Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting
Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image sig...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 84 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.03.2017
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for
in vivo
CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal. |
---|---|
AbstractList | Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal. Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal. Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal.Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and -1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal. Abstract Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases such as acute stroke and tumor. CEST quantification using multi-pool Lorentzian fitting is challenging due to its strong dependence on image signal-to-noise ratio (SNR), initial values and boundaries. Herein we proposed an Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting algorithm that quantifies CEST images based on initial values from multi-pool Lorentzian fitting of iteratively less downsampled images until the original resolution. The IDEAL fitting in phantom data with superimposed noise provided smaller coefficient of variation and higher contrast-to-noise ratio at a faster fitting speed compared to conventional fitting. We further applied the IDEAL fitting to quantify CEST MRI in rat gliomas and confirmed its advantage for in vivo CEST quantification. In addition to significant changes in amide proton transfer and semisolid macromolecular magnetization transfer effects, the IDEAL fitting revealed pronounced negative contrasts of tumors in the fitted CEST maps at 2 ppm and −1.6 ppm, likely arising from changes in creatine level and nuclear overhauser effects, which were not found using conventional method. It is anticipated that the proposed method can be generalized to quantify MRI data where SNR is suboptimal. |
ArticleNumber | 84 |
Author | Sun, Phillip Zhe Fulci, Giulia Zhang, Xiaoan Cheung, Jerry S. Wang, Enfeng Zhou, Iris Yuwen |
Author_xml | – sequence: 1 givenname: Iris Yuwen orcidid: 0000-0002-4351-7398 surname: Zhou fullname: Zhou, Iris Yuwen organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School – sequence: 2 givenname: Enfeng surname: Wang fullname: Wang, Enfeng organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University – sequence: 3 givenname: Jerry S. surname: Cheung fullname: Cheung, Jerry S. organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School – sequence: 4 givenname: Xiaoan surname: Zhang fullname: Zhang, Xiaoan organization: Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University – sequence: 5 givenname: Giulia surname: Fulci fullname: Fulci, Giulia organization: Molecular Neuro-oncology Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School – sequence: 6 givenname: Phillip Zhe orcidid: 0000-0003-4872-1192 surname: Sun fullname: Sun, Phillip Zhe email: pzhesun@mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28273886$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk9v0zAUj9AQG2NfgAPysTsEbCeOnQtS1RWoVISAcbZeHKd1ldid7Yz1Y_CNcdsxbRzmi5_e-_2x_H6vsxPrrM6ytwS_J7gQH0JJWC1yTHiOMal4vnuRnVFcspwWlJ48qk-zixA2OB1G65LUr7JTKigvhKjOsj_fR7DRRIjmViO11oNR0CN9p9ZgVxoFiKNPQ2dR9GBDpz2azOY_ry_R1x8L5Dq06o0bAI3B2BVaDJBIV-63DTBs-31rfrfVrYm6RdMWtgebpYYQ83AzgtcBTRZX8-nyEnUmxkR4k73soA_64v4-z359ml_PvuTLb58Xs-kyV4yLmFdcQa1KVjBWtVgoKGlTtZqlGtdcFE0JnBLRNFBRosqu7biqCtq1RNFKkao4zxZH3dbBRm69GcDvpAMjDw3nVxJ8NKrXkpS0KxhnFRZQdqqum7ZjRAusqpoqBUnr41FrOzaDbpW26bP6J6JPJ9as5crdSlZSLuo6CUzuBby7GXWIcjBB6b4Hq90YJBG8KmtacJyg7x57PZj822kC0CNAeReC190DhGC5z448Zkem7MhDduQukcR_JHUIhdu_1_TPU4sjNSSflBkvN270Nu3uOdZflv3a5Q |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120993 crossref_primary_10_1002_mrm_30460 crossref_primary_10_1002_nbm_4017 crossref_primary_10_1002_mrm_27370 crossref_primary_10_1002_nbm_4133 crossref_primary_10_1038_s41598_020_77576_z crossref_primary_10_1002_mrm_27690 crossref_primary_10_1002_mrm_29471 crossref_primary_10_1002_nbm_4176 crossref_primary_10_1515_nipt_2022_0012 crossref_primary_10_1002_mrm_28744 crossref_primary_10_1002_nbm_3920 crossref_primary_10_1038_s41598_024_72141_4 crossref_primary_10_1002_mrm_27937 crossref_primary_10_1088_1361_6560_ad9540 crossref_primary_10_1097_RLI_0000000000001145 crossref_primary_10_1002_mrm_27363 crossref_primary_10_1002_mrm_29223 crossref_primary_10_1002_mrm_28770 crossref_primary_10_3390_diagnostics13213326 crossref_primary_10_1002_nbm_4168 crossref_primary_10_1002_jmri_28832 crossref_primary_10_1002_mrm_30259 crossref_primary_10_1002_mrm_29187 crossref_primary_10_3389_fneur_2022_857825 crossref_primary_10_1002_mrm_28973 crossref_primary_10_1002_nbm_3834 crossref_primary_10_1002_mrm_26752 crossref_primary_10_1007_s10571_017_0552_7 crossref_primary_10_1002_jmri_26690 crossref_primary_10_1109_ACCESS_2020_3014339 crossref_primary_10_1002_mrm_26959 crossref_primary_10_1038_s41598_018_27839_7 crossref_primary_10_3390_jimaging10070166 crossref_primary_10_1002_mrm_30241 crossref_primary_10_1002_mrm_27111 crossref_primary_10_1002_mrm_27155 crossref_primary_10_1002_mrm_29211 crossref_primary_10_1007_s10916_023_01931_6 crossref_primary_10_1002_ijch_201700025 crossref_primary_10_1002_mrm_28040 crossref_primary_10_1021_acs_langmuir_0c01256 crossref_primary_10_1002_mrm_29570 crossref_primary_10_1016_j_jmr_2019_106648 crossref_primary_10_1002_mrm_28764 crossref_primary_10_1002_mrm_29896 crossref_primary_10_1002_mrm_26829 crossref_primary_10_1038_s41551_021_00809_7 crossref_primary_10_1002_mrm_30112 crossref_primary_10_1002_mrm_27385 crossref_primary_10_1016_j_ejrad_2019_07_021 crossref_primary_10_1002_mrm_29444 crossref_primary_10_1002_mrm_29440 crossref_primary_10_1002_mrm_27389 crossref_primary_10_1002_mrm_28676 crossref_primary_10_1002_mrm_28433 crossref_primary_10_1002_nbm_4626 crossref_primary_10_1002_mrm_28117 crossref_primary_10_1016_j_mri_2023_06_005 crossref_primary_10_1002_mrm_26817 crossref_primary_10_1016_j_mri_2023_10_009 |
Cites_doi | 10.1002/mrm.22761 10.1002/cmmi.1647 10.1021/ja053799t 10.1002/nbm.2899 10.1073/pnas.0605496103 10.1002/mrm.24315 10.1002/nbm.3075 10.1038/srep06081 10.1002/nbm.3283 10.1038/nm.2615 10.1016/j.neuroimage.2014.05.036 10.1002/mrm.24763 10.1002/mrm.22242 10.1007/s11060-009-9875-7 10.1002/mrm.23068 10.1002/mrm.21873 10.1161/STROKEAHA.110.595777 10.1073/pnas.1323855111 10.1002/mrm.24822 10.1146/annurev.bioeng.9.060906.151929 10.1006/jmre.1999.1956 10.1038/jcbfm.2011.23 10.1002/mrm.25053 10.1002/nbm.3054 10.1016/j.mri.2016.05.002 10.1038/sj.jcbfm.9600424 10.1007/s11307-015-0828-6 10.1002/cmmi.240 10.1038/nm907 10.1088/0031-9155/58/22/R221 10.1016/j.neuroimage.2013.03.047 10.1016/j.neuroimage.2015.02.040 10.1002/mrm.24520 10.1016/j.neuroimage.2011.11.091 10.1023/A:1005805203044 10.1002/nbm.1216 10.1021/ja5059313 10.1038/nm.3252 10.1002/nbm.3048 10.1002/mrm.25581 10.1002/jmri.22480 10.1016/j.jmr.2011.05.001 10.1002/mrm.10651 10.1002/nbm.3257 10.1016/j.neuroimage.2016.07.025 10.1002/mrm.20989 10.1002/mrm.26396 10.1007/s11307-016-0995-0 10.1002/nbm.1729 10.1002/nbm.3216 10.1002/jmri.25108 10.1002/mrm.26131 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 |
Copyright_xml | – notice: The Author(s) 2017 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1038/s41598-017-00167-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_142f3575608a4fc99bdf51e80c692cca PMC5427899 28273886 10_1038_s41598_017_00167_y |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS085574 – fundername: NICHD NIH HHS grantid: U01 HD087211 – fundername: NINDS NIH HHS grantid: R01 NS083654 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c578t-67ca9c453556d08ca42b6de5d0809783b4a7218bba621c4fdf7c632fd1c26c163 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 00:58:06 EDT 2025 Thu Aug 21 14:31:51 EDT 2025 Fri Jul 11 03:21:45 EDT 2025 Thu Apr 03 06:57:31 EDT 2025 Tue Jul 01 04:02:49 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Fri Feb 21 02:39:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c578t-67ca9c453556d08ca42b6de5d0809783b4a7218bba621c4fdf7c632fd1c26c163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4872-1192 0000-0002-4351-7398 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-00167-y |
PMID | 28273886 |
PQID | 1876492370 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_142f3575608a4fc99bdf51e80c692cca pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427899 proquest_miscellaneous_1876492370 pubmed_primary_28273886 crossref_primary_10_1038_s41598_017_00167_y crossref_citationtrail_10_1038_s41598_017_00167_y springer_journals_10_1038_s41598_017_00167_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-07 |
PublicationDateYYYYMMDD | 2017-03-07 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Xu (CR40) 2014; 27 Jones (CR32) 2013; 77 Zhang, Malloy, Sherry (CR8) 2005; 127 Jia (CR16) 2011; 33 Xu (CR17) 2014; 27 Zhang (CR54) 2016; 34 Jones (CR37) 2006; 56 Dixon (CR46) 2010; 63 Walker-Samuel (CR5) 2013; 19 Wu, Xiao, Zhou, Ran, Sun (CR47) 2015; 28 Zaiss, Bachert (CR30) 2013; 58 Cai (CR7) 2012; 18 Moon (CR34) 2015; 10 Desmond, Moosvi, Stanisz (CR33) 2014; 71 Haris (CR21) 2014; 4 Cai (CR4) 2015; 28 Sun, Cheung, Wang, Lo (CR14) 2011; 31 Sherry, Woods (CR1) 2008; 10 Yoo (CR26) 2014; 71 Barth, Kaur (CR48) 2009; 94 Heo, Zhang, Lee, Hong, Zhou (CR28) 2016; 75 Chan (CR6) 2012; 68 CR44 CR43 CR41 Zaiss, Schmitt, Bachert (CR29) 2011; 211 Yan (CR39) 2015; 17 Fulci (CR50) 2006; 103 Heo (CR27) 2015 Windschuh (CR25) 2015; 28 Barth (CR49) 1998; 36 Sun, Zhou, Sun, Huang, van Zijl (CR12) 2007; 27 Liu, Song, Chan, McMahon (CR31) 2013; 26 Sun, Wang, Cheung (CR10) 2012; 60 van Zijl, Yadav (CR2) 2011; 65 Sagiyama (CR20) 2014; 111 Tietze (CR13) 2014; 27 CR51 Zaiss (CR24) 2015; 112 Kim, Gillen, Landman, Zhou, van Zijl (CR53) 2009; 61 Zhou, Lal, Wilson, Laterra, van Zijl (CR36) 2003; 50 Sun, Benner, Copen, Sorensen (CR23) 2010; 41 Stancanello (CR52) 2008; 3 Desmond, Moosvi, Stanisz (CR18) 2014; 71 Scheidegger, Wong, Alsop (CR42) 2014; 99 Guo (CR11) 2016; 141 Salhotra (CR38) 2008; 21 Jin, Wang, Zong, Kim (CR22) 2013; 69 Sun (CR45) 2012; 67 Longo (CR35) 2014; 136 Ward, Aletras, Balaban (CR3) 2000; 143 Chen (CR19) 2014; 72 Zhou, Payen, Wilson, Traystman, van Zijl (CR9) 2003; 9 Zaiss (CR15) 2014; 27 A Salhotra (167_CR38) 2008; 21 CK Jones (167_CR32) 2013; 77 S Zhang (167_CR8) 2005; 127 A Tietze (167_CR13) 2014; 27 LQ Chen (167_CR19) 2014; 72 CK Jones (167_CR37) 2006; 56 J Stancanello (167_CR52) 2008; 3 J Windschuh (167_CR25) 2015; 28 RF Barth (167_CR48) 2009; 94 J Xu (167_CR17) 2014; 27 M Kim (167_CR53) 2009; 61 KW Chan (167_CR6) 2012; 68 WT Dixon (167_CR46) 2010; 63 K Cai (167_CR4) 2015; 28 PC van Zijl (167_CR2) 2011; 65 K Sagiyama (167_CR20) 2014; 111 XY Zhang (167_CR54) 2016; 34 HY Heo (167_CR27) 2015 J Zhou (167_CR36) 2003; 50 R Scheidegger (167_CR42) 2014; 99 BF Moon (167_CR34) 2015; 10 HY Heo (167_CR28) 2016; 75 M Zaiss (167_CR29) 2011; 211 167_CR44 167_CR43 167_CR41 RF Barth (167_CR49) 1998; 36 M Zaiss (167_CR24) 2015; 112 PZ Sun (167_CR14) 2011; 31 PZ Sun (167_CR23) 2010; 41 B Yoo (167_CR26) 2014; 71 M Zaiss (167_CR30) 2013; 58 K Cai (167_CR7) 2012; 18 KL Desmond (167_CR33) 2014; 71 G Jia (167_CR16) 2011; 33 KL Desmond (167_CR18) 2014; 71 PZ Sun (167_CR12) 2007; 27 KM Ward (167_CR3) 2000; 143 K Yan (167_CR39) 2015; 17 S Walker-Samuel (167_CR5) 2013; 19 M Zaiss (167_CR15) 2014; 27 M Haris (167_CR21) 2014; 4 167_CR51 DL Longo (167_CR35) 2014; 136 G Fulci (167_CR50) 2006; 103 AD Sherry (167_CR1) 2008; 10 PZ Sun (167_CR45) 2012; 67 T Jin (167_CR22) 2013; 69 R Wu (167_CR47) 2015; 28 PZ Sun (167_CR10) 2012; 60 J Xu (167_CR40) 2014; 27 J Zhou (167_CR9) 2003; 9 G Liu (167_CR31) 2013; 26 Y Guo (167_CR11) 2016; 141 10698648 - J Magn Reson. 2000 Mar;143(1):79-87 23640714 - Magn Reson Med. 2014 Mar;71(3):1221-30 21563248 - J Magn Reson Imaging. 2011 Mar;33(3):647-54 17133226 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1129-36 24201125 - Phys Med Biol. 2013 Nov 21;58(22):R221-69 24616497 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12 ):4542-7 16351064 - J Am Chem Soc. 2005 Dec 21;127(50):17572-3 24395553 - NMR Biomed. 2014 Mar;27(3):240-52 18647117 - Annu Rev Biomed Eng. 2008;10:391-411 25615718 - NMR Biomed. 2015 Mar;28(3):376-83 21337419 - Magn Reson Med. 2011 Apr;65(4):927-48 21386856 - J Cereb Blood Flow Metab. 2011 Aug;31(8):1743-50 23567889 - Neuroimage. 2013 Aug 15;77:114-24 24281951 - Magn Reson Med. 2014 Nov;72(5):1408-17 25124082 - Sci Rep. 2014 Aug 15;4:6081 17924591 - NMR Biomed. 2008 Jun;21(5):489-97 26108564 - Contrast Media Mol Imaging. 2015 Nov-Dec;10 (6):446-55 21755552 - NMR Biomed. 2012 Feb;25(2):189-94 25727379 - Neuroimage. 2015 May 15;112:180-8 25753614 - Magn Reson Med. 2016 Jan;75(1):137-49 12872167 - Nat Med. 2003 Aug;9(8):1085-90 25238643 - J Am Chem Soc. 2014 Oct 15;136(41):14333-6 21641247 - J Magn Reson. 2011 Aug;211(2):149-55 24474497 - NMR Biomed. 2014 Apr;27(4):406-16 23303716 - NMR Biomed. 2013 Jul;26(7):810-28 22270722 - Nat Med. 2012 Jan 22;18(2):302-6 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6 23074027 - Magn Reson Med. 2012 Dec;68(6):1764-73 22577042 - Magn Reson Med. 2013 Mar 1;69(3):760-70 16908838 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12873-8 21842497 - Magn Reson Med. 2012 Apr;67(4):936-42 20187174 - Magn Reson Med. 2010 Mar;63(3):625-32 25295758 - NMR Biomed. 2015 Jan;28(1):1-8 27604612 - Magn Reson Med. 2016 Sep 8 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50 27444569 - Neuroimage. 2016 Nov 1;141:242-9 27541025 - Mol Imaging Biol. 2017 Apr;19(2):225-232 25622812 - Mol Imaging Biol. 2015 Aug;17(4):479-87 26841096 - Magn Reson Med. 2017 Feb;77(2):855-863 26663561 - J Magn Reson Imaging. 2016 Jul;44(1):41-50 22178815 - Neuroimage. 2012 Mar;60(1):1-6 9525831 - J Neurooncol. 1998 Jan;36(1):91-102 19381449 - J Neurooncol. 2009 Sep;94(3):299-312 27211260 - Magn Reson Imaging. 2016 Oct;34(8):1100-6 24857712 - Neuroimage. 2014 Oct 1;99:256-68 25788155 - NMR Biomed. 2015 May;28(5):529-37 20876492 - Stroke. 2010 Oct;41(10 Suppl):S147-51 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92 23801344 - Magn Reson Med. 2014 May;71(5):1841-53 18683280 - Contrast Media Mol Imaging. 2008 Jul-Aug;3(4):136-49 23832090 - Nat Med. 2013 Aug;19(8):1067-72 24288260 - NMR Biomed. 2014 Feb;27(2):163-74 |
References_xml | – volume: 65 start-page: 927 year: 2011 end-page: 948 ident: CR2 article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.22761 – volume: 10 start-page: 446 year: 2015 end-page: 455 ident: CR34 article-title: A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH publication-title: Contrast media & molecular imaging doi: 10.1002/cmmi.1647 – volume: 127 start-page: 17572 year: 2005 end-page: 17573 ident: CR8 article-title: MRI thermometry based on PARACEST agents publication-title: Journal of the American Chemical Society doi: 10.1021/ja053799t – volume: 26 start-page: 810 year: 2013 end-page: 828 ident: CR31 article-title: Nuts and bolts of chemical exchange saturation transfer MRI publication-title: NMR in biomedicine doi: 10.1002/nbm.2899 – volume: 103 start-page: 12873 year: 2006 end-page: 12878 ident: CR50 article-title: Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605496103 – volume: 69 start-page: 760 year: 2013 end-page: 770 ident: CR22 article-title: MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24315 – volume: 27 start-page: 406 year: 2014 end-page: 416 ident: CR17 article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T publication-title: NMR in biomedicine doi: 10.1002/nbm.3075 – volume: 4 start-page: 6081 year: 2014 ident: CR21 article-title: Magnetic Resonance Imaging of Tumor Protease Activity publication-title: Sci Rep doi: 10.1038/srep06081 – volume: 28 start-page: 529 year: 2015 end-page: 537 ident: CR25 article-title: Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T publication-title: NMR in biomedicine doi: 10.1002/nbm.3283 – ident: CR51 – volume: 28 start-page: 1 year: 2015 end-page: 8 ident: CR4 article-title: CEST signal at 2 ppm (CEST@2 ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor publication-title: NMR in biomedicine – volume: 18 start-page: 302 year: 2012 end-page: 306 ident: CR7 article-title: Magnetic resonance imaging of glutamate publication-title: Nature medicine doi: 10.1038/nm.2615 – volume: 99 start-page: 256 year: 2014 end-page: 268 ident: CR42 article-title: Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.036 – volume: 71 start-page: 1221 year: 2014 end-page: 1230 ident: CR26 article-title: Detection of enzyme activity with CatalyCEST MRI publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.24763 – volume: 63 start-page: 625 year: 2010 end-page: 632 ident: CR46 article-title: A concentration-independent method to measure exchange rates in PARACEST agents publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.22242 – volume: 94 start-page: 299 year: 2009 end-page: 312 ident: CR48 article-title: Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas publication-title: Journal of neuro-oncology doi: 10.1007/s11060-009-9875-7 – volume: 67 start-page: 936 year: 2012 end-page: 942 ident: CR45 article-title: Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.23068 – volume: 61 start-page: 1441 year: 2009 end-page: 1450 ident: CR53 article-title: Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.21873 – volume: 41 start-page: S147 year: 2010 end-page: 151 ident: CR23 article-title: Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla publication-title: Stroke doi: 10.1161/STROKEAHA.110.595777 – volume: 111 start-page: 4542 year: 2014 end-page: 4547 ident: CR20 article-title: chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1323855111 – volume: 27 start-page: 406 year: 2014 end-page: 416 ident: CR40 article-title: On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T publication-title: NMR in biomedicine doi: 10.1002/nbm.3075 – volume: 71 start-page: 1841 year: 2014 end-page: 1853 ident: CR18 article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24822 – volume: 10 start-page: 391 year: 2008 end-page: 411 ident: CR1 article-title: Chemical exchange saturation transfer contrast agents for magnetic resonance imaging publication-title: Annual review of biomedical engineering doi: 10.1146/annurev.bioeng.9.060906.151929 – year: 2015 ident: CR27 article-title: Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T publication-title: J Magn Reson Imaging – volume: 143 start-page: 79 year: 2000 end-page: 87 ident: CR3 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: Journal of magnetic resonance doi: 10.1006/jmre.1999.1956 – volume: 31 start-page: 1743 year: 2011 end-page: 1750 ident: CR14 article-title: Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1038/jcbfm.2011.23 – volume: 72 start-page: 1408 year: 2014 end-page: 1417 ident: CR19 article-title: Evaluations of extracellular pH within tumors using acidoCEST MRI publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.25053 – volume: 71 start-page: 1841 year: 2014 end-page: 1853 ident: CR33 article-title: Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24822 – volume: 27 start-page: 240 year: 2014 end-page: 252 ident: CR15 article-title: Inverse Z-spectrum analysis for spillover-, MT-, and T1 -corrected steady-state pulsed CEST-MRI–application to pH-weighted MRI of acute stroke publication-title: NMR in biomedicine doi: 10.1002/nbm.3054 – volume: 34 start-page: 1100 year: 2016 end-page: 1106 ident: CR54 article-title: A new NOE-mediated MT signal at around -1.6 ppm for detecting ischemic stroke in rat brain publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2016.05.002 – volume: 27 start-page: 1129 year: 2007 end-page: 1136 ident: CR12 article-title: Detection of the ischemic penumbra using pH-weighted MRI publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1038/sj.jcbfm.9600424 – volume: 17 start-page: 479 year: 2015 end-page: 487 ident: CR39 article-title: Assessing Amide Proton Transfer (APT) MRI Contrast Origins in 9 L Gliosarcoma in the Rat Brain Using Proteomic Analysis publication-title: Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging doi: 10.1007/s11307-015-0828-6 – volume: 3 start-page: 136 year: 2008 end-page: 149 ident: CR52 article-title: Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images publication-title: Contrast media & molecular imaging doi: 10.1002/cmmi.240 – volume: 9 start-page: 1085 year: 2003 end-page: 1090 ident: CR9 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nature medicine doi: 10.1038/nm907 – ident: CR43 – volume: 58 start-page: R221 year: 2013 end-page: 269 ident: CR30 article-title: Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy : a review of theoretical approaches and methods publication-title: Physics in medicine and biology doi: 10.1088/0031-9155/58/22/R221 – volume: 77 start-page: 114 year: 2013 end-page: 124 ident: CR32 article-title: Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.047 – volume: 112 start-page: 180 year: 2015 end-page: 188 ident: CR24 article-title: Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.040 – volume: 68 start-page: 1764 year: 2012 end-page: 1773 ident: CR6 article-title: Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24520 – volume: 60 start-page: 1 year: 2012 end-page: 6 ident: CR10 article-title: Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI–correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.091 – volume: 36 start-page: 91 year: 1998 end-page: 102 ident: CR49 article-title: Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas publication-title: Journal of neuro-oncology doi: 10.1023/A:1005805203044 – volume: 21 start-page: 489 year: 2008 end-page: 497 ident: CR38 article-title: Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts publication-title: NMR in biomedicine doi: 10.1002/nbm.1216 – ident: CR44 – volume: 136 start-page: 14333 year: 2014 end-page: 14336 ident: CR35 article-title: A general MRI-CEST ratiometric approach for pH imaging: demonstration of pH mapping with iobitridol publication-title: Journal of the American Chemical Society doi: 10.1021/ja5059313 – volume: 19 start-page: 1067 year: 2013 end-page: 1072 ident: CR5 article-title: imaging of glucose uptake and metabolism in tumors publication-title: Nature medicine doi: 10.1038/nm.3252 – volume: 27 start-page: 163 year: 2014 end-page: 174 ident: CR13 article-title: Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI publication-title: NMR in biomedicine doi: 10.1002/nbm.3048 – volume: 75 start-page: 137 year: 2016 end-page: 149 ident: CR28 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.25581 – volume: 33 start-page: 647 year: 2011 end-page: 654 ident: CR16 article-title: Amide proton transfer MR imaging of prostate cancer: A preliminary study publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22480 – volume: 211 start-page: 149 year: 2011 end-page: 155 ident: CR29 article-title: Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra publication-title: Journal of magnetic resonance doi: 10.1016/j.jmr.2011.05.001 – volume: 50 start-page: 1120 year: 2003 end-page: 1126 ident: CR36 article-title: Amide proton transfer (APT) contrast for imaging of brain tumors publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.10651 – volume: 28 start-page: 376 year: 2015 end-page: 383 ident: CR47 article-title: Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate publication-title: NMR in biomedicine doi: 10.1002/nbm.3257 – volume: 141 start-page: 242 year: 2016 end-page: 249 ident: CR11 article-title: pH-sensitive MRI demarcates graded tissue acidification during acute stroke - pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.025 – ident: CR41 – volume: 56 start-page: 585 year: 2006 end-page: 592 ident: CR37 article-title: Amide proton transfer imaging of human brain tumors at 3T publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.20989 – volume: 112 start-page: 180 year: 2015 ident: 167_CR24 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.040 – volume: 31 start-page: 1743 year: 2011 ident: 167_CR14 publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1038/jcbfm.2011.23 – volume: 36 start-page: 91 year: 1998 ident: 167_CR49 publication-title: Journal of neuro-oncology doi: 10.1023/A:1005805203044 – volume: 10 start-page: 391 year: 2008 ident: 167_CR1 publication-title: Annual review of biomedical engineering doi: 10.1146/annurev.bioeng.9.060906.151929 – volume: 60 start-page: 1 year: 2012 ident: 167_CR10 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.091 – volume: 71 start-page: 1841 year: 2014 ident: 167_CR33 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24822 – ident: 167_CR44 doi: 10.1002/mrm.26396 – volume: 111 start-page: 4542 year: 2014 ident: 167_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1323855111 – volume: 71 start-page: 1221 year: 2014 ident: 167_CR26 publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.24763 – volume: 41 start-page: S147 year: 2010 ident: 167_CR23 publication-title: Stroke doi: 10.1161/STROKEAHA.110.595777 – volume: 75 start-page: 137 year: 2016 ident: 167_CR28 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.25581 – volume: 26 start-page: 810 year: 2013 ident: 167_CR31 publication-title: NMR in biomedicine doi: 10.1002/nbm.2899 – volume: 21 start-page: 489 year: 2008 ident: 167_CR38 publication-title: NMR in biomedicine doi: 10.1002/nbm.1216 – volume: 27 start-page: 406 year: 2014 ident: 167_CR40 publication-title: NMR in biomedicine doi: 10.1002/nbm.3075 – volume: 27 start-page: 1129 year: 2007 ident: 167_CR12 publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism doi: 10.1038/sj.jcbfm.9600424 – ident: 167_CR43 doi: 10.1007/s11307-016-0995-0 – volume: 77 start-page: 114 year: 2013 ident: 167_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.047 – volume: 69 start-page: 760 year: 2013 ident: 167_CR22 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24315 – volume: 61 start-page: 1441 year: 2009 ident: 167_CR53 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.21873 – volume: 65 start-page: 927 year: 2011 ident: 167_CR2 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.22761 – volume: 72 start-page: 1408 year: 2014 ident: 167_CR19 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.25053 – ident: 167_CR51 doi: 10.1002/nbm.1729 – volume: 50 start-page: 1120 year: 2003 ident: 167_CR36 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.10651 – volume: 71 start-page: 1841 year: 2014 ident: 167_CR18 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24822 – volume: 211 start-page: 149 year: 2011 ident: 167_CR29 publication-title: Journal of magnetic resonance doi: 10.1016/j.jmr.2011.05.001 – volume: 68 start-page: 1764 year: 2012 ident: 167_CR6 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.24520 – volume: 28 start-page: 529 year: 2015 ident: 167_CR25 publication-title: NMR in biomedicine doi: 10.1002/nbm.3283 – volume: 27 start-page: 240 year: 2014 ident: 167_CR15 publication-title: NMR in biomedicine doi: 10.1002/nbm.3054 – volume: 28 start-page: 1 year: 2015 ident: 167_CR4 publication-title: NMR in biomedicine doi: 10.1002/nbm.3216 – volume: 27 start-page: 163 year: 2014 ident: 167_CR13 publication-title: NMR in biomedicine doi: 10.1002/nbm.3048 – volume: 103 start-page: 12873 year: 2006 ident: 167_CR50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605496103 – volume: 3 start-page: 136 year: 2008 ident: 167_CR52 publication-title: Contrast media & molecular imaging doi: 10.1002/cmmi.240 – volume: 94 start-page: 299 year: 2009 ident: 167_CR48 publication-title: Journal of neuro-oncology doi: 10.1007/s11060-009-9875-7 – volume: 143 start-page: 79 year: 2000 ident: 167_CR3 publication-title: Journal of magnetic resonance doi: 10.1006/jmre.1999.1956 – volume: 33 start-page: 647 year: 2011 ident: 167_CR16 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22480 – volume: 19 start-page: 1067 year: 2013 ident: 167_CR5 publication-title: Nature medicine doi: 10.1038/nm.3252 – volume: 9 start-page: 1085 year: 2003 ident: 167_CR9 publication-title: Nature medicine doi: 10.1038/nm907 – volume: 28 start-page: 376 year: 2015 ident: 167_CR47 publication-title: NMR in biomedicine doi: 10.1002/nbm.3257 – volume: 67 start-page: 936 year: 2012 ident: 167_CR45 publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.23068 – volume: 63 start-page: 625 year: 2010 ident: 167_CR46 publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.22242 – volume: 4 start-page: 6081 year: 2014 ident: 167_CR21 publication-title: Sci Rep doi: 10.1038/srep06081 – volume: 141 start-page: 242 year: 2016 ident: 167_CR11 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.025 – volume: 56 start-page: 585 year: 2006 ident: 167_CR37 publication-title: Magnetic resonance in medicine doi: 10.1002/mrm.20989 – volume: 58 start-page: R221 year: 2013 ident: 167_CR30 publication-title: Physics in medicine and biology doi: 10.1088/0031-9155/58/22/R221 – volume: 27 start-page: 406 year: 2014 ident: 167_CR17 publication-title: NMR in biomedicine doi: 10.1002/nbm.3075 – volume: 136 start-page: 14333 year: 2014 ident: 167_CR35 publication-title: Journal of the American Chemical Society doi: 10.1021/ja5059313 – volume: 99 start-page: 256 year: 2014 ident: 167_CR42 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.036 – volume: 34 start-page: 1100 year: 2016 ident: 167_CR54 publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2016.05.002 – year: 2015 ident: 167_CR27 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25108 – volume: 127 start-page: 17572 year: 2005 ident: 167_CR8 publication-title: Journal of the American Chemical Society doi: 10.1021/ja053799t – volume: 18 start-page: 302 year: 2012 ident: 167_CR7 publication-title: Nature medicine doi: 10.1038/nm.2615 – volume: 10 start-page: 446 year: 2015 ident: 167_CR34 publication-title: Contrast media & molecular imaging doi: 10.1002/cmmi.1647 – volume: 17 start-page: 479 year: 2015 ident: 167_CR39 publication-title: Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging doi: 10.1007/s11307-015-0828-6 – ident: 167_CR41 doi: 10.1002/mrm.26131 – reference: 21563248 - J Magn Reson Imaging. 2011 Mar;33(3):647-54 – reference: 20876492 - Stroke. 2010 Oct;41(10 Suppl):S147-51 – reference: 26841096 - Magn Reson Med. 2017 Feb;77(2):855-863 – reference: 12872167 - Nat Med. 2003 Aug;9(8):1085-90 – reference: 21386856 - J Cereb Blood Flow Metab. 2011 Aug;31(8):1743-50 – reference: 19381449 - J Neurooncol. 2009 Sep;94(3):299-312 – reference: 25295758 - NMR Biomed. 2015 Jan;28(1):1-8 – reference: 25622812 - Mol Imaging Biol. 2015 Aug;17(4):479-87 – reference: 26108564 - Contrast Media Mol Imaging. 2015 Nov-Dec;10 (6):446-55 – reference: 21755552 - NMR Biomed. 2012 Feb;25(2):189-94 – reference: 16908838 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12873-8 – reference: 25124082 - Sci Rep. 2014 Aug 15;4:6081 – reference: 17133226 - J Cereb Blood Flow Metab. 2007 Jun;27(6):1129-36 – reference: 27444569 - Neuroimage. 2016 Nov 1;141:242-9 – reference: 25727379 - Neuroimage. 2015 May 15;112:180-8 – reference: 16892186 - Magn Reson Med. 2006 Sep;56(3):585-92 – reference: 23801344 - Magn Reson Med. 2014 May;71(5):1841-53 – reference: 25238643 - J Am Chem Soc. 2014 Oct 15;136(41):14333-6 – reference: 27604612 - Magn Reson Med. 2016 Sep 8;: – reference: 23303716 - NMR Biomed. 2013 Jul;26(7):810-28 – reference: 27541025 - Mol Imaging Biol. 2017 Apr;19(2):225-232 – reference: 17924591 - NMR Biomed. 2008 Jun;21(5):489-97 – reference: 10698648 - J Magn Reson. 2000 Mar;143(1):79-87 – reference: 25753614 - Magn Reson Med. 2016 Jan;75(1):137-49 – reference: 24616497 - Proc Natl Acad Sci U S A. 2014 Mar 25;111(12 ):4542-7 – reference: 23640714 - Magn Reson Med. 2014 Mar;71(3):1221-30 – reference: 21842497 - Magn Reson Med. 2012 Apr;67(4):936-42 – reference: 24288260 - NMR Biomed. 2014 Feb;27(2):163-74 – reference: 18683280 - Contrast Media Mol Imaging. 2008 Jul-Aug;3(4):136-49 – reference: 23074027 - Magn Reson Med. 2012 Dec;68(6):1764-73 – reference: 22577042 - Magn Reson Med. 2013 Mar 1;69(3):760-70 – reference: 21641247 - J Magn Reson. 2011 Aug;211(2):149-55 – reference: 22178815 - Neuroimage. 2012 Mar;60(1):1-6 – reference: 24201125 - Phys Med Biol. 2013 Nov 21;58(22):R221-69 – reference: 24474497 - NMR Biomed. 2014 Apr;27(4):406-16 – reference: 27211260 - Magn Reson Imaging. 2016 Oct;34(8):1100-6 – reference: 24281951 - Magn Reson Med. 2014 Nov;72(5):1408-17 – reference: 14648559 - Magn Reson Med. 2003 Dec;50(6):1120-6 – reference: 26663561 - J Magn Reson Imaging. 2016 Jul;44(1):41-50 – reference: 20187174 - Magn Reson Med. 2010 Mar;63(3):625-32 – reference: 22270722 - Nat Med. 2012 Jan 22;18(2):302-6 – reference: 16351064 - J Am Chem Soc. 2005 Dec 21;127(50):17572-3 – reference: 23567889 - Neuroimage. 2013 Aug 15;77:114-24 – reference: 25615718 - NMR Biomed. 2015 Mar;28(3):376-83 – reference: 24857712 - Neuroimage. 2014 Oct 1;99:256-68 – reference: 18647117 - Annu Rev Biomed Eng. 2008;10:391-411 – reference: 23832090 - Nat Med. 2013 Aug;19(8):1067-72 – reference: 25788155 - NMR Biomed. 2015 May;28(5):529-37 – reference: 9525831 - J Neurooncol. 1998 Jan;36(1):91-102 – reference: 24395553 - NMR Biomed. 2014 Mar;27(3):240-52 – reference: 19358232 - Magn Reson Med. 2009 Jun;61(6):1441-50 – reference: 21337419 - Magn Reson Med. 2011 Apr;65(4):927-48 |
SSID | ssj0000529419 |
Score | 2.4711936 |
Snippet | Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in diseases... Abstract Chemical Exchange Saturation Transfer (CEST) MRI is sensitive to dilute metabolites with exchangeable protons, allowing tissue characterization in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 84 |
SubjectTerms | 101/6 59/57 631/1647/245/1628 692/308/2778 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEoRVETeLEj-PSbtVFLRLQSr1ZfrYrtdnS3ZW6P4N_zIyTXXUBlQu3xHHkJDOe-RzPfEPIe29lI1hgOTeygQWKUbk1luXRShm98tFVmJx89IUfnNSfT5vTW6W-MCasowfuPtxOWVeRAabghTR1dEpZH5syyMJxVcHwaH3B591aTHWs3pWqS9VnyRRM7kzBU2E2GRjlFHqfL9Y8USLs_xvK_DNY8rcd0-SI9h-Rhz2CpIPuyR-Te6F9Qu53NSUXT8nPr3PTpswxsGPU9XwANNx0Kb50ikyeSRx0lkBruKZbu8Pvx9v06NuITiI9uxhPLg3FiPgzOroEg0P38B-0weBzaEJ2ZI9IlQ68uUrDHGIFoHz6Y47ZTHRrtDccHG7TOE5B1c_Iyf7wePcg7-su5A7m7yznwhnl6gagCPeFdKauLPehgeOU9WFrA-tGaa3hVenq6KNwnFXRl67iDgDec7LRTtrwklCvnBXWelGWDLd48cQy7wBVBBGcyEi5lIF2PSk51sa40GlznEndyU2D3HSSm15k5MPqnquOkuPO3p9QtKueSKedGkDJdK9k-l9KlpF3S8XQMP1wT8W0YTKf6hK8CXLciSIjLzpFWQ0Fq1nBpOQZEWsqtPYs61fa8Xmi-G6wAopSGfm4VDbd25bpHe_66n-862vyoEqzhOWF2CQbs-t5eAPAa2bfpjn2CwJ7K_M priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY99zuw0N9tCymdmWLcmPXpvShHawtYW-CX1mgdbu4gSWP2P_8U6yHchWCnuzZQlJvtPppLv7HUIfjOIFI5bEVPICDiiyjJVUJHaKc2dK43Tmg5PPvtKTy3xyVVxtoWyIhQlO-wHSMojpwTvscwsbjQ8GA5kaPOfj1QO046Hagbd3qmpyPlnfrHjbVZ6WfYRMQvgdjTd2oQDWf5eG-a-j5F_W0rAJHT9Bj3vtEVfdeJ-iLVs_Qw-7fJKr5-j3t6WsQ9QYyDCseywAbH914b249VMOpMCLoLDaOd4_HJ1fHOCz72PcODy9njU3Entv-Cke34CwwUf-_ll6x3Mo8sjIxmupuDLyNnRz6rP_xO3PpY9kwvvjo1F1eoDdLDhUv0CXx6OLw5O4z7kQa1i7i5gyLUsNv7UoqEm4lnmmqLEFPIeID5VLODNypSTNUp0745imJHMm1RnVoNy9RNt1U9vXCJtSK6aUYWlKvHnXvyhiNGgUllnNIpQONBC6ByT3eTGuRTCMEy46ugmgmwh0E6sIfVy3ue3gOO6t_cWTdl3TQ2mHgmY-FT1rwdkncwSUVppwmTtdlsq4IrU80bTMgL8j9H5gDAFLz9tTZG2bZStS2Ek8vh1LIvSqY5R1V3CSZYRzGiG2wUIbY9n8Us9-BHjvwmc_KcsIfRqYTfRypb1nrrv_V30PPcrCeiBxwt6g7cV8ad-CerVQ7_r19Adv9CMA priority: 102 providerName: Springer Nature |
Title | Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting |
URI | https://link.springer.com/article/10.1038/s41598-017-00167-y https://www.ncbi.nlm.nih.gov/pubmed/28273886 https://www.proquest.com/docview/1876492370 https://pubmed.ncbi.nlm.nih.gov/PMC5427899 https://doaj.org/article/142f3575608a4fc99bdf51e80c692cca |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9pAEF7lUKW-VL3rHmgr9SFR6xafu_tQVYQQBRSiNgkSb9ZepkjEJBxS-Bn9x51Z26i0NE_AYsuGmdn51jvfN4R8MIonLLKRn0qewAJFCl9JFfm54jw3wuQ6RHJy_zw9HcS9YTLcIXW7o-oPnG9d2mE_qcFs8vnudvUNAv5rSRnnX-aQhJAoBvOtq6r3V7tkHzITw44G_Qrul1rfoYgDUXFntp-K6sAc-SrIrv4jVTlF_20w9N9qyr-2VF2mOnlMHlUQk7ZKn3hCdmzxlDwom06unpFfP5aycNQymOiorgQDqL0rOcB0jlKfzl504VCtndGDdufy6pD2L7p0mtPRZDy9lhRL5ke0ew0zEj3Gh9QSq9NhCOWTDUJZ2jLyxl3mDFsE-fPbJdKd6EH3uNM6O6T52FVdPyeDk85V-9SvGjP4GgJ84adMS6HjBLBKappcyzhUqbEJvHe0EBVLWFhypWQaBjrOTc50GoW5CXSYakCAL8heMS3sK0KN0IopZVgQRLgHjB9UZDTADsusZh4JahtkulItx-YZk8ztnkc8K02YgQkzZ8Js5ZGP63NuSs2Oe48-QtOuj0S9bTcwnY2yKnxhgRTmESDbtMllnGshlMmTwPKmTkUIQeCR97VjZBCfuOkiCztdzrMA0g2K4LGmR16WjrK-VO1oHmEbLrRxL5vfFOOfTgM8wRYpQnjkU-1sWR079_zW1_-9hTfkYeiiIPKb7C3ZW8yW9h3ArYVqkF02ZA2y32r1LnvwetQ5_34Bo-203XCPMBouyn4DltIsiw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VIkQviB2zDhJIraiF7bHH4wOHkKRKaFIJSKXehlnTSK1T4kSQn8Ff4JfyZuxEClSVOPRmO-Mlftv3_DaE3mjJspwYElLBMnBQRBFKIUloJWNWF9qqxBUnD49o7zj9dJKdbKHfq1oYn7TvW1p6Nb3KDntfgaFxxWCgU33mfLhsEikPzfIHuGnVh34HaPo2SQ66o3YvbCYJhAo4ch7SXIlCpRkYV6ojpkSaSKpNBtu-jkGmAjwhJqWgSaxSq22uKEmsjlVCFUAWuO4NdBOwPXWS06bt9XccFylL46Kpx4kIu-RRN2yeHw1wGZ79Ny3zr9isN3kHd9GdBqviVv127qEtU95Ht-rplcsH6NfnhSh9jRpoTKyazgPY_KyLiXHlXrAnPJ57eGxmeLfd_Traw8MvfTy1eHw2mZ4L7HLvx7h_DqoNd9zXbuHS3OGQ68OsHSbGLS0u_G0GbtZQWH1fuLopvNvvdFuDPWwnPn37ITq-Fro8QtvltDRPENaFkrmUOo9j4oLJbkcSrQC_mNyoPEDxigZcNe3P3RSOM-7D8ITxmm4c6MY93fgyQO_W51zUzT-uXP3RkXa90jXu9gemszFvGBk8rcQSgMg0YiK1qiiktllsWKRokYA0Bej1ijE4CLqL3ojSTBcVj8FuuW56eRSgxzWjrG8FfnNOGKMByjdYaONZNn8pJ6e-mXjmZq0URYD2V8zGGy1WXfFfn_7f8lfodm80HPBB_-jwGdpJvGyQMMqfo-35bGFeALCby5desjD6dt2i_AeqOV5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVCAuiB2zDhJIrcBge2zP-MAhNImadBHQVuptmDVEap0QJ4L8DP4Ev5M3YydSoKrEoTfbGS_x277ntyH0SkuWUWJImAuWgYMiilAKSUIrGbO60FYlrjj54DDfPUkHp9npBvq9rIXxSfu-paVX08vssPcVGBpXDAY61WfOh4t3E22bZMo9s_gBrlr1od8Bur5Okl73eGc3bKYJhAq4chbmVIlCpRkY2FxHTIk0kbk2GWz7WgaZCvCGmJQiT2KVWm2pyklidaySXAFsgeteQ5uA7-O0hTbb7cHRYPU1x8XL0rhoqnIiwi544DXL5wcEXIRq_03O_CtC6w1f7za61SBW3K7f0R20Ycq76Ho9w3JxD_36PBelr1QDvYlV038Am591STGu3Gv25MczD5LNFG_tdI-Ot_HBlz4eWzw8G43PBXYZ-EPcPwcFhzvum7dwye5wyHVj1g4Z47YWE3-bfTdxKKy-z131FN7qd7rt_W1sRz6J-z46uRLKPECtclyaRwjrQkkqpaZxTFxI2e1IohWgGEONogGKlzTgqmmC7mZxnHEfjCeM13TjQDfu6cYXAXqzOmdStwC5dPVHR9rVSte-2x8YT4e8YWfwtxJLACjnEROpVUUhtc1iwyKVFwnIVIBeLhmDg7i7GI4ozXhe8Risl-upR6MAPawZZXUr8J4pYSwPEF1jobVnWf-lHH3zLcUzN3GlKAL0dslsvNFl1SX_9fH_LX-Bbnzq9Ph-_3DvCbqZeNEgYUSfotZsOjfPAN3N5PNGtDD6etXS_Ad4EWDU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+chemical+exchange+saturation+transfer+%28CEST%29+MRI+of+glioma+using+Image+Downsampling+Expedited+Adaptive+Least-squares+%28IDEAL%29+fitting&rft.jtitle=Scientific+reports&rft.au=Zhou%2C+Iris+Yuwen&rft.au=Wang%2C+Enfeng&rft.au=Cheung%2C+Jerry+S&rft.au=Zhang%2C+Xiaoan&rft.date=2017-03-07&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=84&rft_id=info:doi/10.1038%2Fs41598-017-00167-y&rft_id=info%3Apmid%2F28273886&rft.externalDocID=28273886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |