Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor
Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 14902 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.03.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level. |
---|---|
AbstractList | Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.
Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level. Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene field-effect transistor array capable of reliably measuring DNA hybridization kinetics and affinity at the picomolar level. |
ArticleNumber | 14902 |
Author | Wang, Jihua Gao, Shoubao Zhan, Jian Li, Zhenhua Zhou, Yaoqi Xu, Shicai Liu, Hanping Yue, Weiwei Guo, Chengang Jiang, Shouzhen Man, Baoyuan |
Author_xml | – sequence: 1 givenname: Shicai surname: Xu fullname: Xu, Shicai organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University – sequence: 2 givenname: Jian surname: Zhan fullname: Zhan, Jian organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University – sequence: 3 givenname: Baoyuan surname: Man fullname: Man, Baoyuan organization: School of Physics and Electronics, Shandong Normal University – sequence: 4 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen organization: School of Physics and Electronics, Shandong Normal University – sequence: 5 givenname: Weiwei surname: Yue fullname: Yue, Weiwei organization: School of Physics and Electronics, Shandong Normal University – sequence: 6 givenname: Shoubao surname: Gao fullname: Gao, Shoubao organization: School of Physics and Electronics, Shandong Normal University – sequence: 7 givenname: Chengang surname: Guo fullname: Guo, Chengang organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University – sequence: 8 givenname: Hanping surname: Liu fullname: Liu, Hanping organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University – sequence: 9 givenname: Zhenhua surname: Li fullname: Li, Zhenhua organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University – sequence: 10 givenname: Jihua surname: Wang fullname: Wang, Jihua email: jhw25336@126.com organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University – sequence: 11 givenname: Yaoqi surname: Zhou fullname: Zhou, Yaoqi email: yaoqi.zhou@griffith.edu.au organization: Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Institute for Glycomics and School of Information and Communication Technology, Griffith University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28322227$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAQgC1UREvpiTuKxAUJAn4kG-eCVJVXpQok1Ls1sSdZL4692AlS-fV4N6XaVuCLrfHnzzMePyVHPngk5DmjbxkV8p3XYRwTq1rKH5ETTitWsoaLo4P1MTlLaUPzEC2TVfWEHHMpeB7NCYnfEVw52RGLiM5C57AwOGEcrYfJBl-EvuisN9YPxQ_rcbI67WIfvp4X65suWmN_L-CcdgwU4-wmW-o1eI-uGCJs1-gxS0JCn0J8Rh734BKe3c6n5PrTx-uLL-XVt8-XF-dXpa4bOZWGUqhAdqYTdd-aXtZM1qtaNCKH-KprWQ-MNboFzmgLQtIOpK6lkMZo6MUpuVy0JsBGbaMdId6oAFbtAyEOCmKuxqECQG5MJVpR9RWrQfKup1Rzhgx4zVl2vV9c27kb0Wj0UwR3T3p_x9u1GsIvVYtVVdEmC17dCmL4OWOa1GiTRufAY5iTYrJpVw0TcnfXywfoJszR55faU2JFc4mZenGY0V0qfzubgdcLoGNIKWJ_hzCqdl9HHXydTLMHtLbTvq25HOv-c-bNciZlsx8wHiT6D_wP-P3YpQ |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_145146 crossref_primary_10_1021_acsami_3c00202 crossref_primary_10_1021_acsomega_0c03917 crossref_primary_10_1016_j_talanta_2021_123197 crossref_primary_10_1021_acsnano_3c02537 crossref_primary_10_1039_C9NA00625G crossref_primary_10_1021_acs_nanolett_0c01971 crossref_primary_10_1016_j_cej_2024_155355 crossref_primary_10_1038_s41377_018_0066_1 crossref_primary_10_1021_acs_nanolett_4c02518 crossref_primary_10_1149_1945_7111_ace336 crossref_primary_10_1364_OE_27_003000 crossref_primary_10_1515_revic_2023_0033 crossref_primary_10_1038_s41598_021_89367_1 crossref_primary_10_1364_PRJ_416815 crossref_primary_10_1039_D3AY02044D crossref_primary_10_1016_j_snb_2018_02_149 crossref_primary_10_1021_acs_analchem_0c05245 crossref_primary_10_1038_s41467_018_07947_8 crossref_primary_10_1088_1367_2630_ac2e82 crossref_primary_10_1002_advs_201903003 crossref_primary_10_1002_smll_202202622 crossref_primary_10_1021_acsomega_3c03184 crossref_primary_10_1088_1361_648X_adb2d0 crossref_primary_10_1021_acs_jpcc_7b11128 crossref_primary_10_1016_j_snb_2020_128991 crossref_primary_10_1021_acsami_7b14820 crossref_primary_10_1142_S1793292020500393 crossref_primary_10_1039_C9NR02797A crossref_primary_10_1021_acs_nanolett_9b02939 crossref_primary_10_1021_acsanm_3c00689 crossref_primary_10_1016_j_arabjc_2019_01_007 crossref_primary_10_1063_5_0024508 crossref_primary_10_1016_j_cej_2022_138228 crossref_primary_10_1155_2018_8146765 crossref_primary_10_1039_D3RA05932D crossref_primary_10_3390_nano10030500 crossref_primary_10_1002_advs_202401796 crossref_primary_10_1038_s41563_024_01970_5 crossref_primary_10_1088_1361_6463_ab0f69 crossref_primary_10_1039_D1AN00394A crossref_primary_10_1021_acs_nanolett_4c03989 crossref_primary_10_1007_s12274_018_2209_3 crossref_primary_10_1038_s41467_023_39721_w crossref_primary_10_1002_inf2_12114 crossref_primary_10_1021_acsaelm_9b00840 crossref_primary_10_1002_adfm_201701837 crossref_primary_10_1021_acs_jpcc_0c01734 crossref_primary_10_3389_fphy_2023_1202132 crossref_primary_10_1021_acs_analchem_2c04433 crossref_primary_10_3389_fnins_2017_00466 crossref_primary_10_1002_elps_201900066 crossref_primary_10_1021_acs_analchem_1c00341 crossref_primary_10_1002_adma_202304119 crossref_primary_10_1088_1361_6463_aadcca crossref_primary_10_1016_j_carbon_2021_06_003 crossref_primary_10_1039_D2SD00076H crossref_primary_10_1021_acs_analchem_3c01257 crossref_primary_10_1186_s40824_021_00205_x crossref_primary_10_35848_1347_4065_ad0c45 crossref_primary_10_1021_acsanm_1c03520 crossref_primary_10_1007_s11467_023_1281_7 crossref_primary_10_1016_j_carbon_2018_01_078 crossref_primary_10_1039_D3NA01112G crossref_primary_10_1007_s00604_024_06345_w crossref_primary_10_1038_s41467_017_01635_9 crossref_primary_10_1002_adfm_202405471 crossref_primary_10_3390_s17102161 crossref_primary_10_1002_anbr_202100140 crossref_primary_10_1039_C7TC04819J crossref_primary_10_1021_acs_analchem_0c04105 crossref_primary_10_1016_j_snb_2019_01_133 crossref_primary_10_3390_cryst13020359 crossref_primary_10_3390_nano10081468 crossref_primary_10_3389_fbioe_2018_00029 crossref_primary_10_1016_j_isci_2021_103513 crossref_primary_10_1021_acssensors_0c01641 crossref_primary_10_1039_D2DT02630A crossref_primary_10_1088_1361_6463_ab550b crossref_primary_10_1088_1361_6528_abb7b5 crossref_primary_10_1016_j_snb_2023_134278 crossref_primary_10_3390_bios11110434 crossref_primary_10_1016_j_compbiomed_2021_104707 crossref_primary_10_1021_acsanm_4c06500 crossref_primary_10_1016_j_molliq_2024_126039 crossref_primary_10_1021_acs_accounts_4c00721 crossref_primary_10_1002_smll_202103983 crossref_primary_10_1016_j_talanta_2020_121766 crossref_primary_10_3390_bios11080273 crossref_primary_10_3390_nano14242014 crossref_primary_10_7567_1347_4065_ab0b37 crossref_primary_10_1016_j_ijbiomac_2018_05_216 crossref_primary_10_1021_acsami_7b13411 crossref_primary_10_1021_acsnano_3c11832 crossref_primary_10_3390_nano9081154 crossref_primary_10_1007_s11051_021_05295_1 crossref_primary_10_1021_acs_analchem_2c03399 crossref_primary_10_1021_acsomega_0c04429 crossref_primary_10_1021_acsanm_4c02932 crossref_primary_10_1039_D1RA04917H crossref_primary_10_1364_OE_394564 crossref_primary_10_1063_5_0146656 crossref_primary_10_1016_j_apsusc_2017_09_113 crossref_primary_10_1021_acs_analchem_1c03129 crossref_primary_10_1515_nanoph_2022_0439 crossref_primary_10_1021_acsami_9b18973 crossref_primary_10_1021_acs_analchem_1c05309 crossref_primary_10_1088_2053_1583_ab41e0 crossref_primary_10_3390_molecules28124833 crossref_primary_10_1021_acs_nanolett_3c02915 crossref_primary_10_1002_elan_202100451 crossref_primary_10_1021_acsnano_0c04421 crossref_primary_10_1039_D4NR03852E crossref_primary_10_1007_s10008_018_04172_7 crossref_primary_10_3390_bios12111050 crossref_primary_10_1088_1361_6528_abc0c8 crossref_primary_10_1016_j_snb_2018_05_099 crossref_primary_10_1016_j_mee_2022_111835 crossref_primary_10_1021_acs_analchem_1c04466 crossref_primary_10_1364_AO_397625 crossref_primary_10_46670_JSST_2024_33_3_139 crossref_primary_10_1016_j_ejps_2019_105036 crossref_primary_10_1088_1742_6596_2829_1_012005 crossref_primary_10_1021_acsaelm_0c00095 crossref_primary_10_1038_s41467_021_25253_8 crossref_primary_10_1039_C9CS00438F crossref_primary_10_1016_j_apsusc_2020_146839 crossref_primary_10_1002_admt_201900615 crossref_primary_10_1109_TNB_2022_3182587 crossref_primary_10_1016_j_revip_2020_100044 crossref_primary_10_1038_s41598_017_11387_7 crossref_primary_10_1016_j_rineng_2024_103800 crossref_primary_10_1063_5_0171364 crossref_primary_10_1021_acs_nanolett_3c00743 crossref_primary_10_1016_j_microc_2024_111346 crossref_primary_10_1016_j_microc_2023_108432 crossref_primary_10_1002_adsr_202400091 crossref_primary_10_1021_acs_nanolett_7b01803 crossref_primary_10_3390_nano14020166 crossref_primary_10_1002_adfm_202303832 crossref_primary_10_1021_acsnano_0c06392 crossref_primary_10_3390_s21041335 crossref_primary_10_1016_j_apsusc_2018_07_132 crossref_primary_10_1186_s11671_020_3245_y crossref_primary_10_1002_celc_201800934 crossref_primary_10_1021_acs_chemrev_1c00845 crossref_primary_10_1016_j_bios_2019_04_054 crossref_primary_10_1021_acssensors_2c01990 crossref_primary_10_1063_5_0019621 crossref_primary_10_1186_s11671_024_04054_0 crossref_primary_10_1016_j_matdes_2022_110920 crossref_primary_10_1016_j_measurement_2022_112202 crossref_primary_10_1080_10408398_2023_2208677 crossref_primary_10_1021_acsaelm_2c00624 crossref_primary_10_1021_acs_chemrev_8b00311 crossref_primary_10_1021_acsami_8b15036 crossref_primary_10_1016_j_colsurfa_2022_128507 crossref_primary_10_1021_acs_langmuir_4c03420 crossref_primary_10_1002_adma_201802084 crossref_primary_10_1016_j_apsusc_2020_148374 crossref_primary_10_1016_j_orgel_2018_07_032 crossref_primary_10_1039_C8BM01636D crossref_primary_10_1116_6_0003783 crossref_primary_10_1109_JIOT_2022_3153637 crossref_primary_10_1021_acsanm_0c00353 crossref_primary_10_1002_aelm_202001214 crossref_primary_10_1016_j_snb_2019_02_021 crossref_primary_10_1063_1_5126452 crossref_primary_10_1016_j_apsusc_2020_145409 crossref_primary_10_1016_j_snb_2024_135672 crossref_primary_10_3390_mi11020220 crossref_primary_10_1016_j_prp_2023_154812 crossref_primary_10_1109_JSEN_2020_3043149 crossref_primary_10_1007_s41664_021_00201_z crossref_primary_10_1039_C8OB00213D crossref_primary_10_1149_1945_7111_ac4f24 crossref_primary_10_3390_nano14020226 crossref_primary_10_1016_j_vibspec_2018_07_010 crossref_primary_10_1021_acsanm_2c00665 crossref_primary_10_1021_acsnano_1c07094 crossref_primary_10_3390_s20123442 crossref_primary_10_1051_bioconf_20213002007 crossref_primary_10_1088_1361_6528_ab0f52 crossref_primary_10_1016_j_snb_2018_12_129 crossref_primary_10_1007_s40843_020_1577_y crossref_primary_10_1016_j_apsusc_2019_05_181 crossref_primary_10_1002_cbic_202200282 crossref_primary_10_1007_s00216_021_03722_9 crossref_primary_10_3390_met11122054 crossref_primary_10_1021_acs_nanolett_2c00415 crossref_primary_10_1007_s11468_020_01313_5 crossref_primary_10_1021_acssensors_8b01604 crossref_primary_10_1093_nsr_nwae118 crossref_primary_10_1002_smll_202308857 crossref_primary_10_1021_acsanm_0c01457 crossref_primary_10_1021_jacs_2c06623 crossref_primary_10_3390_bios13121029 crossref_primary_10_1063_5_0056413 crossref_primary_10_1109_TCOMM_2024_3376593 crossref_primary_10_1039_D0AN00251H crossref_primary_10_1039_D0NR03125A crossref_primary_10_1088_1361_6528_ab98bc crossref_primary_10_3390_nano11020545 crossref_primary_10_1016_j_measurement_2024_115499 crossref_primary_10_1109_JPROC_2019_2916081 crossref_primary_10_1021_acs_jpcc_4c00533 crossref_primary_10_1007_s00604_020_04630_y crossref_primary_10_1039_D0SC00741B crossref_primary_10_1039_D1AY00101A crossref_primary_10_1038_s41467_020_18604_4 crossref_primary_10_1021_acsabm_4c01263 crossref_primary_10_1038_s41598_021_98609_1 crossref_primary_10_3390_nano9030374 crossref_primary_10_3390_electronics11203345 crossref_primary_10_1016_j_nantod_2021_101287 crossref_primary_10_1021_acsnano_0c02439 crossref_primary_10_1002_mds3_10121 crossref_primary_10_1038_s41596_023_00830_x crossref_primary_10_1186_s11671_019_3048_1 crossref_primary_10_1021_acs_analchem_1c04781 crossref_primary_10_1088_2053_1583_ab6e88 crossref_primary_10_3390_bios14100465 crossref_primary_10_3390_s23063230 crossref_primary_10_20964_2020_02_62 crossref_primary_10_1016_j_snb_2020_128935 crossref_primary_10_1016_j_apsusc_2019_144303 crossref_primary_10_1039_C9AN00993K crossref_primary_10_1021_acssensors_4c00322 crossref_primary_10_1016_j_cej_2025_159386 crossref_primary_10_1142_S1793292019300093 crossref_primary_10_1039_C9RA04302K crossref_primary_10_1002_aisy_202000156 crossref_primary_10_1016_j_chemphys_2020_111048 crossref_primary_10_3390_chemosensors11020083 crossref_primary_10_1002_ange_202101261 crossref_primary_10_1016_j_snb_2018_05_043 crossref_primary_10_3390_bios13100925 crossref_primary_10_1016_j_ijleo_2018_07_088 crossref_primary_10_1002_adma_202104608 crossref_primary_10_1002_admt_201800174 crossref_primary_10_1016_j_snb_2021_131033 crossref_primary_10_1016_j_snb_2023_134746 crossref_primary_10_1021_acsabm_2c01045 crossref_primary_10_1021_acs_nanolett_1c02748 crossref_primary_10_1016_j_snb_2023_133651 crossref_primary_10_1021_acsanm_2c05063 crossref_primary_10_1021_acsami_3c06866 crossref_primary_10_1021_acs_nanolett_8b00572 crossref_primary_10_1021_acs_analchem_3c02433 crossref_primary_10_1002_anie_202101261 crossref_primary_10_1007_s00339_023_06646_6 crossref_primary_10_1021_jacs_1c06325 crossref_primary_10_1088_2053_1583_ad4b36 crossref_primary_10_1093_nar_gkac1113 crossref_primary_10_1016_j_surfcoat_2017_06_083 crossref_primary_10_1002_adfm_202213277 crossref_primary_10_3390_bios12050279 crossref_primary_10_1016_j_bios_2020_112128 crossref_primary_10_1016_j_snb_2020_128432 crossref_primary_10_1039_D4SD00317A crossref_primary_10_1080_15421406_2019_1648052 crossref_primary_10_3390_s20040991 crossref_primary_10_1016_j_bios_2020_112123 crossref_primary_10_1016_j_apsusc_2020_145331 crossref_primary_10_1039_C9RA03765A crossref_primary_10_1039_C7RA08246K crossref_primary_10_3390_app142210109 crossref_primary_10_1002_adma_202304410 crossref_primary_10_3390_antiox10050765 crossref_primary_10_1016_j_bios_2018_04_053 crossref_primary_10_1039_D1SD00036E crossref_primary_10_1021_acsomega_9b01975 crossref_primary_10_1093_nar_gkac1221 crossref_primary_10_1364_OE_385128 crossref_primary_10_1093_nar_gky1188 crossref_primary_10_1149_2_1231906jes crossref_primary_10_1053_j_gastro_2020_02_033 crossref_primary_10_1021_acs_jpcb_0c09723 crossref_primary_10_1038_s41598_023_46164_2 crossref_primary_10_1016_j_snb_2020_128445 crossref_primary_10_1016_j_talanta_2021_122726 crossref_primary_10_1021_acsbiomaterials_8b00376 crossref_primary_10_1016_j_aca_2019_12_073 crossref_primary_10_1021_acsami_7b06490 crossref_primary_10_1039_D3NR01239E crossref_primary_10_1021_acsanm_9b00350 crossref_primary_10_1021_acs_langmuir_1c00467 crossref_primary_10_1016_j_biortech_2025_132215 crossref_primary_10_1002_smtd_202401102 crossref_primary_10_1021_acssensors_8b00344 crossref_primary_10_3390_polym13010142 crossref_primary_10_1088_2632_959X_ab85b4 crossref_primary_10_1016_j_saa_2025_125797 crossref_primary_10_1142_S1793292024300056 crossref_primary_10_1016_j_mtcomm_2018_12_008 crossref_primary_10_1002_smll_202408961 crossref_primary_10_1080_05704928_2021_1910286 crossref_primary_10_3390_bios11060194 crossref_primary_10_1021_acs_nanolett_8b03818 crossref_primary_10_1021_acs_analchem_2c05398 crossref_primary_10_1021_acsanm_0c02482 crossref_primary_10_1002_advs_202305347 crossref_primary_10_1021_acssensors_4c03073 crossref_primary_10_1088_1361_6528_ad4e3d crossref_primary_10_1021_acs_analchem_1c03786 crossref_primary_10_1038_s41528_022_00149_9 crossref_primary_10_1093_nar_gkac465 crossref_primary_10_1021_acs_analchem_8b02630 |
Cites_doi | 10.1021/nl400976s 10.1006/abio.1999.4344 10.3109/07388551.2013.778228 10.1073/pnas.1018388108 10.1038/ncomms6461 10.7567/JJAP.52.110107 10.1002/anie.201102776 10.1504/IJENVH.2015.073210 10.1016/j.jbiotec.2012.03.024 10.1002/smll.200902379 10.2217/nnm.13.156 10.1038/nnano.2012.82 10.1038/nbt1138 10.1080/05704928.2014.923902 10.1021/nn301359y 10.1016/j.ssc.2008.02.024 10.1007/s00439-012-1188-9 10.1021/nl502366e 10.1016/j.bios.2010.01.009 10.1016/j.snb.2015.08.009 10.1038/ncomms7563 10.1039/C4CS00519H 10.1021/acs.chemrev.5b00608 10.1038/nrd838 10.1016/j.bios.2015.07.002 10.1166/jnn.2011.3885 10.1088/0957-4484/24/35/355502 10.1103/PhysRevB.75.205441 10.1021/nl034853b 10.1021/acsnano.5b05709 10.1021/jp301542w 10.1038/nchem.1589 10.1038/nmat1967 10.1038/ncomms5866 10.1002/adfm.201000724 10.1126/science.1234414 10.1038/srep10546 10.1126/science.1243879 10.1016/j.cell.2015.05.015 10.1038/ncomms1767 10.1126/science.1069883 10.1021/nl071792z 10.1038/nphys1689 10.1093/nar/gnh067 10.1093/dnares/2.6.285 10.1038/nature04235 10.1039/b816556d 10.1038/nnano.2010.89 10.1073/pnas.0406368102 10.1103/PhysRevB.91.205413 10.1038/ncomms3225 10.1038/nbt0198-40 10.1021/ja104850n 10.1038/ncomms11800 10.1002/wnan.1235 10.1021/ja065923u 10.3390/s150510380 10.1016/j.mattod.2015.04.003 10.1038/ncomms3619 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Mar 2017 Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Mar 2017 – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/ncomms14902 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_aae2dd43934f415a82bf00c21e1a2521 PMC5364407 4321031425 28322227 10_1038_ncomms14902 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c578t-d00a4a8bdb35f9df8518565373bdb26b91fa117c9a2109a380ba8c5838ddcaf3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:09 EDT 2025 Thu Aug 21 14:34:22 EDT 2025 Thu Jul 10 21:10:15 EDT 2025 Wed Aug 13 04:08:10 EDT 2025 Thu Apr 03 07:08:28 EDT 2025 Tue Jul 01 02:31:38 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Fri Feb 21 02:39:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c578t-d00a4a8bdb35f9df8518565373bdb26b91fa117c9a2109a380ba8c5838ddcaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms14902 |
PMID | 28322227 |
PQID | 1879360838 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aae2dd43934f415a82bf00c21e1a2521 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5364407 proquest_miscellaneous_1879671381 proquest_journals_1879360838 pubmed_primary_28322227 crossref_primary_10_1038_ncomms14902 crossref_citationtrail_10_1038_ncomms14902 springer_journals_10_1038_ncomms14902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-21 |
PublicationDateYYYYMMDD | 2017-03-21 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhang (CR33) 2016; 11 Henry, Stevens, Sun, Kelso (CR52) 1999; 276 Fernández-Rossier, Palacios, Brey (CR51) 2007; 75 Chhowalla (CR23) 2013; 5 Lin (CR45) 2010; 6 Ramsay (CR4) 1998; 16 Papadopoulou, Bell (CR42) 2011; 50 Stern (CR57) 2007; 7 Tang, Wang, Li (CR39) 2015; 44 Saltzgaber (CR36) 2013; 24 Ye (CR50) 2011; 108 Mu, Droujinine, Rajan, Sawtelle, Reed (CR17) 2014; 14 Palaniappan (CR10) 2010; 25 Mazzei (CR40) 2015; 7 Hahm, Lieber (CR13) 2004; 4 Zuccaro (CR37) 2015; 9 Ohno, Okamoto, Maehashi, Matsumoto (CR47) 2013; 52 Viswanathan (CR28) 2015; 18 Mannoor (CR34) 2012; 3 Veigas, Fortunato, Baptista (CR8) 2015; 15 Schwierz (CR25) 2010; 5 Bonanni, Chua, Zhao, Sofer, Pumera (CR56) 2012; 6 Bunimovich (CR14) 2006; 128 Nam (CR38) 2015; 5 Heller (CR49) 2010; 132 Duan (CR18) 2012; 7 Cooper (CR5) 2002; 1 Rakhilin (CR35) 2016; 7 Dankerl (CR48) 2010; 20 Schneider (CR30) 2013; 4 Guo (CR3) 2015; 161 Hao (CR59) 2013; 342 Zhang, Lieber (CR9) 2016; 116 Bolotin (CR24) 2008; 146 Gotoh, Hasegawa, Shinohara, Shimizu, Tosu (CR41) 1995; 2 Talari, Movasaghi, Rehman, Rehman (CR43) 2015; 50 Yu, Yao, Knoll (CR6) 2004; 32 Zhang (CR21) 2010; 6 Jiang (CR29) 2013; 4 Duan, Rajan, Izadi, Reed (CR58) 2013; 8 Zhang (CR55) 2012; 160 Ziegler, Koch, Krockenberger, Grosshennig (CR2) 2012; 131 Wang, Chen, Lin, Fang, Lieber (CR15) 2005; 102 Zheng, Patolsky, Cui, Wang, Lieber (CR16) 2005; 23 Liu (CR44) 2014; 5 Johnson-Buck, Nangreave, Jiang, Yan, Walter (CR53) 2013; 13 Ganguly (CR12) 2009; 19 Zhang, Tan, Stormer, Kim (CR20) 2005; 438 Xu (CR31) 2014; 5 Xu (CR60) 2016; 222 Ahmed, Saaem, Wu, Brown (CR1) 2014; 34 Okuda (CR11) 2012; 116 Schedin (CR26) 2007; 6 Guo (CR46) 2011; 11 Davidson (CR7) 2002; 295 Song (CR27) 2016; 76 Froehlicher, Berciaud (CR54) 2015; 91 Rajan, Duan, Reed (CR19) 2013; 5 Chang (CR22) 2013; 340 Dontschuk (CR32) 2015; 6 L Zuccaro (BFncomms14902_CR37) 2015; 9 S Okuda (BFncomms14902_CR11) 2012; 116 MA Cooper (BFncomms14902_CR5) 2002; 1 MU Ahmed (BFncomms14902_CR1) 2014; 34 MS Mannoor (BFncomms14902_CR34) 2012; 3 X Duan (BFncomms14902_CR58) 2013; 8 L Tang (BFncomms14902_CR39) 2015; 44 Y Zhang (BFncomms14902_CR21) 2010; 6 E Stern (BFncomms14902_CR57) 2007; 7 A Bonanni (BFncomms14902_CR56) 2012; 6 MR Henry (BFncomms14902_CR52) 1999; 276 NK Rajan (BFncomms14902_CR19) 2013; 5 F Schwierz (BFncomms14902_CR25) 2010; 5 M Chhowalla (BFncomms14902_CR23) 2013; 5 YL Bunimovich (BFncomms14902_CR14) 2006; 128 J Fernández-Rossier (BFncomms14902_CR51) 2007; 75 ACS Talari (BFncomms14902_CR43) 2015; 50 N Dontschuk (BFncomms14902_CR32) 2015; 6 KI Bolotin (BFncomms14902_CR24) 2008; 146 Y Liu (BFncomms14902_CR44) 2014; 5 F Yu (BFncomms14902_CR6) 2004; 32 EH Davidson (BFncomms14902_CR7) 2002; 295 J Ye (BFncomms14902_CR50) 2011; 108 WU Wang (BFncomms14902_CR15) 2005; 102 I Heller (BFncomms14902_CR49) 2010; 132 LY Mu (BFncomms14902_CR17) 2014; 14 XF Zhang (BFncomms14902_CR33) 2016; 11 N Rakhilin (BFncomms14902_CR35) 2016; 7 F Schedin (BFncomms14902_CR26) 2007; 6 G Xu (BFncomms14902_CR31) 2014; 5 G Zheng (BFncomms14902_CR16) 2005; 23 S Jiang (BFncomms14902_CR29) 2013; 4 E Papadopoulou (BFncomms14902_CR42) 2011; 50 AQ Zhang (BFncomms14902_CR9) 2016; 116 M Dankerl (BFncomms14902_CR48) 2010; 20 X Duan (BFncomms14902_CR18) 2012; 7 A Ziegler (BFncomms14902_CR2) 2012; 131 JA Lin (BFncomms14902_CR45) 2010; 6 GF Schneider (BFncomms14902_CR30) 2013; 4 Y Ohno (BFncomms14902_CR47) 2013; 52 S Viswanathan (BFncomms14902_CR28) 2015; 18 H Nam (BFncomms14902_CR38) 2015; 5 F Mazzei (BFncomms14902_CR40) 2015; 7 A Palaniappan (BFncomms14902_CR10) 2010; 25 D Zhang (BFncomms14902_CR55) 2012; 160 A Johnson-Buck (BFncomms14902_CR53) 2013; 13 Y Hao (BFncomms14902_CR59) 2013; 342 F Guo (BFncomms14902_CR3) 2015; 161 Y Song (BFncomms14902_CR27) 2016; 76 G Ramsay (BFncomms14902_CR4) 1998; 16 SC Xu (BFncomms14902_CR60) 2016; 222 B Veigas (BFncomms14902_CR8) 2015; 15 A Ganguly (BFncomms14902_CR12) 2009; 19 J Hahm (BFncomms14902_CR13) 2004; 4 Y Zhang (BFncomms14902_CR20) 2005; 438 SR Guo (BFncomms14902_CR46) 2011; 11 G Froehlicher (BFncomms14902_CR54) 2015; 91 G Saltzgaber (BFncomms14902_CR36) 2013; 24 M Gotoh (BFncomms14902_CR41) 1995; 2 CZ Chang (BFncomms14902_CR22) 2013; 340 25410480 - Nat Commun. 2014 Nov 20;5:5461 20129773 - Biosens Bioelectron. 2010 Apr 15;25(8):1989-93 12120258 - Nat Rev Drug Discov. 2002 Jul;1(7):515-28 26445172 - ACS Nano. 2015 Nov 24;9(11):11166-76 23701430 - Nano Lett. 2013 Jun 12;13(6):2754-9 21774045 - Angew Chem Int Ed Engl. 2011 Sep 19;50(39):9058-61 16170313 - Nat Biotechnol. 2005 Oct;23(10):1294-301 25164567 - Nano Lett. 2014 Sep 10;14(9):5315-22 8867803 - DNA Res. 1995 Dec 31;2(6):285-93 23897672 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Nov-Dec;5(6):629-45 21770172 - J Nanosci Nanotechnol. 2011 Jun;11(6):5258-63 17165787 - J Am Chem Soc. 2006 Dec 20;128(50):16323-31 23917462 - Nanotechnology. 2013 Sep 6;24(35):355502 20473987 - Small. 2010 May 21;6(10):1150-5 20512128 - Nat Nanotechnol. 2010 Jul;5(7):487-96 26014289 - Sci Rep. 2015 May 27;5:10546 9447591 - Nat Biotechnol. 1998 Jan;16(1):40-4 23887829 - Nat Commun. 2013;4:2225 23511414 - Nat Chem. 2013 Apr;5(4):263-75 26144837 - Chem Soc Rev. 2015 Oct 7;44(19):6954-80 21077655 - J Am Chem Soc. 2010 Dec 8;132(48):17149-56 10603244 - Anal Biochem. 1999 Dec 15;276(2):204-14 17914853 - Nano Lett. 2007 Nov;7(11):3405-9 16281031 - Nature. 2005 Nov 10;438(7065):201-4 26187396 - Biosens Bioelectron. 2016 Feb 15;76:195-212 27270085 - Nat Commun. 2016 Jun 07;7:11800 15716362 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3208-12 22635097 - Nat Nanotechnol. 2012 May 27;7(6):401-7 26691648 - Chem Rev. 2016 Jan 13;116(1):215-57 23607309 - Crit Rev Biotechnol. 2014 Jun;34(2):180-96 22752797 - Hum Genet. 2012 Oct;131(10):1627-38 24156488 - Nanomedicine (Lond). 2013 Nov;8(11):1839-51 25189574 - Nat Commun. 2014 Sep 05;5:4866 15155822 - Nucleic Acids Res. 2004 May 20;32(9):e75 25946631 - Sensors (Basel). 2015 May 04;15(5):10380-98 26046443 - Cell. 2015 Jun 4;161(6):1437-52 17660825 - Nat Mater. 2007 Sep;6(9):652-5 22453836 - Nat Commun. 2012 Mar 27;3:763 22498436 - J Biotechnol. 2012 Aug 31;160(3-4):123-8 24158906 - Science. 2013 Nov 8;342(6159):720-3 23493424 - Science. 2013 Apr 12;340(6129):167-70 25800494 - Nat Commun. 2015 Mar 24;6:6563 21828007 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13002-6 24126320 - Nat Commun. 2013;4:2619 11872831 - Science. 2002 Mar 1;295(5560):1669-78 22992186 - ACS Nano. 2012 Oct 23;6(10):8546-51 |
References_xml | – volume: 23 start-page: 1294 year: 2005 end-page: 1301 ident: CR16 article-title: Multiplexed electrical detection of cancer markers with nanowire sensor arrays publication-title: Nat. Biotechnol. – volume: 18 start-page: 513 year: 2015 end-page: 522 ident: CR28 article-title: Graphene-protein field effect biosensors: glucose sensing publication-title: Mater. Today – volume: 6 start-page: 652 year: 2007 end-page: 655 ident: CR26 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. – volume: 75 start-page: 205441 year: 2007 ident: CR51 article-title: Electronic structure of gated graphene and graphene ribbons publication-title: Phys. Rev. B – volume: 91 start-page: 205413 year: 2015 ident: CR54 article-title: Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering publication-title: Phys. Rev. B – volume: 7 start-page: 401 year: 2012 end-page: 407 ident: CR18 article-title: Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors publication-title: Nat. Nanotechnol. – volume: 13 start-page: 2754 year: 2013 end-page: 2759 ident: CR53 article-title: Multifactorial modulation of binding and dissociation kinetics on two-dimensional DNA nanostructures publication-title: Nano Lett. – volume: 4 start-page: 2619 year: 2013 ident: CR30 article-title: Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation publication-title: Nat. Commun. – volume: 6 start-page: 6563 year: 2015 ident: CR32 article-title: A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases publication-title: Nat. Commun. – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: CR20 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature – volume: 32 start-page: 75 year: 2004 ident: CR6 article-title: Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS) publication-title: Nucl. Acids Res. – volume: 11 start-page: 1 year: 2016 end-page: 5 ident: CR33 article-title: Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor publication-title: Front. Phys. – volume: 6 start-page: 8546 year: 2012 end-page: 8551 ident: CR56 article-title: Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection publication-title: ACS Nano – volume: 52 start-page: 110107 year: 2013 ident: CR47 article-title: Direct electrical detection of DNA hybridization based on electrolyte-gated graphene field-effect transistor publication-title: Jpn J. Appl. Phys. – volume: 116 start-page: 19490 year: 2012 end-page: 19495 ident: CR11 article-title: Horizontally aligned carbon nanotubes on a quartz substrate for chemical and biological sensing publication-title: J. Phys. Chem. C – volume: 9 start-page: 11166 year: 2015 end-page: 11176 ident: CR37 article-title: Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene publication-title: ACS Nano – volume: 161 start-page: 1437 year: 2015 end-page: 1452 ident: CR3 article-title: The Transcriptome and DNA methylome landscapes of human primordial germ cells publication-title: Cell – volume: 295 start-page: 1669 year: 2002 end-page: 1678 ident: CR7 article-title: A genomic regulatory network for development publication-title: Science – volume: 342 start-page: 720 year: 2013 end-page: 723 ident: CR59 article-title: The role of surface oxygen in the growth of large single-crystal graphene on copper publication-title: Science – volume: 5 start-page: 5461 year: 2014 ident: CR44 article-title: Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers publication-title: Nat. Commun. – volume: 16 start-page: 40 year: 1998 end-page: 44 ident: CR4 article-title: DNA chips: state-of-the-art publication-title: Nat. Biotechnol. – volume: 6 start-page: 584 year: 2010 end-page: 588 ident: CR21 article-title: Crossover of the three-dimensional topological insulator Bi Se to the two-dimensional limit publication-title: Nat. Phys. – volume: 5 start-page: 487 year: 2010 end-page: 496 ident: CR25 article-title: Graphene transistors publication-title: Nat. Nanotechnol. – volume: 5 start-page: 629 year: 2013 end-page: 645 ident: CR19 article-title: Performance limitations for nanowire/nanoribbon biosensors publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 128 start-page: 16323 year: 2006 end-page: 16331 ident: CR14 article-title: Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 285 year: 1995 end-page: 293 ident: CR41 article-title: A new approach to determine the effect of mismatches on kinetic parameters in DNA hybridization using an optical biosensor publication-title: DNA Res. – volume: 108 start-page: 13002 year: 2011 end-page: 13006 ident: CR50 article-title: Accessing the transport properties of graphene and its multilayers at high carrier density publication-title: Proc. Natl Acad. Sci. USA – volume: 20 start-page: 3117 year: 2010 end-page: 3124 ident: CR48 article-title: Graphene solution-gated field-effect transistor array for sensing applications publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1150 year: 2010 end-page: 1155 ident: CR45 article-title: Gating of single-layer graphene with single-stranded deoxyribonucleic acids publication-title: Small – volume: 5 start-page: 10546 year: 2015 ident: CR38 article-title: Multiple MoS transistors for sensing molecule interaction kinetics publication-title: Sci. Rep. – volume: 4 start-page: 2225 year: 2013 ident: CR29 article-title: Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity publication-title: Nat. Commun. – volume: 160 start-page: 123 year: 2012 end-page: 128 ident: CR55 article-title: Label-free and high-sensitive detection of Salmonella using a surface plasmon 645 resonance DNA-based biosensor publication-title: J. Biotechnol. – volume: 116 start-page: 215 year: 2016 end-page: 257 ident: CR9 article-title: Nano-bioelectronics publication-title: Chem. Rev. – volume: 7 start-page: 3405 year: 2007 end-page: 3409 ident: CR57 article-title: Importance of the Debye screening length on nanowire field effect transistor 641 sensors publication-title: Nano Lett. – volume: 132 start-page: 17149 year: 2010 end-page: 17156 ident: CR49 article-title: Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 351 year: 2008 end-page: 355 ident: CR24 article-title: Ultrahigh electron mobility in suspended graphene publication-title: Solid State Commun. – volume: 24 start-page: 355502 year: 2013 ident: CR36 article-title: Scalable graphene field-effect sensors for specific protein detection publication-title: Nanotechnology – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: CR23 article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets publication-title: Nat. Chem. – volume: 50 start-page: 9058 year: 2011 end-page: 9061 ident: CR42 article-title: Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy publication-title: Angew. Chem. Int. Ed. Engl. – volume: 19 start-page: 928 year: 2009 end-page: 933 ident: CR12 article-title: Functionalized GaN nanowire-based electrode for direct label-free voltammetric detection of DNA hybridization publication-title: J. Mater. Chem. – volume: 102 start-page: 3208 year: 2005 end-page: 3212 ident: CR15 article-title: Label-free detection of small-molecule-protein interactions by using nanowire nanosensors publication-title: Proc. Natl Acad. Sci. USA – volume: 276 start-page: 204 year: 1999 end-page: 214 ident: CR52 article-title: Real-time measurements of DNA hybridization on microparticles with fluorescence resonance energy transfer publication-title: Anal. Biochem. – volume: 7 start-page: 11800 year: 2016 ident: CR35 article-title: Simultaneous optical and electrical in vivo analysis of the enteric nervous system publication-title: Nat. Commun. – volume: 11 start-page: 5258 year: 2011 end-page: 5263 ident: CR46 article-title: Label free DNA detection using large area graphene based field effect transistor biosensors publication-title: J. Nanosci. Nanotechnol. – volume: 34 start-page: 180 year: 2014 end-page: 196 ident: CR1 article-title: Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine publication-title: Crit. Rev. Biotechnol. – volume: 340 start-page: 167 year: 2013 end-page: 170 ident: CR22 article-title: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator publication-title: Science – volume: 8 start-page: 1839 year: 2013 end-page: 1851 ident: CR58 article-title: Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors publication-title: Nanomedicine – volume: 15 start-page: 10380 year: 2015 end-page: 10398 ident: CR8 article-title: Field effect sensors for nucleic acid detection: recent advances and future perspectives publication-title: Sensors – volume: 131 start-page: 1627 year: 2012 end-page: 1638 ident: CR2 article-title: Personalized medicine using DNA biomarkers: a review publication-title: Hum. Genet. – volume: 222 start-page: 1175 year: 2016 end-page: 1183 ident: CR60 article-title: Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering publication-title: Sensor Actuat. B Chem. – volume: 5 start-page: 4866 year: 2014 ident: CR31 article-title: Electrophoretic and field-effect graphene for all-electrical DNA array technology publication-title: Nat. Commun. – volume: 3 start-page: 763 year: 2012 ident: CR34 article-title: Graphene-based wireless bacteria detection on tooth enamel publication-title: Nat. Commun. – volume: 44 start-page: 6954 year: 2015 end-page: 6980 ident: CR39 article-title: The graphene/nucleic acid nanobiointerface publication-title: Chem. Soc. Rev. – volume: 25 start-page: 1989 year: 2010 end-page: 1993 ident: CR10 article-title: Aligned carbon nanotubes on quartz substrate for liquid gated biosensing publication-title: Biosens. Bioelectron. – volume: 1 start-page: 515 year: 2002 end-page: 528 ident: CR5 article-title: Optical biosensors in drug discovery publication-title: Nat. Rev. Drug. Discov. – volume: 76 start-page: 195 year: 2016 end-page: 212 ident: CR27 article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials publication-title: Biosens. Bioelectron. – volume: 50 start-page: 46 year: 2015 end-page: 111 ident: CR43 article-title: Raman spectroscopy of biological tissues publication-title: Appl. Spectrosc. Rev. – volume: 4 start-page: 51 year: 2004 end-page: 54 ident: CR13 article-title: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors publication-title: Nano Lett. – volume: 7 start-page: 261 year: 2015 end-page: 291 ident: CR40 article-title: Recent trends in electrochemical nanobiosensors for environmental analysis publication-title: Int. J. Environ. Health – volume: 14 start-page: 5315 year: 2014 end-page: 5322 ident: CR17 article-title: Direct, rapid, and label-free detection of enzyme substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors publication-title: Nano Lett. – volume: 13 start-page: 2754 year: 2013 ident: BFncomms14902_CR53 publication-title: Nano Lett. doi: 10.1021/nl400976s – volume: 276 start-page: 204 year: 1999 ident: BFncomms14902_CR52 publication-title: Anal. Biochem. doi: 10.1006/abio.1999.4344 – volume: 34 start-page: 180 year: 2014 ident: BFncomms14902_CR1 publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2013.778228 – volume: 108 start-page: 13002 year: 2011 ident: BFncomms14902_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1018388108 – volume: 5 start-page: 5461 year: 2014 ident: BFncomms14902_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms6461 – volume: 52 start-page: 110107 year: 2013 ident: BFncomms14902_CR47 publication-title: Jpn J. Appl. Phys. doi: 10.7567/JJAP.52.110107 – volume: 50 start-page: 9058 year: 2011 ident: BFncomms14902_CR42 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201102776 – volume: 7 start-page: 261 year: 2015 ident: BFncomms14902_CR40 publication-title: Int. J. Environ. Health doi: 10.1504/IJENVH.2015.073210 – volume: 160 start-page: 123 year: 2012 ident: BFncomms14902_CR55 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2012.03.024 – volume: 6 start-page: 1150 year: 2010 ident: BFncomms14902_CR45 publication-title: Small doi: 10.1002/smll.200902379 – volume: 8 start-page: 1839 year: 2013 ident: BFncomms14902_CR58 publication-title: Nanomedicine doi: 10.2217/nnm.13.156 – volume: 7 start-page: 401 year: 2012 ident: BFncomms14902_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.82 – volume: 23 start-page: 1294 year: 2005 ident: BFncomms14902_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1138 – volume: 50 start-page: 46 year: 2015 ident: BFncomms14902_CR43 publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2014.923902 – volume: 6 start-page: 8546 year: 2012 ident: BFncomms14902_CR56 publication-title: ACS Nano doi: 10.1021/nn301359y – volume: 146 start-page: 351 year: 2008 ident: BFncomms14902_CR24 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 131 start-page: 1627 year: 2012 ident: BFncomms14902_CR2 publication-title: Hum. Genet. doi: 10.1007/s00439-012-1188-9 – volume: 14 start-page: 5315 year: 2014 ident: BFncomms14902_CR17 publication-title: Nano Lett. doi: 10.1021/nl502366e – volume: 25 start-page: 1989 year: 2010 ident: BFncomms14902_CR10 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.01.009 – volume: 222 start-page: 1175 year: 2016 ident: BFncomms14902_CR60 publication-title: Sensor Actuat. B Chem. doi: 10.1016/j.snb.2015.08.009 – volume: 6 start-page: 6563 year: 2015 ident: BFncomms14902_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms7563 – volume: 44 start-page: 6954 year: 2015 ident: BFncomms14902_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00519H – volume: 116 start-page: 215 year: 2016 ident: BFncomms14902_CR9 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00608 – volume: 1 start-page: 515 year: 2002 ident: BFncomms14902_CR5 publication-title: Nat. Rev. Drug. Discov. doi: 10.1038/nrd838 – volume: 76 start-page: 195 year: 2016 ident: BFncomms14902_CR27 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.07.002 – volume: 11 start-page: 5258 year: 2011 ident: BFncomms14902_CR46 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.3885 – volume: 24 start-page: 355502 year: 2013 ident: BFncomms14902_CR36 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/35/355502 – volume: 75 start-page: 205441 year: 2007 ident: BFncomms14902_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.205441 – volume: 4 start-page: 51 year: 2004 ident: BFncomms14902_CR13 publication-title: Nano Lett. doi: 10.1021/nl034853b – volume: 9 start-page: 11166 year: 2015 ident: BFncomms14902_CR37 publication-title: ACS Nano doi: 10.1021/acsnano.5b05709 – volume: 116 start-page: 19490 year: 2012 ident: BFncomms14902_CR11 publication-title: J. Phys. Chem. C doi: 10.1021/jp301542w – volume: 5 start-page: 263 year: 2013 ident: BFncomms14902_CR23 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 6 start-page: 652 year: 2007 ident: BFncomms14902_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 5 start-page: 4866 year: 2014 ident: BFncomms14902_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms5866 – volume: 20 start-page: 3117 year: 2010 ident: BFncomms14902_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000724 – volume: 340 start-page: 167 year: 2013 ident: BFncomms14902_CR22 publication-title: Science doi: 10.1126/science.1234414 – volume: 5 start-page: 10546 year: 2015 ident: BFncomms14902_CR38 publication-title: Sci. Rep. doi: 10.1038/srep10546 – volume: 342 start-page: 720 year: 2013 ident: BFncomms14902_CR59 publication-title: Science doi: 10.1126/science.1243879 – volume: 161 start-page: 1437 year: 2015 ident: BFncomms14902_CR3 publication-title: Cell doi: 10.1016/j.cell.2015.05.015 – volume: 3 start-page: 763 year: 2012 ident: BFncomms14902_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms1767 – volume: 295 start-page: 1669 year: 2002 ident: BFncomms14902_CR7 publication-title: Science doi: 10.1126/science.1069883 – volume: 7 start-page: 3405 year: 2007 ident: BFncomms14902_CR57 publication-title: Nano Lett. doi: 10.1021/nl071792z – volume: 6 start-page: 584 year: 2010 ident: BFncomms14902_CR21 publication-title: Nat. Phys. doi: 10.1038/nphys1689 – volume: 32 start-page: 75 year: 2004 ident: BFncomms14902_CR6 publication-title: Nucl. Acids Res. doi: 10.1093/nar/gnh067 – volume: 2 start-page: 285 year: 1995 ident: BFncomms14902_CR41 publication-title: DNA Res. doi: 10.1093/dnares/2.6.285 – volume: 438 start-page: 201 year: 2005 ident: BFncomms14902_CR20 publication-title: Nature doi: 10.1038/nature04235 – volume: 19 start-page: 928 year: 2009 ident: BFncomms14902_CR12 publication-title: J. Mater. Chem. doi: 10.1039/b816556d – volume: 5 start-page: 487 year: 2010 ident: BFncomms14902_CR25 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.89 – volume: 102 start-page: 3208 year: 2005 ident: BFncomms14902_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0406368102 – volume: 91 start-page: 205413 year: 2015 ident: BFncomms14902_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.205413 – volume: 4 start-page: 2225 year: 2013 ident: BFncomms14902_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms3225 – volume: 16 start-page: 40 year: 1998 ident: BFncomms14902_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0198-40 – volume: 132 start-page: 17149 year: 2010 ident: BFncomms14902_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104850n – volume: 7 start-page: 11800 year: 2016 ident: BFncomms14902_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms11800 – volume: 5 start-page: 629 year: 2013 ident: BFncomms14902_CR19 publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1235 – volume: 128 start-page: 16323 year: 2006 ident: BFncomms14902_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065923u – volume: 15 start-page: 10380 year: 2015 ident: BFncomms14902_CR8 publication-title: Sensors doi: 10.3390/s150510380 – volume: 11 start-page: 1 year: 2016 ident: BFncomms14902_CR33 publication-title: Front. Phys. – volume: 18 start-page: 513 year: 2015 ident: BFncomms14902_CR28 publication-title: Mater. Today doi: 10.1016/j.mattod.2015.04.003 – volume: 4 start-page: 2619 year: 2013 ident: BFncomms14902_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms3619 – reference: 26187396 - Biosens Bioelectron. 2016 Feb 15;76:195-212 – reference: 15716362 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3208-12 – reference: 22752797 - Hum Genet. 2012 Oct;131(10):1627-38 – reference: 26144837 - Chem Soc Rev. 2015 Oct 7;44(19):6954-80 – reference: 23701430 - Nano Lett. 2013 Jun 12;13(6):2754-9 – reference: 24156488 - Nanomedicine (Lond). 2013 Nov;8(11):1839-51 – reference: 22498436 - J Biotechnol. 2012 Aug 31;160(3-4):123-8 – reference: 20473987 - Small. 2010 May 21;6(10):1150-5 – reference: 24126320 - Nat Commun. 2013;4:2619 – reference: 26445172 - ACS Nano. 2015 Nov 24;9(11):11166-76 – reference: 23493424 - Science. 2013 Apr 12;340(6129):167-70 – reference: 22992186 - ACS Nano. 2012 Oct 23;6(10):8546-51 – reference: 25189574 - Nat Commun. 2014 Sep 05;5:4866 – reference: 20129773 - Biosens Bioelectron. 2010 Apr 15;25(8):1989-93 – reference: 20512128 - Nat Nanotechnol. 2010 Jul;5(7):487-96 – reference: 21774045 - Angew Chem Int Ed Engl. 2011 Sep 19;50(39):9058-61 – reference: 25946631 - Sensors (Basel). 2015 May 04;15(5):10380-98 – reference: 21077655 - J Am Chem Soc. 2010 Dec 8;132(48):17149-56 – reference: 22453836 - Nat Commun. 2012 Mar 27;3:763 – reference: 23607309 - Crit Rev Biotechnol. 2014 Jun;34(2):180-96 – reference: 23887829 - Nat Commun. 2013;4:2225 – reference: 26014289 - Sci Rep. 2015 May 27;5:10546 – reference: 25800494 - Nat Commun. 2015 Mar 24;6:6563 – reference: 10603244 - Anal Biochem. 1999 Dec 15;276(2):204-14 – reference: 11872831 - Science. 2002 Mar 1;295(5560):1669-78 – reference: 21828007 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13002-6 – reference: 16281031 - Nature. 2005 Nov 10;438(7065):201-4 – reference: 8867803 - DNA Res. 1995 Dec 31;2(6):285-93 – reference: 25410480 - Nat Commun. 2014 Nov 20;5:5461 – reference: 22635097 - Nat Nanotechnol. 2012 May 27;7(6):401-7 – reference: 26046443 - Cell. 2015 Jun 4;161(6):1437-52 – reference: 25164567 - Nano Lett. 2014 Sep 10;14(9):5315-22 – reference: 24158906 - Science. 2013 Nov 8;342(6159):720-3 – reference: 17165787 - J Am Chem Soc. 2006 Dec 20;128(50):16323-31 – reference: 23897672 - Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Nov-Dec;5(6):629-45 – reference: 26691648 - Chem Rev. 2016 Jan 13;116(1):215-57 – reference: 16170313 - Nat Biotechnol. 2005 Oct;23(10):1294-301 – reference: 17914853 - Nano Lett. 2007 Nov;7(11):3405-9 – reference: 9447591 - Nat Biotechnol. 1998 Jan;16(1):40-4 – reference: 23917462 - Nanotechnology. 2013 Sep 6;24(35):355502 – reference: 17660825 - Nat Mater. 2007 Sep;6(9):652-5 – reference: 23511414 - Nat Chem. 2013 Apr;5(4):263-75 – reference: 12120258 - Nat Rev Drug Discov. 2002 Jul;1(7):515-28 – reference: 27270085 - Nat Commun. 2016 Jun 07;7:11800 – reference: 15155822 - Nucleic Acids Res. 2004 May 20;32(9):e75 – reference: 21770172 - J Nanosci Nanotechnol. 2011 Jun;11(6):5258-63 |
SSID | ssj0000391844 |
Score | 2.6441176 |
Snippet | Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology,... Monitoring DNA binding and single-base mismatches accurately in real time is difficult, especially for miniaturized devices. Here the authors report a graphene... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14902 |
SubjectTerms | 631/61/32 639/301/357/918/1052 639/638/11/511 9/10 Biology Biomarkers Biosensing Techniques Biosensors Carbon Cost-Benefit Analysis Deoxyribonucleic acid DNA DNA - chemistry DNA Probes - chemistry Fabrication Genetic diversity Graphene Graphite - chemistry High-Throughput Screening Assays - economics High-Throughput Screening Assays - instrumentation Humanities and Social Sciences Hybridization Kinetics Limit of Detection Miniaturization Models, Chemical multidisciplinary Nanowires Nucleic Acid Hybridization Reproducibility of Results Science Sensors Transistors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF-KUOhLsVVrWltWuL4Ii5vdfGwetVUOQR-Kgm9hP_XwTMrd-eB_78wmOe5U8MXXzSQsM7M7v8l8ETLC4I72FpS30CXLhFFMOeNZKrwuTFnaPMUC5_OLYnyVnV3n1yujvjAnrGsP3DHuUGsvnAOzKbMAxkYrYQLnVqQ-1SKPJeQCbN6KMxXvYFmB65L1BXlcqsMGBHg_B3-g_4EymKDYqf81ePkyS_JZqDRaoNNN8rmHjvSo2_IX8sE3X8nHbpjk4xaZ_QPMx3BWPJ356QRLoqgbkl2Q_bQN1ExiFQu9A3CJDZpx7e_FEb19xMqtviaTYjL8DdU0ZhsyrA1u_JTG3tZwNcJH2jl4v-1sm1yenlz-GbN-ogKzcDIXzHGuM62MMzIPlQsAtxQgOllKWBKFqdKg07S0lQZPsNJScaOVxciqc1YHuUM2mrbxu4Q6K33Jg_BAl4ELB3emCUblICwlPXcJORh4XNu-2zgOvZjWMeotVb0ikISMlsT_uyYbr5Mdo7CWJNgZOy6AvtS9vtRv6UtC9gZR1_1xndc4cl0WgEZVQvaXj-GgYfREN7596GgKcOkVfOJbpxnLneC8JywqTki5pjNrW11_0kxuYzPvXAIi5fDm70G7Vrb1kgff34MHP8gngeiESybSPbKxmD34n4CtFuZXPEZPF_0mjg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojwDLTJSuSBZdew8vCfUFpYKiR5QkXqL_GxXLEnJbg_998w4TujSiqvtWKPMjP2N50XIHjp3tLcgvJWuWSGMYsoZz3LhdWXq2pY5Jjh_O6mOfxRfz8qz9OC2SmGV45kYD2rXWXwj38eu2LICwKA-Xv5m2DUKvauphcZ98iCHmwZDutT8y_TGgtXPVVGktDwu1X4LW_5agVWQnlHGiyjW678LZN6OlfzHYRrvofkT8jgBSHowcHyb3PPtU_JwaCl5_Yz03wH5MewYT3u_XGBiFHVjyAsygXaBmkXMZaE_AWJimWYc-3RyQC-uMX8rZWZSDIk_p5rGmEOGGcKtX9JY4RoOSNikW4EN3PXPyen88-nRMUt9FZgF_Vwzx7kutDLOyDLMXADQpQDXyVrCkKjMLA86z2s702APzrRU3Ghl0b_qnNVBviBbbdf6V4Q6K33Ng_CwrgBDDk5OE4wqvXBKeu4y8mH8x41NNcex9cWyib5vqZobDMnI3rT4cii1cfeyQ2TWtATrY8eBrj9vkro1WgMJDsCWLAJAFK2ECZxbkftcC0AsGdkZWd0kpV01f0UsI--maVA39KHo1ndXw5oKDHsFW7wcJGOiBLs-YWpxRuoNmdkgdXOmXVzEkt6lBFzK4cv3o3TdIOv2P3j9f_LfkEcC0QeXTOQ7ZGvdX_ldwE5r8zYqyB8-Jx5M priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKyQuCMorUCojlQuShWPn4T0u0KpaiR6gSL1FfrYrlgRlt4f-e2YcJ9qlPfQYe2KN7LHzOTPzDSHH6NzR3oLxVrpmhTCKKWc8y4XXlalrW-aY4Pz9vDr7VSwuy8vEs71OYZUDpWU8psfosM8tPP1ZA5xH4sh95GgHo96fzxc_F9MvFSQ7V0WRsvC4VNtv7Xx3Ij3_fZjybmjkf_7R-Nk5fUaeJrxI54OGz8kj3x6Qx0MFydsXpP8BQI9hgXja-9US86CoGyNccM5pF6hZxtQV-hsQJbIyY9u38zm9vsV0rZSISTEC_opqGkMMGSYEt35FI6E1nIcwSLeGK2_XvyQXpycXX89YKqPALGzHDXOc60Ir44wsw8wFwFgKYJysJTSJyszyoPO8tjMN17-ZloobrSy6U52zOshXZK_tWv-GUGelr3kQHuQKuLfBQWmCUaUXTknPXUY-jXPc2EQxjpUuVk10dUvVbC1IRo4n4b8Ds8b9Yl9wsSYRpMOODV1_1STzaLQGFRxgK1kEQCRaCRM4tyL3uRYAUDJyOC51k_bousE667ICCKoy8mHqht2FLhPd-u5mkKngHq9giNeDZUyaYJEnzCTOSL1jMzuq7va0y-vI4F1KgKEc3vw4WteWWnfn4O0D5d6RJwJRB5dM5Idkb9Pf-PeAmTbmKO2VfzCvHDc priority: 102 providerName: Springer Nature |
Title | Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor |
URI | https://link.springer.com/article/10.1038/ncomms14902 https://www.ncbi.nlm.nih.gov/pubmed/28322227 https://www.proquest.com/docview/1879360838 https://www.proquest.com/docview/1879671381 https://pubmed.ncbi.nlm.nih.gov/PMC5364407 https://doaj.org/article/aae2dd43934f415a82bf00c21e1a2521 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy2Avo-s-6rYLGnQvA2-2ZFvywxhp2qwEGkbXQt6MZMltWGavTgrLf7872Q5NG_Zig3w2h-5O-p1Pd0fIMQZ3lM1BeRMl_Ihp6UujrR8yqxItRB6HmOB8MU7Or6PRJJ5ska4ZZzuB842uHfaTuq5nn__eLb-BwX9tUsbllxJk83sOUB-LSu7AliSwlcFFi_PdksxT8GSiNj_v0TtrO5Ir3L8JbT49NPkocuo2pOEuedkiSdpvRP-KbNlyjzxveksuX5P6EiCgj63jaW1nU8yQoqY7-4LSoFVB9dQltdBfgDWxXjOOnY779HaJiVxtiibFs_E3VFF3-NDHVOHSzqgrdQ0rJXykmoMzXNVvyNXw7Gpw7rcNFvwcDHXhmyBQkZLaaB4XqSkAfUkAeFxwGGKJTsNChaHIUwWOYaq4DLSSOQZajclVwd-S7bIq7T6hJudWBAWzQBeBRwdLqC60jC0zktvAeORTN8dZ3hYfxx4Ys8wFwbnMHgjEI8cr4j9NzY3NZCcorBUJFsp2A1V9k7V2lykFLBhAXTwqAKsoyXQRBDkLbagYQBePHHWizjrly7ADO08AnEqPfFg9BrvDYIoqbXXf0CTg4Uv4xLtGM1acYPsnzDH2iFjTmTVW15-U01tX2zvmAFADePNjp10P2Ho6Bwf_Z_-QvGAIQwLus_CIbC_qe_seQNRC98gzMRFwlcPvPbLT749-juB-cjb-cQmjg2TQc78nes6Q_gGvGyfs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChipvSBFdew8vAeECmXZ0nYPaJF6i-zYaVfdJiW7FdofxX9kJi-6tOLWq-NEE894_I3nBbBFzh3tMhTeWCd-KIzylTXOD4TTsUmSLAoowfloHI9-hN-Oo-M1-N3lwlBYZacTa0Vty4zuyHeoK7aMETCojxc_feoaRd7VroVGIxYHbvkLTbb5h_095O-2EMMvk88jv-0q4GconQvfcq5DrYw1MsoHNkfIoRDVyETikIjNIMh1ECTZQKM1NNBScaNVRt5FazOdS_zsHbgbSjzIKTF9-LW_0qFi6yoM2yxALtVOgX9wPkcjpL216c69uj3ATZj2emjmP_7Z-tgbPoKHLV5lu42APYY1VzyBe00Hy-VTqL4j0PSpQT2r3GxKeVjMdhE2xHNW5sxM69QZdoaIlqpC09jeeJedLildrE0EZRSBf8I0q0McfUpILtyM1QW1UR_jR8o5mtxl9Qwmt7Hgz2G9KAv3ApjNpEt4LhzOC9FuREVtcqMiJ6ySjlsP3ndrnGZtiXPqtDFLa1e7VOkVhniw1U--aCp73DztEzGrn0LluOuBsjpJ292dao0kWMR2MswREWklTM55JgIXaIEAyYPNjtVpqyPm6V-J9uBd_xh3N7lsdOHKy2ZOnAQIqzzYaCSjp4SaTFEmswfJisyskLr6pJie1hXEI4kwmOOb2510XSHr-hq8_D_5b-H-aHJ0mB7ujw9ewQNBwIdLXwSbsL6oLt1rhG0L86beLAzSW96cfwA2n1tK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYzUXpCiOnYe3gNCLdtVS2FVVUXqLbJjp12xJCW7Fdqfxr9jJi-6tOLWqzMbzdozk288L4BNCu5ol6HwxjrxQ2GUr6xxfiCcjk2SZFFABc5fJ_H-t_DzaXS6Br-7WhhKq-xsYm2obZnRHfk2TcWWMQIGtZ23aRFHo_HHi58-TZCiSGs3TqMRkUO3_IXu2_zDwQjPekuI8d7Jp32_nTDgZyipC99yrkOtjDUyyoc2R_ihEOHIROKSiM0wyHUQJNlQo2c01FJxo1VGkUZrM51LfO0dWE_IKRrA-u7e5Oi4v-Ch1usqDNuaQI58F_h_fszRJWnvcLqvYD0s4CaEez1R859obf0RHD-EBy16ZTuNuD2CNVc8hrvNPMvlE6iOEXb6NK6eVW42paosZrt8G5IAVubMTOtCGvYd8S31iKa10WSHnS-peKwtC2WUj3_GNKsTHn0qTy7cjNXttdE640vKOTrgZfUUTm5jy5_BoCgL9wKYzaRLeC4c0oXoRaLZNrlRkRNWScetB--7PU6ztuE5zd2YpXXgXar0yoF4sNkTXzR9Pm4m26XD6kmoOXe9UFZnaavrqdbIgkWkJ8Mc8ZFWwuScZyJwgRYIlzzY6I46bS3GPP0r3x686x-jrlMARxeuvGxo4iRAkOXB80Yyek5o5BTVNXuQrMjMCqurT4rped1PPJIIijn-cquTritsXd-Dl_9n_y3cQ8VMvxxMDl_BfUEoiEtfBBswWFSX7jViuIV502oLg_SW9fMPyUxg3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+reliable+determination+of+binding+kinetics+of+DNA+hybridization+using+a+multi-channel+graphene+biosensor&rft.jtitle=Nature+communications&rft.au=Xu%2C+Shicai&rft.au=Zhan%2C+Jian&rft.au=Man%2C+Baoyuan&rft.au=Jiang%2C+Shouzhen&rft.date=2017-03-21&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=8&rft.spage=14902&rft_id=info:doi/10.1038%2Fncomms14902&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4321031425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |