Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting

Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image sig...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 84 - 10
Main Authors Zhou, Iris Yuwen, Wang, Enfeng, Cheung, Jerry S., Zhang, Xiaoan, Fulci, Giulia, Sun, Phillip Zhe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.03.2017
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.
AbstractList Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.
Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.
Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.
Abstract Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.
ArticleNumber 84
Author Sun, Phillip Zhe
Fulci, Giulia
Zhang, Xiaoan
Cheung, Jerry S.
Wang, Enfeng
Zhou, Iris Yuwen
Author_xml – sequence: 1
  givenname: Iris Yuwen
  orcidid: 0000-0002-4351-7398
  surname: Zhou
  fullname: Zhou, Iris Yuwen
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
– sequence: 2
  givenname: Enfeng
  surname: Wang
  fullname: Wang, Enfeng
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University
– sequence: 3
  givenname: Jerry S.
  surname: Cheung
  fullname: Cheung, Jerry S.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
– sequence: 4
  givenname: Xiaoan
  surname: Zhang
  fullname: Zhang, Xiaoan
  organization: Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University
– sequence: 5
  givenname: Giulia
  surname: Fulci
  fullname: Fulci, Giulia
  organization: Molecular Neuro-oncology Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School
– sequence: 6
  givenname: Phillip Zhe
  orcidid: 0000-0003-4872-1192
  surname: Sun
  fullname: Sun, Phillip Zhe
  email: pzhesun@mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28273886$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk9v0zAUj9AQG2NfgAPysTsEbCeOnQtS1RWoVISAcbZeHKd1ldid7Yz1Y_CNcdsxbRzmi5_e-_2x_H6vsxPrrM6ytwS_J7gQH0JJWC1yTHiOMal4vnuRnVFcspwWlJ48qk-zixA2OB1G65LUr7JTKigvhKjOsj_fR7DRRIjmViO11oNR0CN9p9ZgVxoFiKNPQ2dR9GBDpz2azOY_ry_R1x8L5Dq06o0bAI3B2BVaDJBIV-63DTBs-31rfrfVrYm6RdMWtgebpYYQ83AzgtcBTRZX8-nyEnUmxkR4k73soA_64v4-z359ml_PvuTLb58Xs-kyV4yLmFdcQa1KVjBWtVgoKGlTtZqlGtdcFE0JnBLRNFBRosqu7biqCtq1RNFKkao4zxZH3dbBRm69GcDvpAMjDw3nVxJ8NKrXkpS0KxhnFRZQdqqum7ZjRAusqpoqBUnr41FrOzaDbpW26bP6J6JPJ9as5crdSlZSLuo6CUzuBby7GXWIcjBB6b4Hq90YJBG8KmtacJyg7x57PZj822kC0CNAeReC190DhGC5z448Zkem7MhDduQukcR_JHUIhdu_1_TPU4sjNSSflBkvN270Nu3uOdZflv3a5Q
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120993
crossref_primary_10_1002_mrm_30460
crossref_primary_10_1002_nbm_4017
crossref_primary_10_1002_mrm_27370
crossref_primary_10_1002_nbm_4133
crossref_primary_10_1038_s41598_020_77576_z
crossref_primary_10_1002_mrm_27690
crossref_primary_10_1002_mrm_29471
crossref_primary_10_1002_nbm_4176
crossref_primary_10_1515_nipt_2022_0012
crossref_primary_10_1002_mrm_28744
crossref_primary_10_1002_nbm_3920
crossref_primary_10_1038_s41598_024_72141_4
crossref_primary_10_1002_mrm_27937
crossref_primary_10_1088_1361_6560_ad9540
crossref_primary_10_1097_RLI_0000000000001145
crossref_primary_10_1002_mrm_27363
crossref_primary_10_1002_mrm_29223
crossref_primary_10_1002_mrm_28770
crossref_primary_10_3390_diagnostics13213326
crossref_primary_10_1002_nbm_4168
crossref_primary_10_1002_jmri_28832
crossref_primary_10_1002_mrm_30259
crossref_primary_10_1002_mrm_29187
crossref_primary_10_3389_fneur_2022_857825
crossref_primary_10_1002_mrm_28973
crossref_primary_10_1002_nbm_3834
crossref_primary_10_1002_mrm_26752
crossref_primary_10_1007_s10571_017_0552_7
crossref_primary_10_1002_jmri_26690
crossref_primary_10_1109_ACCESS_2020_3014339
crossref_primary_10_1002_mrm_26959
crossref_primary_10_1038_s41598_018_27839_7
crossref_primary_10_3390_jimaging10070166
crossref_primary_10_1002_mrm_30241
crossref_primary_10_1002_mrm_27111
crossref_primary_10_1002_mrm_27155
crossref_primary_10_1002_mrm_29211
crossref_primary_10_1007_s10916_023_01931_6
crossref_primary_10_1002_ijch_201700025
crossref_primary_10_1002_mrm_28040
crossref_primary_10_1021_acs_langmuir_0c01256
crossref_primary_10_1002_mrm_29570
crossref_primary_10_1016_j_jmr_2019_106648
crossref_primary_10_1002_mrm_28764
crossref_primary_10_1002_mrm_29896
crossref_primary_10_1002_mrm_26829
crossref_primary_10_1038_s41551_021_00809_7
crossref_primary_10_1002_mrm_30112
crossref_primary_10_1002_mrm_27385
crossref_primary_10_1016_j_ejrad_2019_07_021
crossref_primary_10_1002_mrm_29444
crossref_primary_10_1002_mrm_29440
crossref_primary_10_1002_mrm_27389
crossref_primary_10_1002_mrm_28676
crossref_primary_10_1002_mrm_28433
crossref_primary_10_1002_nbm_4626
crossref_primary_10_1002_mrm_28117
crossref_primary_10_1016_j_mri_2023_06_005
crossref_primary_10_1002_mrm_26817
crossref_primary_10_1016_j_mri_2023_10_009
Cites_doi 10.1002/mrm.22761
10.1002/cmmi.1647
10.1021/ja053799t
10.1002/nbm.2899
10.1073/pnas.0605496103
10.1002/mrm.24315
10.1002/nbm.3075
10.1038/srep06081
10.1002/nbm.3283
10.1038/nm.2615
10.1016/j.neuroimage.2014.05.036
10.1002/mrm.24763
10.1002/mrm.22242
10.1007/s11060-009-9875-7
10.1002/mrm.23068
10.1002/mrm.21873
10.1161/STROKEAHA.110.595777
10.1073/pnas.1323855111
10.1002/mrm.24822
10.1146/annurev.bioeng.9.060906.151929
10.1006/jmre.1999.1956
10.1038/jcbfm.2011.23
10.1002/mrm.25053
10.1002/nbm.3054
10.1016/j.mri.2016.05.002
10.1038/sj.jcbfm.9600424
10.1007/s11307-015-0828-6
10.1002/cmmi.240
10.1038/nm907
10.1088/0031-9155/58/22/R221
10.1016/j.neuroimage.2013.03.047
10.1016/j.neuroimage.2015.02.040
10.1002/mrm.24520
10.1016/j.neuroimage.2011.11.091
10.1023/A:1005805203044
10.1002/nbm.1216
10.1021/ja5059313
10.1038/nm.3252
10.1002/nbm.3048
10.1002/mrm.25581
10.1002/jmri.22480
10.1016/j.jmr.2011.05.001
10.1002/mrm.10651
10.1002/nbm.3257
10.1016/j.neuroimage.2016.07.025
10.1002/mrm.20989
10.1002/mrm.26396
10.1007/s11307-016-0995-0
10.1002/nbm.1729
10.1002/nbm.3216
10.1002/jmri.25108
10.1002/mrm.26131
ContentType Journal Article
Copyright The Author(s) 2017
Copyright_xml – notice: The Author(s) 2017
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1038/s41598-017-00167-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_142f3575608a4fc99bdf51e80c692cca
PMC5427899
28273886
10_1038_s41598_017_00167_y
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS085574
– fundername: NICHD NIH HHS
  grantid: U01 HD087211
– fundername: NINDS NIH HHS
  grantid: R01 NS083654
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c578t-67ca9c453556d08ca42b6de5d0809783b4a7218bba621c4fdf7c632fd1c26c163
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:58:06 EDT 2025
Thu Aug 21 14:31:51 EDT 2025
Fri Jul 11 03:21:45 EDT 2025
Thu Apr 03 06:57:31 EDT 2025
Tue Jul 01 04:02:49 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Fri Feb 21 02:39:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-67ca9c453556d08ca42b6de5d0809783b4a7218bba621c4fdf7c632fd1c26c163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4872-1192
0000-0002-4351-7398
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-00167-y
PMID 28273886
PQID 1876492370
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_142f3575608a4fc99bdf51e80c692cca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427899
proquest_miscellaneous_1876492370
pubmed_primary_28273886
crossref_primary_10_1038_s41598_017_00167_y
crossref_citationtrail_10_1038_s41598_017_00167_y
springer_journals_10_1038_s41598_017_00167_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-07
PublicationDateYYYYMMDD 2017-03-07
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Xu (CR40) 2014; 27
Jones (CR32) 2013; 77
Zhang, Malloy, Sherry (CR8) 2005; 127
Jia (CR16) 2011; 33
Xu (CR17) 2014; 27
Zhang (CR54) 2016; 34
Jones (CR37) 2006; 56
Dixon (CR46) 2010; 63
Walker-Samuel (CR5) 2013; 19
Wu, Xiao, Zhou, Ran, Sun (CR47) 2015; 28
Zaiss, Bachert (CR30) 2013; 58
Cai (CR7) 2012; 18
Moon (CR34) 2015; 10
Desmond, Moosvi, Stanisz (CR33) 2014; 71
Haris (CR21) 2014; 4
Cai (CR4) 2015; 28
Sun, Cheung, Wang, Lo (CR14) 2011; 31
Sherry, Woods (CR1) 2008; 10
Yoo (CR26) 2014; 71
Barth, Kaur (CR48) 2009; 94
Heo, Zhang, Lee, Hong, Zhou (CR28) 2016; 75
Chan (CR6) 2012; 68
CR44
CR43
CR41
Zaiss, Schmitt, Bachert (CR29) 2011; 211
Yan (CR39) 2015; 17
Fulci (CR50) 2006; 103
Heo (CR27) 2015
Windschuh (CR25) 2015; 28
Barth (CR49) 1998; 36
Sun, Zhou, Sun, Huang, van Zijl (CR12) 2007; 27
Liu, Song, Chan, McMahon (CR31) 2013; 26
Sun, Wang, Cheung (CR10) 2012; 60
van Zijl, Yadav (CR2) 2011; 65
Sagiyama (CR20) 2014; 111
Tietze (CR13) 2014; 27
CR51
Zaiss (CR24) 2015; 112
Kim, Gillen, Landman, Zhou, van Zijl (CR53) 2009; 61
Zhou, Lal, Wilson, Laterra, van Zijl (CR36) 2003; 50
Sun, Benner, Copen, Sorensen (CR23) 2010; 41
Stancanello (CR52) 2008; 3
Desmond, Moosvi, Stanisz (CR18) 2014; 71
Scheidegger, Wong, Alsop (CR42) 2014; 99
Guo (CR11) 2016; 141
Salhotra (CR38) 2008; 21
Jin, Wang, Zong, Kim (CR22) 2013; 69
Sun (CR45) 2012; 67
Longo (CR35) 2014; 136
Ward, Aletras, Balaban (CR3) 2000; 143
Chen (CR19) 2014; 72
Zhou, Payen, Wilson, Traystman, van Zijl (CR9) 2003; 9
Zaiss (CR15) 2014; 27
A Salhotra (167_CR38) 2008; 21
CK Jones (167_CR32) 2013; 77
S Zhang (167_CR8) 2005; 127
A Tietze (167_CR13) 2014; 27
LQ Chen (167_CR19) 2014; 72
CK Jones (167_CR37) 2006; 56
J Stancanello (167_CR52) 2008; 3
J Windschuh (167_CR25) 2015; 28
RF Barth (167_CR48) 2009; 94
J Xu (167_CR17) 2014; 27
M Kim (167_CR53) 2009; 61
KW Chan (167_CR6) 2012; 68
WT Dixon (167_CR46) 2010; 63
K Cai (167_CR4) 2015; 28
PC van Zijl (167_CR2) 2011; 65
K Sagiyama (167_CR20) 2014; 111
XY Zhang (167_CR54) 2016; 34
HY Heo (167_CR27) 2015
J Zhou (167_CR36) 2003; 50
R Scheidegger (167_CR42) 2014; 99
BF Moon (167_CR34) 2015; 10
HY Heo (167_CR28) 2016; 75
M Zaiss (167_CR29) 2011; 211
167_CR44
167_CR43
167_CR41
RF Barth (167_CR49) 1998; 36
M Zaiss (167_CR24) 2015; 112
PZ Sun (167_CR14) 2011; 31
PZ Sun (167_CR23) 2010; 41
B Yoo (167_CR26) 2014; 71
M Zaiss (167_CR30) 2013; 58
K Cai (167_CR7) 2012; 18
KL Desmond (167_CR33) 2014; 71
G Jia (167_CR16) 2011; 33
KL Desmond (167_CR18) 2014; 71
PZ Sun (167_CR12) 2007; 27
KM Ward (167_CR3) 2000; 143
K Yan (167_CR39) 2015; 17
S Walker-Samuel (167_CR5) 2013; 19
M Zaiss (167_CR15) 2014; 27
M Haris (167_CR21) 2014; 4
167_CR51
DL Longo (167_CR35) 2014; 136
G Fulci (167_CR50) 2006; 103
AD Sherry (167_CR1) 2008; 10
PZ Sun (167_CR45) 2012; 67
T Jin (167_CR22) 2013; 69
R Wu (167_CR47) 2015; 28
PZ Sun (167_CR10) 2012; 60
J Xu (167_CR40) 2014; 27
J Zhou (167_CR9) 2003; 9
G Liu (167_CR31) 2013; 26
Y Guo (167_CR11) 2016; 141
10698648 - J Magn Reson. 2000 Mar;143(1):79-87
23640714 - Magn Reson Med. 2014 Mar;71(3):1221-30
21563248 - J Magn Reson Imaging. 2011 Mar;33(3):647-54
17133226 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1129-36
24201125 - Phys Med Biol. 2013 Nov 21;58(22):R221-69
24616497 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12 ):4542-7
16351064 - J Am Chem Soc. 2005 Dec 21;127(50):17572-3
24395553 - NMR Biomed. 2014 Mar;27(3):240-52
18647117 - Annu Rev Biomed Eng. 2008;10:391-411
25615718 - NMR Biomed. 2015 Mar;28(3):376-83
21337419 - Magn Reson Med. 2011 Apr;65(4):927-48
21386856 - J Cereb Blood Flow Metab. 2011 Aug;31(8):1743-50
23567889 - Neuroimage. 2013 Aug 15;77:114-24
24281951 - Magn Reson Med. 2014 Nov;72(5):1408-17
25124082 - Sci Rep. 2014 Aug 15;4:6081
17924591 - NMR Biomed. 2008 Jun;21(5):489-97
26108564 - Contrast Media Mol Imaging. 2015 Nov-Dec;10 (6):446-55
21755552 - NMR Biomed. 2012 Feb;25(2):189-94
25727379 - Neuroimage. 2015 May 15;112:180-8
25753614 - Magn Reson Med. 2016 Jan;75(1):137-49
12872167 - Nat Med. 2003 Aug;9(8):1085-90
25238643 - J Am Chem Soc. 2014 Oct 15;136(41):14333-6
21641247 - J Magn Reson. 2011 Aug;211(2):149-55
24474497 - NMR Biomed. 2014 Apr;27(4):406-16
23303716 - NMR Biomed. 2013 Jul;26(7):810-28
22270722 - Nat Med. 2012 Jan 22;18(2):302-6
14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6
23074027 - Magn Reson Med. 2012 Dec;68(6):1764-73
22577042 - Magn Reson Med. 2013 Mar 1;69(3):760-70
16908838 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12873-8
21842497 - Magn Reson Med. 2012 Apr;67(4):936-42
20187174 - Magn Reson Med. 2010 Mar;63(3):625-32
25295758 - NMR Biomed. 2015 Jan;28(1):1-8
27604612 - Magn Reson Med. 2016 Sep 8
19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50
27444569 - Neuroimage. 2016 Nov 1;141:242-9
27541025 - Mol Imaging Biol. 2017 Apr;19(2):225-232
25622812 - Mol Imaging Biol. 2015 Aug;17(4):479-87
26841096 - Magn Reson Med. 2017 Feb;77(2):855-863
26663561 - J Magn Reson Imaging. 2016 Jul;44(1):41-50
22178815 - Neuroimage. 2012 Mar;60(1):1-6
9525831 - J Neurooncol. 1998 Jan;36(1):91-102
19381449 - J Neurooncol. 2009 Sep;94(3):299-312
27211260 - Magn Reson Imaging. 2016 Oct;34(8):1100-6
24857712 - Neuroimage. 2014 Oct 1;99:256-68
25788155 - NMR Biomed. 2015 May;28(5):529-37
20876492 - Stroke. 2010 Oct;41(10 Suppl):S147-51
16892186 - Magn Reson Med. 2006 Sep;56(3):585-92
23801344 - Magn Reson Med. 2014 May;71(5):1841-53
18683280 - Contrast Media Mol Imaging. 2008 Jul-Aug;3(4):136-49
23832090 - Nat Med. 2013 Aug;19(8):1067-72
24288260 - NMR Biomed. 2014 Feb;27(2):163-74
References_xml – volume: 65
  start-page: 927
  year: 2011
  end-page: 948
  ident: CR2
  article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn’t?
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.22761
– volume: 10
  start-page: 446
  year: 2015
  end-page: 455
  ident: CR34
  article-title: A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH
  publication-title: Contrast media & molecular imaging
  doi: 10.1002/cmmi.1647
– volume: 127
  start-page: 17572
  year: 2005
  end-page: 17573
  ident: CR8
  article-title: MRI thermometry based on PARACEST agents
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja053799t
– volume: 26
  start-page: 810
  year: 2013
  end-page: 828
  ident: CR31
  article-title: Nuts and bolts of chemical exchange saturation transfer MRI
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.2899
– volume: 103
  start-page: 12873
  year: 2006
  end-page: 12878
  ident: CR50
  article-title: Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605496103
– volume: 69
  start-page: 760
  year: 2013
  end-page: 770
  ident: CR22
  article-title: MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24315
– volume: 27
  start-page: 406
  year: 2014
  end-page: 416
  ident: CR17
  article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3075
– volume: 4
  start-page: 6081
  year: 2014
  ident: CR21
  article-title: Magnetic Resonance Imaging of Tumor Protease Activity
  publication-title: Sci Rep
  doi: 10.1038/srep06081
– volume: 28
  start-page: 529
  year: 2015
  end-page: 537
  ident: CR25
  article-title: Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3283
– ident: CR51
– volume: 28
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR4
  article-title: CEST signal at 2 ppm (CEST@2 ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor
  publication-title: NMR in biomedicine
– volume: 18
  start-page: 302
  year: 2012
  end-page: 306
  ident: CR7
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nature medicine
  doi: 10.1038/nm.2615
– volume: 99
  start-page: 256
  year: 2014
  end-page: 268
  ident: CR42
  article-title: Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.036
– volume: 71
  start-page: 1221
  year: 2014
  end-page: 1230
  ident: CR26
  article-title: Detection of enzyme activity with CatalyCEST MRI
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.24763
– volume: 63
  start-page: 625
  year: 2010
  end-page: 632
  ident: CR46
  article-title: A concentration-independent method to measure exchange rates in PARACEST agents
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22242
– volume: 94
  start-page: 299
  year: 2009
  end-page: 312
  ident: CR48
  article-title: Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas
  publication-title: Journal of neuro-oncology
  doi: 10.1007/s11060-009-9875-7
– volume: 67
  start-page: 936
  year: 2012
  end-page: 942
  ident: CR45
  article-title: Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.23068
– volume: 61
  start-page: 1441
  year: 2009
  end-page: 1450
  ident: CR53
  article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.21873
– volume: 41
  start-page: S147
  year: 2010
  end-page: 151
  ident: CR23
  article-title: Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.595777
– volume: 111
  start-page: 4542
  year: 2014
  end-page: 4547
  ident: CR20
  article-title: chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1323855111
– volume: 27
  start-page: 406
  year: 2014
  end-page: 416
  ident: CR40
  article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3075
– volume: 71
  start-page: 1841
  year: 2014
  end-page: 1853
  ident: CR18
  article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24822
– volume: 10
  start-page: 391
  year: 2008
  end-page: 411
  ident: CR1
  article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging
  publication-title: Annual review of biomedical engineering
  doi: 10.1146/annurev.bioeng.9.060906.151929
– year: 2015
  ident: CR27
  article-title: Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T
  publication-title: J Magn Reson Imaging
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  ident: CR3
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: Journal of magnetic resonance
  doi: 10.1006/jmre.1999.1956
– volume: 31
  start-page: 1743
  year: 2011
  end-page: 1750
  ident: CR14
  article-title: Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2011.23
– volume: 72
  start-page: 1408
  year: 2014
  end-page: 1417
  ident: CR19
  article-title: Evaluations of extracellular pH within tumors using acidoCEST MRI
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.25053
– volume: 71
  start-page: 1841
  year: 2014
  end-page: 1853
  ident: CR33
  article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24822
– volume: 27
  start-page: 240
  year: 2014
  end-page: 252
  ident: CR15
  article-title: Inverse Z-spectrum analysis for spillover-, MT-, and T1 -corrected steady-state pulsed CEST-MRI–application to pH-weighted MRI of acute stroke
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3054
– volume: 34
  start-page: 1100
  year: 2016
  end-page: 1106
  ident: CR54
  article-title: A new NOE-mediated MT signal at around -1.6 ppm for detecting ischemic stroke in rat brain
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2016.05.002
– volume: 27
  start-page: 1129
  year: 2007
  end-page: 1136
  ident: CR12
  article-title: Detection of the ischemic penumbra using pH-weighted MRI
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600424
– volume: 17
  start-page: 479
  year: 2015
  end-page: 487
  ident: CR39
  article-title: Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis
  publication-title: Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging
  doi: 10.1007/s11307-015-0828-6
– volume: 3
  start-page: 136
  year: 2008
  end-page: 149
  ident: CR52
  article-title: Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images
  publication-title: Contrast media & molecular imaging
  doi: 10.1002/cmmi.240
– volume: 9
  start-page: 1085
  year: 2003
  end-page: 1090
  ident: CR9
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nature medicine
  doi: 10.1038/nm907
– ident: CR43
– volume: 58
  start-page: R221
  year: 2013
  end-page: 269
  ident: CR30
  article-title: Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy : a review of theoretical approaches and methods
  publication-title: Physics in medicine and biology
  doi: 10.1088/0031-9155/58/22/R221
– volume: 77
  start-page: 114
  year: 2013
  end-page: 124
  ident: CR32
  article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.047
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  ident: CR24
  article-title: Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.040
– volume: 68
  start-page: 1764
  year: 2012
  end-page: 1773
  ident: CR6
  article-title: Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24520
– volume: 60
  start-page: 1
  year: 2012
  end-page: 6
  ident: CR10
  article-title: Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI–correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.091
– volume: 36
  start-page: 91
  year: 1998
  end-page: 102
  ident: CR49
  article-title: Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas
  publication-title: Journal of neuro-oncology
  doi: 10.1023/A:1005805203044
– volume: 21
  start-page: 489
  year: 2008
  end-page: 497
  ident: CR38
  article-title: Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.1216
– ident: CR44
– volume: 136
  start-page: 14333
  year: 2014
  end-page: 14336
  ident: CR35
  article-title: A general MRI-CEST ratiometric approach for pH imaging: demonstration of pH mapping with iobitridol
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja5059313
– volume: 19
  start-page: 1067
  year: 2013
  end-page: 1072
  ident: CR5
  article-title: imaging of glucose uptake and metabolism in tumors
  publication-title: Nature medicine
  doi: 10.1038/nm.3252
– volume: 27
  start-page: 163
  year: 2014
  end-page: 174
  ident: CR13
  article-title: Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3048
– volume: 75
  start-page: 137
  year: 2016
  end-page: 149
  ident: CR28
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.25581
– volume: 33
  start-page: 647
  year: 2011
  end-page: 654
  ident: CR16
  article-title: Amide proton transfer MR imaging of prostate cancer: A preliminary study
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22480
– volume: 211
  start-page: 149
  year: 2011
  end-page: 155
  ident: CR29
  article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra
  publication-title: Journal of magnetic resonance
  doi: 10.1016/j.jmr.2011.05.001
– volume: 50
  start-page: 1120
  year: 2003
  end-page: 1126
  ident: CR36
  article-title: Amide proton transfer (APT) contrast for imaging of brain tumors
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.10651
– volume: 28
  start-page: 376
  year: 2015
  end-page: 383
  ident: CR47
  article-title: Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3257
– volume: 141
  start-page: 242
  year: 2016
  end-page: 249
  ident: CR11
  article-title: pH-sensitive MRI demarcates graded tissue acidification during acute stroke - pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.025
– ident: CR41
– volume: 56
  start-page: 585
  year: 2006
  end-page: 592
  ident: CR37
  article-title: Amide proton transfer imaging of human brain tumors at 3T
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.20989
– volume: 112
  start-page: 180
  year: 2015
  ident: 167_CR24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.040
– volume: 31
  start-page: 1743
  year: 2011
  ident: 167_CR14
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2011.23
– volume: 36
  start-page: 91
  year: 1998
  ident: 167_CR49
  publication-title: Journal of neuro-oncology
  doi: 10.1023/A:1005805203044
– volume: 10
  start-page: 391
  year: 2008
  ident: 167_CR1
  publication-title: Annual review of biomedical engineering
  doi: 10.1146/annurev.bioeng.9.060906.151929
– volume: 60
  start-page: 1
  year: 2012
  ident: 167_CR10
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.091
– volume: 71
  start-page: 1841
  year: 2014
  ident: 167_CR33
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24822
– ident: 167_CR44
  doi: 10.1002/mrm.26396
– volume: 111
  start-page: 4542
  year: 2014
  ident: 167_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1323855111
– volume: 71
  start-page: 1221
  year: 2014
  ident: 167_CR26
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.24763
– volume: 41
  start-page: S147
  year: 2010
  ident: 167_CR23
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.595777
– volume: 75
  start-page: 137
  year: 2016
  ident: 167_CR28
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.25581
– volume: 26
  start-page: 810
  year: 2013
  ident: 167_CR31
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.2899
– volume: 21
  start-page: 489
  year: 2008
  ident: 167_CR38
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.1216
– volume: 27
  start-page: 406
  year: 2014
  ident: 167_CR40
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3075
– volume: 27
  start-page: 1129
  year: 2007
  ident: 167_CR12
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600424
– ident: 167_CR43
  doi: 10.1007/s11307-016-0995-0
– volume: 77
  start-page: 114
  year: 2013
  ident: 167_CR32
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.047
– volume: 69
  start-page: 760
  year: 2013
  ident: 167_CR22
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24315
– volume: 61
  start-page: 1441
  year: 2009
  ident: 167_CR53
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.21873
– volume: 65
  start-page: 927
  year: 2011
  ident: 167_CR2
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.22761
– volume: 72
  start-page: 1408
  year: 2014
  ident: 167_CR19
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.25053
– ident: 167_CR51
  doi: 10.1002/nbm.1729
– volume: 50
  start-page: 1120
  year: 2003
  ident: 167_CR36
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.10651
– volume: 71
  start-page: 1841
  year: 2014
  ident: 167_CR18
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24822
– volume: 211
  start-page: 149
  year: 2011
  ident: 167_CR29
  publication-title: Journal of magnetic resonance
  doi: 10.1016/j.jmr.2011.05.001
– volume: 68
  start-page: 1764
  year: 2012
  ident: 167_CR6
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.24520
– volume: 28
  start-page: 529
  year: 2015
  ident: 167_CR25
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3283
– volume: 27
  start-page: 240
  year: 2014
  ident: 167_CR15
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3054
– volume: 28
  start-page: 1
  year: 2015
  ident: 167_CR4
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3216
– volume: 27
  start-page: 163
  year: 2014
  ident: 167_CR13
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3048
– volume: 103
  start-page: 12873
  year: 2006
  ident: 167_CR50
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605496103
– volume: 3
  start-page: 136
  year: 2008
  ident: 167_CR52
  publication-title: Contrast media & molecular imaging
  doi: 10.1002/cmmi.240
– volume: 94
  start-page: 299
  year: 2009
  ident: 167_CR48
  publication-title: Journal of neuro-oncology
  doi: 10.1007/s11060-009-9875-7
– volume: 143
  start-page: 79
  year: 2000
  ident: 167_CR3
  publication-title: Journal of magnetic resonance
  doi: 10.1006/jmre.1999.1956
– volume: 33
  start-page: 647
  year: 2011
  ident: 167_CR16
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22480
– volume: 19
  start-page: 1067
  year: 2013
  ident: 167_CR5
  publication-title: Nature medicine
  doi: 10.1038/nm.3252
– volume: 9
  start-page: 1085
  year: 2003
  ident: 167_CR9
  publication-title: Nature medicine
  doi: 10.1038/nm907
– volume: 28
  start-page: 376
  year: 2015
  ident: 167_CR47
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3257
– volume: 67
  start-page: 936
  year: 2012
  ident: 167_CR45
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.23068
– volume: 63
  start-page: 625
  year: 2010
  ident: 167_CR46
  publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22242
– volume: 4
  start-page: 6081
  year: 2014
  ident: 167_CR21
  publication-title: Sci Rep
  doi: 10.1038/srep06081
– volume: 141
  start-page: 242
  year: 2016
  ident: 167_CR11
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.025
– volume: 56
  start-page: 585
  year: 2006
  ident: 167_CR37
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.20989
– volume: 58
  start-page: R221
  year: 2013
  ident: 167_CR30
  publication-title: Physics in medicine and biology
  doi: 10.1088/0031-9155/58/22/R221
– volume: 27
  start-page: 406
  year: 2014
  ident: 167_CR17
  publication-title: NMR in biomedicine
  doi: 10.1002/nbm.3075
– volume: 136
  start-page: 14333
  year: 2014
  ident: 167_CR35
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja5059313
– volume: 99
  start-page: 256
  year: 2014
  ident: 167_CR42
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.036
– volume: 34
  start-page: 1100
  year: 2016
  ident: 167_CR54
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2016.05.002
– year: 2015
  ident: 167_CR27
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25108
– volume: 127
  start-page: 17572
  year: 2005
  ident: 167_CR8
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja053799t
– volume: 18
  start-page: 302
  year: 2012
  ident: 167_CR7
  publication-title: Nature medicine
  doi: 10.1038/nm.2615
– volume: 10
  start-page: 446
  year: 2015
  ident: 167_CR34
  publication-title: Contrast media & molecular imaging
  doi: 10.1002/cmmi.1647
– volume: 17
  start-page: 479
  year: 2015
  ident: 167_CR39
  publication-title: Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging
  doi: 10.1007/s11307-015-0828-6
– ident: 167_CR41
  doi: 10.1002/mrm.26131
– reference: 21563248 - J Magn Reson Imaging. 2011 Mar;33(3):647-54
– reference: 20876492 - Stroke. 2010 Oct;41(10 Suppl):S147-51
– reference: 26841096 - Magn Reson Med. 2017 Feb;77(2):855-863
– reference: 12872167 - Nat Med. 2003 Aug;9(8):1085-90
– reference: 21386856 - J Cereb Blood Flow Metab. 2011 Aug;31(8):1743-50
– reference: 19381449 - J Neurooncol. 2009 Sep;94(3):299-312
– reference: 25295758 - NMR Biomed. 2015 Jan;28(1):1-8
– reference: 25622812 - Mol Imaging Biol. 2015 Aug;17(4):479-87
– reference: 26108564 - Contrast Media Mol Imaging. 2015 Nov-Dec;10 (6):446-55
– reference: 21755552 - NMR Biomed. 2012 Feb;25(2):189-94
– reference: 16908838 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12873-8
– reference: 25124082 - Sci Rep. 2014 Aug 15;4:6081
– reference: 17133226 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1129-36
– reference: 27444569 - Neuroimage. 2016 Nov 1;141:242-9
– reference: 25727379 - Neuroimage. 2015 May 15;112:180-8
– reference: 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92
– reference: 23801344 - Magn Reson Med. 2014 May;71(5):1841-53
– reference: 25238643 - J Am Chem Soc. 2014 Oct 15;136(41):14333-6
– reference: 27604612 - Magn Reson Med. 2016 Sep 8;:
– reference: 23303716 - NMR Biomed. 2013 Jul;26(7):810-28
– reference: 27541025 - Mol Imaging Biol. 2017 Apr;19(2):225-232
– reference: 17924591 - NMR Biomed. 2008 Jun;21(5):489-97
– reference: 10698648 - J Magn Reson. 2000 Mar;143(1):79-87
– reference: 25753614 - Magn Reson Med. 2016 Jan;75(1):137-49
– reference: 24616497 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12 ):4542-7
– reference: 23640714 - Magn Reson Med. 2014 Mar;71(3):1221-30
– reference: 21842497 - Magn Reson Med. 2012 Apr;67(4):936-42
– reference: 24288260 - NMR Biomed. 2014 Feb;27(2):163-74
– reference: 18683280 - Contrast Media Mol Imaging. 2008 Jul-Aug;3(4):136-49
– reference: 23074027 - Magn Reson Med. 2012 Dec;68(6):1764-73
– reference: 22577042 - Magn Reson Med. 2013 Mar 1;69(3):760-70
– reference: 21641247 - J Magn Reson. 2011 Aug;211(2):149-55
– reference: 22178815 - Neuroimage. 2012 Mar;60(1):1-6
– reference: 24201125 - Phys Med Biol. 2013 Nov 21;58(22):R221-69
– reference: 24474497 - NMR Biomed. 2014 Apr;27(4):406-16
– reference: 27211260 - Magn Reson Imaging. 2016 Oct;34(8):1100-6
– reference: 24281951 - Magn Reson Med. 2014 Nov;72(5):1408-17
– reference: 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6
– reference: 26663561 - J Magn Reson Imaging. 2016 Jul;44(1):41-50
– reference: 20187174 - Magn Reson Med. 2010 Mar;63(3):625-32
– reference: 22270722 - Nat Med. 2012 Jan 22;18(2):302-6
– reference: 16351064 - J Am Chem Soc. 2005 Dec 21;127(50):17572-3
– reference: 23567889 - Neuroimage. 2013 Aug 15;77:114-24
– reference: 25615718 - NMR Biomed. 2015 Mar;28(3):376-83
– reference: 24857712 - Neuroimage. 2014 Oct 1;99:256-68
– reference: 18647117 - Annu Rev Biomed Eng. 2008;10:391-411
– reference: 23832090 - Nat Med. 2013 Aug;19(8):1067-72
– reference: 25788155 - NMR Biomed. 2015 May;28(5):529-37
– reference: 9525831 - J Neurooncol. 1998 Jan;36(1):91-102
– reference: 24395553 - NMR Biomed. 2014 Mar;27(3):240-52
– reference: 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50
– reference: 21337419 - Magn Reson Med. 2011 Apr;65(4):927-48
SSID ssj0000529419
Score 2.4711936
Snippet Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases...
Abstract Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms 101/6
59/57
631/1647/245/1628
692/308/2778
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEoRVETeLEj-PSbtVFLRLQSr1ZfrYrtdnS3ZW6P4N_zIyTXXUBlQu3xHHkJDOe-RzPfEPIe29lI1hgOTeygQWKUbk1luXRShm98tFVmJx89IUfnNSfT5vTW6W-MCasowfuPtxOWVeRAabghTR1dEpZH5syyMJxVcHwaH3B591aTHWs3pWqS9VnyRRM7kzBU2E2GRjlFHqfL9Y8USLs_xvK_DNY8rcd0-SI9h-Rhz2CpIPuyR-Te6F9Qu53NSUXT8nPr3PTpswxsGPU9XwANNx0Kb50ikyeSRx0lkBruKZbu8Pvx9v06NuITiI9uxhPLg3FiPgzOroEg0P38B-0weBzaEJ2ZI9IlQ68uUrDHGIFoHz6Y47ZTHRrtDccHG7TOE5B1c_Iyf7wePcg7-su5A7m7yznwhnl6gagCPeFdKauLPehgeOU9WFrA-tGaa3hVenq6KNwnFXRl67iDgDec7LRTtrwklCvnBXWelGWDLd48cQy7wBVBBGcyEi5lIF2PSk51sa40GlznEndyU2D3HSSm15k5MPqnquOkuPO3p9QtKueSKedGkDJdK9k-l9KlpF3S8XQMP1wT8W0YTKf6hK8CXLciSIjLzpFWQ0Fq1nBpOQZEWsqtPYs61fa8Xmi-G6wAopSGfm4VDbd25bpHe_66n-862vyoEqzhOWF2CQbs-t5eAPAa2bfpjn2CwJ7K_M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY99zuw0N9tCymdmWLcmPXpvShHawtYW-CX1mgdbu4gSWP2P_8U6yHchWCnuzZQlJvtPppLv7HUIfjOIFI5bEVPICDiiyjJVUJHaKc2dK43Tmg5PPvtKTy3xyVVxtoWyIhQlO-wHSMojpwTvscwsbjQ8GA5kaPOfj1QO046Hagbd3qmpyPlnfrHjbVZ6WfYRMQvgdjTd2oQDWf5eG-a-j5F_W0rAJHT9Bj3vtEVfdeJ-iLVs_Qw-7fJKr5-j3t6WsQ9QYyDCseywAbH914b249VMOpMCLoLDaOd4_HJ1fHOCz72PcODy9njU3Entv-Cke34CwwUf-_ll6x3Mo8sjIxmupuDLyNnRz6rP_xO3PpY9kwvvjo1F1eoDdLDhUv0CXx6OLw5O4z7kQa1i7i5gyLUsNv7UoqEm4lnmmqLEFPIeID5VLODNypSTNUp0745imJHMm1RnVoNy9RNt1U9vXCJtSK6aUYWlKvHnXvyhiNGgUllnNIpQONBC6ByT3eTGuRTCMEy46ugmgmwh0E6sIfVy3ue3gOO6t_cWTdl3TQ2mHgmY-FT1rwdkncwSUVppwmTtdlsq4IrU80bTMgL8j9H5gDAFLz9tTZG2bZStS2Ek8vh1LIvSqY5R1V3CSZYRzGiG2wUIbY9n8Us9-BHjvwmc_KcsIfRqYTfRypb1nrrv_V30PPcrCeiBxwt6g7cV8ad-CerVQ7_r19Adv9CMA
  priority: 102
  providerName: Springer Nature
Title Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting
URI https://link.springer.com/article/10.1038/s41598-017-00167-y
https://www.ncbi.nlm.nih.gov/pubmed/28273886
https://www.proquest.com/docview/1876492370
https://pubmed.ncbi.nlm.nih.gov/PMC5427899
https://doaj.org/article/142f3575608a4fc99bdf51e80c692cca
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9pAEF7lUKW-VL3rHmgr9SFR6xafu_tQVYQQBRSiNgkSb9ZepkjEJBxS-Bn9x51Z26i0NE_AYsuGmdn51jvfN4R8MIonLLKRn0qewAJFCl9JFfm54jw3wuQ6RHJy_zw9HcS9YTLcIXW7o-oPnG9d2mE_qcFs8vnudvUNAv5rSRnnX-aQhJAoBvOtq6r3V7tkHzITw44G_Qrul1rfoYgDUXFntp-K6sAc-SrIrv4jVTlF_20w9N9qyr-2VF2mOnlMHlUQk7ZKn3hCdmzxlDwom06unpFfP5aycNQymOiorgQDqL0rOcB0jlKfzl504VCtndGDdufy6pD2L7p0mtPRZDy9lhRL5ke0ew0zEj3Gh9QSq9NhCOWTDUJZ2jLyxl3mDFsE-fPbJdKd6EH3uNM6O6T52FVdPyeDk85V-9SvGjP4GgJ84adMS6HjBLBKappcyzhUqbEJvHe0EBVLWFhypWQaBjrOTc50GoW5CXSYakCAL8heMS3sK0KN0IopZVgQRLgHjB9UZDTADsusZh4JahtkulItx-YZk8ztnkc8K02YgQkzZ8Js5ZGP63NuSs2Oe48-QtOuj0S9bTcwnY2yKnxhgRTmESDbtMllnGshlMmTwPKmTkUIQeCR97VjZBCfuOkiCztdzrMA0g2K4LGmR16WjrK-VO1oHmEbLrRxL5vfFOOfTgM8wRYpQnjkU-1sWR079_zW1_-9hTfkYeiiIPKb7C3ZW8yW9h3ArYVqkF02ZA2y32r1LnvwetQ5_34Bo-203XCPMBouyn4DltIsiw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIkQviB2zDhJIraiF7bHH4wOHkKRKaFIJSKXehlnTSK1T4kSQn8Ff4JfyZuxEClSVOPRmO-Mlftv3_DaE3mjJspwYElLBMnBQRBFKIUloJWNWF9qqxBUnD49o7zj9dJKdbKHfq1oYn7TvW1p6Nb3KDntfgaFxxWCgU33mfLhsEikPzfIHuGnVh34HaPo2SQ66o3YvbCYJhAo4ch7SXIlCpRkYV6ojpkSaSKpNBtu-jkGmAjwhJqWgSaxSq22uKEmsjlVCFUAWuO4NdBOwPXWS06bt9XccFylL46Kpx4kIu-RRN2yeHw1wGZ79Ny3zr9isN3kHd9GdBqviVv127qEtU95Ht-rplcsH6NfnhSh9jRpoTKyazgPY_KyLiXHlXrAnPJ57eGxmeLfd_Traw8MvfTy1eHw2mZ4L7HLvx7h_DqoNd9zXbuHS3OGQ68OsHSbGLS0u_G0GbtZQWH1fuLopvNvvdFuDPWwnPn37ITq-Fro8QtvltDRPENaFkrmUOo9j4oLJbkcSrQC_mNyoPEDxigZcNe3P3RSOM-7D8ITxmm4c6MY93fgyQO_W51zUzT-uXP3RkXa90jXu9gemszFvGBk8rcQSgMg0YiK1qiiktllsWKRokYA0Bej1ijE4CLqL3ojSTBcVj8FuuW56eRSgxzWjrG8FfnNOGKMByjdYaONZNn8pJ6e-mXjmZq0URYD2V8zGGy1WXfFfn_7f8lfodm80HPBB_-jwGdpJvGyQMMqfo-35bGFeALCby5desjD6dt2i_AeqOV5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVCAuiB2zDhJIrcBge2zP-MAhNImadBHQVuptmDVEap0QJ4L8DP4Ev5M3YydSoKrEoTfbGS_x277ntyH0SkuWUWJImAuWgYMiilAKSUIrGbO60FYlrjj54DDfPUkHp9npBvq9rIXxSfu-paVX08vssPcVGBpXDAY61WfOh4t3E22bZMo9s_gBrlr1od8Bur5Okl73eGc3bKYJhAq4chbmVIlCpRkY2FxHTIk0kbk2GWz7WgaZCvCGmJQiT2KVWm2pyklidaySXAFsgeteQ5uA7-O0hTbb7cHRYPU1x8XL0rhoqnIiwi544DXL5wcEXIRq_03O_CtC6w1f7za61SBW3K7f0R20Ycq76Ho9w3JxD_36PBelr1QDvYlV038Am591STGu3Gv25MczD5LNFG_tdI-Ot_HBlz4eWzw8G43PBXYZ-EPcPwcFhzvum7dwye5wyHVj1g4Z47YWE3-bfTdxKKy-z131FN7qd7rt_W1sRz6J-z46uRLKPECtclyaRwjrQkkqpaZxTFxI2e1IohWgGEONogGKlzTgqmmC7mZxnHEfjCeM13TjQDfu6cYXAXqzOmdStwC5dPVHR9rVSte-2x8YT4e8YWfwtxJLACjnEROpVUUhtc1iwyKVFwnIVIBeLhmDg7i7GI4ozXhe8Risl-upR6MAPawZZXUr8J4pYSwPEF1jobVnWf-lHH3zLcUzN3GlKAL0dslsvNFl1SX_9fH_LX-Bbnzq9Ph-_3DvCbqZeNEgYUSfotZsOjfPAN3N5PNGtDD6etXS_Ad4EWDU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+chemical+exchange+saturation+transfer+%28CEST%29+MRI+of+glioma+using+Image+Downsampling+Expedited+Adaptive+Least-squares+%28IDEAL%29+fitting&rft.jtitle=Scientific+reports&rft.au=Zhou%2C+Iris+Yuwen&rft.au=Wang%2C+Enfeng&rft.au=Cheung%2C+Jerry+S&rft.au=Zhang%2C+Xiaoan&rft.date=2017-03-07&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=84&rft_id=info:doi/10.1038%2Fs41598-017-00167-y&rft_id=info%3Apmid%2F28273886&rft.externalDocID=28273886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon