Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We d...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5088 - 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.10.2020
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at
https://github.com/ChenWWWeixiang/diagnosis_covid19
.
In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results. |
---|---|
AbstractList | Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 .Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results. In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results. Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . |
ArticleNumber | 5088 |
Author | Cao, Yukun Zhang, Xin Zhou, Jie Deng, Lei Chen, Weixiang Zheng, Chuansheng Shi, Heshui Xu, Zhanwei Tan, Zimeng Jin, Cheng Feng, Jianjiang |
Author_xml | – sequence: 1 givenname: Cheng surname: Jin fullname: Jin, Cheng organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 2 givenname: Weixiang surname: Chen fullname: Chen, Weixiang organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 3 givenname: Yukun orcidid: 0000-0002-8391-841X surname: Cao fullname: Cao, Yukun organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging – sequence: 4 givenname: Zhanwei surname: Xu fullname: Xu, Zhanwei organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 5 givenname: Zimeng surname: Tan fullname: Tan, Zimeng organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 6 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging – sequence: 7 givenname: Lei surname: Deng fullname: Deng, Lei organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 8 givenname: Chuansheng orcidid: 0000-0002-2435-1417 surname: Zheng fullname: Zheng, Chuansheng organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging – sequence: 9 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University – sequence: 10 givenname: Heshui orcidid: 0000-0002-0877-3054 surname: Shi fullname: Shi, Heshui email: heshuishi@hust.edu.cn organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging – sequence: 11 givenname: Jianjiang orcidid: 0000-0002-5940-0063 surname: Feng fullname: Feng, Jianjiang email: jfeng@tsinghua.edu.cn organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33037212$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v3CAQRVWqJk3zB3qofOzFDQxg8KVStenHSpFyiXJFGLDLygtbsFfKvw-7TqokhyCNBob33sDMfEQnIQaH0GeCvxFM5WVmhDWixoBrIhvJa_IOnQFmpCYC6Mmz_Sm6yHmDy6ItkYx9QKeUYiqAwBm6u3J7N8bd1oWp0sFWbq_HWU8-hir2JVLpNPneG6_HyofJjaMfXDCuyvd5ctuqj6la3dytr2rSVtbrIcTs8yf0vtdjdheP_hzd_vp5u_pTX9_8Xq9-XNeGCznVmnWc6FYCKdYCSNlYS4uB4w3nre5xLzsBHIg0LQZRTkCp7pnVovzhHK0XWRv1Ru2S3-p0r6L26hiIaVCH55vRKcukAGs46fqOcdNIcBaaToOB4jkrWt8Xrd3cbZ01pSBJjy9EX94E_1cNca8EZ6LhbRH4-iiQ4r_Z5UltfTalYDq4OGcFjLUtl6Q5QL88z_U_yVNfCkAuAJNizsn1yvjp2JWS2o-KYHWYArVMgSpToI5ToEihwivqk_qbJLqQcgGHwSW1iXMKpXVvsR4AC1bDpA |
CitedBy_id | crossref_primary_10_1155_2022_3035426 crossref_primary_10_1007_s00500_024_10362_5 crossref_primary_10_14801_jkiit_2022_20_12_37 crossref_primary_10_3390_app12083895 crossref_primary_10_1039_D3MH00759F crossref_primary_10_17116_profmed20222501114 crossref_primary_10_1097_MNM_0000000000001360 crossref_primary_10_1016_j_bios_2021_113005 crossref_primary_10_2196_29301 crossref_primary_10_1186_s43055_023_01022_z crossref_primary_10_1148_radiol_2021204522 crossref_primary_10_3389_fpubh_2022_920849 crossref_primary_10_1007_s00354_022_00195_x crossref_primary_10_1038_s41598_023_38133_6 crossref_primary_10_2196_38397 crossref_primary_10_1016_j_jvcir_2023_103775 crossref_primary_10_32604_iasc_2022_020386 crossref_primary_10_1002_jbio_202300486 crossref_primary_10_1016_j_procs_2021_09_233 crossref_primary_10_1002_cmdc_202100079 crossref_primary_10_2196_25181 crossref_primary_10_1007_s40121_022_00600_4 crossref_primary_10_3390_s23125749 crossref_primary_10_1016_j_imu_2021_100681 crossref_primary_10_5937_afmnai39_38354 crossref_primary_10_3390_pathogens10081048 crossref_primary_10_1109_TMBMC_2021_3099367 crossref_primary_10_3390_a15020071 crossref_primary_10_1038_s41598_023_37743_4 crossref_primary_10_1155_2021_4105784 crossref_primary_10_2174_1568026622666221006140825 crossref_primary_10_3390_life12111709 crossref_primary_10_3390_diagnostics12061396 crossref_primary_10_2196_44804 crossref_primary_10_1109_TMI_2022_3232572 crossref_primary_10_1016_j_bspc_2022_104297 crossref_primary_10_3390_info15010058 crossref_primary_10_1155_2022_4680905 crossref_primary_10_3390_math12081254 crossref_primary_10_1080_0952813X_2021_1908431 crossref_primary_10_3390_app14072715 crossref_primary_10_3390_app12157554 crossref_primary_10_1016_j_compbiomed_2022_106136 crossref_primary_10_1016_j_acra_2023_02_027 crossref_primary_10_3389_fnagi_2021_662786 crossref_primary_10_1016_j_engappai_2023_105820 crossref_primary_10_1016_j_cmpb_2021_106406 crossref_primary_10_1109_TAI_2022_3225372 crossref_primary_10_1007_s10278_024_01151_5 crossref_primary_10_1007_s00521_022_07709_0 crossref_primary_10_1002_ima_22865 crossref_primary_10_1016_j_bspc_2023_104642 crossref_primary_10_1007_s10796_021_10131_x crossref_primary_10_1002_hsr2_1244 crossref_primary_10_1016_j_actatropica_2024_107277 crossref_primary_10_1016_j_media_2022_102421 crossref_primary_10_3389_frai_2021_694875 crossref_primary_10_3233_JRS_210064 crossref_primary_10_1038_s41598_022_06802_7 crossref_primary_10_3390_bioengineering10020203 crossref_primary_10_1007_s12553_021_00601_2 crossref_primary_10_1016_j_patrec_2021_09_012 crossref_primary_10_1039_D1TC02883A crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_7717_peerj_cs_551 crossref_primary_10_4103_jfmpc_jfmpc_695_23 crossref_primary_10_1002_ima_22856 crossref_primary_10_3389_fmed_2024_1438979 crossref_primary_10_1057_s41599_025_04564_x crossref_primary_10_1038_s41598_021_96755_0 crossref_primary_10_3390_healthcare10020403 crossref_primary_10_1109_JBHI_2021_3132157 crossref_primary_10_1007_s11547_024_01796_w crossref_primary_10_1109_TVCG_2021_3114851 crossref_primary_10_1016_j_neucom_2022_02_018 crossref_primary_10_1177_20552076211048654 crossref_primary_10_3390_app11083414 crossref_primary_10_1007_s12274_022_4109_9 crossref_primary_10_21015_vtse_v10i3_1135 crossref_primary_10_1148_ryai_210064 crossref_primary_10_1007_s00330_022_09303_3 crossref_primary_10_4236_jcc_2024_123010 crossref_primary_10_3390_diagnostics11060991 crossref_primary_10_4103_abhs_abhs_29_22 crossref_primary_10_2174_1574893618666230227105703 crossref_primary_10_7759_cureus_31897 crossref_primary_10_1109_ACCESS_2021_3058537 crossref_primary_10_1007_s00354_025_00291_8 crossref_primary_10_1016_j_bbe_2021_06_011 crossref_primary_10_1016_j_heliyon_2023_e22878 crossref_primary_10_1097_MD_0000000000031346 crossref_primary_10_1016_j_engappai_2023_106786 crossref_primary_10_1038_s41598_022_21700_8 crossref_primary_10_1016_j_bspc_2022_104250 crossref_primary_10_1016_j_mcpdig_2023_07_007 crossref_primary_10_1183_13993003_00775_2020 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1080_0952813X_2021_1958063 crossref_primary_10_3390_healthcare9040441 crossref_primary_10_1016_j_eswa_2022_116540 crossref_primary_10_1080_21681163_2023_2187244 crossref_primary_10_3390_diagnostics12030765 crossref_primary_10_1016_j_patter_2021_100269 crossref_primary_10_4103_jehp_jehp_1424_20 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1007_s00330_022_08956_4 crossref_primary_10_3390_v15020304 crossref_primary_10_1016_j_engappai_2022_105184 crossref_primary_10_4018_JGIM_302890 crossref_primary_10_1155_2021_7788491 crossref_primary_10_18006_2024_12_1__124_137 crossref_primary_10_1080_03091902_2024_2321846 crossref_primary_10_1111_exsy_12796 crossref_primary_10_3389_frai_2022_927203 crossref_primary_10_1016_j_bios_2021_112969 crossref_primary_10_1109_JBHI_2021_3060035 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_3390_bioengineering9110698 crossref_primary_10_1038_s41598_022_18994_z crossref_primary_10_2196_42313 crossref_primary_10_3390_diagnostics12071608 crossref_primary_10_1038_s41598_021_83237_6 crossref_primary_10_2174_1573405619666221222161832 crossref_primary_10_3390_diagnostics14030337 crossref_primary_10_1109_JBHI_2021_3067465 crossref_primary_10_1111_exsy_13378 crossref_primary_10_3389_frai_2021_612914 crossref_primary_10_1080_23311916_2021_1958666 crossref_primary_10_1088_1361_6560_ac4316 crossref_primary_10_22630_MGV_2023_32_3_5 crossref_primary_10_1007_s42979_022_01035_x crossref_primary_10_1016_j_compbiomed_2021_105143 crossref_primary_10_1016_j_asoc_2021_108088 crossref_primary_10_1080_21681163_2023_2250861 crossref_primary_10_1007_s00330_022_09335_9 crossref_primary_10_21518_2079_701X_2022_16_4_42_50 crossref_primary_10_1007_s00603_024_04279_6 crossref_primary_10_1186_s41747_022_00317_6 crossref_primary_10_3390_diagnostics11071155 crossref_primary_10_1080_0952813X_2022_2093980 crossref_primary_10_3389_fmed_2023_1192376 crossref_primary_10_3389_fbuil_2024_1398425 crossref_primary_10_3390_diagnostics12040869 crossref_primary_10_3389_fmedt_2022_980735 crossref_primary_10_1007_s11042_024_19046_6 crossref_primary_10_1016_j_compbiomed_2021_104984 crossref_primary_10_1016_j_isci_2022_103961 crossref_primary_10_1007_s11831_023_09882_4 crossref_primary_10_3390_diagnostics12030717 crossref_primary_10_3390_biomedicines11030901 crossref_primary_10_1016_j_compbiomed_2023_107451 crossref_primary_10_1007_s11831_025_10253_4 crossref_primary_10_1007_s11547_022_01510_8 crossref_primary_10_2174_0118749445297804240401061128 crossref_primary_10_1088_2057_1976_ad9157 crossref_primary_10_1109_TNNLS_2021_3114747 crossref_primary_10_2196_34605 crossref_primary_10_1016_j_compbiomed_2021_104837 crossref_primary_10_1007_s11042_024_18670_6 crossref_primary_10_1038_s41598_023_29600_1 crossref_primary_10_1145_3457124 crossref_primary_10_1016_j_csbj_2021_05_010 crossref_primary_10_1016_j_chemosphere_2022_135645 crossref_primary_10_1016_j_jaci_2021_02_021 crossref_primary_10_32604_cmc_2022_018487 crossref_primary_10_3390_electronics12030684 crossref_primary_10_61969_jai_1469589 crossref_primary_10_1186_s12967_021_02910_6 crossref_primary_10_4329_wjr_v13_i9_258 crossref_primary_10_1002_adma_202103646 crossref_primary_10_1007_s11042_024_20248_1 crossref_primary_10_1016_j_clinimag_2024_110092 crossref_primary_10_3390_bdcc7010011 crossref_primary_10_1038_s41598_022_25539_x crossref_primary_10_3390_healthcare11172388 crossref_primary_10_2174_1573405617666211004115208 crossref_primary_10_1002_mp_15231 crossref_primary_10_3390_jimaging10040081 crossref_primary_10_1186_s12911_023_02192_6 crossref_primary_10_1097_RTI_0000000000000670 crossref_primary_10_2174_1574888X18666221124122113 crossref_primary_10_1002_mp_15359 crossref_primary_10_1155_2022_5646234 crossref_primary_10_7717_peerj_cs_655 crossref_primary_10_1016_j_bsheal_2021_09_002 crossref_primary_10_1016_j_compbiomed_2023_107113 crossref_primary_10_1016_j_patrec_2021_08_035 crossref_primary_10_1155_2022_2564022 crossref_primary_10_1016_j_envres_2022_114408 crossref_primary_10_17816_DD60635 crossref_primary_10_1016_j_heliyon_2023_e21965 crossref_primary_10_1186_s12880_022_00847_w crossref_primary_10_1016_j_scitotenv_2021_149834 crossref_primary_10_1016_j_compbiomed_2023_106715 crossref_primary_10_3390_diagnostics13203195 crossref_primary_10_32604_csse_2023_029822 crossref_primary_10_4103_RID_RID_23_22 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1016_j_ejrad_2021_110069 crossref_primary_10_3390_jcm12103446 crossref_primary_10_3390_jpm11090886 crossref_primary_10_1016_j_cej_2023_145730 crossref_primary_10_1186_s12911_024_02576_2 crossref_primary_10_3389_fmed_2021_729287 crossref_primary_10_1038_s41598_024_83401_8 crossref_primary_10_3390_math10162927 crossref_primary_10_1016_j_compbiomed_2021_104665 crossref_primary_10_1109_JBHI_2023_3263431 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_3390_diagnostics11101924 crossref_primary_10_4103_rid_RID_D_24_00008 crossref_primary_10_2196_26227 crossref_primary_10_1038_s41392_021_00731_z crossref_primary_10_2196_52073 crossref_primary_10_1016_j_artmed_2024_102811 crossref_primary_10_3389_fpubh_2022_1023098 crossref_primary_10_1177_09720634241229252 crossref_primary_10_3390_app12188939 crossref_primary_10_7717_peerj_cs_1333 crossref_primary_10_12677_ACM_2023_1361378 crossref_primary_10_3390_cancers15010275 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1038_s41598_021_99986_3 crossref_primary_10_1007_s13246_021_01093_0 crossref_primary_10_1148_ryai_220232 crossref_primary_10_1038_s41598_023_46461_w crossref_primary_10_1038_s41598_025_88199_7 crossref_primary_10_3390_app11178227 crossref_primary_10_3390_computation10030036 crossref_primary_10_1016_j_acra_2021_08_008 crossref_primary_10_1096_fj_202101333R crossref_primary_10_2196_31142 crossref_primary_10_3390_diagnostics11050893 crossref_primary_10_1371_journal_pone_0259928 crossref_primary_10_3390_s21248424 crossref_primary_10_1155_2024_6619263 crossref_primary_10_1177_20552076221089099 crossref_primary_10_1016_j_isci_2022_104031 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_59717_j_xinn_med_2024_100091 crossref_primary_10_1183_23120541_00579_2021 |
Cites_doi | 10.1158/0008-5472.CAN-17-0339 10.1038/nature21056 10.1038/s41591-019-0447-x 10.1109/CVPR.2016.90 10.1109/TMI.2020.2995965 10.1038/s41591-018-0316-z 10.1016/j.chest.2020.04.003 10.1038/s41591-018-0300-7 10.1016/j.cell.2020.04.045 10.1038/s41591-020-0931-3 10.1118/1.3528204 10.1148/radiol.2020200905 10.1148/radiol.2020201491 10.1109/TMI.2020.2995508 10.1148/radiol.2020200241 10.1109/CVPR.2009.5206848 10.1148/radiol.2020200463 10.1148/radiol.2020200642 10.1109/TNNLS.2019.2892409 10.1183/16000617.0053-2016 10.1109/RBME.2020.2990959 10.1038/s41598-019-56589-3 10.1148/radiol.2020201874 10.1101/2020.05.20.20100362 10.1148/radiol.2020201160 10.1016/j.media.2017.07.005 10.1038/s41598-018-37186-2 10.1038/nature14539 10.1016/S1473-3099(20)30086-4 10.1109/WACV.2018.00079 10.1109/TMI.2020.2996256 10.1109/RBME.2020.2987975 10.1148/radiol.2020200823 10.1016/j.patcog.2018.07.031 10.1109/ICCV.2017.74 10.1007/978-3-319-24574-4_28 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1038/s41467-020-18685-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_d4872dc51bfb45c682ed26ba2c2d2654 PMC7547659 33037212 10_1038_s41467_020_18685_1 |
Genre | Multicenter Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c578t-a4b51a9821982922886dd36dd2e56559af0f8b725218c9027f8b233af4da7303 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:18:17 EDT 2025 Thu Aug 21 18:31:02 EDT 2025 Mon Jul 21 09:24:19 EDT 2025 Mon Jul 21 06:03:57 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 04:09:05 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c578t-a4b51a9821982922886dd36dd2e56559af0f8b725218c9027f8b233af4da7303 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-5940-0063 0000-0002-2435-1417 0000-0002-8391-841X 0000-0002-0877-3054 |
OpenAccessLink | https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654 |
PMID | 33037212 |
PQID | 2449958169 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4872dc51bfb45c682ed26ba2c2d2654 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7547659 proquest_miscellaneous_2449958169 pubmed_primary_33037212 crossref_citationtrail_10_1038_s41467_020_18685_1 crossref_primary_10_1038_s41467_020_18685_1 springer_journals_10_1038_s41467_020_18685_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-09 |
PublicationDateYYYYMMDD | 2020-10-09 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Dong, D. et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. (2020). Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention, 234–241 (Springer, 2015). MoldoveanuBInflammatory mechanisms in the lungJ. Inflamm. Res.2009211:CAS:528:DC%2BD1MXptl2rtLk%3D22096348 BernheimAChest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infectionRadiology202029520046310.1148/radiol.2020200463 Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision, 618–626 (IEEE, 2017). Dail, D. H. & Hammar, S. P. Dail and Hammar’s Pulmonary Pathology (Springer Science & Business Media, 2013). Morozov, S. et al. MosMedData: chest CT scans with COVID-19 related findings. Preprint at https://arxiv.org/abs/2005.06465 (2020). Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, Miami, FL, 2009). LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 MeiXArtificial intelligence–enabled rapid diagnosis of patients with COVID-19Nat. Med.202026122412281:CAS:528:DC%2BB3cXhtVSitLfO10.1038/s41591-020-0931-3 ZhangKClinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using computed tomographyCell2020181142314331:CAS:528:DC%2BB3cXps1yjtrs%3D10.1016/j.cell.2020.04.045 ArmatoSGIIIThe Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scansMed. Phys.20113891593110.1118/1.3528204 Van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.CAN-17-0339 BreslinJWLymphatic vessel network structure and physiologyCompr. Physiol.20119207299 Tianchi Competition https://tianchi.aliyun.com/competition/entrance/231601/information (2017). RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyChest20201581061161:CAS:528:DC%2BB3cXhtlOjtLzJ10.1016/j.chest.2020.04.003 TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D10.1038/s41591-018-0300-7 BaiHXPerformance of radiologists in differentiating COVID-19 from viral pneumonia on chest CTRadiology2020296E46E5410.1148/radiol.2020200823 HanZAccurate screening of COVID-19 using attention based deep 3D multiple instance learningIIEEE Trans. Med. Imaging2020392584259410.1109/TMI.2020.2996256 Shi, F. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. (2020). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (IEEE, 2016). Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19) (StatPearls Publishing, 2020). World Health Organization. Laboratory Testing For Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance, 2 March 2020. https://apps.who.int/iris/handle/10665/331329 (2020). EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 MurphyKCOVID-19 on the chest radiograph: a multi-reader evaluation of an AI systemRadiology2020296E166E17210.1148/radiol.2020201874 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097–1105 (Curran Associates, Inc., 2012). LitjensGA survey on deep learning in medical image analysisMed. Image Anal.201742608810.1016/j.media.2017.07.005 XieHYangDSunNChenZZhangYAutomated pulmonary nodule detection in CT images using deep convolutional neural networksPattern Recognit20198510911910.1016/j.patcog.2018.07.031 Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 91–99 (IEEE, 2015 Published). OuyangXDual-sampling attention network for diagnosis of COVID-19 from community acquired pneumoniaIEEE Trans. Med. Imaging2020392595260510.1109/TMI.2020.2995508 MaatenLvdHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219 ArdilaDEnd-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyNat. Med.2019259549611:CAS:528:DC%2BC1MXhtVWqurfO10.1038/s41591-019-0447-x AiTCorrelation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 casesRadiology2020296E32E4010.1148/radiol.2020200642 NashMDeep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in IndiaSci. Rep.20201011010.1038/s41598-019-56589-3 Kanne, J. P. Chest CT Findings nn 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Report No. 0033-8419, 16–17 (Radiological Society of North America, 2020). WangXA weakly-supervised framework for COVID-19 Classification and lesion localization from chest CTIEEE Trans. Med. Imaging2020392615262510.1109/TMI.2020.2995965 Zhu, W., Liu, C., Fan, W. & Xie, X. Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 673–681 (IEEE, 2018). PanagiotouMChurchACJohnsonMKPeacockAJPulmonary vascular and cardiac impairment in interstitial lung diseaseEur. Respir. Rev.20172616005310.1183/16000617.0053-2016 ShiHRadiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive studyLancet Infect. Dis.2020204254341:CAS:528:DC%2BB3cXjvFWhtbs%3D10.1016/S1473-3099(20)30086-4 Xiong, Q. et al. Women may play a more important role in the transmission of the corona virus disease (COVID-19) than men. Lancet (2020). QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.2019911010.1038/s41598-018-37186-2 LiaoFLiangMLiZHuXSongSEvaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or networkIEEE Trans. neural Netw. Learn. Syst.2019303484349510.1109/TNNLS.2019.2892409 Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, 8024–8035 (NeurIPS, 2019). WongHYFFrequency and distribution of chest radiographic findings in COVID-19 positive patientsRadiology2020296E72E7810.1148/radiol.2020201160 Cotes, J. E., Chinn, D. J. & Miller, M. R. Lung Function: Physiology, Measurement and Application in Medicine (Wiley, 2009). LiLUsing Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic AccuracyRadiology2020296E65E7110.1148/radiol.2020200905 BaiHXAI augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other etiology on chest CTRadiology2020296E156E16510.1148/radiol.2020201491 EstevaAA guide to deep learning in healthcareNat. Med.20192524291:CAS:528:DC%2BC1MXmvVOgsb0%3D10.1038/s41591-018-0316-z G Litjens (18685_CR12) 2017; 42 18685_CR9 JJ Van Griethuysen (18685_CR36) 2017; 77 K Murphy (18685_CR30) 2020; 296 18685_CR7 A Esteva (18685_CR13) 2019; 25 X Wang (18685_CR27) 2020; 39 X Mei (18685_CR17) 2020; 26 Z Han (18685_CR28) 2020; 39 18685_CR22 18685_CR44 18685_CR23 18685_CR45 18685_CR20 18685_CR42 18685_CR43 ZZ Qin (18685_CR16) 2019; 9 K Zhang (18685_CR24) 2020; 181 L Li (18685_CR25) 2020; 296 M Panagiotou (18685_CR46) 2017; 26 HX Bai (18685_CR26) 2020; 296 18685_CR1 T Ai (18685_CR3) 2020; 296 X Ouyang (18685_CR29) 2020; 39 HX Bai (18685_CR2) 2020; 296 EJ Topol (18685_CR14) 2019; 25 GD Rubin (18685_CR4) 2020; 158 H Xie (18685_CR18) 2019; 85 JW Breslin (18685_CR47) 2011; 9 Y LeCun (18685_CR8) 2015; 521 18685_CR39 18685_CR38 A Esteva (18685_CR11) 2017; 542 18685_CR33 18685_CR34 H Shi (18685_CR6) 2020; 20 18685_CR10 18685_CR32 A Bernheim (18685_CR37) 2020; 295 18685_CR40 18685_CR41 D Ardila (18685_CR15) 2019; 25 F Liao (18685_CR19) 2019; 30 M Nash (18685_CR21) 2020; 10 Lvd Maaten (18685_CR35) 2008; 9 SG Armato III (18685_CR31) 2011; 38 B Moldoveanu (18685_CR48) 2009; 2 HYF Wong (18685_CR5) 2020; 296 |
References_xml | – reference: World Health Organization. Laboratory Testing For Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance, 2 March 2020. https://apps.who.int/iris/handle/10665/331329 (2020). – reference: QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.2019911010.1038/s41598-018-37186-2 – reference: XieHYangDSunNChenZZhangYAutomated pulmonary nodule detection in CT images using deep convolutional neural networksPattern Recognit20198510911910.1016/j.patcog.2018.07.031 – reference: Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, Miami, FL, 2009). – reference: BernheimAChest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infectionRadiology202029520046310.1148/radiol.2020200463 – reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 91–99 (IEEE, 2015 Published). – reference: MurphyKCOVID-19 on the chest radiograph: a multi-reader evaluation of an AI systemRadiology2020296E166E17210.1148/radiol.2020201874 – reference: Morozov, S. et al. MosMedData: chest CT scans with COVID-19 related findings. Preprint at https://arxiv.org/abs/2005.06465 (2020). – reference: MaatenLvdHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219 – reference: BreslinJWLymphatic vessel network structure and physiologyCompr. Physiol.20119207299 – reference: BaiHXAI augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other etiology on chest CTRadiology2020296E156E16510.1148/radiol.2020201491 – reference: Cotes, J. E., Chinn, D. J. & Miller, M. R. Lung Function: Physiology, Measurement and Application in Medicine (Wiley, 2009). – reference: Tianchi Competition https://tianchi.aliyun.com/competition/entrance/231601/information (2017). – reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention, 234–241 (Springer, 2015). – reference: WangXA weakly-supervised framework for COVID-19 Classification and lesion localization from chest CTIEEE Trans. Med. Imaging2020392615262510.1109/TMI.2020.2995965 – reference: LitjensGA survey on deep learning in medical image analysisMed. Image Anal.201742608810.1016/j.media.2017.07.005 – reference: AiTCorrelation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 casesRadiology2020296E32E4010.1148/radiol.2020200642 – reference: NashMDeep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in IndiaSci. Rep.20201011010.1038/s41598-019-56589-3 – reference: ShiHRadiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive studyLancet Infect. Dis.2020204254341:CAS:528:DC%2BB3cXjvFWhtbs%3D10.1016/S1473-3099(20)30086-4 – reference: WongHYFFrequency and distribution of chest radiographic findings in COVID-19 positive patientsRadiology2020296E72E7810.1148/radiol.2020201160 – reference: Dong, D. et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. (2020). – reference: BaiHXPerformance of radiologists in differentiating COVID-19 from viral pneumonia on chest CTRadiology2020296E46E5410.1148/radiol.2020200823 – reference: Shi, F. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. (2020). – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (IEEE, 2016). – reference: Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19) (StatPearls Publishing, 2020). – reference: LiLUsing Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic AccuracyRadiology2020296E65E7110.1148/radiol.2020200905 – reference: HanZAccurate screening of COVID-19 using attention based deep 3D multiple instance learningIIEEE Trans. Med. Imaging2020392584259410.1109/TMI.2020.2996256 – reference: ArmatoSGIIIThe Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scansMed. Phys.20113891593110.1118/1.3528204 – reference: Kanne, J. P. Chest CT Findings nn 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Report No. 0033-8419, 16–17 (Radiological Society of North America, 2020). – reference: MeiXArtificial intelligence–enabled rapid diagnosis of patients with COVID-19Nat. Med.202026122412281:CAS:528:DC%2BB3cXhtVSitLfO10.1038/s41591-020-0931-3 – reference: OuyangXDual-sampling attention network for diagnosis of COVID-19 from community acquired pneumoniaIEEE Trans. Med. Imaging2020392595260510.1109/TMI.2020.2995508 – reference: ZhangKClinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using computed tomographyCell2020181142314331:CAS:528:DC%2BB3cXps1yjtrs%3D10.1016/j.cell.2020.04.045 – reference: PanagiotouMChurchACJohnsonMKPeacockAJPulmonary vascular and cardiac impairment in interstitial lung diseaseEur. Respir. Rev.20172616005310.1183/16000617.0053-2016 – reference: Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision, 618–626 (IEEE, 2017). – reference: RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyChest20201581061161:CAS:528:DC%2BB3cXhtlOjtLzJ10.1016/j.chest.2020.04.003 – reference: Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, 8024–8035 (NeurIPS, 2019). – reference: Dail, D. H. & Hammar, S. P. Dail and Hammar’s Pulmonary Pathology (Springer Science & Business Media, 2013). – reference: Zhu, W., Liu, C., Fan, W. & Xie, X. Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 673–681 (IEEE, 2018). – reference: EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 – reference: Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097–1105 (Curran Associates, Inc., 2012). – reference: MoldoveanuBInflammatory mechanisms in the lungJ. Inflamm. Res.2009211:CAS:528:DC%2BD1MXptl2rtLk%3D22096348 – reference: LiaoFLiangMLiZHuXSongSEvaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or networkIEEE Trans. neural Netw. Learn. Syst.2019303484349510.1109/TNNLS.2019.2892409 – reference: Van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.CAN-17-0339 – reference: EstevaAA guide to deep learning in healthcareNat. Med.20192524291:CAS:528:DC%2BC1MXmvVOgsb0%3D10.1038/s41591-018-0316-z – reference: Xiong, Q. et al. Women may play a more important role in the transmission of the corona virus disease (COVID-19) than men. Lancet (2020). – reference: TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D10.1038/s41591-018-0300-7 – reference: ArdilaDEnd-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyNat. Med.2019259549611:CAS:528:DC%2BC1MXhtVWqurfO10.1038/s41591-019-0447-x – volume: 77 start-page: e104 year: 2017 ident: 18685_CR36 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – ident: 18685_CR10 – volume: 542 start-page: 115 year: 2017 ident: 18685_CR11 publication-title: Nature doi: 10.1038/nature21056 – volume: 25 start-page: 954 year: 2019 ident: 18685_CR15 publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x – ident: 18685_CR41 doi: 10.1109/CVPR.2016.90 – ident: 18685_CR1 – volume: 39 start-page: 2615 year: 2020 ident: 18685_CR27 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2995965 – volume: 25 start-page: 24 year: 2019 ident: 18685_CR13 publication-title: Nat. Med. doi: 10.1038/s41591-018-0316-z – volume: 158 start-page: 106 year: 2020 ident: 18685_CR4 publication-title: Chest doi: 10.1016/j.chest.2020.04.003 – volume: 25 start-page: 44 year: 2019 ident: 18685_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 181 start-page: 1423 year: 2020 ident: 18685_CR24 publication-title: Cell doi: 10.1016/j.cell.2020.04.045 – volume: 9 start-page: 207 year: 2011 ident: 18685_CR47 publication-title: Compr. Physiol. – volume: 26 start-page: 1224 year: 2020 ident: 18685_CR17 publication-title: Nat. Med. doi: 10.1038/s41591-020-0931-3 – volume: 38 start-page: 915 year: 2011 ident: 18685_CR31 publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 296 start-page: E65 year: 2020 ident: 18685_CR25 publication-title: Radiology doi: 10.1148/radiol.2020200905 – volume: 296 start-page: E156 year: 2020 ident: 18685_CR26 publication-title: Radiology doi: 10.1148/radiol.2020201491 – volume: 39 start-page: 2595 year: 2020 ident: 18685_CR29 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2995508 – ident: 18685_CR45 – volume: 9 start-page: 2579 year: 2008 ident: 18685_CR35 publication-title: J. Mach. Learn. Res. – ident: 18685_CR39 doi: 10.1148/radiol.2020200241 – ident: 18685_CR7 doi: 10.1109/CVPR.2009.5206848 – ident: 18685_CR43 – volume: 295 start-page: 200463 year: 2020 ident: 18685_CR37 publication-title: Radiology doi: 10.1148/radiol.2020200463 – volume: 296 start-page: E32 year: 2020 ident: 18685_CR3 publication-title: Radiology doi: 10.1148/radiol.2020200642 – volume: 2 start-page: 1 year: 2009 ident: 18685_CR48 publication-title: J. Inflamm. Res. – volume: 30 start-page: 3484 year: 2019 ident: 18685_CR19 publication-title: IEEE Trans. neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2892409 – volume: 26 start-page: 160053 year: 2017 ident: 18685_CR46 publication-title: Eur. Respir. Rev. doi: 10.1183/16000617.0053-2016 – ident: 18685_CR23 doi: 10.1109/RBME.2020.2990959 – ident: 18685_CR32 – volume: 10 start-page: 1 year: 2020 ident: 18685_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56589-3 – volume: 296 start-page: E166 year: 2020 ident: 18685_CR30 publication-title: Radiology doi: 10.1148/radiol.2020201874 – ident: 18685_CR33 doi: 10.1101/2020.05.20.20100362 – volume: 296 start-page: E72 year: 2020 ident: 18685_CR5 publication-title: Radiology doi: 10.1148/radiol.2020201160 – volume: 42 start-page: 60 year: 2017 ident: 18685_CR12 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 9 start-page: 1 year: 2019 ident: 18685_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – ident: 18685_CR38 – volume: 521 start-page: 436 year: 2015 ident: 18685_CR8 publication-title: Nature doi: 10.1038/nature14539 – volume: 20 start-page: 425 year: 2020 ident: 18685_CR6 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30086-4 – ident: 18685_CR20 doi: 10.1109/WACV.2018.00079 – volume: 39 start-page: 2584 year: 2020 ident: 18685_CR28 publication-title: IIEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2996256 – ident: 18685_CR22 doi: 10.1109/RBME.2020.2987975 – ident: 18685_CR44 – volume: 296 start-page: E46 year: 2020 ident: 18685_CR2 publication-title: Radiology doi: 10.1148/radiol.2020200823 – volume: 85 start-page: 109 year: 2019 ident: 18685_CR18 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.07.031 – ident: 18685_CR42 – ident: 18685_CR34 doi: 10.1109/ICCV.2017.74 – ident: 18685_CR9 – ident: 18685_CR40 doi: 10.1007/978-3-319-24574-4_28 |
SSID | ssj0000391844 |
Score | 2.6882775 |
Snippet | Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial... In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5088 |
SubjectTerms | 631/114/1305 692/699/255/1578 692/700/139 692/700/1421/2025 Adult Aged Aged, 80 and over Artificial Intelligence Betacoronavirus Coronavirus Infections - diagnostic imaging COVID-19 Deep Learning Diagnosis, Differential Female Humanities and Social Sciences Humans Male Middle Aged multidisciplinary Pandemics Pneumonia - diagnostic imaging Pneumonia, Viral - diagnostic imaging ROC Curve SARS-CoV-2 Science Science (multidisciplinary) Tomography, X-Ray Computed Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqJKReUAuFBkplpN5ai2RsJ_axLF0BUtvLFnGzHDtRV6qyiF0O_H3HdnbZtGi5cIiiOE5ij8czb-TJMyGfGl65FlrP0BJaJhDTM-W8Y7mquS0bbX2kFPr-o7z4Ja5u5M3aVl8hJyzRAyfBnXpE1OCdLOq2FtKVChoPZW3BAZ5lZAJFn7cWTEUbzDWGLqL_Sybn6nQuok0I0VJgiJesGHiiSNj_FMr8P1nynxXT6IjGb8hOjyDp19Tyt-RV0-2S7bSn5MMeuV5LA6K28_SRz5vOWiyhoc-JN4JO1wg5aSJ1pohi6ejn9eU5KzT1KRNvOn9HJuNvk9EF6zdPYA4n4YJZUcvCaoUWSYEGUKr0nuMBDWI4qW2bt6quAN23chqDU7wCzm0rvMVZz_fJVjfrmveEciElYDH6MRHCGwuQq1bwmvPKIlzISLGUo3E9sXjY3-KPiQvcXJkke4OyN1H2psjI59Uzt4lWY2PtszA8q5qBEjsWoKKYXlHMc4qSkZPl4BqcQmFdxHbN7H5uEOFoLVVRYlcO0mCvPsVRFBgkQ0aqgRoM2jK8001_R5ruSoqqlPjOL0uFMb19mG_o6-FL9PWIvIao6TnL9Qeytbi7b44RPC3qj3Ge_AXufxMI priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLeqIiQuiPExygYy0m5gLXm2E_s4CtNAgl1K1Zvl2MlWaUqmfhz23-_ZSUoLVSUOURTHSezn9xk__0zIWclzV0HlGWpCywT69Ew571iiCm6zUlsfIYV-_squfosfMzkbEOjXwsSk_QhpGdV0nx12vhRRpEOwEwDeJcOI50mAbg9cPc7Gm_8qAfFcCdGtj0m42vPojg2KUP37_Mt_0yT_miuNJujyBXne-Y70om3tERmU9UvytN1N8uEVmW4lAFFbe_oHyZs2FZbQ0M8WMYLOt6A4aQvnTNF_pePr6fevLNXUtzl48-VrMrn8NhlfsW7bBOZQ_FbMikKmVivURQo0gFKZ9xwPKNF7k9pWSaWKHNBwK6cxLMUr4NxWwluUd_6GDOumLt8SyoWUgMVowUQIbCxAoirBC85zi47CiKQ9HY3rIMXDzhZ3Jk5tc2Va2hukvYm0N-mIfNo8c98Cahys_SUMz6ZmAMOOBc3ixnTMYTy2DbyTaVEVQrpMQekhKyw4wLMUI_KxH1yDwhNmRGxdNuulQd9Ga6nSDLty3A725lMcSYHhMYxIvsMGO23ZvVPPbyNAdy5Fnkl85-eeYUynGZYH-vru_6qfkGcQeTphiT4lw9ViXb5HB2lVfIgS8Qi31wfp priority: 102 providerName: Springer Nature |
Title | Development and evaluation of an artificial intelligence system for COVID-19 diagnosis |
URI | https://link.springer.com/article/10.1038/s41467-020-18685-1 https://www.ncbi.nlm.nih.gov/pubmed/33037212 https://www.proquest.com/docview/2449958169 https://pubmed.ncbi.nlm.nih.gov/PMC7547659 https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEONr5aMyEm9gSPwR2w8IdWVlVNpAsE19sxw7gUpTCm0nsf-es510K1STeEiiOImTnO98v4ud3yH0smLS1bT2BHpCSzhgeqKcdyRTJbNFpa2PlEJHx8XhKR9PxGQLdemOWgEuNoZ2IZ_U6fz8ze9fl-_B4N-lX8bV2wWP5h4CoUD-LghEQzvgmWQw1KMW7seemWkIaMJAM814TsB3s_Y_ms3VrPmqSOm_CYf-O53yrzHV6KpG99DdFmPiQVKKXbRVNffR7ZR18vIBOrs2UQjbxuMrxm88q6EEB3VKzBJ4eo2yEyfaZww4Fw8_n336QHKNfZqrN108RCejg5PhIWnTKxAHZroklpcit1pBn6WoplSpwnsGC60A5Qlt66xWpaTg4JXTEL7CHmXM1txb6BfYI7TdzJpqD2HGhaBQDJ6OhwDIUpqpmrOSMWkBUPRQ3snRuJZ6PGTAODdxCJwpk2RvQPYmyt7kPfRqdc3PRLxx49n7oXlWZwbS7Fgwm383rQ0aD89GvRN5WZdcuELRytOitNRR2AreQy-6xjVgZGHkxDbV7GJhAANpLVRewKs8To29uhUDUUAYTXtIrqnB2rOsH2mmPyKRtxRcFgLqfN0pjOkM4IZ3ffJfknmK7tCo0hnJ9DO0vZxfVM8BRy3LProlJxLWavSxj3YGg_G3MWz3D46_fIXSYTHsxy8U_WhEfwDUkxmu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRQguiDdbXkbiBhbJ-BH7CAvVFtpyWareLMdOYCWURd3tof-esZMsXagqcYiiOE5ijz3jb-LxZ4DXjahCi23kZAk9l4TpuQkx8MLUwuvG-pgphY6O9eyb_HyqTncAx7UwOWg_U1pmMz1Gh71byazSydlJBO-Kk8dzg7C2TmFcUz3d_FdJjOdGymF9TCHMFY9ujUGZqv8qfPlvmORfc6V5CNq_C3cG7Mje96W9BztNdx9u9rtJXjyAk0sBQMx3kf1h8mbLllJYqmfPGMEWl6g4WU_nzAi_sunXk4OPvLQs9jF4i9VDmO9_mk9nfNg2gQdSvzX3slalt4ZskUGLaIyOUdCBDaE3ZX1btKaukAZuEyy5pXSFQvhWRk_6Lh7BbrfsmifAhFQKKZlGMJkcG49YmFaKWojKE1CYQDnK0YWBUjztbPHT5altYVwve0eyd1n2rpzAm80zv3pCjWtzf0jNs8mZyLBzwvLsuxs6h4tUNoxBlXVbSxW0wSairj0GpLOSE3g1Nq4j5UkzIr5rlucrR9jGWmVKTVV53Df25lOCREHuMU6g2uoGW2XZvtMtfmSC7krJSit659uxw7jBMqyuqeve_2V_Cbdm86NDd3hw_OUp3Mbcvwte2Gewuz47b54TWFrXL7J2_AZI-QrY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIhAXRAuULaUYiRtYJP6KfaRbVi2UwqFUvVmOHbcroSzqbg_994ydZOlCVYlDFMVxEnvsGb-Jx88Abxte-chioGgJHRWI6an2wdNC19ypxriQKYW-HquDH-LzmTxbAzWshclB-5nSMpvpITrsw1xklU7OTiJ4lxQtTIj34D7i7SI5XWM1Xv5bSaznWoh-jUzB9S2Pr4xDma7_Noz5b6jkX_OleRiaPIHHPX4kH7sSb8Ba027Cg25HyeuncHojCIi4NpA_bN5kFjGFpLp2rBFkeoOOk3SUzgQxLBl_Oz3cp6UhoYvDm86fwcnk08n4gPZbJ1CPKrigTtSydEajPdLMMKa1CoHjwRpEcNK4WERdVwwHb-0NuqZ4xTh3UQSHOs-fw3o7a5sXQLiQkmEyjmIiOTeOsUJHwWvOK4dgYQTlIEfre1rxtLvFT5unt7m2newtyt5m2dtyBO-Wz_zqSDXuzL2XmmeZMxFi54TZ5bntO4gNWDYWvCzrWAvplWZNYKp2zDM8SzGCN0PjWlSgNCvi2mZ2NbeIb4yRulRYla2usZef4igKdJHZCKqVbrBSltU77fQik3RXUlRK4jvfDx3G9tZhfkddt_8v-2t4-H1_Yo8Oj7-8hEcsd--CFmYH1heXV80rxEuLejcrx28b4wvh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+evaluation+of+an+artificial+intelligence+system+for+COVID-19+diagnosis&rft.jtitle=Nature+communications&rft.au=Jin%2C+Cheng&rft.au=Chen%2C+Weixiang&rft.au=Cao%2C+Yukun&rft.au=Xu%2C+Zhanwei&rft.date=2020-10-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-18685-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_020_18685_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |