Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers
Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were use...
Saved in:
Published in | Vaccine Vol. 39; no. 41; pp. 6174 - 6181 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed. |
---|---|
AbstractList | Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed. AbstractVaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed. Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed. |
Author | Yoshikawa, Tomoki |
Author_xml | – sequence: 1 givenname: Tomoki surname: Yoshikawa fullname: Yoshikawa, Tomoki email: ytomoki@nih.go.jp organization: Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan |
BookMark | eNqNkk9v1DAQxS1UJLYLHwEpEhcuCWM7jmMhQFXFn0qVeqBI3IzjTLpeEnuxsyv67UnYpYeV0Pbiufzek-e9OSdnPngk5CWFggKt3qyLnbHWeSwYMFqAKgDoE7KgteQ5E7Q-IwtgVZmXFL4_I-cprQFAcKoW5MftysU2v0OP0Ywu-CwNpu834Xd2MM3SGI3zeWMStllEG4bGeePHf0DKuhCznYumz1Y4hBhX5s7ZrMMdxvScPO1Mn_DFYS7Jt08fby-_5Nc3n68uL65zK2Q95pJ1tOnapqZMQofUtFWrWiPLsmmVUhyRl6ybHq5UI5VgNVijBKiuBIW84Uvyeu-7ieHXFtOoB5cs9r3xGLZJs4pXQlZS0NOokEwxWU4RLcmrI3QdttFPi8yU4JwKCRP1dk_ZGFKK2Gnrxr9pztH1moKei9JrfYhMz0VpUHoqalKLI_UmusHE-5O6D3sdTrHuHEadrENvsXVTS6Nugzvp8P7IwfbOO2v6n3iP6WFVqhPToL_ORzTfEJs8aaXmeN793-ARH_gDSfHckg |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e18983 crossref_primary_10_3390_biology10111158 crossref_primary_10_1016_j_meegid_2023_105477 crossref_primary_10_1016_j_onehlt_2024_100725 crossref_primary_10_1186_s12943_023_01807_w crossref_primary_10_23947_2949_4826_2023_22_4_19_27 crossref_primary_10_3390_vaccines11051006 crossref_primary_10_1038_s41598_022_19679_3 crossref_primary_10_1186_s13568_023_01507_0 crossref_primary_10_54844_cai_2022_0184 |
Cites_doi | 10.1016/j.vaccine.2017.11.003 10.1016/S0140-6736(87)90767-7 10.1128/JVI.00363-18 10.1080/21645515.2015.1078045 10.1371/journal.pone.0001638 10.1073/pnas.192420599 10.1016/0168-1702(88)90033-0 10.1093/infdis/jiz070 10.1099/0022-1317-72-5-1031 10.1038/nature02331 10.2807/1560-7917.ES.2017.22.39.17-00661 10.7861/clinmedicine.15-1-61 10.1016/j.jviromet.2007.03.012 10.1006/viro.1997.8845 10.1038/192381a0 10.1016/j.jviromet.2010.04.012 10.1056/NEJMoa1411627 10.1371/journal.pone.0192725 10.1016/j.antiviral.2009.06.006 10.1128/JVI.02642-05 10.1038/nm.3702 10.1128/JVI.00579-19 10.1007/BF01641272 10.1073/pnas.89.22.10847 10.1007/BF01314664 10.1016/j.ijid.2004.09.002 10.1080/16549716.2020.1829829 10.3390/vaccines2040755 10.1093/cid/civ792 10.1016/j.antiviral.2014.05.020 10.1016/bs.aivir.2016.07.001 10.1038/s41598-019-56550-4 10.1001/jama.2016.4218 10.1038/nm916 10.1099/0022-1317-79-2-347 10.1016/S1473-3099(15)00362-X 10.1073/pnas.0406671102 10.1016/S0264-410X(00)00121-3 10.1006/viro.2002.1622 10.4269/ajtmh.2010.10-0001 10.1371/journal.ppat.1007564 10.1099/0022-1317-68-10-2705 10.1016/0042-6822(92)90752-B 10.3389/fimmu.2018.01756 10.1002/14651858.CD004913.pub2 10.1016/0264-410X(94)90215-1 10.1073/pnas.86.1.317 10.1086/340517 10.1055/s-0028-1108143 10.1371/journal.pone.0156637 10.1002/rmv.329 10.1093/infdis/122.4.303 10.1371/journal.pone.0165207 10.1371/journal.pone.0004180 10.1128/JVI.02407-10 10.1080/21645515.2017.1264755 10.1016/j.jiac.2018.07.009 10.1016/j.amjmed.2008.08.019 10.1073/pnas.80.17.5364 10.1016/S0140-6736(05)70209-9 10.1001/jama.2009.289 10.1016/j.vaccine.2019.07.023 10.1016/j.vaccine.2020.01.055 10.1186/s13567-018-0516-z 10.1371/journal.pone.0111736 10.1056/NEJMc1707600 10.1038/nm917 10.1086/375824 10.1080/14760584.2019.1698952 10.1128/JVI.79.12.7845-7851.2005 10.1017/S0025727300040825 10.1086/524749 10.1093/infdis/jiz071 10.1056/NEJMp0707161 10.1098/rstb.2013.0113 10.1056/NEJM196911272812201 10.1016/j.vaccine.2007.11.045 10.1002/jmv.21721 10.1128/JVI.02797-14 10.1016/S0264-410X(01)00075-5 10.1371/journal.ppat.1008859 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Elsevier Ltd 2021. Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: 2021. Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 3V. 7QL 7RV 7T2 7T5 7U9 7X7 7XB 88C 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9- K9. KB0 LK8 M0R M0S M0T M1P M2O M7N M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 7S9 L.6 |
DOI | 10.1016/j.vaccine.2021.09.001 |
DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Immunology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection Consumer Health Database (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-2518 |
EndPage | 6181 |
ExternalDocumentID | 10_1016_j_vaccine_2021_09_001 S0264410X21011695 1_s2_0_S0264410X21011695 |
GeographicLocations | Ankara Turkey Turkey |
GeographicLocations_xml | – name: Ankara Turkey – name: Turkey |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABKYH ABMAC ABMZM ABRWV ABUWG ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEUYN AEVXI AEXOQ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGGSO AGUBO AGYEJ AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AQUVI AXJTR AZQEC BBNVY BENPR BHPHI BKEYQ BKNYI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CJTIS CNWQP CS3 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W K9- KOM L7B LK8 LUGTX LW9 M0R M0T M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ SAB SCC SDF SDG SDP SES SNL SPCBC SSH SSI SSZ T5K UKHRP UV1 WH7 WOW Z5R ~G- .GJ 29Q 3V. AACTN AAQXK ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFCTW AFJKZ AFKWA AGHFR AHHHB AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HEJ HLV HMG HMK HMO HVGLF HX~ HZ~ R2- RIG SAE SEW SIN SVS WUQ XPP ZGI ZXP AAIAV ABLVK ABYKQ AESVU EFLBG LCYCR QYZTP AAYXX ACMHX ADSLC AGQPQ AGRNS AGWPP CITATION 7QL 7T2 7T5 7U9 7XB 8FK C1K H94 K9. M7N MBDVC PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c578t-72f1bfdb81270fe1ad6d9da744bd9993ee342fe34399b795280ca9509f409e3b3 |
IEDL.DBID | 7X7 |
ISSN | 0264-410X 1873-2518 |
IngestDate | Thu Jul 10 22:33:16 EDT 2025 Fri Jul 11 03:21:21 EDT 2025 Wed Aug 13 11:29:13 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Tue Jul 01 01:07:02 EDT 2025 Fri Feb 23 02:44:03 EST 2024 Tue Feb 25 20:03:44 EST 2025 Tue Aug 26 16:34:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Vaccinia virus Viral hemorrhagic fever Recombinant vaccine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c578t-72f1bfdb81270fe1ad6d9da744bd9993ee342fe34399b795280ca9509f409e3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PQID | 2575331570 |
PQPubID | 105530 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2636576751 proquest_miscellaneous_2572927405 proquest_journals_2575331570 crossref_citationtrail_10_1016_j_vaccine_2021_09_001 crossref_primary_10_1016_j_vaccine_2021_09_001 elsevier_sciencedirect_doi_10_1016_j_vaccine_2021_09_001 elsevier_clinicalkeyesjournals_1_s2_0_S0264410X21011695 elsevier_clinicalkey_doi_10_1016_j_vaccine_2021_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Vaccine |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Monath (b0320) 2010; 82 Drexler, Heller, Wahren, Erfle, Sutter (b0160) 1998; 79 Sutter, Moss (b0170) 1992; 89 Ishii, Ueda, Matsuo, Matsuura, Kitamura, Kato (b0225) 2002; 302 Men, Wyatt, Tokimatsu, Arakaki, Shameem, Elkins (b0305) 2000; 18 Esparza, Schrick, Damaso, Nitsche (b0005) 2017; 35 Fisher-Hoch, McCormick, Auperin, Brown, Castor, Perez (b0295) 1989; 86 Metzger W, Mordmueller BG. Vaccines for preventing smallpox. Cochrane Database Syst Rev. 2007:CD004913. Hekker, Bos, Rai, Keja, Cuboni, Emmet (b0085) 1976; 54 Domi, Moss (b0130) 2002; 99 Matz, Marzi, Feldmann (b0325) 2019; 18 Pilankatta, Chawla, Khanna, Swaminathan (b0340) 2010; 82 Anywaine, Whitworth, Kaleebu, Praygod, Shukarev, Manno (b0350) 2019; 220 Lorenzo, Lopez-Gil, Ortego, Brun (b0410) 2018; 49 Weltzin, Liu, Pugachev, Myers, Coughlin, Blum (b0090) 2003; 9 Yoshikawa, Taniguchi, Kato, Iwata-Yoshikawa, Tani, Kurosu (b0435) 2021; 17 Saijo, Ami, Suzaki, Nagata, Iwata, Hasegawa (b0230) 2006; 80 Stickl, Hochstein-Mintzel, Mayr, Huber, Schafer (b0145) 1974; 99 Rahim, Wee, He, Audet, Tierney, Moyo (b0390) 2019; 15 Vijaysri, Jentarra, Heck, Mercer, McInnes, Jacobs (b0260) 2008; 26 Stittelaar, van Amerongen, Kondova, Kuiken, van Lavieren, Pistoor (b0180) 2005; 79 Neff, Modlin, Birkhead, Poland, Robertson, Sepkowitz (b0100) 2008; 46 Panicali, Davis, Weinberg, Paoletti (b0060) 1983; 80 Lopez-Gil, Lorenzo, Hevia, Borrego, Eiden, Groschup (b0400) 2013; 7 Hemorrhagic, Viruses (b0280) 2009 Hewson (b0430) 2017; 22 Tartaglia, Perkus, Taylor, Norton, Audonnet, Cox (b0245) 1992; 188 Lane, Ruben, Neff, Millar (b0105) 1969; 281 Lane, Ruben, Neff, Millar (b0110) 1970; 122 Mutua, Anzala, Luhn, Robinson, Bockstal, Anumendem (b0345) 2019; 220 Stickl (b0140) 1971; 113 Giel-Moloney, Esteban, Oakes, Vaine, Asbach, Wagner (b0265) 2019; 9 Stittelaar, Kuiken, de Swart, van Amerongen, Vos, Niesters (b0175) 2001; 19 Monath (b0315) 2007; 357 Pasin, Balelli, Van Effelterre, Bockstal, Solforosi, Prague (b0355) 2019; 93 Earl, Americo, Wyatt, Eller, Whitbeck, Cohen (b0185) 2004; 428 Kato, Yamagishi, Shimada, Matsui, Shimojima, Saijo (b0445) 2016; 11 Tagaya, Kitamura, Sano (b0220) 1961; 192 Arita I. Can we stop smallpox vaccination? The cessation of vaccination will not only save thousands of patients who would otherwise have suffered from complications but will also save the world community some $1,000 million a year. World Health;1980 May p27-29;. 1980. Carroll, Moss (b0165) 1997; 238 Wilkinson (b0010) 1982; 26 Julander, Testori, Cheminay, Volkmann (b0310) 2018; 9 Volz, Sutter (b0135) 2017; 97 Poland (b0070) 2005; 365 Kidokoro, Tashiro, Shida (b0240) 2005; 102 Cottingham, Gilbert (b0120) 2010; 168 Mayr, Hochstein-Mintzel, Stickl (b0150) 1975; 3 Monath, Caldwell, Mundt, Fusco, Johnson, Buller (b0095) 2004; 8 Morita, Aoyama, Arita, Amona, Yoshizawa, Hashizume (b0215) 1977; 53 Ding, Niu, Xu, Li, Zhang, Yin (b0440) 2014; 9 Jacobs, Langland, Kibler, Denzler, White, Holechek (b0065) 2009; 84 Fisher-Hoch, McCormick (b0300) 2001; 11 Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, World Health O. Smallpox and its eradication / F. Fenner ... [et al.]. Geneva: World Health Organization; 1988. Kennedy, Dowall, Salguero, Yeates, Aram, Hewson (b0395) 2019; 37 Henderson DA, Klepac P. Lessons from the eradication of smallpox: an interview with D. A. Henderson. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130113. Sugimoto, Yamanouchi (b0190) 1994; 12 Yoshikawa, Fujii, Okutani, Shibamura, Omura, Egawa (b0125) 2018; 13 Takahashi-Nishimaki, Suzuki, Morita, Maruyama, Miki, Hashizume (b0195) 1987; 68 Tapia, Sow, Lyke, Haidara, Diallo, Doumbia (b0380) 2016; 16 Shukarev G, Callendret B, Luhn K, Douoguih M, consortium E. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human vaccines & immunotherapeutics. 2017;13:266-70. Qin, Favis, Famulski, Evans (b0045) 2015; 89 Kitonsa J, Ggayi AB, Anywaine Z, Kisaakye E, Nsangi L, Basajja V, et al. Implementation of accelerated research: strategies for implementation as applied in a phase 1 Ad26.ZEBOV, MVA-BN-Filo two-dose Ebola vaccine clinical trial in Uganda. Glob Health Action. 2020;13:1829829. Ewer, Rampling, Venkatraman, Bowyer, Wright, Lambe (b0375) 2016; 374 Kennedy, Poland (b0050) 2009 Yamaguchi, Kimura, Hirayama (b0205) 1975; 3 Taub, Ershler, Janowski, Artz, Key, McKelvey (b0030) 2008; 121 Cottingham, Andersen, Spencer, Saurya, Furze, Hill (b0115) 2008; 3 Meyer, Sutter, Mayr (b0155) 1991; 72 Dowall, Buttigieg, Findlay-Wilson, Rayner, Pearson, Miloszewska (b0420) 2016; 12 Saijo (b0425) 2018; 24 Fulginiti, Papier, Lane, Neff, Henderson (b0035) 2003; 37 Schrick, Tausch, Dabrowski, Damaso, Esparza, Nitsche (b0015) 2017; 377 Racsa, Kraft, Olinger, Hensley (b0270) 2016; 62 Fhogartaigh, Aarons (b0275) 2015; 15 Zhu, Fang, Zhuang, Wang, Yu, Zhou (b0250) 2007; 144 Samy, Reichhardt, Schmidt, Chen, Silbernagl, Vidojkovic (b0450) 2020; 38 Milligan, Gibani, Sewell, Clutterbuck, Campbell, Plested (b0330) 2016; 315 Dowall, Graham, Rayner, Hunter, Watson, Taylor (b0415) 2016; 11 Saito, Fujii, Kanatani, Saijo, Morikawa, Yokote (b0210) 2009; 301 Huang, Lu, Yu, Fang, Liu, Zhuang (b0255) 2009; 4 Ennis, Cruz, Demkowicz, Rothman, McClain (b0020) 2002; 185 Hashizume, Yoshizawa, Morita, Suzuki (b0200) 1985 Geisbert, Bailey, Hensley, Asiedu, Geisbert, Stanley (b0335) 2011; 85 Stanley, Honko, Asiedu, Trefry, Lau-Kilby, Johnson (b0370) 2014; 20 Busquets, Lorenzo, Lopez-Gil, Rivas, Solanes, Galindo-Cardiel (b0405) 2014; 108 Kidokoro, Shida (b0235) 2014; 2 Clegg, Lloyd (b0285) 1987; 2 Lazaro-Frias, Gomez-Medina, Sanchez-Sampedro, Ljungberg, Ustav, Liljestrom (b0385) 2018; 92 Hammarlund, Lewis, Hansen, Strelow, Nelson, Sexton (b0025) 2003; 9 Auperin, Esposito, Lange, Bauer, Knight, Sasso (b0290) 1988; 9 Ishii (10.1016/j.vaccine.2021.09.001_b0225) 2002; 302 Mayr (10.1016/j.vaccine.2021.09.001_b0150) 1975; 3 Pilankatta (10.1016/j.vaccine.2021.09.001_b0340) 2010; 82 Racsa (10.1016/j.vaccine.2021.09.001_b0270) 2016; 62 Busquets (10.1016/j.vaccine.2021.09.001_b0405) 2014; 108 10.1016/j.vaccine.2021.09.001_b0360 Meyer (10.1016/j.vaccine.2021.09.001_b0155) 1991; 72 Mutua (10.1016/j.vaccine.2021.09.001_b0345) 2019; 220 10.1016/j.vaccine.2021.09.001_b0040 Hammarlund (10.1016/j.vaccine.2021.09.001_b0025) 2003; 9 Saijo (10.1016/j.vaccine.2021.09.001_b0425) 2018; 24 Stittelaar (10.1016/j.vaccine.2021.09.001_b0180) 2005; 79 Tartaglia (10.1016/j.vaccine.2021.09.001_b0245) 1992; 188 Anywaine (10.1016/j.vaccine.2021.09.001_b0350) 2019; 220 Lazaro-Frias (10.1016/j.vaccine.2021.09.001_b0385) 2018; 92 Morita (10.1016/j.vaccine.2021.09.001_b0215) 1977; 53 10.1016/j.vaccine.2021.09.001_b0365 Takahashi-Nishimaki (10.1016/j.vaccine.2021.09.001_b0195) 1987; 68 Tapia (10.1016/j.vaccine.2021.09.001_b0380) 2016; 16 Poland (10.1016/j.vaccine.2021.09.001_b0070) 2005; 365 Milligan (10.1016/j.vaccine.2021.09.001_b0330) 2016; 315 Cottingham (10.1016/j.vaccine.2021.09.001_b0120) 2010; 168 Yoshikawa (10.1016/j.vaccine.2021.09.001_b0435) 2021; 17 Yamaguchi (10.1016/j.vaccine.2021.09.001_b0205) 1975; 3 10.1016/j.vaccine.2021.09.001_b0080 Kato (10.1016/j.vaccine.2021.09.001_b0445) 2016; 11 Zhu (10.1016/j.vaccine.2021.09.001_b0250) 2007; 144 Drexler (10.1016/j.vaccine.2021.09.001_b0160) 1998; 79 Julander (10.1016/j.vaccine.2021.09.001_b0310) 2018; 9 Hemorrhagic (10.1016/j.vaccine.2021.09.001_b0280) 2009 10.1016/j.vaccine.2021.09.001_b0075 Wilkinson (10.1016/j.vaccine.2021.09.001_b0010) 1982; 26 Fulginiti (10.1016/j.vaccine.2021.09.001_b0035) 2003; 37 Ennis (10.1016/j.vaccine.2021.09.001_b0020) 2002; 185 Vijaysri (10.1016/j.vaccine.2021.09.001_b0260) 2008; 26 Kennedy (10.1016/j.vaccine.2021.09.001_b0050) 2009 Earl (10.1016/j.vaccine.2021.09.001_b0185) 2004; 428 Hewson (10.1016/j.vaccine.2021.09.001_b0430) 2017; 22 Auperin (10.1016/j.vaccine.2021.09.001_b0290) 1988; 9 Carroll (10.1016/j.vaccine.2021.09.001_b0165) 1997; 238 Matz (10.1016/j.vaccine.2021.09.001_b0325) 2019; 18 Monath (10.1016/j.vaccine.2021.09.001_b0320) 2010; 82 Volz (10.1016/j.vaccine.2021.09.001_b0135) 2017; 97 Sutter (10.1016/j.vaccine.2021.09.001_b0170) 1992; 89 Schrick (10.1016/j.vaccine.2021.09.001_b0015) 2017; 377 Panicali (10.1016/j.vaccine.2021.09.001_b0060) 1983; 80 Saijo (10.1016/j.vaccine.2021.09.001_b0230) 2006; 80 Pasin (10.1016/j.vaccine.2021.09.001_b0355) 2019; 93 Taub (10.1016/j.vaccine.2021.09.001_b0030) 2008; 121 Kidokoro (10.1016/j.vaccine.2021.09.001_b0235) 2014; 2 Clegg (10.1016/j.vaccine.2021.09.001_b0285) 1987; 2 Neff (10.1016/j.vaccine.2021.09.001_b0100) 2008; 46 Giel-Moloney (10.1016/j.vaccine.2021.09.001_b0265) 2019; 9 Fhogartaigh (10.1016/j.vaccine.2021.09.001_b0275) 2015; 15 Fisher-Hoch (10.1016/j.vaccine.2021.09.001_b0295) 1989; 86 Dowall (10.1016/j.vaccine.2021.09.001_b0420) 2016; 12 Cottingham (10.1016/j.vaccine.2021.09.001_b0115) 2008; 3 Samy (10.1016/j.vaccine.2021.09.001_b0450) 2020; 38 Dowall (10.1016/j.vaccine.2021.09.001_b0415) 2016; 11 Men (10.1016/j.vaccine.2021.09.001_b0305) 2000; 18 Qin (10.1016/j.vaccine.2021.09.001_b0045) 2015; 89 Yoshikawa (10.1016/j.vaccine.2021.09.001_b0125) 2018; 13 Kennedy (10.1016/j.vaccine.2021.09.001_b0395) 2019; 37 Huang (10.1016/j.vaccine.2021.09.001_b0255) 2009; 4 Stanley (10.1016/j.vaccine.2021.09.001_b0370) 2014; 20 Rahim (10.1016/j.vaccine.2021.09.001_b0390) 2019; 15 Hekker (10.1016/j.vaccine.2021.09.001_b0085) 1976; 54 Domi (10.1016/j.vaccine.2021.09.001_b0130) 2002; 99 Lane (10.1016/j.vaccine.2021.09.001_b0110) 1970; 122 Stickl (10.1016/j.vaccine.2021.09.001_b0145) 1974; 99 Stittelaar (10.1016/j.vaccine.2021.09.001_b0175) 2001; 19 Sugimoto (10.1016/j.vaccine.2021.09.001_b0190) 1994; 12 Lane (10.1016/j.vaccine.2021.09.001_b0105) 1969; 281 Jacobs (10.1016/j.vaccine.2021.09.001_b0065) 2009; 84 Tagaya (10.1016/j.vaccine.2021.09.001_b0220) 1961; 192 Geisbert (10.1016/j.vaccine.2021.09.001_b0335) 2011; 85 Ding (10.1016/j.vaccine.2021.09.001_b0440) 2014; 9 Saito (10.1016/j.vaccine.2021.09.001_b0210) 2009; 301 Kidokoro (10.1016/j.vaccine.2021.09.001_b0240) 2005; 102 Lorenzo (10.1016/j.vaccine.2021.09.001_b0410) 2018; 49 10.1016/j.vaccine.2021.09.001_b0055 Weltzin (10.1016/j.vaccine.2021.09.001_b0090) 2003; 9 Esparza (10.1016/j.vaccine.2021.09.001_b0005) 2017; 35 Monath (10.1016/j.vaccine.2021.09.001_b0095) 2004; 8 Fisher-Hoch (10.1016/j.vaccine.2021.09.001_b0300) 2001; 11 Ewer (10.1016/j.vaccine.2021.09.001_b0375) 2016; 374 Stickl (10.1016/j.vaccine.2021.09.001_b0140) 1971; 113 Hashizume (10.1016/j.vaccine.2021.09.001_b0200) 1985 Lopez-Gil (10.1016/j.vaccine.2021.09.001_b0400) 2013; 7 Monath (10.1016/j.vaccine.2021.09.001_b0315) 2007; 357 |
References_xml | – volume: 80 start-page: 5364 year: 1983 end-page: 5368 ident: b0060 article-title: Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin publication-title: Proc Natl Acad Sci U S A. – volume: 82 start-page: 407 year: 2010 end-page: 414 ident: b0340 article-title: The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines publication-title: J Med Virol – volume: 12 start-page: 675 year: 1994 end-page: 681 ident: b0190 article-title: Characteristics of an attenuated vaccinia virus strain, LC16m0, and its recombinant virus vaccines publication-title: Vaccine. – volume: 108 start-page: 165 year: 2014 end-page: 172 ident: b0405 article-title: Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs publication-title: Antiviral Res – volume: 113 start-page: 1149 year: 1971 end-page: 1153 ident: b0140 article-title: Hochstein-Mintzel V publication-title: Munch Med Wochenschr – volume: 19 start-page: 3700 year: 2001 end-page: 3709 ident: b0175 article-title: Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques publication-title: Vaccine. – reference: Metzger W, Mordmueller BG. Vaccines for preventing smallpox. Cochrane Database Syst Rev. 2007:CD004913. – volume: 302 start-page: 433 year: 2002 end-page: 444 ident: b0225 article-title: Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector publication-title: Virology – volume: 62 start-page: 214 year: 2016 end-page: 219 ident: b0270 article-title: Viral Hemorrhagic Fever Diagnostics publication-title: Clin Infect Dis – volume: 15 year: 2019 ident: b0390 article-title: Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine publication-title: PLoS Pathog – volume: 9 start-page: 1125 year: 2003 end-page: 1130 ident: b0090 article-title: Clonal vaccinia virus grown in cell culture as a new smallpox vaccine publication-title: Nat Med – volume: 22 year: 2017 ident: b0430 article-title: Lessons learnt from imported cases and onward transmission of Lassa fever in Europe support broader management of viral haemorrhagic fevers publication-title: Euro Surveill – volume: 79 start-page: 347 year: 1998 end-page: 352 ident: b0160 article-title: Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells publication-title: J Gen Virol – volume: 238 start-page: 198 year: 1997 end-page: 211 ident: b0165 article-title: Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line publication-title: Virology – volume: 315 start-page: 1610 year: 2016 end-page: 1623 ident: b0330 article-title: Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial publication-title: JAMA – volume: 18 start-page: 3113 year: 2000 end-page: 3122 ident: b0305 article-title: Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge publication-title: Vaccine. – volume: 37 start-page: 5404 year: 2019 end-page: 5413 ident: b0395 article-title: A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model publication-title: Vaccine. – reference: Henderson DA, Klepac P. Lessons from the eradication of smallpox: an interview with D. A. Henderson. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130113. – volume: 377 start-page: 1491 year: 2017 end-page: 1492 ident: b0015 article-title: An Early American Smallpox Vaccine Based on Horsepox publication-title: N Engl J Med – volume: 89 start-page: 1809 year: 2015 end-page: 1824 ident: b0045 article-title: Evolution of and evolutionary relationships between extant vaccinia virus strains publication-title: J Virol – reference: Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, World Health O. Smallpox and its eradication / F. Fenner ... [et al.]. Geneva: World Health Organization; 1988. – volume: 26 start-page: 664 year: 2008 end-page: 676 ident: b0260 article-title: Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: intra-nasal vaccination publication-title: Vaccine. – volume: 38 start-page: 2608 year: 2020 end-page: 2619 ident: b0450 article-title: Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial publication-title: Vaccine. – volume: 80 start-page: 5179 year: 2006 end-page: 5188 ident: b0230 article-title: LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox publication-title: J Virol – volume: 102 start-page: 4152 year: 2005 end-page: 4157 ident: b0240 article-title: Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8 publication-title: Proc Natl Acad Sci U S A. – volume: 122 start-page: 303 year: 1970 end-page: 309 ident: b0110 article-title: Complications of smallpox vaccination, 1968: results of ten statewide surveys publication-title: J Infect Dis – start-page: 339 year: 2009 end-page: 353 ident: b0280 publication-title: Encyclopedia of Microbiology (Third Edition) – volume: 79 start-page: 7845 year: 2005 end-page: 7851 ident: b0180 article-title: Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus publication-title: J Virol – volume: 192 start-page: 381 year: 1961 end-page: 382 ident: b0220 article-title: A new mutant of dermovaccinia virus publication-title: Nature – volume: 121 start-page: 1058 year: 2008 end-page: 1064 ident: b0030 article-title: Immunity from smallpox vaccine persists for decades: a longitudinal study publication-title: Am J Med – volume: 86 start-page: 317 year: 1989 end-page: 321 ident: b0295 article-title: Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene publication-title: Proc Natl Acad Sci U S A. – volume: 220 start-page: 46 year: 2019 end-page: 56 ident: b0350 article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccination Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Uganda and Tanzania publication-title: J Infect Dis – volume: 24 start-page: 773 year: 2018 end-page: 781 ident: b0425 article-title: Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy publication-title: J Infect Chemother. – volume: 26 start-page: 94 year: 1982 end-page: 95 ident: b0010 article-title: Jenner's smallpox vaccine. The riddle of vaccinia virus and its origin publication-title: Med Hist – volume: 11 start-page: 331 year: 2001 end-page: 341 ident: b0300 article-title: Towards a human Lassa fever vaccine publication-title: Rev Med Virol – volume: 7 year: 2013 ident: b0400 article-title: A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection publication-title: PLoS NeglTrop Dis – volume: 49 start-page: 21 year: 2018 ident: b0410 article-title: Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination publication-title: Vet Res – volume: 16 start-page: 31 year: 2016 end-page: 42 ident: b0380 article-title: Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial publication-title: Lancet Infect Dis – volume: 18 start-page: 1229 year: 2019 end-page: 1242 ident: b0325 article-title: Ebola vaccine trials: progress in vaccine safety and immunogenicity publication-title: Expert Rev Vaccines. – volume: 3 start-page: 269 year: 1975 end-page: 279 ident: b0205 article-title: Vaccination research groups research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications publication-title: Rinsho To Uirusu – volume: 93 year: 2019 ident: b0355 article-title: Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine: Quantification and Sources of Variation publication-title: J Virol – volume: 185 start-page: 1657 year: 2002 end-page: 1659 ident: b0020 article-title: Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination publication-title: J Infect Dis – volume: 2 start-page: 755 year: 2014 end-page: 771 ident: b0235 article-title: Vaccinia Virus LC16m8 as a Vaccine Vector for Clinical Applications publication-title: Vaccines (Basel). – reference: Kitonsa J, Ggayi AB, Anywaine Z, Kisaakye E, Nsangi L, Basajja V, et al. Implementation of accelerated research: strategies for implementation as applied in a phase 1 Ad26.ZEBOV, MVA-BN-Filo two-dose Ebola vaccine clinical trial in Uganda. Glob Health Action. 2020;13:1829829. – volume: 4 year: 2009 ident: b0255 article-title: A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination publication-title: PLoS ONE – volume: 37 start-page: 241 year: 2003 end-page: 250 ident: b0035 article-title: Smallpox vaccination: a review, part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions publication-title: Clin Infect Dis – volume: 85 start-page: 4222 year: 2011 end-page: 4233 ident: b0335 article-title: Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge publication-title: J Virol – volume: 72 start-page: 1031 year: 1991 end-page: 1038 ident: b0155 article-title: Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence publication-title: J Gen Virol – volume: 13 year: 2018 ident: b0125 article-title: Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8 publication-title: PLoS ONE – volume: 97 start-page: 187 year: 2017 end-page: 243 ident: b0135 article-title: Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development publication-title: Adv Virus Res – volume: 17 year: 2021 ident: b0435 article-title: A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome publication-title: PLoS Pathog – start-page: 685 year: 2009 end-page: 711 ident: b0050 article-title: Chapter 37 - Smallpox publication-title: Vaccines for Biodefense and Emerging and Neglected Diseases – volume: 2 start-page: 186 year: 1987 end-page: 188 ident: b0285 article-title: Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever publication-title: Lancet – volume: 144 start-page: 17 year: 2007 end-page: 26 ident: b0250 article-title: The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L–K2L genes publication-title: J Virol Methods – volume: 46 start-page: S258 year: 2008 end-page: S270 ident: b0100 article-title: Monitoring the safety of a smallpox vaccination program in the United States: report of the joint Smallpox Vaccine Safety Working Group of the advisory committee on immunization practices and the Armed Forces Epidemiological Board publication-title: Clin Infect Dis – volume: 11 year: 2016 ident: b0445 article-title: Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013–2014 publication-title: PLoS ONE – volume: 15 start-page: 61 year: 2015 end-page: 66 ident: b0275 article-title: Viral haemorrhagic fever publication-title: Clin Med (Lond). – start-page: 87 year: 1985 end-page: 99 ident: b0200 article-title: Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain publication-title: Vaccinia Virus as Vectors for Vaccine Antigens – volume: 357 start-page: 2222 year: 2007 end-page: 2225 ident: b0315 article-title: Dengue and yellow fever–challenges for the development and use of vaccines publication-title: N Engl J Med – volume: 220 start-page: 57 year: 2019 end-page: 67 ident: b0345 article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccine Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Nairobi, Kenya publication-title: J Infect Dis – volume: 9 start-page: 1131 year: 2003 end-page: 1137 ident: b0025 article-title: Duration of antiviral immunity after smallpox vaccination publication-title: Nat Med – volume: 20 start-page: 1126 year: 2014 end-page: 1129 ident: b0370 article-title: Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge publication-title: Nat Med – volume: 35 start-page: 7222 year: 2017 end-page: 7230 ident: b0005 article-title: Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine publication-title: Vaccine. – reference: Shukarev G, Callendret B, Luhn K, Douoguih M, consortium E. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human vaccines & immunotherapeutics. 2017;13:266-70. – volume: 3 year: 2008 ident: b0115 article-title: Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA) publication-title: PLoS ONE – volume: 8 start-page: S31 year: 2004 end-page: S44 ident: b0095 article-title: ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)–a second-generation smallpox vaccine for biological defense publication-title: Int J Infect Dis. – volume: 374 start-page: 1635 year: 2016 end-page: 1646 ident: b0375 article-title: A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA publication-title: N Engl J Med – volume: 281 start-page: 1201 year: 1969 end-page: 1208 ident: b0105 article-title: Complications of smallpox vaccination, 1968 publication-title: N Engl J Med – volume: 11 year: 2016 ident: b0415 article-title: Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses publication-title: PLoS ONE – reference: Arita I. Can we stop smallpox vaccination? The cessation of vaccination will not only save thousands of patients who would otherwise have suffered from complications but will also save the world community some $1,000 million a year. World Health;1980 May p27-29;. 1980. – volume: 99 start-page: 12415 year: 2002 end-page: 12420 ident: b0130 article-title: Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells publication-title: Proc Natl Acad Sci U S A. – volume: 365 start-page: 362 year: 2005 end-page: 363 ident: b0070 article-title: Smallpox vaccines: from first to second to third generation publication-title: Lancet – volume: 99 start-page: 2386 year: 1974 end-page: 2392 ident: b0145 article-title: Holzner A publication-title: Dtsch Med Wochenschr – volume: 9 start-page: 20005 year: 2019 ident: b0265 article-title: Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector publication-title: Sci Rep – volume: 92 year: 2018 ident: b0385 article-title: Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins publication-title: J Virol – volume: 9 year: 2014 ident: b0440 article-title: Age is a critical risk factor for severe fever with thrombocytopenia syndrome publication-title: PLoS ONE – volume: 53 start-page: 197 year: 1977 end-page: 208 ident: b0215 article-title: Comparative studies of several vaccinia virus strains by intrathalamic inoculation into cynomolgus monkeys publication-title: Arch Virol – volume: 428 start-page: 182 year: 2004 end-page: 185 ident: b0185 article-title: Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox publication-title: Nature – volume: 301 start-page: 1025 year: 2009 end-page: 1033 ident: b0210 article-title: Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8 publication-title: JAMA – volume: 188 start-page: 217 year: 1992 end-page: 232 ident: b0245 article-title: NYVAC: a highly attenuated strain of vaccinia virus publication-title: Virology – volume: 9 start-page: 233 year: 1988 end-page: 248 ident: b0290 article-title: Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection publication-title: Virus Res – volume: 12 start-page: 519 year: 2016 end-page: 527 ident: b0420 article-title: A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease publication-title: Human vaccines & immunotherapeutics. – volume: 84 start-page: 1 year: 2009 end-page: 13 ident: b0065 article-title: Vaccinia virus vaccines: past, present and future publication-title: Antiviral Res – volume: 3 start-page: 6 year: 1975 end-page: 14 ident: b0150 article-title: Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA publication-title: Infection – volume: 82 start-page: 919 year: 2010 end-page: 921 ident: b0320 article-title: Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States publication-title: Am J Trop Med Hyg – volume: 168 start-page: 233 year: 2010 end-page: 236 ident: b0120 article-title: Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome publication-title: J Virol Methods – volume: 89 start-page: 10847 year: 1992 end-page: 10851 ident: b0170 article-title: Nonreplicating vaccinia vector efficiently expresses recombinant genes publication-title: Proc Natl Acad Sci U S A. – volume: 68 start-page: 2705 year: 1987 end-page: 2710 ident: b0195 article-title: Genetic analysis of vaccinia virus Lister strain and its attenuated mutant LC16m8: production of intermediate variants by homologous recombination publication-title: J Gen Virol – volume: 54 start-page: 279 year: 1976 end-page: 284 ident: b0085 article-title: Large-scale use of freeze-dried smallpox vaccine prepared in primary cultures of rabbit kidney cells publication-title: Bull World Health Organ – volume: 9 start-page: 1756 year: 2018 ident: b0310 article-title: Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model publication-title: Front Immunol – volume: 35 start-page: 7222 year: 2017 ident: 10.1016/j.vaccine.2021.09.001_b0005 article-title: Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine publication-title: Vaccine. doi: 10.1016/j.vaccine.2017.11.003 – volume: 54 start-page: 279 year: 1976 ident: 10.1016/j.vaccine.2021.09.001_b0085 article-title: Large-scale use of freeze-dried smallpox vaccine prepared in primary cultures of rabbit kidney cells publication-title: Bull World Health Organ – volume: 2 start-page: 186 year: 1987 ident: 10.1016/j.vaccine.2021.09.001_b0285 article-title: Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever publication-title: Lancet doi: 10.1016/S0140-6736(87)90767-7 – volume: 92 year: 2018 ident: 10.1016/j.vaccine.2021.09.001_b0385 article-title: Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins publication-title: J Virol doi: 10.1128/JVI.00363-18 – volume: 12 start-page: 519 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0420 article-title: A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease publication-title: Human vaccines & immunotherapeutics. doi: 10.1080/21645515.2015.1078045 – volume: 3 year: 2008 ident: 10.1016/j.vaccine.2021.09.001_b0115 article-title: Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA) publication-title: PLoS ONE doi: 10.1371/journal.pone.0001638 – volume: 113 start-page: 1149 year: 1971 ident: 10.1016/j.vaccine.2021.09.001_b0140 article-title: Hochstein-Mintzel V publication-title: Munch Med Wochenschr – volume: 99 start-page: 12415 year: 2002 ident: 10.1016/j.vaccine.2021.09.001_b0130 article-title: Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.192420599 – volume: 9 start-page: 233 year: 1988 ident: 10.1016/j.vaccine.2021.09.001_b0290 article-title: Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection publication-title: Virus Res doi: 10.1016/0168-1702(88)90033-0 – volume: 220 start-page: 46 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0350 article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccination Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Uganda and Tanzania publication-title: J Infect Dis doi: 10.1093/infdis/jiz070 – volume: 72 start-page: 1031 issue: Pt 5 year: 1991 ident: 10.1016/j.vaccine.2021.09.001_b0155 article-title: Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence publication-title: J Gen Virol doi: 10.1099/0022-1317-72-5-1031 – volume: 428 start-page: 182 year: 2004 ident: 10.1016/j.vaccine.2021.09.001_b0185 article-title: Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox publication-title: Nature doi: 10.1038/nature02331 – volume: 22 year: 2017 ident: 10.1016/j.vaccine.2021.09.001_b0430 article-title: Lessons learnt from imported cases and onward transmission of Lassa fever in Europe support broader management of viral haemorrhagic fevers publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2017.22.39.17-00661 – volume: 15 start-page: 61 year: 2015 ident: 10.1016/j.vaccine.2021.09.001_b0275 article-title: Viral haemorrhagic fever publication-title: Clin Med (Lond). doi: 10.7861/clinmedicine.15-1-61 – volume: 144 start-page: 17 year: 2007 ident: 10.1016/j.vaccine.2021.09.001_b0250 article-title: The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L–K2L genes publication-title: J Virol Methods doi: 10.1016/j.jviromet.2007.03.012 – volume: 238 start-page: 198 year: 1997 ident: 10.1016/j.vaccine.2021.09.001_b0165 article-title: Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line publication-title: Virology doi: 10.1006/viro.1997.8845 – volume: 192 start-page: 381 year: 1961 ident: 10.1016/j.vaccine.2021.09.001_b0220 article-title: A new mutant of dermovaccinia virus publication-title: Nature doi: 10.1038/192381a0 – volume: 168 start-page: 233 year: 2010 ident: 10.1016/j.vaccine.2021.09.001_b0120 article-title: Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome publication-title: J Virol Methods doi: 10.1016/j.jviromet.2010.04.012 – volume: 374 start-page: 1635 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0375 article-title: A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA publication-title: N Engl J Med doi: 10.1056/NEJMoa1411627 – volume: 13 year: 2018 ident: 10.1016/j.vaccine.2021.09.001_b0125 article-title: Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192725 – volume: 84 start-page: 1 year: 2009 ident: 10.1016/j.vaccine.2021.09.001_b0065 article-title: Vaccinia virus vaccines: past, present and future publication-title: Antiviral Res doi: 10.1016/j.antiviral.2009.06.006 – volume: 80 start-page: 5179 year: 2006 ident: 10.1016/j.vaccine.2021.09.001_b0230 article-title: LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox publication-title: J Virol doi: 10.1128/JVI.02642-05 – volume: 20 start-page: 1126 year: 2014 ident: 10.1016/j.vaccine.2021.09.001_b0370 article-title: Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge publication-title: Nat Med doi: 10.1038/nm.3702 – volume: 93 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0355 article-title: Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine: Quantification and Sources of Variation publication-title: J Virol doi: 10.1128/JVI.00579-19 – volume: 3 start-page: 6 year: 1975 ident: 10.1016/j.vaccine.2021.09.001_b0150 article-title: Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA publication-title: Infection doi: 10.1007/BF01641272 – volume: 89 start-page: 10847 year: 1992 ident: 10.1016/j.vaccine.2021.09.001_b0170 article-title: Nonreplicating vaccinia vector efficiently expresses recombinant genes publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.89.22.10847 – volume: 53 start-page: 197 year: 1977 ident: 10.1016/j.vaccine.2021.09.001_b0215 article-title: Comparative studies of several vaccinia virus strains by intrathalamic inoculation into cynomolgus monkeys publication-title: Arch Virol doi: 10.1007/BF01314664 – volume: 8 start-page: S31 issue: Suppl 2 year: 2004 ident: 10.1016/j.vaccine.2021.09.001_b0095 article-title: ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)–a second-generation smallpox vaccine for biological defense publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2004.09.002 – ident: 10.1016/j.vaccine.2021.09.001_b0360 doi: 10.1080/16549716.2020.1829829 – volume: 2 start-page: 755 year: 2014 ident: 10.1016/j.vaccine.2021.09.001_b0235 article-title: Vaccinia Virus LC16m8 as a Vaccine Vector for Clinical Applications publication-title: Vaccines (Basel). doi: 10.3390/vaccines2040755 – volume: 62 start-page: 214 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0270 article-title: Viral Hemorrhagic Fever Diagnostics publication-title: Clin Infect Dis doi: 10.1093/cid/civ792 – volume: 108 start-page: 165 year: 2014 ident: 10.1016/j.vaccine.2021.09.001_b0405 article-title: Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs publication-title: Antiviral Res doi: 10.1016/j.antiviral.2014.05.020 – volume: 97 start-page: 187 year: 2017 ident: 10.1016/j.vaccine.2021.09.001_b0135 article-title: Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development publication-title: Adv Virus Res doi: 10.1016/bs.aivir.2016.07.001 – volume: 9 start-page: 20005 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0265 article-title: Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector publication-title: Sci Rep doi: 10.1038/s41598-019-56550-4 – volume: 315 start-page: 1610 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0330 article-title: Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2016.4218 – volume: 9 start-page: 1125 year: 2003 ident: 10.1016/j.vaccine.2021.09.001_b0090 article-title: Clonal vaccinia virus grown in cell culture as a new smallpox vaccine publication-title: Nat Med doi: 10.1038/nm916 – volume: 79 start-page: 347 issue: Pt 2 year: 1998 ident: 10.1016/j.vaccine.2021.09.001_b0160 article-title: Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells publication-title: J Gen Virol doi: 10.1099/0022-1317-79-2-347 – volume: 16 start-page: 31 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0380 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(15)00362-X – volume: 102 start-page: 4152 year: 2005 ident: 10.1016/j.vaccine.2021.09.001_b0240 article-title: Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0406671102 – volume: 18 start-page: 3113 year: 2000 ident: 10.1016/j.vaccine.2021.09.001_b0305 article-title: Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge publication-title: Vaccine. doi: 10.1016/S0264-410X(00)00121-3 – volume: 302 start-page: 433 year: 2002 ident: 10.1016/j.vaccine.2021.09.001_b0225 article-title: Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector publication-title: Virology doi: 10.1006/viro.2002.1622 – volume: 82 start-page: 919 year: 2010 ident: 10.1016/j.vaccine.2021.09.001_b0320 article-title: Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.10-0001 – volume: 15 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0390 article-title: Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007564 – volume: 68 start-page: 2705 issue: Pt 10 year: 1987 ident: 10.1016/j.vaccine.2021.09.001_b0195 article-title: Genetic analysis of vaccinia virus Lister strain and its attenuated mutant LC16m8: production of intermediate variants by homologous recombination publication-title: J Gen Virol doi: 10.1099/0022-1317-68-10-2705 – volume: 188 start-page: 217 year: 1992 ident: 10.1016/j.vaccine.2021.09.001_b0245 article-title: NYVAC: a highly attenuated strain of vaccinia virus publication-title: Virology doi: 10.1016/0042-6822(92)90752-B – volume: 9 start-page: 1756 year: 2018 ident: 10.1016/j.vaccine.2021.09.001_b0310 article-title: Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model publication-title: Front Immunol doi: 10.3389/fimmu.2018.01756 – ident: 10.1016/j.vaccine.2021.09.001_b0080 doi: 10.1002/14651858.CD004913.pub2 – volume: 12 start-page: 675 year: 1994 ident: 10.1016/j.vaccine.2021.09.001_b0190 article-title: Characteristics of an attenuated vaccinia virus strain, LC16m0, and its recombinant virus vaccines publication-title: Vaccine. doi: 10.1016/0264-410X(94)90215-1 – volume: 86 start-page: 317 year: 1989 ident: 10.1016/j.vaccine.2021.09.001_b0295 article-title: Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.86.1.317 – volume: 185 start-page: 1657 year: 2002 ident: 10.1016/j.vaccine.2021.09.001_b0020 article-title: Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination publication-title: J Infect Dis doi: 10.1086/340517 – ident: 10.1016/j.vaccine.2021.09.001_b0055 – volume: 99 start-page: 2386 year: 1974 ident: 10.1016/j.vaccine.2021.09.001_b0145 article-title: Holzner A publication-title: Dtsch Med Wochenschr doi: 10.1055/s-0028-1108143 – volume: 11 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0415 article-title: Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses publication-title: PLoS ONE doi: 10.1371/journal.pone.0156637 – start-page: 339 year: 2009 ident: 10.1016/j.vaccine.2021.09.001_b0280 – start-page: 685 year: 2009 ident: 10.1016/j.vaccine.2021.09.001_b0050 article-title: Chapter 37 - Smallpox – volume: 11 start-page: 331 year: 2001 ident: 10.1016/j.vaccine.2021.09.001_b0300 article-title: Towards a human Lassa fever vaccine publication-title: Rev Med Virol doi: 10.1002/rmv.329 – volume: 122 start-page: 303 year: 1970 ident: 10.1016/j.vaccine.2021.09.001_b0110 article-title: Complications of smallpox vaccination, 1968: results of ten statewide surveys publication-title: J Infect Dis doi: 10.1093/infdis/122.4.303 – volume: 11 year: 2016 ident: 10.1016/j.vaccine.2021.09.001_b0445 article-title: Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013–2014 publication-title: PLoS ONE doi: 10.1371/journal.pone.0165207 – volume: 4 year: 2009 ident: 10.1016/j.vaccine.2021.09.001_b0255 article-title: A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination publication-title: PLoS ONE doi: 10.1371/journal.pone.0004180 – start-page: 87 year: 1985 ident: 10.1016/j.vaccine.2021.09.001_b0200 article-title: Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain – volume: 85 start-page: 4222 year: 2011 ident: 10.1016/j.vaccine.2021.09.001_b0335 article-title: Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge publication-title: J Virol doi: 10.1128/JVI.02407-10 – ident: 10.1016/j.vaccine.2021.09.001_b0365 doi: 10.1080/21645515.2017.1264755 – volume: 3 start-page: 269 year: 1975 ident: 10.1016/j.vaccine.2021.09.001_b0205 article-title: Vaccination research groups research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications publication-title: Rinsho To Uirusu – volume: 24 start-page: 773 year: 2018 ident: 10.1016/j.vaccine.2021.09.001_b0425 article-title: Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy publication-title: J Infect Chemother. doi: 10.1016/j.jiac.2018.07.009 – volume: 121 start-page: 1058 year: 2008 ident: 10.1016/j.vaccine.2021.09.001_b0030 article-title: Immunity from smallpox vaccine persists for decades: a longitudinal study publication-title: Am J Med doi: 10.1016/j.amjmed.2008.08.019 – volume: 80 start-page: 5364 year: 1983 ident: 10.1016/j.vaccine.2021.09.001_b0060 article-title: Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.80.17.5364 – volume: 365 start-page: 362 year: 2005 ident: 10.1016/j.vaccine.2021.09.001_b0070 article-title: Smallpox vaccines: from first to second to third generation publication-title: Lancet doi: 10.1016/S0140-6736(05)70209-9 – volume: 301 start-page: 1025 year: 2009 ident: 10.1016/j.vaccine.2021.09.001_b0210 article-title: Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8 publication-title: JAMA doi: 10.1001/jama.2009.289 – volume: 37 start-page: 5404 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0395 article-title: A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model publication-title: Vaccine. doi: 10.1016/j.vaccine.2019.07.023 – volume: 38 start-page: 2608 year: 2020 ident: 10.1016/j.vaccine.2021.09.001_b0450 article-title: Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial publication-title: Vaccine. doi: 10.1016/j.vaccine.2020.01.055 – volume: 49 start-page: 21 year: 2018 ident: 10.1016/j.vaccine.2021.09.001_b0410 article-title: Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination publication-title: Vet Res doi: 10.1186/s13567-018-0516-z – volume: 9 year: 2014 ident: 10.1016/j.vaccine.2021.09.001_b0440 article-title: Age is a critical risk factor for severe fever with thrombocytopenia syndrome publication-title: PLoS ONE doi: 10.1371/journal.pone.0111736 – volume: 377 start-page: 1491 year: 2017 ident: 10.1016/j.vaccine.2021.09.001_b0015 article-title: An Early American Smallpox Vaccine Based on Horsepox publication-title: N Engl J Med doi: 10.1056/NEJMc1707600 – volume: 9 start-page: 1131 year: 2003 ident: 10.1016/j.vaccine.2021.09.001_b0025 article-title: Duration of antiviral immunity after smallpox vaccination publication-title: Nat Med doi: 10.1038/nm917 – volume: 37 start-page: 241 year: 2003 ident: 10.1016/j.vaccine.2021.09.001_b0035 article-title: Smallpox vaccination: a review, part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions publication-title: Clin Infect Dis doi: 10.1086/375824 – volume: 18 start-page: 1229 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0325 article-title: Ebola vaccine trials: progress in vaccine safety and immunogenicity publication-title: Expert Rev Vaccines. doi: 10.1080/14760584.2019.1698952 – volume: 79 start-page: 7845 year: 2005 ident: 10.1016/j.vaccine.2021.09.001_b0180 article-title: Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus publication-title: J Virol doi: 10.1128/JVI.79.12.7845-7851.2005 – volume: 26 start-page: 94 year: 1982 ident: 10.1016/j.vaccine.2021.09.001_b0010 article-title: Jenner's smallpox vaccine. The riddle of vaccinia virus and its origin publication-title: Med Hist doi: 10.1017/S0025727300040825 – volume: 46 start-page: S258 issue: Suppl 3 year: 2008 ident: 10.1016/j.vaccine.2021.09.001_b0100 article-title: Monitoring the safety of a smallpox vaccination program in the United States: report of the joint Smallpox Vaccine Safety Working Group of the advisory committee on immunization practices and the Armed Forces Epidemiological Board publication-title: Clin Infect Dis doi: 10.1086/524749 – volume: 220 start-page: 57 year: 2019 ident: 10.1016/j.vaccine.2021.09.001_b0345 article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccine Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Nairobi, Kenya publication-title: J Infect Dis doi: 10.1093/infdis/jiz071 – volume: 357 start-page: 2222 year: 2007 ident: 10.1016/j.vaccine.2021.09.001_b0315 article-title: Dengue and yellow fever–challenges for the development and use of vaccines publication-title: N Engl J Med doi: 10.1056/NEJMp0707161 – volume: 7 year: 2013 ident: 10.1016/j.vaccine.2021.09.001_b0400 article-title: A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection publication-title: PLoS NeglTrop Dis – ident: 10.1016/j.vaccine.2021.09.001_b0040 doi: 10.1098/rstb.2013.0113 – volume: 281 start-page: 1201 year: 1969 ident: 10.1016/j.vaccine.2021.09.001_b0105 article-title: Complications of smallpox vaccination, 1968 publication-title: N Engl J Med doi: 10.1056/NEJM196911272812201 – volume: 26 start-page: 664 year: 2008 ident: 10.1016/j.vaccine.2021.09.001_b0260 article-title: Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: intra-nasal vaccination publication-title: Vaccine. doi: 10.1016/j.vaccine.2007.11.045 – volume: 82 start-page: 407 year: 2010 ident: 10.1016/j.vaccine.2021.09.001_b0340 article-title: The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines publication-title: J Med Virol doi: 10.1002/jmv.21721 – ident: 10.1016/j.vaccine.2021.09.001_b0075 – volume: 89 start-page: 1809 year: 2015 ident: 10.1016/j.vaccine.2021.09.001_b0045 article-title: Evolution of and evolutionary relationships between extant vaccinia virus strains publication-title: J Virol doi: 10.1128/JVI.02797-14 – volume: 19 start-page: 3700 year: 2001 ident: 10.1016/j.vaccine.2021.09.001_b0175 article-title: Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques publication-title: Vaccine. doi: 10.1016/S0264-410X(01)00075-5 – volume: 17 year: 2021 ident: 10.1016/j.vaccine.2021.09.001_b0435 article-title: A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008859 |
SSID | ssj0005319 |
Score | 2.4098265 |
SecondaryResourceType | review_article |
Snippet | Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism... AbstractVaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6174 |
SubjectTerms | Allergy and Immunology Artificial chromosomes Biological & chemical terrorism Bioterrorism Coccidioidomycosis Crimean hemorrhagic fever Crimean-Congo hemorrhagic fever dengue Dengue hemorrhagic fever fever Genomes Immunogenicity Infectious diseases Lassa fever Lassa virus fever Plasmids Production methods Recombinant vaccine recombinant vaccines Rift Valley fever severe fever with thrombocytopenia syndrome Smallpox Strains (organisms) Thrombocytopenia Vaccines Vaccinia virus Vector-borne diseases Vectors Viral diseases Viral hemorrhagic fever Viruses World Health Organization Yellow fever |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBel0LGXsWYby9YODUafqsQfsmU9jtJSBhuFpSNvmmRJS0qahDgd68v-9t3JcrLvjr0YbN9hyZLufod-dyLkVV14K2ydM2Erz7iDgFX7nLOs9JW0VQUQJLAt3pXnl_zNuBjvkJMuFwZpldH2tzY9WOv4ZBj_5nA5nQ7fJ8GXJ2MIWtK0lJhozrnAWT74-h3NIw-He6AwQ-ltFs_wavBZ17h9DWFilg7aypV_8k8_Wergfs4ekgcRN9LXbdP2yY6b98hee5LkbY_cexv3yHvk6KKtRn17TEfb5KrmmB7Ri22datDpfUAqTMjHpZ36I_JxNJmuLPsUylHjqNHmWs9my8UXGvtBm3CuBEMHaClG1Ncm8Gk6gYYCEqbIHp7RCTJ5VxMNBpZ6hxyQx-Ty7HR0cs7iMQyshuW8ZiLzqfHWVLhJ7V2qbWml1YJzYwFe5s7lPPNwAaxjhCyyKqm1BCDiIXZ0ucmfkN35Yu6eEqoLifXpJBfOgLEwGgBEzT0m0xaJT8o-4d3PV3WsUY5dmqmOjHalYlcUjplKJJLy-mSwUVu2RTruUii7kVVdBirYTAVu5C5F8TtF18SV36hUNZlK1C-zs0-qjeYPE_xfPnrQTT61-Q6YWkDqaSGSPnm5eQ22ATd89NwtboJMJjMBmPwvMmVeFljRJ332_y18Tu7jXUtyPCC769WNOwSwtjYvwmr8BgPSPeY priority: 102 providerName: Elsevier |
Title | Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X21011695 https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X21011695 https://dx.doi.org/10.1016/j.vaccine.2021.09.001 https://www.proquest.com/docview/2575331570 https://www.proquest.com/docview/2572927405 https://www.proquest.com/docview/2636576751 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJhAvCApohTEZCe1p7vLDiZMnNKZNBURVQYfyZpzYpkxdW5oOsRf-du4cp5EQbLwkkeKT4zg-f5f77o6QV1VitdBVzITOLOMGDFZlY86i1Ga5zjKAII5tMUqH5_xdkRT-h1vtaZWtTnSKWi8q_Ed-BJ8WIJMwEcHr5XeGVaPQu-pLaGyRHUxdhpQuUYiO4hG7wh5gZnDGw6DoIniOLgY_VIWuazARo3DQZK381970h5Z2W8_ZQ_LAY0Z63EzyI3LHzHvkblNF8rpH7n3w_vEeORg3maivD-mkC6yqD-kBHXc5qkGm9xlpMC4Wl7bij8mXyfTbSrOvLhU1zhitL9Vstlz8pH4ctHY1JRhufpqiNX1ZOi5N26CmgIIpModndIos3tVUgXKl1iD_4wk5PzudnAyZL8HAKljKayYiG5ZWlxk6qK0JlU51rpXgvNQALWNjYh5ZOADOKUWeRFlQqRxAiAW70cRl_JRszxdzs0uoSnLMTZdzYUpQFKUC8FBxi4G0SWCDtE94-_Jl5fOT45BmsiWiXUg_FIlzJoMcCXl9MtiILZsEHbcJpO3Myjb6FPSlhC3kNkHxN0FT-1Vfy1DWkQzkp8ChzKAAczoM0zzpk2wj6YFNA1j-p9O99uOTm366tdAnLze3QS-gs0fNzeLKtYnySAAev6FNGqcJZvMJn93czXNyH5-pITHuke316sq8ADC2LvfJ1uBXuO_WHRyzE7jeOX77fjiC85vT0fjjb5diOLI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCAKIQIFFgp7q1F6vXweEeLRKaRtFkKLctrZ3t2mVJiFOgfwpfiMztjeRELRcesnFO95sdnbmm-w3MwCv8sCoSOW-E6nYOEJjwJoaXzg8NHGi4hghSMm26IadI_FpEAzW4JfNhSFapbWJpaFWk5z-I99G1UJk4gWR-3b6zaGuUXS7altoVGqxrxc_MGQr3ux9xP19zfnuTv9Dx6m7Cjg5aufcibjxMqOymO5cjfZSFapEpZEQmUK05GvtC27wA113FiUBj908TdCvGgyFtJ_5-N4bsC58DGUasP5-p9v7vCKV-GUrEQxshCM8d7DKGdo-a39Pc7osx6CUe-2qTua_vOEffqF0drv34G6NUtm7Sq3uw5oeN-Fm1bdy0YRbh_WNfBM2e1Xt68UW669SuYottsl6q6rYKNP8SsSbMvuXWfEHcNwfns6Uc1IWvyYdYcV5OhpNJz9ZvQ5WlF0sHHK3ilH8fp6V7B07oGCIuxlxlUdsSLzh2TBFc86MJsbJQzi6lu15BI3xZKwfA0uDhKrhJSLSGZqmLEW4kgtDqbuBa9ywBcL--DKvK6LTkkbSUt_OZL0USXsm3YQogC1oL8WmVUmQqwRCu7PS5ruihZbotK4SjP4mqIvazhTSkwWXrvzilrjWHWAA73lhErQgXkrWUKqCSP8z6YZVPrmcZ3X6WvBy-RgtEV0vpWM9uSjH8IRHGAFcMib0w4DqB3lPLp_mBdzu9A8P5MFed_8p3KHvV1EoN6Axn13oZwgF59nz-vwxOL7uI_8bpftyCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiouCAKogQKLBD3ViR9rr31ACFGilkIViRT5trW9u4QqTUKcAvlr_Dpm1nYsIWi59JKLd7zZ7Dwz38wAvChCo4QqAkeo2DhcY8CamYA7fmTiRMUxuiAWbXEcHZzw92mYbsCvphaGYJWNTrSKWs0K-o-8j6yFnokXCrdvaljEcH_wev7NoQlSlGltxmlULHKkVz8wfCtfHe7jXb_0_cG70dsDp54w4BTIqUtH-MbLjcpjyr8a7WUqUonKBOe5Qs8p0DrgvsEPNOO5SEI_dossQRtrMCzSQR7ge2_ATRGEHsmYSEULLwnsUBEMcbjDPTdtq4f6Z73vWUFpcwxPfa9Xdcz8l138w0JYsze4C3dqf5W9qRjsHmzoaQduVRMsVx3Y-ljn5juwO6y6YK_22Kgt6ir32C4btv2xkabzmSA4tg6YNeT34XQ0_rpQzhfbBpu4hZXn2WQyn_1k9TlYaedZOGR4FaNI_jy3OJ5mQcnQA2eEWp6wMSGIF-MMFTszmrAnD-DkWi7nIWxOZ1O9DSwLE-qLl3Chc1RSeYaOS8ENFfGGrnGjLvDmx5dF3RudjjSRDQjuTNZHkXRn0k0IDNiF3ppsXjUHuYogam5WNpWvqKslmq-rCMXfCHVZa5xSerL0pSs_udbDdVMM5T0vSsIuxGvK2qmqnKX_2XSnYT653qeVwy48Xz9GnUSJpmyqZxd2jZ_4AmOBS9ZEQRRSJyHv0eXbPIMtFHT54fD46DHcpq9XYSl3YHO5uNBP0Cdc5k-t8DE4vW5p_w2pIHTY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third-generation+smallpox+vaccine+strain-based+recombinant+vaccines+for+viral+hemorrhagic+fevers&rft.jtitle=Vaccine&rft.au=Yoshikawa%2C+Tomoki&rft.date=2021-10-01&rft.pub=Elsevier+Limited&rft.issn=0264-410X&rft.eissn=1873-2518&rft.volume=39&rft.issue=41&rft.spage=6174&rft_id=info:doi/10.1016%2Fj.vaccine.2021.09.001&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-410X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-410X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-410X&client=summon |