Development and evaluation of an artificial intelligence system for COVID-19 diagnosis

Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We d...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 5088 - 14
Main Authors Jin, Cheng, Chen, Weixiang, Cao, Yukun, Xu, Zhanwei, Tan, Zimeng, Zhang, Xin, Deng, Lei, Zheng, Chuansheng, Zhou, Jie, Shi, Heshui, Feng, Jianjiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.10.2020
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.
AbstractList Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 .Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 .
Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 . In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.
In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.
Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 .
Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial intelligence (AI) system for rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19 based on the AI system. We developed and evaluated our system on a large dataset with more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class diagnosis task, our deep convolutional neural network-based system is able to achieve an area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly available datasets, CC-CCII and MosMedData respectively. In a reader study involving five radiologists, the AI system outperforms all of radiologists in more challenging tasks at a speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR) is compared to that of CT. Detailed interpretation of deep network is also performed to relate system outputs with CT presentations. The code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19 .
ArticleNumber 5088
Author Cao, Yukun
Zhang, Xin
Zhou, Jie
Deng, Lei
Chen, Weixiang
Zheng, Chuansheng
Shi, Heshui
Xu, Zhanwei
Tan, Zimeng
Jin, Cheng
Feng, Jianjiang
Author_xml – sequence: 1
  givenname: Cheng
  surname: Jin
  fullname: Jin, Cheng
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 2
  givenname: Weixiang
  surname: Chen
  fullname: Chen, Weixiang
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 3
  givenname: Yukun
  orcidid: 0000-0002-8391-841X
  surname: Cao
  fullname: Cao, Yukun
  organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging
– sequence: 4
  givenname: Zhanwei
  surname: Xu
  fullname: Xu, Zhanwei
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 5
  givenname: Zimeng
  surname: Tan
  fullname: Tan, Zimeng
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 6
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging
– sequence: 7
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 8
  givenname: Chuansheng
  orcidid: 0000-0002-2435-1417
  surname: Zheng
  fullname: Zheng, Chuansheng
  organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging
– sequence: 9
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
– sequence: 10
  givenname: Heshui
  orcidid: 0000-0002-0877-3054
  surname: Shi
  fullname: Shi, Heshui
  email: heshuishi@hust.edu.cn
  organization: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging
– sequence: 11
  givenname: Jianjiang
  orcidid: 0000-0002-5940-0063
  surname: Feng
  fullname: Feng, Jianjiang
  email: jfeng@tsinghua.edu.cn
  organization: Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33037212$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3CAQRVWqJk3zB3qofOzFDQxg8KVStenHSpFyiXJFGLDLygtbsFfKvw-7TqokhyCNBob33sDMfEQnIQaH0GeCvxFM5WVmhDWixoBrIhvJa_IOnQFmpCYC6Mmz_Sm6yHmDy6ItkYx9QKeUYiqAwBm6u3J7N8bd1oWp0sFWbq_HWU8-hir2JVLpNPneG6_HyofJjaMfXDCuyvd5ctuqj6la3dytr2rSVtbrIcTs8yf0vtdjdheP_hzd_vp5u_pTX9_8Xq9-XNeGCznVmnWc6FYCKdYCSNlYS4uB4w3nre5xLzsBHIg0LQZRTkCp7pnVovzhHK0XWRv1Ru2S3-p0r6L26hiIaVCH55vRKcukAGs46fqOcdNIcBaaToOB4jkrWt8Xrd3cbZ01pSBJjy9EX94E_1cNca8EZ6LhbRH4-iiQ4r_Z5UltfTalYDq4OGcFjLUtl6Q5QL88z_U_yVNfCkAuAJNizsn1yvjp2JWS2o-KYHWYArVMgSpToI5ToEihwivqk_qbJLqQcgGHwSW1iXMKpXVvsR4AC1bDpA
CitedBy_id crossref_primary_10_1155_2022_3035426
crossref_primary_10_1007_s00500_024_10362_5
crossref_primary_10_14801_jkiit_2022_20_12_37
crossref_primary_10_3390_app12083895
crossref_primary_10_1039_D3MH00759F
crossref_primary_10_17116_profmed20222501114
crossref_primary_10_1097_MNM_0000000000001360
crossref_primary_10_1016_j_bios_2021_113005
crossref_primary_10_2196_29301
crossref_primary_10_1186_s43055_023_01022_z
crossref_primary_10_1148_radiol_2021204522
crossref_primary_10_3389_fpubh_2022_920849
crossref_primary_10_1007_s00354_022_00195_x
crossref_primary_10_1038_s41598_023_38133_6
crossref_primary_10_2196_38397
crossref_primary_10_1016_j_jvcir_2023_103775
crossref_primary_10_32604_iasc_2022_020386
crossref_primary_10_1002_jbio_202300486
crossref_primary_10_1016_j_procs_2021_09_233
crossref_primary_10_1002_cmdc_202100079
crossref_primary_10_2196_25181
crossref_primary_10_1007_s40121_022_00600_4
crossref_primary_10_3390_s23125749
crossref_primary_10_1016_j_imu_2021_100681
crossref_primary_10_5937_afmnai39_38354
crossref_primary_10_3390_pathogens10081048
crossref_primary_10_1109_TMBMC_2021_3099367
crossref_primary_10_3390_a15020071
crossref_primary_10_1038_s41598_023_37743_4
crossref_primary_10_1155_2021_4105784
crossref_primary_10_2174_1568026622666221006140825
crossref_primary_10_3390_life12111709
crossref_primary_10_3390_diagnostics12061396
crossref_primary_10_2196_44804
crossref_primary_10_1109_TMI_2022_3232572
crossref_primary_10_1016_j_bspc_2022_104297
crossref_primary_10_3390_info15010058
crossref_primary_10_1155_2022_4680905
crossref_primary_10_3390_math12081254
crossref_primary_10_1080_0952813X_2021_1908431
crossref_primary_10_3390_app14072715
crossref_primary_10_3390_app12157554
crossref_primary_10_1016_j_compbiomed_2022_106136
crossref_primary_10_1016_j_acra_2023_02_027
crossref_primary_10_3389_fnagi_2021_662786
crossref_primary_10_1016_j_engappai_2023_105820
crossref_primary_10_1016_j_cmpb_2021_106406
crossref_primary_10_1109_TAI_2022_3225372
crossref_primary_10_1007_s10278_024_01151_5
crossref_primary_10_1007_s00521_022_07709_0
crossref_primary_10_1002_ima_22865
crossref_primary_10_1016_j_bspc_2023_104642
crossref_primary_10_1007_s10796_021_10131_x
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1016_j_actatropica_2024_107277
crossref_primary_10_1016_j_media_2022_102421
crossref_primary_10_3389_frai_2021_694875
crossref_primary_10_3233_JRS_210064
crossref_primary_10_1038_s41598_022_06802_7
crossref_primary_10_3390_bioengineering10020203
crossref_primary_10_1007_s12553_021_00601_2
crossref_primary_10_1016_j_patrec_2021_09_012
crossref_primary_10_1039_D1TC02883A
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_7717_peerj_cs_551
crossref_primary_10_4103_jfmpc_jfmpc_695_23
crossref_primary_10_1002_ima_22856
crossref_primary_10_3389_fmed_2024_1438979
crossref_primary_10_1057_s41599_025_04564_x
crossref_primary_10_1038_s41598_021_96755_0
crossref_primary_10_3390_healthcare10020403
crossref_primary_10_1109_JBHI_2021_3132157
crossref_primary_10_1007_s11547_024_01796_w
crossref_primary_10_1109_TVCG_2021_3114851
crossref_primary_10_1016_j_neucom_2022_02_018
crossref_primary_10_1177_20552076211048654
crossref_primary_10_3390_app11083414
crossref_primary_10_1007_s12274_022_4109_9
crossref_primary_10_21015_vtse_v10i3_1135
crossref_primary_10_1148_ryai_210064
crossref_primary_10_1007_s00330_022_09303_3
crossref_primary_10_4236_jcc_2024_123010
crossref_primary_10_3390_diagnostics11060991
crossref_primary_10_4103_abhs_abhs_29_22
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_7759_cureus_31897
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_1007_s00354_025_00291_8
crossref_primary_10_1016_j_bbe_2021_06_011
crossref_primary_10_1016_j_heliyon_2023_e22878
crossref_primary_10_1097_MD_0000000000031346
crossref_primary_10_1016_j_engappai_2023_106786
crossref_primary_10_1038_s41598_022_21700_8
crossref_primary_10_1016_j_bspc_2022_104250
crossref_primary_10_1016_j_mcpdig_2023_07_007
crossref_primary_10_1183_13993003_00775_2020
crossref_primary_10_1007_s12559_022_10076_6
crossref_primary_10_1080_0952813X_2021_1958063
crossref_primary_10_3390_healthcare9040441
crossref_primary_10_1016_j_eswa_2022_116540
crossref_primary_10_1080_21681163_2023_2187244
crossref_primary_10_3390_diagnostics12030765
crossref_primary_10_1016_j_patter_2021_100269
crossref_primary_10_4103_jehp_jehp_1424_20
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1007_s00330_022_08956_4
crossref_primary_10_3390_v15020304
crossref_primary_10_1016_j_engappai_2022_105184
crossref_primary_10_4018_JGIM_302890
crossref_primary_10_1155_2021_7788491
crossref_primary_10_18006_2024_12_1__124_137
crossref_primary_10_1080_03091902_2024_2321846
crossref_primary_10_1111_exsy_12796
crossref_primary_10_3389_frai_2022_927203
crossref_primary_10_1016_j_bios_2021_112969
crossref_primary_10_1109_JBHI_2021_3060035
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_3390_bioengineering9110698
crossref_primary_10_1038_s41598_022_18994_z
crossref_primary_10_2196_42313
crossref_primary_10_3390_diagnostics12071608
crossref_primary_10_1038_s41598_021_83237_6
crossref_primary_10_2174_1573405619666221222161832
crossref_primary_10_3390_diagnostics14030337
crossref_primary_10_1109_JBHI_2021_3067465
crossref_primary_10_1111_exsy_13378
crossref_primary_10_3389_frai_2021_612914
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1088_1361_6560_ac4316
crossref_primary_10_22630_MGV_2023_32_3_5
crossref_primary_10_1007_s42979_022_01035_x
crossref_primary_10_1016_j_compbiomed_2021_105143
crossref_primary_10_1016_j_asoc_2021_108088
crossref_primary_10_1080_21681163_2023_2250861
crossref_primary_10_1007_s00330_022_09335_9
crossref_primary_10_21518_2079_701X_2022_16_4_42_50
crossref_primary_10_1007_s00603_024_04279_6
crossref_primary_10_1186_s41747_022_00317_6
crossref_primary_10_3390_diagnostics11071155
crossref_primary_10_1080_0952813X_2022_2093980
crossref_primary_10_3389_fmed_2023_1192376
crossref_primary_10_3389_fbuil_2024_1398425
crossref_primary_10_3390_diagnostics12040869
crossref_primary_10_3389_fmedt_2022_980735
crossref_primary_10_1007_s11042_024_19046_6
crossref_primary_10_1016_j_compbiomed_2021_104984
crossref_primary_10_1016_j_isci_2022_103961
crossref_primary_10_1007_s11831_023_09882_4
crossref_primary_10_3390_diagnostics12030717
crossref_primary_10_3390_biomedicines11030901
crossref_primary_10_1016_j_compbiomed_2023_107451
crossref_primary_10_1007_s11831_025_10253_4
crossref_primary_10_1007_s11547_022_01510_8
crossref_primary_10_2174_0118749445297804240401061128
crossref_primary_10_1088_2057_1976_ad9157
crossref_primary_10_1109_TNNLS_2021_3114747
crossref_primary_10_2196_34605
crossref_primary_10_1016_j_compbiomed_2021_104837
crossref_primary_10_1007_s11042_024_18670_6
crossref_primary_10_1038_s41598_023_29600_1
crossref_primary_10_1145_3457124
crossref_primary_10_1016_j_csbj_2021_05_010
crossref_primary_10_1016_j_chemosphere_2022_135645
crossref_primary_10_1016_j_jaci_2021_02_021
crossref_primary_10_32604_cmc_2022_018487
crossref_primary_10_3390_electronics12030684
crossref_primary_10_61969_jai_1469589
crossref_primary_10_1186_s12967_021_02910_6
crossref_primary_10_4329_wjr_v13_i9_258
crossref_primary_10_1002_adma_202103646
crossref_primary_10_1007_s11042_024_20248_1
crossref_primary_10_1016_j_clinimag_2024_110092
crossref_primary_10_3390_bdcc7010011
crossref_primary_10_1038_s41598_022_25539_x
crossref_primary_10_3390_healthcare11172388
crossref_primary_10_2174_1573405617666211004115208
crossref_primary_10_1002_mp_15231
crossref_primary_10_3390_jimaging10040081
crossref_primary_10_1186_s12911_023_02192_6
crossref_primary_10_1097_RTI_0000000000000670
crossref_primary_10_2174_1574888X18666221124122113
crossref_primary_10_1002_mp_15359
crossref_primary_10_1155_2022_5646234
crossref_primary_10_7717_peerj_cs_655
crossref_primary_10_1016_j_bsheal_2021_09_002
crossref_primary_10_1016_j_compbiomed_2023_107113
crossref_primary_10_1016_j_patrec_2021_08_035
crossref_primary_10_1155_2022_2564022
crossref_primary_10_1016_j_envres_2022_114408
crossref_primary_10_17816_DD60635
crossref_primary_10_1016_j_heliyon_2023_e21965
crossref_primary_10_1186_s12880_022_00847_w
crossref_primary_10_1016_j_scitotenv_2021_149834
crossref_primary_10_1016_j_compbiomed_2023_106715
crossref_primary_10_3390_diagnostics13203195
crossref_primary_10_32604_csse_2023_029822
crossref_primary_10_4103_RID_RID_23_22
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1016_j_ejrad_2021_110069
crossref_primary_10_3390_jcm12103446
crossref_primary_10_3390_jpm11090886
crossref_primary_10_1016_j_cej_2023_145730
crossref_primary_10_1186_s12911_024_02576_2
crossref_primary_10_3389_fmed_2021_729287
crossref_primary_10_1038_s41598_024_83401_8
crossref_primary_10_3390_math10162927
crossref_primary_10_1016_j_compbiomed_2021_104665
crossref_primary_10_1109_JBHI_2023_3263431
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_3390_diagnostics11101924
crossref_primary_10_4103_rid_RID_D_24_00008
crossref_primary_10_2196_26227
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_2196_52073
crossref_primary_10_1016_j_artmed_2024_102811
crossref_primary_10_3389_fpubh_2022_1023098
crossref_primary_10_1177_09720634241229252
crossref_primary_10_3390_app12188939
crossref_primary_10_7717_peerj_cs_1333
crossref_primary_10_12677_ACM_2023_1361378
crossref_primary_10_3390_cancers15010275
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1038_s41598_021_99986_3
crossref_primary_10_1007_s13246_021_01093_0
crossref_primary_10_1148_ryai_220232
crossref_primary_10_1038_s41598_023_46461_w
crossref_primary_10_1038_s41598_025_88199_7
crossref_primary_10_3390_app11178227
crossref_primary_10_3390_computation10030036
crossref_primary_10_1016_j_acra_2021_08_008
crossref_primary_10_1096_fj_202101333R
crossref_primary_10_2196_31142
crossref_primary_10_3390_diagnostics11050893
crossref_primary_10_1371_journal_pone_0259928
crossref_primary_10_3390_s21248424
crossref_primary_10_1155_2024_6619263
crossref_primary_10_1177_20552076221089099
crossref_primary_10_1016_j_isci_2022_104031
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_59717_j_xinn_med_2024_100091
crossref_primary_10_1183_23120541_00579_2021
Cites_doi 10.1158/0008-5472.CAN-17-0339
10.1038/nature21056
10.1038/s41591-019-0447-x
10.1109/CVPR.2016.90
10.1109/TMI.2020.2995965
10.1038/s41591-018-0316-z
10.1016/j.chest.2020.04.003
10.1038/s41591-018-0300-7
10.1016/j.cell.2020.04.045
10.1038/s41591-020-0931-3
10.1118/1.3528204
10.1148/radiol.2020200905
10.1148/radiol.2020201491
10.1109/TMI.2020.2995508
10.1148/radiol.2020200241
10.1109/CVPR.2009.5206848
10.1148/radiol.2020200463
10.1148/radiol.2020200642
10.1109/TNNLS.2019.2892409
10.1183/16000617.0053-2016
10.1109/RBME.2020.2990959
10.1038/s41598-019-56589-3
10.1148/radiol.2020201874
10.1101/2020.05.20.20100362
10.1148/radiol.2020201160
10.1016/j.media.2017.07.005
10.1038/s41598-018-37186-2
10.1038/nature14539
10.1016/S1473-3099(20)30086-4
10.1109/WACV.2018.00079
10.1109/TMI.2020.2996256
10.1109/RBME.2020.2987975
10.1148/radiol.2020200823
10.1016/j.patcog.2018.07.031
10.1109/ICCV.2017.74
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1038/s41467-020-18685-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_d4872dc51bfb45c682ed26ba2c2d2654
PMC7547659
33037212
10_1038_s41467_020_18685_1
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c578t-a4b51a9821982922886dd36dd2e56559af0f8b725218c9027f8b233af4da7303
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:18:17 EDT 2025
Thu Aug 21 18:31:02 EDT 2025
Mon Jul 21 09:24:19 EDT 2025
Mon Jul 21 06:03:57 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
Tue Jul 01 04:09:05 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-a4b51a9821982922886dd36dd2e56559af0f8b725218c9027f8b233af4da7303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-5940-0063
0000-0002-2435-1417
0000-0002-8391-841X
0000-0002-0877-3054
OpenAccessLink https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654
PMID 33037212
PQID 2449958169
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d4872dc51bfb45c682ed26ba2c2d2654
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7547659
proquest_miscellaneous_2449958169
pubmed_primary_33037212
crossref_citationtrail_10_1038_s41467_020_18685_1
crossref_primary_10_1038_s41467_020_18685_1
springer_journals_10_1038_s41467_020_18685_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-09
PublicationDateYYYYMMDD 2020-10-09
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Dong, D. et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. (2020).
Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention, 234–241 (Springer, 2015).
MoldoveanuBInflammatory mechanisms in the lungJ. Inflamm. Res.2009211:CAS:528:DC%2BD1MXptl2rtLk%3D22096348
BernheimAChest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infectionRadiology202029520046310.1148/radiol.2020200463
Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision, 618–626 (IEEE, 2017).
Dail, D. H. & Hammar, S. P. Dail and Hammar’s Pulmonary Pathology (Springer Science & Business Media, 2013).
Morozov, S. et al. MosMedData: chest CT scans with COVID-19 related findings. Preprint at https://arxiv.org/abs/2005.06465 (2020).
Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, Miami, FL, 2009).
LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
MeiXArtificial intelligence–enabled rapid diagnosis of patients with COVID-19Nat. Med.202026122412281:CAS:528:DC%2BB3cXhtVSitLfO10.1038/s41591-020-0931-3
ZhangKClinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using computed tomographyCell2020181142314331:CAS:528:DC%2BB3cXps1yjtrs%3D10.1016/j.cell.2020.04.045
ArmatoSGIIIThe Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scansMed. Phys.20113891593110.1118/1.3528204
Van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.CAN-17-0339
BreslinJWLymphatic vessel network structure and physiologyCompr. Physiol.20119207299
Tianchi Competition https://tianchi.aliyun.com/competition/entrance/231601/information (2017).
RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyChest20201581061161:CAS:528:DC%2BB3cXhtlOjtLzJ10.1016/j.chest.2020.04.003
TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D10.1038/s41591-018-0300-7
BaiHXPerformance of radiologists in differentiating COVID-19 from viral pneumonia on chest CTRadiology2020296E46E5410.1148/radiol.2020200823
HanZAccurate screening of COVID-19 using attention based deep 3D multiple instance learningIIEEE Trans. Med. Imaging2020392584259410.1109/TMI.2020.2996256
Shi, F. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. (2020).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (IEEE, 2016).
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19) (StatPearls Publishing, 2020).
World Health Organization. Laboratory Testing For Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance, 2 March 2020. https://apps.who.int/iris/handle/10665/331329 (2020).
EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
MurphyKCOVID-19 on the chest radiograph: a multi-reader evaluation of an AI systemRadiology2020296E166E17210.1148/radiol.2020201874
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097–1105 (Curran Associates, Inc., 2012).
LitjensGA survey on deep learning in medical image analysisMed. Image Anal.201742608810.1016/j.media.2017.07.005
XieHYangDSunNChenZZhangYAutomated pulmonary nodule detection in CT images using deep convolutional neural networksPattern Recognit20198510911910.1016/j.patcog.2018.07.031
Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 91–99 (IEEE, 2015 Published).
OuyangXDual-sampling attention network for diagnosis of COVID-19 from community acquired pneumoniaIEEE Trans. Med. Imaging2020392595260510.1109/TMI.2020.2995508
MaatenLvdHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219
ArdilaDEnd-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyNat. Med.2019259549611:CAS:528:DC%2BC1MXhtVWqurfO10.1038/s41591-019-0447-x
AiTCorrelation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 casesRadiology2020296E32E4010.1148/radiol.2020200642
NashMDeep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in IndiaSci. Rep.20201011010.1038/s41598-019-56589-3
Kanne, J. P. Chest CT Findings nn 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Report No. 0033-8419, 16–17 (Radiological Society of North America, 2020).
WangXA weakly-supervised framework for COVID-19 Classification and lesion localization from chest CTIEEE Trans. Med. Imaging2020392615262510.1109/TMI.2020.2995965
Zhu, W., Liu, C., Fan, W. & Xie, X. Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 673–681 (IEEE, 2018).
PanagiotouMChurchACJohnsonMKPeacockAJPulmonary vascular and cardiac impairment in interstitial lung diseaseEur. Respir. Rev.20172616005310.1183/16000617.0053-2016
ShiHRadiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive studyLancet Infect. Dis.2020204254341:CAS:528:DC%2BB3cXjvFWhtbs%3D10.1016/S1473-3099(20)30086-4
Xiong, Q. et al. Women may play a more important role in the transmission of the corona virus disease (COVID-19) than men. Lancet (2020).
QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.2019911010.1038/s41598-018-37186-2
LiaoFLiangMLiZHuXSongSEvaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or networkIEEE Trans. neural Netw. Learn. Syst.2019303484349510.1109/TNNLS.2019.2892409
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, 8024–8035 (NeurIPS, 2019).
WongHYFFrequency and distribution of chest radiographic findings in COVID-19 positive patientsRadiology2020296E72E7810.1148/radiol.2020201160
Cotes, J. E., Chinn, D. J. & Miller, M. R. Lung Function: Physiology, Measurement and Application in Medicine (Wiley, 2009).
LiLUsing Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic AccuracyRadiology2020296E65E7110.1148/radiol.2020200905
BaiHXAI augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other etiology on chest CTRadiology2020296E156E16510.1148/radiol.2020201491
EstevaAA guide to deep learning in healthcareNat. Med.20192524291:CAS:528:DC%2BC1MXmvVOgsb0%3D10.1038/s41591-018-0316-z
G Litjens (18685_CR12) 2017; 42
18685_CR9
JJ Van Griethuysen (18685_CR36) 2017; 77
K Murphy (18685_CR30) 2020; 296
18685_CR7
A Esteva (18685_CR13) 2019; 25
X Wang (18685_CR27) 2020; 39
X Mei (18685_CR17) 2020; 26
Z Han (18685_CR28) 2020; 39
18685_CR22
18685_CR44
18685_CR23
18685_CR45
18685_CR20
18685_CR42
18685_CR43
ZZ Qin (18685_CR16) 2019; 9
K Zhang (18685_CR24) 2020; 181
L Li (18685_CR25) 2020; 296
M Panagiotou (18685_CR46) 2017; 26
HX Bai (18685_CR26) 2020; 296
18685_CR1
T Ai (18685_CR3) 2020; 296
X Ouyang (18685_CR29) 2020; 39
HX Bai (18685_CR2) 2020; 296
EJ Topol (18685_CR14) 2019; 25
GD Rubin (18685_CR4) 2020; 158
H Xie (18685_CR18) 2019; 85
JW Breslin (18685_CR47) 2011; 9
Y LeCun (18685_CR8) 2015; 521
18685_CR39
18685_CR38
A Esteva (18685_CR11) 2017; 542
18685_CR33
18685_CR34
H Shi (18685_CR6) 2020; 20
18685_CR10
18685_CR32
A Bernheim (18685_CR37) 2020; 295
18685_CR40
18685_CR41
D Ardila (18685_CR15) 2019; 25
F Liao (18685_CR19) 2019; 30
M Nash (18685_CR21) 2020; 10
Lvd Maaten (18685_CR35) 2008; 9
SG Armato III (18685_CR31) 2011; 38
B Moldoveanu (18685_CR48) 2009; 2
HYF Wong (18685_CR5) 2020; 296
References_xml – reference: World Health Organization. Laboratory Testing For Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases: Interim Guidance, 2 March 2020. https://apps.who.int/iris/handle/10665/331329 (2020).
– reference: QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.2019911010.1038/s41598-018-37186-2
– reference: XieHYangDSunNChenZZhangYAutomated pulmonary nodule detection in CT images using deep convolutional neural networksPattern Recognit20198510911910.1016/j.patcog.2018.07.031
– reference: Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, Miami, FL, 2009).
– reference: BernheimAChest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infectionRadiology202029520046310.1148/radiol.2020200463
– reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 91–99 (IEEE, 2015 Published).
– reference: MurphyKCOVID-19 on the chest radiograph: a multi-reader evaluation of an AI systemRadiology2020296E166E17210.1148/radiol.2020201874
– reference: Morozov, S. et al. MosMedData: chest CT scans with COVID-19 related findings. Preprint at https://arxiv.org/abs/2005.06465 (2020).
– reference: MaatenLvdHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219
– reference: BreslinJWLymphatic vessel network structure and physiologyCompr. Physiol.20119207299
– reference: BaiHXAI augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other etiology on chest CTRadiology2020296E156E16510.1148/radiol.2020201491
– reference: Cotes, J. E., Chinn, D. J. & Miller, M. R. Lung Function: Physiology, Measurement and Application in Medicine (Wiley, 2009).
– reference: Tianchi Competition https://tianchi.aliyun.com/competition/entrance/231601/information (2017).
– reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention, 234–241 (Springer, 2015).
– reference: WangXA weakly-supervised framework for COVID-19 Classification and lesion localization from chest CTIEEE Trans. Med. Imaging2020392615262510.1109/TMI.2020.2995965
– reference: LitjensGA survey on deep learning in medical image analysisMed. Image Anal.201742608810.1016/j.media.2017.07.005
– reference: AiTCorrelation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 casesRadiology2020296E32E4010.1148/radiol.2020200642
– reference: NashMDeep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in IndiaSci. Rep.20201011010.1038/s41598-019-56589-3
– reference: ShiHRadiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive studyLancet Infect. Dis.2020204254341:CAS:528:DC%2BB3cXjvFWhtbs%3D10.1016/S1473-3099(20)30086-4
– reference: WongHYFFrequency and distribution of chest radiographic findings in COVID-19 positive patientsRadiology2020296E72E7810.1148/radiol.2020201160
– reference: Dong, D. et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. (2020).
– reference: BaiHXPerformance of radiologists in differentiating COVID-19 from viral pneumonia on chest CTRadiology2020296E46E5410.1148/radiol.2020200823
– reference: Shi, F. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. (2020).
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (IEEE, 2016).
– reference: Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19) (StatPearls Publishing, 2020).
– reference: LiLUsing Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic AccuracyRadiology2020296E65E7110.1148/radiol.2020200905
– reference: HanZAccurate screening of COVID-19 using attention based deep 3D multiple instance learningIIEEE Trans. Med. Imaging2020392584259410.1109/TMI.2020.2996256
– reference: ArmatoSGIIIThe Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scansMed. Phys.20113891593110.1118/1.3528204
– reference: Kanne, J. P. Chest CT Findings nn 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Report No. 0033-8419, 16–17 (Radiological Society of North America, 2020).
– reference: MeiXArtificial intelligence–enabled rapid diagnosis of patients with COVID-19Nat. Med.202026122412281:CAS:528:DC%2BB3cXhtVSitLfO10.1038/s41591-020-0931-3
– reference: OuyangXDual-sampling attention network for diagnosis of COVID-19 from community acquired pneumoniaIEEE Trans. Med. Imaging2020392595260510.1109/TMI.2020.2995508
– reference: ZhangKClinically applicable AI system for accurate diagnosis, quantitative measurements and prognosis of COVID-19 pneumonia using computed tomographyCell2020181142314331:CAS:528:DC%2BB3cXps1yjtrs%3D10.1016/j.cell.2020.04.045
– reference: PanagiotouMChurchACJohnsonMKPeacockAJPulmonary vascular and cardiac impairment in interstitial lung diseaseEur. Respir. Rev.20172616005310.1183/16000617.0053-2016
– reference: Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision, 618–626 (IEEE, 2017).
– reference: RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyChest20201581061161:CAS:528:DC%2BB3cXhtlOjtLzJ10.1016/j.chest.2020.04.003
– reference: Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, 8024–8035 (NeurIPS, 2019).
– reference: Dail, D. H. & Hammar, S. P. Dail and Hammar’s Pulmonary Pathology (Springer Science & Business Media, 2013).
– reference: Zhu, W., Liu, C., Fan, W. & Xie, X. Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 673–681 (IEEE, 2018).
– reference: EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
– reference: Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097–1105 (Curran Associates, Inc., 2012).
– reference: MoldoveanuBInflammatory mechanisms in the lungJ. Inflamm. Res.2009211:CAS:528:DC%2BD1MXptl2rtLk%3D22096348
– reference: LiaoFLiangMLiZHuXSongSEvaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or networkIEEE Trans. neural Netw. Learn. Syst.2019303484349510.1109/TNNLS.2019.2892409
– reference: Van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.CAN-17-0339
– reference: EstevaAA guide to deep learning in healthcareNat. Med.20192524291:CAS:528:DC%2BC1MXmvVOgsb0%3D10.1038/s41591-018-0316-z
– reference: Xiong, Q. et al. Women may play a more important role in the transmission of the corona virus disease (COVID-19) than men. Lancet (2020).
– reference: TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D10.1038/s41591-018-0300-7
– reference: ArdilaDEnd-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomographyNat. Med.2019259549611:CAS:528:DC%2BC1MXhtVWqurfO10.1038/s41591-019-0447-x
– volume: 77
  start-page: e104
  year: 2017
  ident: 18685_CR36
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: 18685_CR10
– volume: 542
  start-page: 115
  year: 2017
  ident: 18685_CR11
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 25
  start-page: 954
  year: 2019
  ident: 18685_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0447-x
– ident: 18685_CR41
  doi: 10.1109/CVPR.2016.90
– ident: 18685_CR1
– volume: 39
  start-page: 2615
  year: 2020
  ident: 18685_CR27
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2995965
– volume: 25
  start-page: 24
  year: 2019
  ident: 18685_CR13
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0316-z
– volume: 158
  start-page: 106
  year: 2020
  ident: 18685_CR4
  publication-title: Chest
  doi: 10.1016/j.chest.2020.04.003
– volume: 25
  start-page: 44
  year: 2019
  ident: 18685_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 181
  start-page: 1423
  year: 2020
  ident: 18685_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.045
– volume: 9
  start-page: 207
  year: 2011
  ident: 18685_CR47
  publication-title: Compr. Physiol.
– volume: 26
  start-page: 1224
  year: 2020
  ident: 18685_CR17
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– volume: 38
  start-page: 915
  year: 2011
  ident: 18685_CR31
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 296
  start-page: E65
  year: 2020
  ident: 18685_CR25
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– volume: 296
  start-page: E156
  year: 2020
  ident: 18685_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.2020201491
– volume: 39
  start-page: 2595
  year: 2020
  ident: 18685_CR29
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2995508
– ident: 18685_CR45
– volume: 9
  start-page: 2579
  year: 2008
  ident: 18685_CR35
  publication-title: J. Mach. Learn. Res.
– ident: 18685_CR39
  doi: 10.1148/radiol.2020200241
– ident: 18685_CR7
  doi: 10.1109/CVPR.2009.5206848
– ident: 18685_CR43
– volume: 295
  start-page: 200463
  year: 2020
  ident: 18685_CR37
  publication-title: Radiology
  doi: 10.1148/radiol.2020200463
– volume: 296
  start-page: E32
  year: 2020
  ident: 18685_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– volume: 2
  start-page: 1
  year: 2009
  ident: 18685_CR48
  publication-title: J. Inflamm. Res.
– volume: 30
  start-page: 3484
  year: 2019
  ident: 18685_CR19
  publication-title: IEEE Trans. neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2892409
– volume: 26
  start-page: 160053
  year: 2017
  ident: 18685_CR46
  publication-title: Eur. Respir. Rev.
  doi: 10.1183/16000617.0053-2016
– ident: 18685_CR23
  doi: 10.1109/RBME.2020.2990959
– ident: 18685_CR32
– volume: 10
  start-page: 1
  year: 2020
  ident: 18685_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56589-3
– volume: 296
  start-page: E166
  year: 2020
  ident: 18685_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.2020201874
– ident: 18685_CR33
  doi: 10.1101/2020.05.20.20100362
– volume: 296
  start-page: E72
  year: 2020
  ident: 18685_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2020201160
– volume: 42
  start-page: 60
  year: 2017
  ident: 18685_CR12
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 9
  start-page: 1
  year: 2019
  ident: 18685_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– ident: 18685_CR38
– volume: 521
  start-page: 436
  year: 2015
  ident: 18685_CR8
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 20
  start-page: 425
  year: 2020
  ident: 18685_CR6
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30086-4
– ident: 18685_CR20
  doi: 10.1109/WACV.2018.00079
– volume: 39
  start-page: 2584
  year: 2020
  ident: 18685_CR28
  publication-title: IIEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2996256
– ident: 18685_CR22
  doi: 10.1109/RBME.2020.2987975
– ident: 18685_CR44
– volume: 296
  start-page: E46
  year: 2020
  ident: 18685_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2020200823
– volume: 85
  start-page: 109
  year: 2019
  ident: 18685_CR18
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.07.031
– ident: 18685_CR42
– ident: 18685_CR34
  doi: 10.1109/ICCV.2017.74
– ident: 18685_CR9
– ident: 18685_CR40
  doi: 10.1007/978-3-319-24574-4_28
SSID ssj0000391844
Score 2.6882775
Snippet Early detection of COVID-19 based on chest CT enables timely treatment of patients and helps control the spread of the disease. We proposed an artificial...
In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5088
SubjectTerms 631/114/1305
692/699/255/1578
692/700/139
692/700/1421/2025
Adult
Aged
Aged, 80 and over
Artificial Intelligence
Betacoronavirus
Coronavirus Infections - diagnostic imaging
COVID-19
Deep Learning
Diagnosis, Differential
Female
Humanities and Social Sciences
Humans
Male
Middle Aged
multidisciplinary
Pandemics
Pneumonia - diagnostic imaging
Pneumonia, Viral - diagnostic imaging
ROC Curve
SARS-CoV-2
Science
Science (multidisciplinary)
Tomography, X-Ray Computed
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqJKReUAuFBkplpN5ai2RsJ_axLF0BUtvLFnGzHDtRV6qyiF0O_H3HdnbZtGi5cIiiOE5ij8czb-TJMyGfGl65FlrP0BJaJhDTM-W8Y7mquS0bbX2kFPr-o7z4Ja5u5M3aVl8hJyzRAyfBnXpE1OCdLOq2FtKVChoPZW3BAZ5lZAJFn7cWTEUbzDWGLqL_Sybn6nQuok0I0VJgiJesGHiiSNj_FMr8P1nynxXT6IjGb8hOjyDp19Tyt-RV0-2S7bSn5MMeuV5LA6K28_SRz5vOWiyhoc-JN4JO1wg5aSJ1pohi6ejn9eU5KzT1KRNvOn9HJuNvk9EF6zdPYA4n4YJZUcvCaoUWSYEGUKr0nuMBDWI4qW2bt6quAN23chqDU7wCzm0rvMVZz_fJVjfrmveEciElYDH6MRHCGwuQq1bwmvPKIlzISLGUo3E9sXjY3-KPiQvcXJkke4OyN1H2psjI59Uzt4lWY2PtszA8q5qBEjsWoKKYXlHMc4qSkZPl4BqcQmFdxHbN7H5uEOFoLVVRYlcO0mCvPsVRFBgkQ0aqgRoM2jK8001_R5ruSoqqlPjOL0uFMb19mG_o6-FL9PWIvIao6TnL9Qeytbi7b44RPC3qj3Ge_AXufxMI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLeqIiQuiPExygYy0m5gLXm2E_s4CtNAgl1K1Zvl2MlWaUqmfhz23-_ZSUoLVSUOURTHSezn9xk__0zIWclzV0HlGWpCywT69Ew571iiCm6zUlsfIYV-_squfosfMzkbEOjXwsSk_QhpGdV0nx12vhRRpEOwEwDeJcOI50mAbg9cPc7Gm_8qAfFcCdGtj0m42vPojg2KUP37_Mt_0yT_miuNJujyBXne-Y70om3tERmU9UvytN1N8uEVmW4lAFFbe_oHyZs2FZbQ0M8WMYLOt6A4aQvnTNF_pePr6fevLNXUtzl48-VrMrn8NhlfsW7bBOZQ_FbMikKmVivURQo0gFKZ9xwPKNF7k9pWSaWKHNBwK6cxLMUr4NxWwluUd_6GDOumLt8SyoWUgMVowUQIbCxAoirBC85zi47CiKQ9HY3rIMXDzhZ3Jk5tc2Va2hukvYm0N-mIfNo8c98Cahys_SUMz6ZmAMOOBc3ixnTMYTy2DbyTaVEVQrpMQekhKyw4wLMUI_KxH1yDwhNmRGxdNuulQd9Ga6nSDLty3A725lMcSYHhMYxIvsMGO23ZvVPPbyNAdy5Fnkl85-eeYUynGZYH-vru_6qfkGcQeTphiT4lw9ViXb5HB2lVfIgS8Qi31wfp
  priority: 102
  providerName: Springer Nature
Title Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
URI https://link.springer.com/article/10.1038/s41467-020-18685-1
https://www.ncbi.nlm.nih.gov/pubmed/33037212
https://www.proquest.com/docview/2449958169
https://pubmed.ncbi.nlm.nih.gov/PMC7547659
https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEONr5aMyEm9gSPwR2w8IdWVlVNpAsE19sxw7gUpTCm0nsf-es510K1STeEiiOImTnO98v4ud3yH0smLS1bT2BHpCSzhgeqKcdyRTJbNFpa2PlEJHx8XhKR9PxGQLdemOWgEuNoZ2IZ_U6fz8ze9fl-_B4N-lX8bV2wWP5h4CoUD-LghEQzvgmWQw1KMW7seemWkIaMJAM814TsB3s_Y_ms3VrPmqSOm_CYf-O53yrzHV6KpG99DdFmPiQVKKXbRVNffR7ZR18vIBOrs2UQjbxuMrxm88q6EEB3VKzBJ4eo2yEyfaZww4Fw8_n336QHKNfZqrN108RCejg5PhIWnTKxAHZroklpcit1pBn6WoplSpwnsGC60A5Qlt66xWpaTg4JXTEL7CHmXM1txb6BfYI7TdzJpqD2HGhaBQDJ6OhwDIUpqpmrOSMWkBUPRQ3snRuJZ6PGTAODdxCJwpk2RvQPYmyt7kPfRqdc3PRLxx49n7oXlWZwbS7Fgwm383rQ0aD89GvRN5WZdcuELRytOitNRR2AreQy-6xjVgZGHkxDbV7GJhAANpLVRewKs8To29uhUDUUAYTXtIrqnB2rOsH2mmPyKRtxRcFgLqfN0pjOkM4IZ3ffJfknmK7tCo0hnJ9DO0vZxfVM8BRy3LProlJxLWavSxj3YGg_G3MWz3D46_fIXSYTHsxy8U_WhEfwDUkxmu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRQguiDdbXkbiBhbJ-BH7CAvVFtpyWareLMdOYCWURd3tof-esZMsXagqcYiiOE5ijz3jb-LxZ4DXjahCi23kZAk9l4TpuQkx8MLUwuvG-pgphY6O9eyb_HyqTncAx7UwOWg_U1pmMz1Gh71byazSydlJBO-Kk8dzg7C2TmFcUz3d_FdJjOdGymF9TCHMFY9ujUGZqv8qfPlvmORfc6V5CNq_C3cG7Mje96W9BztNdx9u9rtJXjyAk0sBQMx3kf1h8mbLllJYqmfPGMEWl6g4WU_nzAi_sunXk4OPvLQs9jF4i9VDmO9_mk9nfNg2gQdSvzX3slalt4ZskUGLaIyOUdCBDaE3ZX1btKaukAZuEyy5pXSFQvhWRk_6Lh7BbrfsmifAhFQKKZlGMJkcG49YmFaKWojKE1CYQDnK0YWBUjztbPHT5altYVwve0eyd1n2rpzAm80zv3pCjWtzf0jNs8mZyLBzwvLsuxs6h4tUNoxBlXVbSxW0wSairj0GpLOSE3g1Nq4j5UkzIr5rlucrR9jGWmVKTVV53Df25lOCREHuMU6g2uoGW2XZvtMtfmSC7krJSit659uxw7jBMqyuqeve_2V_Cbdm86NDd3hw_OUp3Mbcvwte2Gewuz47b54TWFrXL7J2_AZI-QrY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIhAXRAuULaUYiRtYJP6KfaRbVi2UwqFUvVmOHbcroSzqbg_994ydZOlCVYlDFMVxEnvsGb-Jx88Abxte-chioGgJHRWI6an2wdNC19ypxriQKYW-HquDH-LzmTxbAzWshclB-5nSMpvpITrsw1xklU7OTiJ4lxQtTIj34D7i7SI5XWM1Xv5bSaznWoh-jUzB9S2Pr4xDma7_Noz5b6jkX_OleRiaPIHHPX4kH7sSb8Ba027Cg25HyeuncHojCIi4NpA_bN5kFjGFpLp2rBFkeoOOk3SUzgQxLBl_Oz3cp6UhoYvDm86fwcnk08n4gPZbJ1CPKrigTtSydEajPdLMMKa1CoHjwRpEcNK4WERdVwwHb-0NuqZ4xTh3UQSHOs-fw3o7a5sXQLiQkmEyjmIiOTeOsUJHwWvOK4dgYQTlIEfre1rxtLvFT5unt7m2newtyt5m2dtyBO-Wz_zqSDXuzL2XmmeZMxFi54TZ5bntO4gNWDYWvCzrWAvplWZNYKp2zDM8SzGCN0PjWlSgNCvi2mZ2NbeIb4yRulRYla2usZef4igKdJHZCKqVbrBSltU77fQik3RXUlRK4jvfDx3G9tZhfkddt_8v-2t4-H1_Yo8Oj7-8hEcsd--CFmYH1heXV80rxEuLejcrx28b4wvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+evaluation+of+an+artificial+intelligence+system+for+COVID-19+diagnosis&rft.jtitle=Nature+communications&rft.au=Jin%2C+Cheng&rft.au=Chen%2C+Weixiang&rft.au=Cao%2C+Yukun&rft.au=Xu%2C+Zhanwei&rft.date=2020-10-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-18685-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_020_18685_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon