference: 26445172 - ACS Nano. 2015 Nov 24;9(11):11166-76
– reference: 23493424 - Science. 2013 Apr 12;340(6129):167-70
– reference: 22992186 - ACS Nano. 2012 Oct 23;6(10):8546-51
– reference: 25189574 - Nat Commun. 2014 Sep 05;5:4866
– reference: 20129773 - Biosens Bioelectron. 2010 Apr 15;25(8):1989-93
– reference: 20512128 - Nat Nanotechnol. 2010 Jul;5(7):487-96
– reference: 21774045 - Angew Chem Int Ed Engl. 2011 Sep 19;50(39):9058-61
– reference: 25946631 - Sensors (Basel). 2015 May 04;15(5):10380-98
– reference: 21077655 - J Am Chem Soc. 2010 Dec 8;132(48):17149-56
– reference: 22453836 - Nat Commun. 2012 Mar 27;3:763
– reference: 23607309 - Crit Rev Biotechnol. 2014 Jun;34(2):180-96
– reference: 23887829 - Nat Commun. 2013;4:2225
– reference: 26014289 - Sci Rep. 2015 May 27;5:10546
– reference: 25800494 - Nat Commun. 2015 Mar 24;6:6563
– reference: 10603244 - Anal Biochem. 1999 Dec 15;276(2):204-14
– reference: 11872831 - Science. 2002 Mar 1;295(5560):1669-78
– reference: 21828007 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13002-6
– reference: 16281031 - Nature. 2005 Nov 10;438(7065):201-4
– reference: 8867803 - DNA Res. 1995 Dec 31;2(6):285-93
– reference: 25410480 - Nat Commun. 2014 Nov 20;5:5461
– reference: 22635097 - Nat Nanotechnol. 2012 May 27;7(6):401-7
– reference: 26046443 - Cell. 2015 Jun 4;161(6):1437-52
– reference: 25164567 - Nano Lett. 2014 Sep 10;14(9):5315-22
– reference: 24158906 - Science. 2013 Nov 8;342(6159):720-3
– reference: 17165787 - J Am Chem Soc. 2006 Dec 20;128(50):16323-31
– reference: 23897672 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Nov-Dec;5(6):629-45
– reference: 26691648 - Chem Rev. 2016 Jan 13;116(1):215-57
– reference: 16170313 - Nat Biotechnol. 2005 Oct;23(10):1294-301
– reference: 17914853 - Nano Lett. 2007 Nov;7(11):3405-9
– reference: 9447591 - Nat Biotechnol. 1998 Jan;16(1):40-4
– reference: 23917462 - Nanotechnology. 2013 Sep 6;24(35):355502
– reference: 17660825 - Nat Mater. 2007 Sep;6(9):652-5
– reference: 23511414 - Nat Chem. 2013 Apr;5(4):263-75
– reference: 12120258 - Nat Rev Drug Discov. 2002 Jul;1(7):515-28
– reference: 27270085 - Nat Commun. 2016 Jun 07;7:11800
– reference: 15155822 - Nucleic Acids Res. 2004 May 20;32(9):e75
– reference: 21770172 - J Nanosci Nanotechnol. 2011 Jun;11(6):5258-63
SSID ssj0000391844
Score 2.6441176
Snippet Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology,...
Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14902
SubjectTerms 631/61/32
639/301/357/918/1052
639/638/11/511
9/10
Biology
Biomarkers
Biosensing Techniques
Biosensors
Carbon
Cost-Benefit Analysis
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA Probes - chemistry
Fabrication
Genetic diversity
Graphene
Graphite - chemistry
High-Throughput Screening Assays - economics
High-Throughput Screening Assays - instrumentation
Humanities and Social Sciences
Hybridization
Kinetics
Limit of Detection
Miniaturization
Models, Chemical
multidisciplinary
Nanowires
Nucleic Acid Hybridization
Reproducibility of Results
Science
Sensors
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF-KUOhLsVVrWltWuL4Ii5vdfGwetVUOQR-Kgm9hP_XwTMrd-eB_78wmOe5U8MXXzSQsM7M7v8l8ETLC4I72FpS30CXLhFFMOeNZKrwuTFnaPMUC5_OLYnyVnV3n1yujvjAnrGsP3DHuUGsvnAOzKbMAxkYrYQLnVqQ-1SKPJeQCbN6KMxXvYFmB65L1BXlcqsMGBHg_B3-g_4EymKDYqf81ePkyS_JZqDRaoNNN8rmHjvSo2_IX8sE3X8nHbpjk4xaZ_QPMx3BWPJ356QRLoqgbkl2Q_bQN1ExiFQu9A3CJDZpx7e_FEb19xMqtviaTYjL8DdU0ZhsyrA1u_JTG3tZwNcJH2jl4v-1sm1yenlz-GbN-ogKzcDIXzHGuM62MMzIPlQsAtxQgOllKWBKFqdKg07S0lQZPsNJScaOVxciqc1YHuUM2mrbxu4Q6K33Jg_BAl4ELB3emCUblICwlPXcJORh4XNu-2zgOvZjWMeotVb0ikISMlsT_uyYbr5Mdo7CWJNgZOy6AvtS9vtRv6UtC9gZR1_1xndc4cl0WgEZVQvaXj-GgYfREN7596GgKcOkVfOJbpxnLneC8JywqTki5pjNrW11_0kxuYzPvXAIi5fDm70G7Vrb1kgff34MHP8gngeiESybSPbKxmD34n4CtFuZXPEZPF_0mjg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojwDLTJSuSBZdew8vCfUFpYKiR5QkXqL_GxXLEnJbg_998w4TujSiqvtWKPMjP2N50XIHjp3tLcgvJWuWSGMYsoZz3LhdWXq2pY5Jjh_O6mOfxRfz8qz9OC2SmGV45kYD2rXWXwj38eu2LICwKA-Xv5m2DUKvauphcZ98iCHmwZDutT8y_TGgtXPVVGktDwu1X4LW_5agVWQnlHGiyjW678LZN6OlfzHYRrvofkT8jgBSHowcHyb3PPtU_JwaCl5_Yz03wH5MewYT3u_XGBiFHVjyAsygXaBmkXMZaE_AWJimWYc-3RyQC-uMX8rZWZSDIk_p5rGmEOGGcKtX9JY4RoOSNikW4EN3PXPyen88-nRMUt9FZgF_Vwzx7kutDLOyDLMXADQpQDXyVrCkKjMLA86z2s702APzrRU3Ghl0b_qnNVBviBbbdf6V4Q6K33Ng_CwrgBDDk5OE4wqvXBKeu4y8mH8x41NNcex9cWyib5vqZobDMnI3rT4cii1cfeyQ2TWtATrY8eBrj9vkro1WgMJDsCWLAJAFK2ECZxbkftcC0AsGdkZWd0kpV01f0UsI--maVA39KHo1ndXw5oKDHsFW7wcJGOiBLs-YWpxRuoNmdkgdXOmXVzEkt6lBFzK4cv3o3TdIOv2P3j9f_LfkEcC0QeXTOQ7ZGvdX_ldwE5r8zYqyB8-Jx5M
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKyQuCMorUCojlQuShWPn4T0u0KpaiR6gSL1FfrYrlgRlt4f-e2YcJ9qlPfQYe2KN7LHzOTPzDSHH6NzR3oLxVrpmhTCKKWc8y4XXlalrW-aY4Pz9vDr7VSwuy8vEs71OYZUDpWU8psfosM8tPP1ZA5xH4sh95GgHo96fzxc_F9MvFSQ7V0WRsvC4VNtv7Xx3Ij3_fZjybmjkf_7R-Nk5fUaeJrxI54OGz8kj3x6Qx0MFydsXpP8BQI9hgXja-9US86CoGyNccM5pF6hZxtQV-hsQJbIyY9u38zm9vsV0rZSISTEC_opqGkMMGSYEt35FI6E1nIcwSLeGK2_XvyQXpycXX89YKqPALGzHDXOc60Ir44wsw8wFwFgKYJysJTSJyszyoPO8tjMN17-ZloobrSy6U52zOshXZK_tWv-GUGelr3kQHuQKuLfBQWmCUaUXTknPXUY-jXPc2EQxjpUuVk10dUvVbC1IRo4n4b8Ds8b9Yl9wsSYRpMOODV1_1STzaLQGFRxgK1kEQCRaCRM4tyL3uRYAUDJyOC51k_bousE667ICCKoy8mHqht2FLhPd-u5mkKngHq9giNeDZUyaYJEnzCTOSL1jMzuq7va0y-vI4F1KgKEc3vw4WteWWnfn4O0D5d6RJwJRB5dM5Idkb9Pf-PeAmTbmKO2VfzCvHDc
  priority: 102
  providerName: Springer Nature
Title Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor
URI https://link.springer.com/article/10.1038/ncomms14902
https://www.ncbi.nlm.nih.gov/pubmed/28322227
https://www.proquest.com/docview/1879360838
https://www.proquest.com/docview/1879671381
https://pubmed.ncbi.nlm.nih.gov/PMC5364407
https://doaj.org/article/aae2dd43934f415a82bf00c21e1a2521
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy2Avo-s-6rYLGnQvA2-2ZFvywxhp2qwEGkbXQt6MZMltWGavTgrLf7872Q5NG_Zig3w2h-5O-p1Pd0fIMQZ3lM1BeRMl_Ihp6UujrR8yqxItRB6HmOB8MU7Or6PRJJ5ska4ZZzuB842uHfaTuq5nn__eLb-BwX9tUsbllxJk83sOUB-LSu7AliSwlcFFi_PdksxT8GSiNj_v0TtrO5Ir3L8JbT49NPkocuo2pOEuedkiSdpvRP-KbNlyjzxveksuX5P6EiCgj63jaW1nU8yQoqY7-4LSoFVB9dQltdBfgDWxXjOOnY779HaJiVxtiibFs_E3VFF3-NDHVOHSzqgrdQ0rJXykmoMzXNVvyNXw7Gpw7rcNFvwcDHXhmyBQkZLaaB4XqSkAfUkAeFxwGGKJTsNChaHIUwWOYaq4DLSSOQZajclVwd-S7bIq7T6hJudWBAWzQBeBRwdLqC60jC0zktvAeORTN8dZ3hYfxx4Ys8wFwbnMHgjEI8cr4j9NzY3NZCcorBUJFsp2A1V9k7V2lykFLBhAXTwqAKsoyXQRBDkLbagYQBePHHWizjrly7ADO08AnEqPfFg9BrvDYIoqbXXf0CTg4Uv4xLtGM1acYPsnzDH2iFjTmTVW15-U01tX2zvmAFADePNjp10P2Ho6Bwf_Z_-QvGAIQwLus_CIbC_qe_seQNRC98gzMRFwlcPvPbLT749-juB-cjb-cQmjg2TQc78nes6Q_gGvGyfs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChipvSBFdew8vAeECmXZ0nYPaJF6i-zYaVfdJiW7FdofxX9kJi-6tOLWq-NEE894_I3nBbBFzh3tMhTeWCd-KIzylTXOD4TTsUmSLAoowfloHI9-hN-Oo-M1-N3lwlBYZacTa0Vty4zuyHeoK7aMETCojxc_feoaRd7VroVGIxYHbvkLTbb5h_095O-2EMMvk88jv-0q4GconQvfcq5DrYw1MsoHNkfIoRDVyETikIjNIMh1ECTZQKM1NNBScaNVRt5FazOdS_zsHbgbSjzIKTF9-LW_0qFi6yoM2yxALtVOgX9wPkcjpL216c69uj3ATZj2emjmP_7Z-tgbPoKHLV5lu42APYY1VzyBe00Hy-VTqL4j0PSpQT2r3GxKeVjMdhE2xHNW5sxM69QZdoaIlqpC09jeeJedLildrE0EZRSBf8I0q0McfUpILtyM1QW1UR_jR8o5mtxl9Qwmt7Hgz2G9KAv3ApjNpEt4LhzOC9FuREVtcqMiJ6ySjlsP3ndrnGZtiXPqtDFLa1e7VOkVhniw1U--aCp73DztEzGrn0LluOuBsjpJ292dao0kWMR2MswREWklTM55JgIXaIEAyYPNjtVpqyPm6V-J9uBd_xh3N7lsdOHKy2ZOnAQIqzzYaCSjp4SaTFEmswfJisyskLr6pJie1hXEI4kwmOOb2510XSHr-hq8_D_5b-H-aHJ0mB7ujw9ewQNBwIdLXwSbsL6oLt1rhG0L86beLAzSW96cfwA2n1tK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYzUXpCiOnYe3gNCLdtVS2FVVUXqLbJjp12xJCW7Fdqfxr9jJi-6tOLWqzMbzdozk288L4BNCu5ol6HwxjrxQ2GUr6xxfiCcjk2SZFFABc5fJ_H-t_DzaXS6Br-7WhhKq-xsYm2obZnRHfk2TcWWMQIGtZ23aRFHo_HHi58-TZCiSGs3TqMRkUO3_IXu2_zDwQjPekuI8d7Jp32_nTDgZyipC99yrkOtjDUyyoc2R_ihEOHIROKSiM0wyHUQJNlQo2c01FJxo1VGkUZrM51LfO0dWE_IKRrA-u7e5Oi4v-Ch1usqDNuaQI58F_h_fszRJWnvcLqvYD0s4CaEez1R859obf0RHD-EBy16ZTuNuD2CNVc8hrvNPMvlE6iOEXb6NK6eVW42paosZrt8G5IAVubMTOtCGvYd8S31iKa10WSHnS-peKwtC2WUj3_GNKsTHn0qTy7cjNXttdE640vKOTrgZfUUTm5jy5_BoCgL9wKYzaRLeC4c0oXoRaLZNrlRkRNWScetB--7PU6ztuE5zd2YpXXgXar0yoF4sNkTXzR9Pm4m26XD6kmoOXe9UFZnaavrqdbIgkWkJ8Mc8ZFWwuScZyJwgRYIlzzY6I46bS3GPP0r3x686x-jrlMARxeuvGxo4iRAkOXB80Yyek5o5BTVNXuQrMjMCqurT4rped1PPJIIijn-cquTritsXd-Dl_9n_y3cQ8VMvxxMDl_BfUEoiEtfBBswWFSX7jViuIV502oLg_SW9fMPyUxg3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+reliable+determination+of+binding+kinetics+of+DNA+hybridization+using+a+multi-channel+graphene+biosensor&rft.jtitle=Nature+communications&rft.au=Xu%2C+Shicai&rft.au=Zhan%2C+Jian&rft.au=Man%2C+Baoyuan&rft.au=Jiang%2C+Shouzhen&rft.date=2017-03-21&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=8&rft.spage=14902&rft_id=info:doi/10.1038%2Fncomms14902&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4321031425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon