Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers

Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were use...

Full description

Saved in:
Bibliographic Details
Published inVaccine Vol. 39; no. 41; pp. 6174 - 6181
Main Author Yoshikawa, Tomoki
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.
AbstractList Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.
AbstractVaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.
Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.
Author Yoshikawa, Tomoki
Author_xml – sequence: 1
  givenname: Tomoki
  surname: Yoshikawa
  fullname: Yoshikawa, Tomoki
  email: ytomoki@nih.go.jp
  organization: Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan
BookMark eNqNkk9v1DAQxS1UJLYLHwEpEhcuCWM7jmMhQFXFn0qVeqBI3IzjTLpeEnuxsyv67UnYpYeV0Pbiufzek-e9OSdnPngk5CWFggKt3qyLnbHWeSwYMFqAKgDoE7KgteQ5E7Q-IwtgVZmXFL4_I-cprQFAcKoW5MftysU2v0OP0Ywu-CwNpu834Xd2MM3SGI3zeWMStllEG4bGeePHf0DKuhCznYumz1Y4hBhX5s7ZrMMdxvScPO1Mn_DFYS7Jt08fby-_5Nc3n68uL65zK2Q95pJ1tOnapqZMQofUtFWrWiPLsmmVUhyRl6ybHq5UI5VgNVijBKiuBIW84Uvyeu-7ieHXFtOoB5cs9r3xGLZJs4pXQlZS0NOokEwxWU4RLcmrI3QdttFPi8yU4JwKCRP1dk_ZGFKK2Gnrxr9pztH1moKei9JrfYhMz0VpUHoqalKLI_UmusHE-5O6D3sdTrHuHEadrENvsXVTS6Nugzvp8P7IwfbOO2v6n3iP6WFVqhPToL_ORzTfEJs8aaXmeN793-ARH_gDSfHckg
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e18983
crossref_primary_10_3390_biology10111158
crossref_primary_10_1016_j_meegid_2023_105477
crossref_primary_10_1016_j_onehlt_2024_100725
crossref_primary_10_1186_s12943_023_01807_w
crossref_primary_10_23947_2949_4826_2023_22_4_19_27
crossref_primary_10_3390_vaccines11051006
crossref_primary_10_1038_s41598_022_19679_3
crossref_primary_10_1186_s13568_023_01507_0
crossref_primary_10_54844_cai_2022_0184
Cites_doi 10.1016/j.vaccine.2017.11.003
10.1016/S0140-6736(87)90767-7
10.1128/JVI.00363-18
10.1080/21645515.2015.1078045
10.1371/journal.pone.0001638
10.1073/pnas.192420599
10.1016/0168-1702(88)90033-0
10.1093/infdis/jiz070
10.1099/0022-1317-72-5-1031
10.1038/nature02331
10.2807/1560-7917.ES.2017.22.39.17-00661
10.7861/clinmedicine.15-1-61
10.1016/j.jviromet.2007.03.012
10.1006/viro.1997.8845
10.1038/192381a0
10.1016/j.jviromet.2010.04.012
10.1056/NEJMoa1411627
10.1371/journal.pone.0192725
10.1016/j.antiviral.2009.06.006
10.1128/JVI.02642-05
10.1038/nm.3702
10.1128/JVI.00579-19
10.1007/BF01641272
10.1073/pnas.89.22.10847
10.1007/BF01314664
10.1016/j.ijid.2004.09.002
10.1080/16549716.2020.1829829
10.3390/vaccines2040755
10.1093/cid/civ792
10.1016/j.antiviral.2014.05.020
10.1016/bs.aivir.2016.07.001
10.1038/s41598-019-56550-4
10.1001/jama.2016.4218
10.1038/nm916
10.1099/0022-1317-79-2-347
10.1016/S1473-3099(15)00362-X
10.1073/pnas.0406671102
10.1016/S0264-410X(00)00121-3
10.1006/viro.2002.1622
10.4269/ajtmh.2010.10-0001
10.1371/journal.ppat.1007564
10.1099/0022-1317-68-10-2705
10.1016/0042-6822(92)90752-B
10.3389/fimmu.2018.01756
10.1002/14651858.CD004913.pub2
10.1016/0264-410X(94)90215-1
10.1073/pnas.86.1.317
10.1086/340517
10.1055/s-0028-1108143
10.1371/journal.pone.0156637
10.1002/rmv.329
10.1093/infdis/122.4.303
10.1371/journal.pone.0165207
10.1371/journal.pone.0004180
10.1128/JVI.02407-10
10.1080/21645515.2017.1264755
10.1016/j.jiac.2018.07.009
10.1016/j.amjmed.2008.08.019
10.1073/pnas.80.17.5364
10.1016/S0140-6736(05)70209-9
10.1001/jama.2009.289
10.1016/j.vaccine.2019.07.023
10.1016/j.vaccine.2020.01.055
10.1186/s13567-018-0516-z
10.1371/journal.pone.0111736
10.1056/NEJMc1707600
10.1038/nm917
10.1086/375824
10.1080/14760584.2019.1698952
10.1128/JVI.79.12.7845-7851.2005
10.1017/S0025727300040825
10.1086/524749
10.1093/infdis/jiz071
10.1056/NEJMp0707161
10.1098/rstb.2013.0113
10.1056/NEJM196911272812201
10.1016/j.vaccine.2007.11.045
10.1002/jmv.21721
10.1128/JVI.02797-14
10.1016/S0264-410X(01)00075-5
10.1371/journal.ppat.1008859
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
2021. Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2021. Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7QL
7RV
7T2
7T5
7U9
7X7
7XB
88C
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M0T
M1P
M2O
M7N
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
7S9
L.6
DOI 10.1016/j.vaccine.2021.09.001
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Immunology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
Consumer Health Database (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-2518
EndPage 6181
ExternalDocumentID 10_1016_j_vaccine_2021_09_001
S0264410X21011695
1_s2_0_S0264410X21011695
GeographicLocations Ankara Turkey
Turkey
GeographicLocations_xml – name: Ankara Turkey
– name: Turkey
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AEXOQ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGGSO
AGUBO
AGYEJ
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AQUVI
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CJTIS
CNWQP
CS3
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K9-
KOM
L7B
LK8
LUGTX
LW9
M0R
M0T
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SNL
SPCBC
SSH
SSI
SSZ
T5K
UKHRP
UV1
WH7
WOW
Z5R
~G-
.GJ
29Q
3V.
AACTN
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFCTW
AFJKZ
AFKWA
AGHFR
AHHHB
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FGOYB
G-2
HEJ
HLV
HMG
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SAE
SEW
SIN
SVS
WUQ
XPP
ZGI
ZXP
AAIAV
ABLVK
ABYKQ
AESVU
EFLBG
LCYCR
QYZTP
AAYXX
ACMHX
ADSLC
AGQPQ
AGRNS
AGWPP
CITATION
7QL
7T2
7T5
7U9
7XB
8FK
C1K
H94
K9.
M7N
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c578t-72f1bfdb81270fe1ad6d9da744bd9993ee342fe34399b795280ca9509f409e3b3
IEDL.DBID 7X7
ISSN 0264-410X
1873-2518
IngestDate Thu Jul 10 22:33:16 EDT 2025
Fri Jul 11 03:21:21 EDT 2025
Wed Aug 13 11:29:13 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Tue Jul 01 01:07:02 EDT 2025
Fri Feb 23 02:44:03 EST 2024
Tue Feb 25 20:03:44 EST 2025
Tue Aug 26 16:34:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Vaccinia virus
Viral hemorrhagic fever
Recombinant vaccine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-72f1bfdb81270fe1ad6d9da744bd9993ee342fe34399b795280ca9509f409e3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PQID 2575331570
PQPubID 105530
PageCount 8
ParticipantIDs proquest_miscellaneous_2636576751
proquest_miscellaneous_2572927405
proquest_journals_2575331570
crossref_citationtrail_10_1016_j_vaccine_2021_09_001
crossref_primary_10_1016_j_vaccine_2021_09_001
elsevier_sciencedirect_doi_10_1016_j_vaccine_2021_09_001
elsevier_clinicalkeyesjournals_1_s2_0_S0264410X21011695
elsevier_clinicalkey_doi_10_1016_j_vaccine_2021_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Vaccine
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Monath (b0320) 2010; 82
Drexler, Heller, Wahren, Erfle, Sutter (b0160) 1998; 79
Sutter, Moss (b0170) 1992; 89
Ishii, Ueda, Matsuo, Matsuura, Kitamura, Kato (b0225) 2002; 302
Men, Wyatt, Tokimatsu, Arakaki, Shameem, Elkins (b0305) 2000; 18
Esparza, Schrick, Damaso, Nitsche (b0005) 2017; 35
Fisher-Hoch, McCormick, Auperin, Brown, Castor, Perez (b0295) 1989; 86
Metzger W, Mordmueller BG. Vaccines for preventing smallpox. Cochrane Database Syst Rev. 2007:CD004913.
Hekker, Bos, Rai, Keja, Cuboni, Emmet (b0085) 1976; 54
Domi, Moss (b0130) 2002; 99
Matz, Marzi, Feldmann (b0325) 2019; 18
Pilankatta, Chawla, Khanna, Swaminathan (b0340) 2010; 82
Anywaine, Whitworth, Kaleebu, Praygod, Shukarev, Manno (b0350) 2019; 220
Lorenzo, Lopez-Gil, Ortego, Brun (b0410) 2018; 49
Weltzin, Liu, Pugachev, Myers, Coughlin, Blum (b0090) 2003; 9
Yoshikawa, Taniguchi, Kato, Iwata-Yoshikawa, Tani, Kurosu (b0435) 2021; 17
Saijo, Ami, Suzaki, Nagata, Iwata, Hasegawa (b0230) 2006; 80
Stickl, Hochstein-Mintzel, Mayr, Huber, Schafer (b0145) 1974; 99
Rahim, Wee, He, Audet, Tierney, Moyo (b0390) 2019; 15
Vijaysri, Jentarra, Heck, Mercer, McInnes, Jacobs (b0260) 2008; 26
Stittelaar, van Amerongen, Kondova, Kuiken, van Lavieren, Pistoor (b0180) 2005; 79
Neff, Modlin, Birkhead, Poland, Robertson, Sepkowitz (b0100) 2008; 46
Panicali, Davis, Weinberg, Paoletti (b0060) 1983; 80
Lopez-Gil, Lorenzo, Hevia, Borrego, Eiden, Groschup (b0400) 2013; 7
Hemorrhagic, Viruses (b0280) 2009
Hewson (b0430) 2017; 22
Tartaglia, Perkus, Taylor, Norton, Audonnet, Cox (b0245) 1992; 188
Lane, Ruben, Neff, Millar (b0105) 1969; 281
Lane, Ruben, Neff, Millar (b0110) 1970; 122
Mutua, Anzala, Luhn, Robinson, Bockstal, Anumendem (b0345) 2019; 220
Stickl (b0140) 1971; 113
Giel-Moloney, Esteban, Oakes, Vaine, Asbach, Wagner (b0265) 2019; 9
Stittelaar, Kuiken, de Swart, van Amerongen, Vos, Niesters (b0175) 2001; 19
Monath (b0315) 2007; 357
Pasin, Balelli, Van Effelterre, Bockstal, Solforosi, Prague (b0355) 2019; 93
Earl, Americo, Wyatt, Eller, Whitbeck, Cohen (b0185) 2004; 428
Kato, Yamagishi, Shimada, Matsui, Shimojima, Saijo (b0445) 2016; 11
Tagaya, Kitamura, Sano (b0220) 1961; 192
Arita I. Can we stop smallpox vaccination? The cessation of vaccination will not only save thousands of patients who would otherwise have suffered from complications but will also save the world community some $1,000 million a year. World Health;1980 May p27-29;. 1980.
Carroll, Moss (b0165) 1997; 238
Wilkinson (b0010) 1982; 26
Julander, Testori, Cheminay, Volkmann (b0310) 2018; 9
Volz, Sutter (b0135) 2017; 97
Poland (b0070) 2005; 365
Kidokoro, Tashiro, Shida (b0240) 2005; 102
Cottingham, Gilbert (b0120) 2010; 168
Mayr, Hochstein-Mintzel, Stickl (b0150) 1975; 3
Monath, Caldwell, Mundt, Fusco, Johnson, Buller (b0095) 2004; 8
Morita, Aoyama, Arita, Amona, Yoshizawa, Hashizume (b0215) 1977; 53
Ding, Niu, Xu, Li, Zhang, Yin (b0440) 2014; 9
Jacobs, Langland, Kibler, Denzler, White, Holechek (b0065) 2009; 84
Fisher-Hoch, McCormick (b0300) 2001; 11
Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, World Health O. Smallpox and its eradication / F. Fenner ... [et al.]. Geneva: World Health Organization; 1988.
Kennedy, Dowall, Salguero, Yeates, Aram, Hewson (b0395) 2019; 37
Henderson DA, Klepac P. Lessons from the eradication of smallpox: an interview with D. A. Henderson. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130113.
Sugimoto, Yamanouchi (b0190) 1994; 12
Yoshikawa, Fujii, Okutani, Shibamura, Omura, Egawa (b0125) 2018; 13
Takahashi-Nishimaki, Suzuki, Morita, Maruyama, Miki, Hashizume (b0195) 1987; 68
Tapia, Sow, Lyke, Haidara, Diallo, Doumbia (b0380) 2016; 16
Shukarev G, Callendret B, Luhn K, Douoguih M, consortium E. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human vaccines & immunotherapeutics. 2017;13:266-70.
Qin, Favis, Famulski, Evans (b0045) 2015; 89
Kitonsa J, Ggayi AB, Anywaine Z, Kisaakye E, Nsangi L, Basajja V, et al. Implementation of accelerated research: strategies for implementation as applied in a phase 1 Ad26.ZEBOV, MVA-BN-Filo two-dose Ebola vaccine clinical trial in Uganda. Glob Health Action. 2020;13:1829829.
Ewer, Rampling, Venkatraman, Bowyer, Wright, Lambe (b0375) 2016; 374
Kennedy, Poland (b0050) 2009
Yamaguchi, Kimura, Hirayama (b0205) 1975; 3
Taub, Ershler, Janowski, Artz, Key, McKelvey (b0030) 2008; 121
Cottingham, Andersen, Spencer, Saurya, Furze, Hill (b0115) 2008; 3
Meyer, Sutter, Mayr (b0155) 1991; 72
Dowall, Buttigieg, Findlay-Wilson, Rayner, Pearson, Miloszewska (b0420) 2016; 12
Saijo (b0425) 2018; 24
Fulginiti, Papier, Lane, Neff, Henderson (b0035) 2003; 37
Schrick, Tausch, Dabrowski, Damaso, Esparza, Nitsche (b0015) 2017; 377
Racsa, Kraft, Olinger, Hensley (b0270) 2016; 62
Fhogartaigh, Aarons (b0275) 2015; 15
Zhu, Fang, Zhuang, Wang, Yu, Zhou (b0250) 2007; 144
Samy, Reichhardt, Schmidt, Chen, Silbernagl, Vidojkovic (b0450) 2020; 38
Milligan, Gibani, Sewell, Clutterbuck, Campbell, Plested (b0330) 2016; 315
Dowall, Graham, Rayner, Hunter, Watson, Taylor (b0415) 2016; 11
Saito, Fujii, Kanatani, Saijo, Morikawa, Yokote (b0210) 2009; 301
Huang, Lu, Yu, Fang, Liu, Zhuang (b0255) 2009; 4
Ennis, Cruz, Demkowicz, Rothman, McClain (b0020) 2002; 185
Hashizume, Yoshizawa, Morita, Suzuki (b0200) 1985
Geisbert, Bailey, Hensley, Asiedu, Geisbert, Stanley (b0335) 2011; 85
Stanley, Honko, Asiedu, Trefry, Lau-Kilby, Johnson (b0370) 2014; 20
Busquets, Lorenzo, Lopez-Gil, Rivas, Solanes, Galindo-Cardiel (b0405) 2014; 108
Kidokoro, Shida (b0235) 2014; 2
Clegg, Lloyd (b0285) 1987; 2
Lazaro-Frias, Gomez-Medina, Sanchez-Sampedro, Ljungberg, Ustav, Liljestrom (b0385) 2018; 92
Hammarlund, Lewis, Hansen, Strelow, Nelson, Sexton (b0025) 2003; 9
Auperin, Esposito, Lange, Bauer, Knight, Sasso (b0290) 1988; 9
Ishii (10.1016/j.vaccine.2021.09.001_b0225) 2002; 302
Mayr (10.1016/j.vaccine.2021.09.001_b0150) 1975; 3
Pilankatta (10.1016/j.vaccine.2021.09.001_b0340) 2010; 82
Racsa (10.1016/j.vaccine.2021.09.001_b0270) 2016; 62
Busquets (10.1016/j.vaccine.2021.09.001_b0405) 2014; 108
10.1016/j.vaccine.2021.09.001_b0360
Meyer (10.1016/j.vaccine.2021.09.001_b0155) 1991; 72
Mutua (10.1016/j.vaccine.2021.09.001_b0345) 2019; 220
10.1016/j.vaccine.2021.09.001_b0040
Hammarlund (10.1016/j.vaccine.2021.09.001_b0025) 2003; 9
Saijo (10.1016/j.vaccine.2021.09.001_b0425) 2018; 24
Stittelaar (10.1016/j.vaccine.2021.09.001_b0180) 2005; 79
Tartaglia (10.1016/j.vaccine.2021.09.001_b0245) 1992; 188
Anywaine (10.1016/j.vaccine.2021.09.001_b0350) 2019; 220
Lazaro-Frias (10.1016/j.vaccine.2021.09.001_b0385) 2018; 92
Morita (10.1016/j.vaccine.2021.09.001_b0215) 1977; 53
10.1016/j.vaccine.2021.09.001_b0365
Takahashi-Nishimaki (10.1016/j.vaccine.2021.09.001_b0195) 1987; 68
Tapia (10.1016/j.vaccine.2021.09.001_b0380) 2016; 16
Poland (10.1016/j.vaccine.2021.09.001_b0070) 2005; 365
Milligan (10.1016/j.vaccine.2021.09.001_b0330) 2016; 315
Cottingham (10.1016/j.vaccine.2021.09.001_b0120) 2010; 168
Yoshikawa (10.1016/j.vaccine.2021.09.001_b0435) 2021; 17
Yamaguchi (10.1016/j.vaccine.2021.09.001_b0205) 1975; 3
10.1016/j.vaccine.2021.09.001_b0080
Kato (10.1016/j.vaccine.2021.09.001_b0445) 2016; 11
Zhu (10.1016/j.vaccine.2021.09.001_b0250) 2007; 144
Drexler (10.1016/j.vaccine.2021.09.001_b0160) 1998; 79
Julander (10.1016/j.vaccine.2021.09.001_b0310) 2018; 9
Hemorrhagic (10.1016/j.vaccine.2021.09.001_b0280) 2009
10.1016/j.vaccine.2021.09.001_b0075
Wilkinson (10.1016/j.vaccine.2021.09.001_b0010) 1982; 26
Fulginiti (10.1016/j.vaccine.2021.09.001_b0035) 2003; 37
Ennis (10.1016/j.vaccine.2021.09.001_b0020) 2002; 185
Vijaysri (10.1016/j.vaccine.2021.09.001_b0260) 2008; 26
Kennedy (10.1016/j.vaccine.2021.09.001_b0050) 2009
Earl (10.1016/j.vaccine.2021.09.001_b0185) 2004; 428
Hewson (10.1016/j.vaccine.2021.09.001_b0430) 2017; 22
Auperin (10.1016/j.vaccine.2021.09.001_b0290) 1988; 9
Carroll (10.1016/j.vaccine.2021.09.001_b0165) 1997; 238
Matz (10.1016/j.vaccine.2021.09.001_b0325) 2019; 18
Monath (10.1016/j.vaccine.2021.09.001_b0320) 2010; 82
Volz (10.1016/j.vaccine.2021.09.001_b0135) 2017; 97
Sutter (10.1016/j.vaccine.2021.09.001_b0170) 1992; 89
Schrick (10.1016/j.vaccine.2021.09.001_b0015) 2017; 377
Panicali (10.1016/j.vaccine.2021.09.001_b0060) 1983; 80
Saijo (10.1016/j.vaccine.2021.09.001_b0230) 2006; 80
Pasin (10.1016/j.vaccine.2021.09.001_b0355) 2019; 93
Taub (10.1016/j.vaccine.2021.09.001_b0030) 2008; 121
Kidokoro (10.1016/j.vaccine.2021.09.001_b0235) 2014; 2
Clegg (10.1016/j.vaccine.2021.09.001_b0285) 1987; 2
Neff (10.1016/j.vaccine.2021.09.001_b0100) 2008; 46
Giel-Moloney (10.1016/j.vaccine.2021.09.001_b0265) 2019; 9
Fhogartaigh (10.1016/j.vaccine.2021.09.001_b0275) 2015; 15
Fisher-Hoch (10.1016/j.vaccine.2021.09.001_b0295) 1989; 86
Dowall (10.1016/j.vaccine.2021.09.001_b0420) 2016; 12
Cottingham (10.1016/j.vaccine.2021.09.001_b0115) 2008; 3
Samy (10.1016/j.vaccine.2021.09.001_b0450) 2020; 38
Dowall (10.1016/j.vaccine.2021.09.001_b0415) 2016; 11
Men (10.1016/j.vaccine.2021.09.001_b0305) 2000; 18
Qin (10.1016/j.vaccine.2021.09.001_b0045) 2015; 89
Yoshikawa (10.1016/j.vaccine.2021.09.001_b0125) 2018; 13
Kennedy (10.1016/j.vaccine.2021.09.001_b0395) 2019; 37
Huang (10.1016/j.vaccine.2021.09.001_b0255) 2009; 4
Stanley (10.1016/j.vaccine.2021.09.001_b0370) 2014; 20
Rahim (10.1016/j.vaccine.2021.09.001_b0390) 2019; 15
Hekker (10.1016/j.vaccine.2021.09.001_b0085) 1976; 54
Domi (10.1016/j.vaccine.2021.09.001_b0130) 2002; 99
Lane (10.1016/j.vaccine.2021.09.001_b0110) 1970; 122
Stickl (10.1016/j.vaccine.2021.09.001_b0145) 1974; 99
Stittelaar (10.1016/j.vaccine.2021.09.001_b0175) 2001; 19
Sugimoto (10.1016/j.vaccine.2021.09.001_b0190) 1994; 12
Lane (10.1016/j.vaccine.2021.09.001_b0105) 1969; 281
Jacobs (10.1016/j.vaccine.2021.09.001_b0065) 2009; 84
Tagaya (10.1016/j.vaccine.2021.09.001_b0220) 1961; 192
Geisbert (10.1016/j.vaccine.2021.09.001_b0335) 2011; 85
Ding (10.1016/j.vaccine.2021.09.001_b0440) 2014; 9
Saito (10.1016/j.vaccine.2021.09.001_b0210) 2009; 301
Kidokoro (10.1016/j.vaccine.2021.09.001_b0240) 2005; 102
Lorenzo (10.1016/j.vaccine.2021.09.001_b0410) 2018; 49
10.1016/j.vaccine.2021.09.001_b0055
Weltzin (10.1016/j.vaccine.2021.09.001_b0090) 2003; 9
Esparza (10.1016/j.vaccine.2021.09.001_b0005) 2017; 35
Monath (10.1016/j.vaccine.2021.09.001_b0095) 2004; 8
Fisher-Hoch (10.1016/j.vaccine.2021.09.001_b0300) 2001; 11
Ewer (10.1016/j.vaccine.2021.09.001_b0375) 2016; 374
Stickl (10.1016/j.vaccine.2021.09.001_b0140) 1971; 113
Hashizume (10.1016/j.vaccine.2021.09.001_b0200) 1985
Lopez-Gil (10.1016/j.vaccine.2021.09.001_b0400) 2013; 7
Monath (10.1016/j.vaccine.2021.09.001_b0315) 2007; 357
References_xml – volume: 80
  start-page: 5364
  year: 1983
  end-page: 5368
  ident: b0060
  article-title: Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin
  publication-title: Proc Natl Acad Sci U S A.
– volume: 82
  start-page: 407
  year: 2010
  end-page: 414
  ident: b0340
  article-title: The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines
  publication-title: J Med Virol
– volume: 12
  start-page: 675
  year: 1994
  end-page: 681
  ident: b0190
  article-title: Characteristics of an attenuated vaccinia virus strain, LC16m0, and its recombinant virus vaccines
  publication-title: Vaccine.
– volume: 108
  start-page: 165
  year: 2014
  end-page: 172
  ident: b0405
  article-title: Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs
  publication-title: Antiviral Res
– volume: 113
  start-page: 1149
  year: 1971
  end-page: 1153
  ident: b0140
  article-title: Hochstein-Mintzel V
  publication-title: Munch Med Wochenschr
– volume: 19
  start-page: 3700
  year: 2001
  end-page: 3709
  ident: b0175
  article-title: Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques
  publication-title: Vaccine.
– reference: Metzger W, Mordmueller BG. Vaccines for preventing smallpox. Cochrane Database Syst Rev. 2007:CD004913.
– volume: 302
  start-page: 433
  year: 2002
  end-page: 444
  ident: b0225
  article-title: Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector
  publication-title: Virology
– volume: 62
  start-page: 214
  year: 2016
  end-page: 219
  ident: b0270
  article-title: Viral Hemorrhagic Fever Diagnostics
  publication-title: Clin Infect Dis
– volume: 15
  year: 2019
  ident: b0390
  article-title: Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine
  publication-title: PLoS Pathog
– volume: 9
  start-page: 1125
  year: 2003
  end-page: 1130
  ident: b0090
  article-title: Clonal vaccinia virus grown in cell culture as a new smallpox vaccine
  publication-title: Nat Med
– volume: 22
  year: 2017
  ident: b0430
  article-title: Lessons learnt from imported cases and onward transmission of Lassa fever in Europe support broader management of viral haemorrhagic fevers
  publication-title: Euro Surveill
– volume: 79
  start-page: 347
  year: 1998
  end-page: 352
  ident: b0160
  article-title: Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells
  publication-title: J Gen Virol
– volume: 238
  start-page: 198
  year: 1997
  end-page: 211
  ident: b0165
  article-title: Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line
  publication-title: Virology
– volume: 315
  start-page: 1610
  year: 2016
  end-page: 1623
  ident: b0330
  article-title: Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial
  publication-title: JAMA
– volume: 18
  start-page: 3113
  year: 2000
  end-page: 3122
  ident: b0305
  article-title: Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge
  publication-title: Vaccine.
– volume: 37
  start-page: 5404
  year: 2019
  end-page: 5413
  ident: b0395
  article-title: A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model
  publication-title: Vaccine.
– reference: Henderson DA, Klepac P. Lessons from the eradication of smallpox: an interview with D. A. Henderson. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130113.
– volume: 377
  start-page: 1491
  year: 2017
  end-page: 1492
  ident: b0015
  article-title: An Early American Smallpox Vaccine Based on Horsepox
  publication-title: N Engl J Med
– volume: 89
  start-page: 1809
  year: 2015
  end-page: 1824
  ident: b0045
  article-title: Evolution of and evolutionary relationships between extant vaccinia virus strains
  publication-title: J Virol
– reference: Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, World Health O. Smallpox and its eradication / F. Fenner ... [et al.]. Geneva: World Health Organization; 1988.
– volume: 26
  start-page: 664
  year: 2008
  end-page: 676
  ident: b0260
  article-title: Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: intra-nasal vaccination
  publication-title: Vaccine.
– volume: 38
  start-page: 2608
  year: 2020
  end-page: 2619
  ident: b0450
  article-title: Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial
  publication-title: Vaccine.
– volume: 80
  start-page: 5179
  year: 2006
  end-page: 5188
  ident: b0230
  article-title: LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox
  publication-title: J Virol
– volume: 102
  start-page: 4152
  year: 2005
  end-page: 4157
  ident: b0240
  article-title: Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8
  publication-title: Proc Natl Acad Sci U S A.
– volume: 122
  start-page: 303
  year: 1970
  end-page: 309
  ident: b0110
  article-title: Complications of smallpox vaccination, 1968: results of ten statewide surveys
  publication-title: J Infect Dis
– start-page: 339
  year: 2009
  end-page: 353
  ident: b0280
  publication-title: Encyclopedia of Microbiology (Third Edition)
– volume: 79
  start-page: 7845
  year: 2005
  end-page: 7851
  ident: b0180
  article-title: Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus
  publication-title: J Virol
– volume: 192
  start-page: 381
  year: 1961
  end-page: 382
  ident: b0220
  article-title: A new mutant of dermovaccinia virus
  publication-title: Nature
– volume: 121
  start-page: 1058
  year: 2008
  end-page: 1064
  ident: b0030
  article-title: Immunity from smallpox vaccine persists for decades: a longitudinal study
  publication-title: Am J Med
– volume: 86
  start-page: 317
  year: 1989
  end-page: 321
  ident: b0295
  article-title: Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene
  publication-title: Proc Natl Acad Sci U S A.
– volume: 220
  start-page: 46
  year: 2019
  end-page: 56
  ident: b0350
  article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccination Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Uganda and Tanzania
  publication-title: J Infect Dis
– volume: 24
  start-page: 773
  year: 2018
  end-page: 781
  ident: b0425
  article-title: Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy
  publication-title: J Infect Chemother.
– volume: 26
  start-page: 94
  year: 1982
  end-page: 95
  ident: b0010
  article-title: Jenner's smallpox vaccine. The riddle of vaccinia virus and its origin
  publication-title: Med Hist
– volume: 11
  start-page: 331
  year: 2001
  end-page: 341
  ident: b0300
  article-title: Towards a human Lassa fever vaccine
  publication-title: Rev Med Virol
– volume: 7
  year: 2013
  ident: b0400
  article-title: A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection
  publication-title: PLoS NeglTrop Dis
– volume: 49
  start-page: 21
  year: 2018
  ident: b0410
  article-title: Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination
  publication-title: Vet Res
– volume: 16
  start-page: 31
  year: 2016
  end-page: 42
  ident: b0380
  article-title: Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial
  publication-title: Lancet Infect Dis
– volume: 18
  start-page: 1229
  year: 2019
  end-page: 1242
  ident: b0325
  article-title: Ebola vaccine trials: progress in vaccine safety and immunogenicity
  publication-title: Expert Rev Vaccines.
– volume: 3
  start-page: 269
  year: 1975
  end-page: 279
  ident: b0205
  article-title: Vaccination research groups research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications
  publication-title: Rinsho To Uirusu
– volume: 93
  year: 2019
  ident: b0355
  article-title: Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine: Quantification and Sources of Variation
  publication-title: J Virol
– volume: 185
  start-page: 1657
  year: 2002
  end-page: 1659
  ident: b0020
  article-title: Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination
  publication-title: J Infect Dis
– volume: 2
  start-page: 755
  year: 2014
  end-page: 771
  ident: b0235
  article-title: Vaccinia Virus LC16m8 as a Vaccine Vector for Clinical Applications
  publication-title: Vaccines (Basel).
– reference: Kitonsa J, Ggayi AB, Anywaine Z, Kisaakye E, Nsangi L, Basajja V, et al. Implementation of accelerated research: strategies for implementation as applied in a phase 1 Ad26.ZEBOV, MVA-BN-Filo two-dose Ebola vaccine clinical trial in Uganda. Glob Health Action. 2020;13:1829829.
– volume: 4
  year: 2009
  ident: b0255
  article-title: A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination
  publication-title: PLoS ONE
– volume: 37
  start-page: 241
  year: 2003
  end-page: 250
  ident: b0035
  article-title: Smallpox vaccination: a review, part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions
  publication-title: Clin Infect Dis
– volume: 85
  start-page: 4222
  year: 2011
  end-page: 4233
  ident: b0335
  article-title: Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge
  publication-title: J Virol
– volume: 72
  start-page: 1031
  year: 1991
  end-page: 1038
  ident: b0155
  article-title: Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence
  publication-title: J Gen Virol
– volume: 13
  year: 2018
  ident: b0125
  article-title: Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8
  publication-title: PLoS ONE
– volume: 97
  start-page: 187
  year: 2017
  end-page: 243
  ident: b0135
  article-title: Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development
  publication-title: Adv Virus Res
– volume: 17
  year: 2021
  ident: b0435
  article-title: A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome
  publication-title: PLoS Pathog
– start-page: 685
  year: 2009
  end-page: 711
  ident: b0050
  article-title: Chapter 37 - Smallpox
  publication-title: Vaccines for Biodefense and Emerging and Neglected Diseases
– volume: 2
  start-page: 186
  year: 1987
  end-page: 188
  ident: b0285
  article-title: Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever
  publication-title: Lancet
– volume: 144
  start-page: 17
  year: 2007
  end-page: 26
  ident: b0250
  article-title: The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L–K2L genes
  publication-title: J Virol Methods
– volume: 46
  start-page: S258
  year: 2008
  end-page: S270
  ident: b0100
  article-title: Monitoring the safety of a smallpox vaccination program in the United States: report of the joint Smallpox Vaccine Safety Working Group of the advisory committee on immunization practices and the Armed Forces Epidemiological Board
  publication-title: Clin Infect Dis
– volume: 11
  year: 2016
  ident: b0445
  article-title: Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013–2014
  publication-title: PLoS ONE
– volume: 15
  start-page: 61
  year: 2015
  end-page: 66
  ident: b0275
  article-title: Viral haemorrhagic fever
  publication-title: Clin Med (Lond).
– start-page: 87
  year: 1985
  end-page: 99
  ident: b0200
  article-title: Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain
  publication-title: Vaccinia Virus as Vectors for Vaccine Antigens
– volume: 357
  start-page: 2222
  year: 2007
  end-page: 2225
  ident: b0315
  article-title: Dengue and yellow fever–challenges for the development and use of vaccines
  publication-title: N Engl J Med
– volume: 220
  start-page: 57
  year: 2019
  end-page: 67
  ident: b0345
  article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccine Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Nairobi, Kenya
  publication-title: J Infect Dis
– volume: 9
  start-page: 1131
  year: 2003
  end-page: 1137
  ident: b0025
  article-title: Duration of antiviral immunity after smallpox vaccination
  publication-title: Nat Med
– volume: 20
  start-page: 1126
  year: 2014
  end-page: 1129
  ident: b0370
  article-title: Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge
  publication-title: Nat Med
– volume: 35
  start-page: 7222
  year: 2017
  end-page: 7230
  ident: b0005
  article-title: Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine
  publication-title: Vaccine.
– reference: Shukarev G, Callendret B, Luhn K, Douoguih M, consortium E. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human vaccines & immunotherapeutics. 2017;13:266-70.
– volume: 3
  year: 2008
  ident: b0115
  article-title: Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)
  publication-title: PLoS ONE
– volume: 8
  start-page: S31
  year: 2004
  end-page: S44
  ident: b0095
  article-title: ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)–a second-generation smallpox vaccine for biological defense
  publication-title: Int J Infect Dis.
– volume: 374
  start-page: 1635
  year: 2016
  end-page: 1646
  ident: b0375
  article-title: A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA
  publication-title: N Engl J Med
– volume: 281
  start-page: 1201
  year: 1969
  end-page: 1208
  ident: b0105
  article-title: Complications of smallpox vaccination, 1968
  publication-title: N Engl J Med
– volume: 11
  year: 2016
  ident: b0415
  article-title: Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses
  publication-title: PLoS ONE
– reference: Arita I. Can we stop smallpox vaccination? The cessation of vaccination will not only save thousands of patients who would otherwise have suffered from complications but will also save the world community some $1,000 million a year. World Health;1980 May p27-29;. 1980.
– volume: 99
  start-page: 12415
  year: 2002
  end-page: 12420
  ident: b0130
  article-title: Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells
  publication-title: Proc Natl Acad Sci U S A.
– volume: 365
  start-page: 362
  year: 2005
  end-page: 363
  ident: b0070
  article-title: Smallpox vaccines: from first to second to third generation
  publication-title: Lancet
– volume: 99
  start-page: 2386
  year: 1974
  end-page: 2392
  ident: b0145
  article-title: Holzner A
  publication-title: Dtsch Med Wochenschr
– volume: 9
  start-page: 20005
  year: 2019
  ident: b0265
  article-title: Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
  publication-title: Sci Rep
– volume: 92
  year: 2018
  ident: b0385
  article-title: Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins
  publication-title: J Virol
– volume: 9
  year: 2014
  ident: b0440
  article-title: Age is a critical risk factor for severe fever with thrombocytopenia syndrome
  publication-title: PLoS ONE
– volume: 53
  start-page: 197
  year: 1977
  end-page: 208
  ident: b0215
  article-title: Comparative studies of several vaccinia virus strains by intrathalamic inoculation into cynomolgus monkeys
  publication-title: Arch Virol
– volume: 428
  start-page: 182
  year: 2004
  end-page: 185
  ident: b0185
  article-title: Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox
  publication-title: Nature
– volume: 301
  start-page: 1025
  year: 2009
  end-page: 1033
  ident: b0210
  article-title: Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8
  publication-title: JAMA
– volume: 188
  start-page: 217
  year: 1992
  end-page: 232
  ident: b0245
  article-title: NYVAC: a highly attenuated strain of vaccinia virus
  publication-title: Virology
– volume: 9
  start-page: 233
  year: 1988
  end-page: 248
  ident: b0290
  article-title: Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection
  publication-title: Virus Res
– volume: 12
  start-page: 519
  year: 2016
  end-page: 527
  ident: b0420
  article-title: A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease
  publication-title: Human vaccines & immunotherapeutics.
– volume: 84
  start-page: 1
  year: 2009
  end-page: 13
  ident: b0065
  article-title: Vaccinia virus vaccines: past, present and future
  publication-title: Antiviral Res
– volume: 3
  start-page: 6
  year: 1975
  end-page: 14
  ident: b0150
  article-title: Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA
  publication-title: Infection
– volume: 82
  start-page: 919
  year: 2010
  end-page: 921
  ident: b0320
  article-title: Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States
  publication-title: Am J Trop Med Hyg
– volume: 168
  start-page: 233
  year: 2010
  end-page: 236
  ident: b0120
  article-title: Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome
  publication-title: J Virol Methods
– volume: 89
  start-page: 10847
  year: 1992
  end-page: 10851
  ident: b0170
  article-title: Nonreplicating vaccinia vector efficiently expresses recombinant genes
  publication-title: Proc Natl Acad Sci U S A.
– volume: 68
  start-page: 2705
  year: 1987
  end-page: 2710
  ident: b0195
  article-title: Genetic analysis of vaccinia virus Lister strain and its attenuated mutant LC16m8: production of intermediate variants by homologous recombination
  publication-title: J Gen Virol
– volume: 54
  start-page: 279
  year: 1976
  end-page: 284
  ident: b0085
  article-title: Large-scale use of freeze-dried smallpox vaccine prepared in primary cultures of rabbit kidney cells
  publication-title: Bull World Health Organ
– volume: 9
  start-page: 1756
  year: 2018
  ident: b0310
  article-title: Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model
  publication-title: Front Immunol
– volume: 35
  start-page: 7222
  year: 2017
  ident: 10.1016/j.vaccine.2021.09.001_b0005
  article-title: Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2017.11.003
– volume: 54
  start-page: 279
  year: 1976
  ident: 10.1016/j.vaccine.2021.09.001_b0085
  article-title: Large-scale use of freeze-dried smallpox vaccine prepared in primary cultures of rabbit kidney cells
  publication-title: Bull World Health Organ
– volume: 2
  start-page: 186
  year: 1987
  ident: 10.1016/j.vaccine.2021.09.001_b0285
  article-title: Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever
  publication-title: Lancet
  doi: 10.1016/S0140-6736(87)90767-7
– volume: 92
  year: 2018
  ident: 10.1016/j.vaccine.2021.09.001_b0385
  article-title: Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins
  publication-title: J Virol
  doi: 10.1128/JVI.00363-18
– volume: 12
  start-page: 519
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0420
  article-title: A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease
  publication-title: Human vaccines & immunotherapeutics.
  doi: 10.1080/21645515.2015.1078045
– volume: 3
  year: 2008
  ident: 10.1016/j.vaccine.2021.09.001_b0115
  article-title: Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001638
– volume: 113
  start-page: 1149
  year: 1971
  ident: 10.1016/j.vaccine.2021.09.001_b0140
  article-title: Hochstein-Mintzel V
  publication-title: Munch Med Wochenschr
– volume: 99
  start-page: 12415
  year: 2002
  ident: 10.1016/j.vaccine.2021.09.001_b0130
  article-title: Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.192420599
– volume: 9
  start-page: 233
  year: 1988
  ident: 10.1016/j.vaccine.2021.09.001_b0290
  article-title: Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection
  publication-title: Virus Res
  doi: 10.1016/0168-1702(88)90033-0
– volume: 220
  start-page: 46
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0350
  article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccination Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Uganda and Tanzania
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiz070
– volume: 72
  start-page: 1031
  issue: Pt 5
  year: 1991
  ident: 10.1016/j.vaccine.2021.09.001_b0155
  article-title: Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-72-5-1031
– volume: 428
  start-page: 182
  year: 2004
  ident: 10.1016/j.vaccine.2021.09.001_b0185
  article-title: Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox
  publication-title: Nature
  doi: 10.1038/nature02331
– volume: 22
  year: 2017
  ident: 10.1016/j.vaccine.2021.09.001_b0430
  article-title: Lessons learnt from imported cases and onward transmission of Lassa fever in Europe support broader management of viral haemorrhagic fevers
  publication-title: Euro Surveill
  doi: 10.2807/1560-7917.ES.2017.22.39.17-00661
– volume: 15
  start-page: 61
  year: 2015
  ident: 10.1016/j.vaccine.2021.09.001_b0275
  article-title: Viral haemorrhagic fever
  publication-title: Clin Med (Lond).
  doi: 10.7861/clinmedicine.15-1-61
– volume: 144
  start-page: 17
  year: 2007
  ident: 10.1016/j.vaccine.2021.09.001_b0250
  article-title: The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L–K2L genes
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2007.03.012
– volume: 238
  start-page: 198
  year: 1997
  ident: 10.1016/j.vaccine.2021.09.001_b0165
  article-title: Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line
  publication-title: Virology
  doi: 10.1006/viro.1997.8845
– volume: 192
  start-page: 381
  year: 1961
  ident: 10.1016/j.vaccine.2021.09.001_b0220
  article-title: A new mutant of dermovaccinia virus
  publication-title: Nature
  doi: 10.1038/192381a0
– volume: 168
  start-page: 233
  year: 2010
  ident: 10.1016/j.vaccine.2021.09.001_b0120
  article-title: Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2010.04.012
– volume: 374
  start-page: 1635
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0375
  article-title: A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1411627
– volume: 13
  year: 2018
  ident: 10.1016/j.vaccine.2021.09.001_b0125
  article-title: Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192725
– volume: 84
  start-page: 1
  year: 2009
  ident: 10.1016/j.vaccine.2021.09.001_b0065
  article-title: Vaccinia virus vaccines: past, present and future
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2009.06.006
– volume: 80
  start-page: 5179
  year: 2006
  ident: 10.1016/j.vaccine.2021.09.001_b0230
  article-title: LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox
  publication-title: J Virol
  doi: 10.1128/JVI.02642-05
– volume: 20
  start-page: 1126
  year: 2014
  ident: 10.1016/j.vaccine.2021.09.001_b0370
  article-title: Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge
  publication-title: Nat Med
  doi: 10.1038/nm.3702
– volume: 93
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0355
  article-title: Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine: Quantification and Sources of Variation
  publication-title: J Virol
  doi: 10.1128/JVI.00579-19
– volume: 3
  start-page: 6
  year: 1975
  ident: 10.1016/j.vaccine.2021.09.001_b0150
  article-title: Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA
  publication-title: Infection
  doi: 10.1007/BF01641272
– volume: 89
  start-page: 10847
  year: 1992
  ident: 10.1016/j.vaccine.2021.09.001_b0170
  article-title: Nonreplicating vaccinia vector efficiently expresses recombinant genes
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.89.22.10847
– volume: 53
  start-page: 197
  year: 1977
  ident: 10.1016/j.vaccine.2021.09.001_b0215
  article-title: Comparative studies of several vaccinia virus strains by intrathalamic inoculation into cynomolgus monkeys
  publication-title: Arch Virol
  doi: 10.1007/BF01314664
– volume: 8
  start-page: S31
  issue: Suppl 2
  year: 2004
  ident: 10.1016/j.vaccine.2021.09.001_b0095
  article-title: ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)–a second-generation smallpox vaccine for biological defense
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2004.09.002
– ident: 10.1016/j.vaccine.2021.09.001_b0360
  doi: 10.1080/16549716.2020.1829829
– volume: 2
  start-page: 755
  year: 2014
  ident: 10.1016/j.vaccine.2021.09.001_b0235
  article-title: Vaccinia Virus LC16m8 as a Vaccine Vector for Clinical Applications
  publication-title: Vaccines (Basel).
  doi: 10.3390/vaccines2040755
– volume: 62
  start-page: 214
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0270
  article-title: Viral Hemorrhagic Fever Diagnostics
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ792
– volume: 108
  start-page: 165
  year: 2014
  ident: 10.1016/j.vaccine.2021.09.001_b0405
  article-title: Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2014.05.020
– volume: 97
  start-page: 187
  year: 2017
  ident: 10.1016/j.vaccine.2021.09.001_b0135
  article-title: Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development
  publication-title: Adv Virus Res
  doi: 10.1016/bs.aivir.2016.07.001
– volume: 9
  start-page: 20005
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0265
  article-title: Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56550-4
– volume: 315
  start-page: 1610
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0330
  article-title: Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2016.4218
– volume: 9
  start-page: 1125
  year: 2003
  ident: 10.1016/j.vaccine.2021.09.001_b0090
  article-title: Clonal vaccinia virus grown in cell culture as a new smallpox vaccine
  publication-title: Nat Med
  doi: 10.1038/nm916
– volume: 79
  start-page: 347
  issue: Pt 2
  year: 1998
  ident: 10.1016/j.vaccine.2021.09.001_b0160
  article-title: Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-79-2-347
– volume: 16
  start-page: 31
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0380
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(15)00362-X
– volume: 102
  start-page: 4152
  year: 2005
  ident: 10.1016/j.vaccine.2021.09.001_b0240
  article-title: Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0406671102
– volume: 18
  start-page: 3113
  year: 2000
  ident: 10.1016/j.vaccine.2021.09.001_b0305
  article-title: Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge
  publication-title: Vaccine.
  doi: 10.1016/S0264-410X(00)00121-3
– volume: 302
  start-page: 433
  year: 2002
  ident: 10.1016/j.vaccine.2021.09.001_b0225
  article-title: Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector
  publication-title: Virology
  doi: 10.1006/viro.2002.1622
– volume: 82
  start-page: 919
  year: 2010
  ident: 10.1016/j.vaccine.2021.09.001_b0320
  article-title: Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2010.10-0001
– volume: 15
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0390
  article-title: Complete protection of the BALB/c and C57BL/6J mice against Ebola and Marburg virus lethal challenges by pan-filovirus T-cell epigraph vaccine
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007564
– volume: 68
  start-page: 2705
  issue: Pt 10
  year: 1987
  ident: 10.1016/j.vaccine.2021.09.001_b0195
  article-title: Genetic analysis of vaccinia virus Lister strain and its attenuated mutant LC16m8: production of intermediate variants by homologous recombination
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-68-10-2705
– volume: 188
  start-page: 217
  year: 1992
  ident: 10.1016/j.vaccine.2021.09.001_b0245
  article-title: NYVAC: a highly attenuated strain of vaccinia virus
  publication-title: Virology
  doi: 10.1016/0042-6822(92)90752-B
– volume: 9
  start-page: 1756
  year: 2018
  ident: 10.1016/j.vaccine.2021.09.001_b0310
  article-title: Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01756
– ident: 10.1016/j.vaccine.2021.09.001_b0080
  doi: 10.1002/14651858.CD004913.pub2
– volume: 12
  start-page: 675
  year: 1994
  ident: 10.1016/j.vaccine.2021.09.001_b0190
  article-title: Characteristics of an attenuated vaccinia virus strain, LC16m0, and its recombinant virus vaccines
  publication-title: Vaccine.
  doi: 10.1016/0264-410X(94)90215-1
– volume: 86
  start-page: 317
  year: 1989
  ident: 10.1016/j.vaccine.2021.09.001_b0295
  article-title: Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.86.1.317
– volume: 185
  start-page: 1657
  year: 2002
  ident: 10.1016/j.vaccine.2021.09.001_b0020
  article-title: Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination
  publication-title: J Infect Dis
  doi: 10.1086/340517
– ident: 10.1016/j.vaccine.2021.09.001_b0055
– volume: 99
  start-page: 2386
  year: 1974
  ident: 10.1016/j.vaccine.2021.09.001_b0145
  article-title: Holzner A
  publication-title: Dtsch Med Wochenschr
  doi: 10.1055/s-0028-1108143
– volume: 11
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0415
  article-title: Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156637
– start-page: 339
  year: 2009
  ident: 10.1016/j.vaccine.2021.09.001_b0280
– start-page: 685
  year: 2009
  ident: 10.1016/j.vaccine.2021.09.001_b0050
  article-title: Chapter 37 - Smallpox
– volume: 11
  start-page: 331
  year: 2001
  ident: 10.1016/j.vaccine.2021.09.001_b0300
  article-title: Towards a human Lassa fever vaccine
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.329
– volume: 122
  start-page: 303
  year: 1970
  ident: 10.1016/j.vaccine.2021.09.001_b0110
  article-title: Complications of smallpox vaccination, 1968: results of ten statewide surveys
  publication-title: J Infect Dis
  doi: 10.1093/infdis/122.4.303
– volume: 11
  year: 2016
  ident: 10.1016/j.vaccine.2021.09.001_b0445
  article-title: Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013–2014
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0165207
– volume: 4
  year: 2009
  ident: 10.1016/j.vaccine.2021.09.001_b0255
  article-title: A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004180
– start-page: 87
  year: 1985
  ident: 10.1016/j.vaccine.2021.09.001_b0200
  article-title: Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain
– volume: 85
  start-page: 4222
  year: 2011
  ident: 10.1016/j.vaccine.2021.09.001_b0335
  article-title: Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge
  publication-title: J Virol
  doi: 10.1128/JVI.02407-10
– ident: 10.1016/j.vaccine.2021.09.001_b0365
  doi: 10.1080/21645515.2017.1264755
– volume: 3
  start-page: 269
  year: 1975
  ident: 10.1016/j.vaccine.2021.09.001_b0205
  article-title: Vaccination research groups research report: Ministry of Health and Welfare special research: postvaccination side effects and research regarding treatment of complications
  publication-title: Rinsho To Uirusu
– volume: 24
  start-page: 773
  year: 2018
  ident: 10.1016/j.vaccine.2021.09.001_b0425
  article-title: Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy
  publication-title: J Infect Chemother.
  doi: 10.1016/j.jiac.2018.07.009
– volume: 121
  start-page: 1058
  year: 2008
  ident: 10.1016/j.vaccine.2021.09.001_b0030
  article-title: Immunity from smallpox vaccine persists for decades: a longitudinal study
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2008.08.019
– volume: 80
  start-page: 5364
  year: 1983
  ident: 10.1016/j.vaccine.2021.09.001_b0060
  article-title: Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.80.17.5364
– volume: 365
  start-page: 362
  year: 2005
  ident: 10.1016/j.vaccine.2021.09.001_b0070
  article-title: Smallpox vaccines: from first to second to third generation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)70209-9
– volume: 301
  start-page: 1025
  year: 2009
  ident: 10.1016/j.vaccine.2021.09.001_b0210
  article-title: Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8
  publication-title: JAMA
  doi: 10.1001/jama.2009.289
– volume: 37
  start-page: 5404
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0395
  article-title: A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2019.07.023
– volume: 38
  start-page: 2608
  year: 2020
  ident: 10.1016/j.vaccine.2021.09.001_b0450
  article-title: Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2020.01.055
– volume: 49
  start-page: 21
  year: 2018
  ident: 10.1016/j.vaccine.2021.09.001_b0410
  article-title: Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination
  publication-title: Vet Res
  doi: 10.1186/s13567-018-0516-z
– volume: 9
  year: 2014
  ident: 10.1016/j.vaccine.2021.09.001_b0440
  article-title: Age is a critical risk factor for severe fever with thrombocytopenia syndrome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0111736
– volume: 377
  start-page: 1491
  year: 2017
  ident: 10.1016/j.vaccine.2021.09.001_b0015
  article-title: An Early American Smallpox Vaccine Based on Horsepox
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc1707600
– volume: 9
  start-page: 1131
  year: 2003
  ident: 10.1016/j.vaccine.2021.09.001_b0025
  article-title: Duration of antiviral immunity after smallpox vaccination
  publication-title: Nat Med
  doi: 10.1038/nm917
– volume: 37
  start-page: 241
  year: 2003
  ident: 10.1016/j.vaccine.2021.09.001_b0035
  article-title: Smallpox vaccination: a review, part I. Background, vaccination technique, normal vaccination and revaccination, and expected normal reactions
  publication-title: Clin Infect Dis
  doi: 10.1086/375824
– volume: 18
  start-page: 1229
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0325
  article-title: Ebola vaccine trials: progress in vaccine safety and immunogenicity
  publication-title: Expert Rev Vaccines.
  doi: 10.1080/14760584.2019.1698952
– volume: 79
  start-page: 7845
  year: 2005
  ident: 10.1016/j.vaccine.2021.09.001_b0180
  article-title: Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus
  publication-title: J Virol
  doi: 10.1128/JVI.79.12.7845-7851.2005
– volume: 26
  start-page: 94
  year: 1982
  ident: 10.1016/j.vaccine.2021.09.001_b0010
  article-title: Jenner's smallpox vaccine. The riddle of vaccinia virus and its origin
  publication-title: Med Hist
  doi: 10.1017/S0025727300040825
– volume: 46
  start-page: S258
  issue: Suppl 3
  year: 2008
  ident: 10.1016/j.vaccine.2021.09.001_b0100
  article-title: Monitoring the safety of a smallpox vaccination program in the United States: report of the joint Smallpox Vaccine Safety Working Group of the advisory committee on immunization practices and the Armed Forces Epidemiological Board
  publication-title: Clin Infect Dis
  doi: 10.1086/524749
– volume: 220
  start-page: 57
  year: 2019
  ident: 10.1016/j.vaccine.2021.09.001_b0345
  article-title: Safety and Immunogenicity of a 2-Dose Heterologous Vaccine Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Nairobi, Kenya
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiz071
– volume: 357
  start-page: 2222
  year: 2007
  ident: 10.1016/j.vaccine.2021.09.001_b0315
  article-title: Dengue and yellow fever–challenges for the development and use of vaccines
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp0707161
– volume: 7
  year: 2013
  ident: 10.1016/j.vaccine.2021.09.001_b0400
  article-title: A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection
  publication-title: PLoS NeglTrop Dis
– ident: 10.1016/j.vaccine.2021.09.001_b0040
  doi: 10.1098/rstb.2013.0113
– volume: 281
  start-page: 1201
  year: 1969
  ident: 10.1016/j.vaccine.2021.09.001_b0105
  article-title: Complications of smallpox vaccination, 1968
  publication-title: N Engl J Med
  doi: 10.1056/NEJM196911272812201
– volume: 26
  start-page: 664
  year: 2008
  ident: 10.1016/j.vaccine.2021.09.001_b0260
  article-title: Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: intra-nasal vaccination
  publication-title: Vaccine.
  doi: 10.1016/j.vaccine.2007.11.045
– volume: 82
  start-page: 407
  year: 2010
  ident: 10.1016/j.vaccine.2021.09.001_b0340
  article-title: The prevalence of antibodies to adenovirus serotype 5 in an adult Indian population and implications for adenovirus vector vaccines
  publication-title: J Med Virol
  doi: 10.1002/jmv.21721
– ident: 10.1016/j.vaccine.2021.09.001_b0075
– volume: 89
  start-page: 1809
  year: 2015
  ident: 10.1016/j.vaccine.2021.09.001_b0045
  article-title: Evolution of and evolutionary relationships between extant vaccinia virus strains
  publication-title: J Virol
  doi: 10.1128/JVI.02797-14
– volume: 19
  start-page: 3700
  year: 2001
  ident: 10.1016/j.vaccine.2021.09.001_b0175
  article-title: Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques
  publication-title: Vaccine.
  doi: 10.1016/S0264-410X(01)00075-5
– volume: 17
  year: 2021
  ident: 10.1016/j.vaccine.2021.09.001_b0435
  article-title: A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008859
SSID ssj0005319
Score 2.4098265
SecondaryResourceType review_article
Snippet Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism...
AbstractVaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6174
SubjectTerms Allergy and Immunology
Artificial chromosomes
Biological & chemical terrorism
Bioterrorism
Coccidioidomycosis
Crimean hemorrhagic fever
Crimean-Congo hemorrhagic fever
dengue
Dengue hemorrhagic fever
fever
Genomes
Immunogenicity
Infectious diseases
Lassa fever
Lassa virus fever
Plasmids
Production methods
Recombinant vaccine
recombinant vaccines
Rift Valley fever
severe fever with thrombocytopenia syndrome
Smallpox
Strains (organisms)
Thrombocytopenia
Vaccines
Vaccinia virus
Vector-borne diseases
Vectors
Viral diseases
Viral hemorrhagic fever
Viruses
World Health Organization
Yellow fever
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBel0LGXsWYby9YODUafqsQfsmU9jtJSBhuFpSNvmmRJS0qahDgd68v-9t3JcrLvjr0YbN9hyZLufod-dyLkVV14K2ydM2Erz7iDgFX7nLOs9JW0VQUQJLAt3pXnl_zNuBjvkJMuFwZpldH2tzY9WOv4ZBj_5nA5nQ7fJ8GXJ2MIWtK0lJhozrnAWT74-h3NIw-He6AwQ-ltFs_wavBZ17h9DWFilg7aypV_8k8_Wergfs4ekgcRN9LXbdP2yY6b98hee5LkbY_cexv3yHvk6KKtRn17TEfb5KrmmB7Ri22datDpfUAqTMjHpZ36I_JxNJmuLPsUylHjqNHmWs9my8UXGvtBm3CuBEMHaClG1Ncm8Gk6gYYCEqbIHp7RCTJ5VxMNBpZ6hxyQx-Ty7HR0cs7iMQyshuW8ZiLzqfHWVLhJ7V2qbWml1YJzYwFe5s7lPPNwAaxjhCyyKqm1BCDiIXZ0ucmfkN35Yu6eEqoLifXpJBfOgLEwGgBEzT0m0xaJT8o-4d3PV3WsUY5dmqmOjHalYlcUjplKJJLy-mSwUVu2RTruUii7kVVdBirYTAVu5C5F8TtF18SV36hUNZlK1C-zs0-qjeYPE_xfPnrQTT61-Q6YWkDqaSGSPnm5eQ22ATd89NwtboJMJjMBmPwvMmVeFljRJ332_y18Tu7jXUtyPCC769WNOwSwtjYvwmr8BgPSPeY
  priority: 102
  providerName: Elsevier
Title Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X21011695
https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X21011695
https://dx.doi.org/10.1016/j.vaccine.2021.09.001
https://www.proquest.com/docview/2575331570
https://www.proquest.com/docview/2572927405
https://www.proquest.com/docview/2636576751
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJhAvCApohTEZCe1p7vLDiZMnNKZNBURVQYfyZpzYpkxdW5oOsRf-du4cp5EQbLwkkeKT4zg-f5f77o6QV1VitdBVzITOLOMGDFZlY86i1Ga5zjKAII5tMUqH5_xdkRT-h1vtaZWtTnSKWi8q_Ed-BJ8WIJMwEcHr5XeGVaPQu-pLaGyRHUxdhpQuUYiO4hG7wh5gZnDGw6DoIniOLgY_VIWuazARo3DQZK381970h5Z2W8_ZQ_LAY0Z63EzyI3LHzHvkblNF8rpH7n3w_vEeORg3maivD-mkC6yqD-kBHXc5qkGm9xlpMC4Wl7bij8mXyfTbSrOvLhU1zhitL9Vstlz8pH4ctHY1JRhufpqiNX1ZOi5N26CmgIIpModndIos3tVUgXKl1iD_4wk5PzudnAyZL8HAKljKayYiG5ZWlxk6qK0JlU51rpXgvNQALWNjYh5ZOADOKUWeRFlQqRxAiAW70cRl_JRszxdzs0uoSnLMTZdzYUpQFKUC8FBxi4G0SWCDtE94-_Jl5fOT45BmsiWiXUg_FIlzJoMcCXl9MtiILZsEHbcJpO3Myjb6FPSlhC3kNkHxN0FT-1Vfy1DWkQzkp8ChzKAAczoM0zzpk2wj6YFNA1j-p9O99uOTm366tdAnLze3QS-gs0fNzeLKtYnySAAev6FNGqcJZvMJn93czXNyH5-pITHuke316sq8ADC2LvfJ1uBXuO_WHRyzE7jeOX77fjiC85vT0fjjb5diOLI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCAKIQIFFgp7q1F6vXweEeLRKaRtFkKLctrZ3t2mVJiFOgfwpfiMztjeRELRcesnFO95sdnbmm-w3MwCv8sCoSOW-E6nYOEJjwJoaXzg8NHGi4hghSMm26IadI_FpEAzW4JfNhSFapbWJpaFWk5z-I99G1UJk4gWR-3b6zaGuUXS7altoVGqxrxc_MGQr3ux9xP19zfnuTv9Dx6m7Cjg5aufcibjxMqOymO5cjfZSFapEpZEQmUK05GvtC27wA113FiUBj908TdCvGgyFtJ_5-N4bsC58DGUasP5-p9v7vCKV-GUrEQxshCM8d7DKGdo-a39Pc7osx6CUe-2qTua_vOEffqF0drv34G6NUtm7Sq3uw5oeN-Fm1bdy0YRbh_WNfBM2e1Xt68UW669SuYottsl6q6rYKNP8SsSbMvuXWfEHcNwfns6Uc1IWvyYdYcV5OhpNJz9ZvQ5WlF0sHHK3ilH8fp6V7B07oGCIuxlxlUdsSLzh2TBFc86MJsbJQzi6lu15BI3xZKwfA0uDhKrhJSLSGZqmLEW4kgtDqbuBa9ywBcL--DKvK6LTkkbSUt_OZL0USXsm3YQogC1oL8WmVUmQqwRCu7PS5ruihZbotK4SjP4mqIvazhTSkwWXrvzilrjWHWAA73lhErQgXkrWUKqCSP8z6YZVPrmcZ3X6WvBy-RgtEV0vpWM9uSjH8IRHGAFcMib0w4DqB3lPLp_mBdzu9A8P5MFed_8p3KHvV1EoN6Axn13oZwgF59nz-vwxOL7uI_8bpftyCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiouCAKogQKLBD3ViR9rr31ACFGilkIViRT5trW9u4QqTUKcAvlr_Dpm1nYsIWi59JKLd7zZ7Dwz38wAvChCo4QqAkeo2DhcY8CamYA7fmTiRMUxuiAWbXEcHZzw92mYbsCvphaGYJWNTrSKWs0K-o-8j6yFnokXCrdvaljEcH_wev7NoQlSlGltxmlULHKkVz8wfCtfHe7jXb_0_cG70dsDp54w4BTIqUtH-MbLjcpjyr8a7WUqUonKBOe5Qs8p0DrgvsEPNOO5SEI_dossQRtrMCzSQR7ge2_ATRGEHsmYSEULLwnsUBEMcbjDPTdtq4f6Z73vWUFpcwxPfa9Xdcz8l138w0JYsze4C3dqf5W9qRjsHmzoaQduVRMsVx3Y-ljn5juwO6y6YK_22Kgt6ir32C4btv2xkabzmSA4tg6YNeT34XQ0_rpQzhfbBpu4hZXn2WQyn_1k9TlYaedZOGR4FaNI_jy3OJ5mQcnQA2eEWp6wMSGIF-MMFTszmrAnD-DkWi7nIWxOZ1O9DSwLE-qLl3Chc1RSeYaOS8ENFfGGrnGjLvDmx5dF3RudjjSRDQjuTNZHkXRn0k0IDNiF3ppsXjUHuYogam5WNpWvqKslmq-rCMXfCHVZa5xSerL0pSs_udbDdVMM5T0vSsIuxGvK2qmqnKX_2XSnYT653qeVwy48Xz9GnUSJpmyqZxd2jZ_4AmOBS9ZEQRRSJyHv0eXbPIMtFHT54fD46DHcpq9XYSl3YHO5uNBP0Cdc5k-t8DE4vW5p_w2pIHTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third-generation+smallpox+vaccine+strain-based+recombinant+vaccines+for+viral+hemorrhagic+fevers&rft.jtitle=Vaccine&rft.au=Yoshikawa%2C+Tomoki&rft.date=2021-10-01&rft.pub=Elsevier+Limited&rft.issn=0264-410X&rft.eissn=1873-2518&rft.volume=39&rft.issue=41&rft.spage=6174&rft_id=info:doi/10.1016%2Fj.vaccine.2021.09.001&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-410X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-410X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-410X&client=summon