The right ventricular involvement in dilated cardiomyopathy: prevalence and prognostic implications of the often-neglected child

Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years t...

Full description

Saved in:
Bibliographic Details
Published inHeart failure reviews Vol. 27; no. 5; pp. 1795 - 1805
Main Authors Manca, Paolo, Nuzzi, Vincenzo, Cannatà, Antonio, Castrichini, Matteo, Bromage, Daniel I., De Luca, Antonio, Stolfo, Davide, Schulz, Uwe, Merlo, Marco, Sinagra, Gianfranco
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.
AbstractList Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.
Abstract Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.
Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.
Author Sinagra, Gianfranco
Manca, Paolo
Stolfo, Davide
Bromage, Daniel I.
Nuzzi, Vincenzo
Schulz, Uwe
De Luca, Antonio
Merlo, Marco
Cannatà, Antonio
Castrichini, Matteo
Author_xml – sequence: 1
  givenname: Paolo
  surname: Manca
  fullname: Manca, Paolo
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
– sequence: 2
  givenname: Vincenzo
  surname: Nuzzi
  fullname: Nuzzi, Vincenzo
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
– sequence: 3
  givenname: Antonio
  surname: Cannatà
  fullname: Cannatà, Antonio
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Department of Cardiovascular Science, Faculty of Life Science and Medicine, King’s College London
– sequence: 4
  givenname: Matteo
  surname: Castrichini
  fullname: Castrichini, Matteo
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
– sequence: 5
  givenname: Daniel I.
  surname: Bromage
  fullname: Bromage, Daniel I.
  organization: Department of Cardiovascular Science, Faculty of Life Science and Medicine, King’s College London
– sequence: 6
  givenname: Antonio
  surname: De Luca
  fullname: De Luca, Antonio
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
– sequence: 7
  givenname: Davide
  surname: Stolfo
  fullname: Stolfo, Davide
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Division of Cardiology, Department of Medicine, Karolinska Institutet
– sequence: 8
  givenname: Uwe
  surname: Schulz
  fullname: Schulz, Uwe
  organization: Department of Cardiac Surgery, Heart Center, University of Leipzig
– sequence: 9
  givenname: Marco
  surname: Merlo
  fullname: Merlo, Marco
  email: marco.merlo79@gmail.com
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
– sequence: 10
  givenname: Gianfranco
  surname: Sinagra
  fullname: Sinagra, Gianfranco
  organization: Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35315505$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:149079456$$DView record from Swedish Publication Index
BookMark eNp9Uk1vEzEQtVARbQN_gANaiQuXBXv9tcsBqar4kipxKWfLa88mLl472E5Qbvx03CQF2kMv9nj83punmTlHJyEGQOglwW8JxvJdJlgy0uKua0k9hlY-QWeES9pK2nUnNaZ91zLC5Ck6z_kGY8wGhp-hU8op4RzzM_T7egVNcstVabYQSnJm43VqXNhGv4W5pmrcWOd1AdsYnayL8y6udVnt3jfrBFvtIRhodLD1GZch5uJM4-a1d0YXF0Nu4tSUWiZOBUIbYOnB7NVWztvn6OmkfYYXx3uBvn_6eH35pb369vnr5cVVa7jsS8uF7cQ0WiknzSdijQGQVgzEWAMWKAEx0QkLSpkFNmI5Mm56wseR4QEEowvUHnTzL1hvRrVObtZpp6J26pj6USNQjDNBhor_cMDXnxlqkdoc7e_R7v8Et1LLuFUD7fuqUAXeHAVS_LmBXNTssgHvdYC4yaoTjPSCdXVeC_T6AfQmblKo7VCdxFQIyfq-ol797-ivlbthVkB_AJgUc04wKePKfgTVoPOKYHW7N-qwN6qujNrvjbp10D2g3qk_SqLHllZwWEL6Z_sR1h-e1Nnv
CitedBy_id crossref_primary_10_1007_s10741_024_10434_6
crossref_primary_10_2459_JCM_0000000000001512
crossref_primary_10_1002_clc_70070
crossref_primary_10_1016_j_acra_2022_08_019
crossref_primary_10_1097_CD9_0000000000000108
crossref_primary_10_3389_fcvm_2022_1063967
crossref_primary_10_4070_kcj_2024_0192
crossref_primary_10_3390_diagnostics14222581
crossref_primary_10_1148_radiol_232388
crossref_primary_10_1016_j_neuroimage_2024_120589
crossref_primary_10_1016_j_jvc_2024_05_006
crossref_primary_10_1016_j_amjcard_2025_01_006
Cites_doi 10.1016/j.healun.2016.08.010
10.1016/j.jcmg.2016.01.027
10.1007/s11547-010-0594-0
10.1016/j.healun.2010.11.013
10.1016/j.jacc.2010.11.030
10.1093/eurheartj/ehv727
10.15420/cfr.2019.09
10.23736/s2724-5683.21.05736-7
10.1055/s-2007-1011007
10.1038/s41467-021-24849-4
10.1161/CIRCRESAHA.117.309345
10.1016/0002-8703(84)90095-4
10.1161/JAHA.119.014628
10.1016/j.jcmg.2009.09.017
10.1136/heartjnl-2020-317949
10.1002/ejhf.1103
10.1093/ejcts/ezab114
10.1002/ehf2.13072
10.1016/j.healun.2015.03.011
10.1016/j.jjcc.2016.02.019
10.1016/S0735-1097(01)01486-3
10.1016/j.acvd.2015.10.006
10.1016/j.ccl.2012.03.001
10.1093/ejcts/ezz098
10.1007/s10554-018-1428-8
10.1016/j.healun.2008.07.021
10.1016/j.ijcard.2011.08.031
10.1016/S0033-8389(05)70100-7
10.1161/CIRCULATIONAHA.106.674028
10.1161/CIRCIMAGING.120.012166
10.1016/j.cjca.2021.06.024
10.1148/radiology.163.3.3575717
10.1161/CIRCRESAHA.119.313569
10.1016/j.ahj.2003.10.005
10.1002/ejhf.1914
10.3390/jcm9082426
10.1371/journal.pone.0208100
10.1161/CIRCULATIONAHA.106.632208
10.5603/CJ.a2017.0051
10.1002/(SICI)1522-2586(199912)10:6<908::AID-JMRI2>3.0.CO;2-2
10.1016/j.cardfail.2021.01.004
10.1038/s41467-021-25439-0
10.1007/s11897-018-0378-8
10.1016/j.amjcard.2017.10.022
10.1016/j.echo.2009.11.016
10.3389/fcvm.2021.765274
10.1371/journal.pone.0245637
10.1016/j.healun.2014.09.045
10.3389/fphys.2018.00520
10.1253/circj.CJ-13-1201
10.1007/s10554-018-1322-4
10.1161/CIRCIMAGING.117.006894
10.1164/rccm.201503-0529OC
10.1007/s10554-021-02322-z
10.1016/j.healun.2013.05.004
10.1016/j.echo.2010.06.029
10.1093/ehjci/jez015
10.1016/S1053-2498(99)00025-X
10.1161/CIRCULATIONAHA.113.002518
10.1161/CIRCULATIONAHA.107.653584
10.1016/j.tcm.2020.10.003
10.1016/j.amjcard.2010.02.039
10.2459/JCM.0000000000000931
10.1016/j.healun.2015.05.024
10.1161/CIR.0000000000000673
10.1007/s10554-009-9501-y
10.1093/ehjci/jeu156
10.3390/diagnostics11030548
10.1016/S1053-2498(02)00485-0
10.1016/j.amjcard.2011.08.040
10.1016/j.amjcard.2016.08.054
10.1093/ehjci/jev014
10.1186/1532-429X-10-20
10.1016/j.healun.2015.12.018
10.1016/j.echo.2006.10.027
10.1016/j.jcmg.2017.06.013
10.1016/j.echo.2010.05.010
10.1186/1532-429X-13-68
10.1016/j.healun.2013.05.016
10.1093/eurheartj/ehm375
10.1016/j.amjcard.2009.11.026
10.1111/j.1540-8175.2007.00424.x
10.1067/mhj.2001.116071
10.1177/2045894018790905
10.1161/CIRCIMAGING.116.005384
10.1097/HCO.0b013e32835dd12c
10.1161/CIRCULATIONAHA.107.653576
10.1007/s10554-020-01783-y
10.2174/1573403x12666161028122649
10.1016/S0002-9149(99)00877-2
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QP
7X7
7XB
88E
8AO
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1007/s10741-022-10229-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-7322
EndPage 1805
ExternalDocumentID oai_swepub_ki_se_454619
PMC9388461
35315505
10_1007_s10741_022_10229_7
Genre Journal Article
Review
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GUQSH
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M1P
M2O
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QP
7XB
8FK
ABRTQ
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8T
PUEGO
ZZAVC
ID FETCH-LOGICAL-c578t-56d26fbd77fa5f1dccee7d691cdcede31e6f3f06334de4b07b45c815bb409e643
IEDL.DBID C6C
ISSN 1382-4147
1573-7322
IngestDate Mon Aug 25 03:25:04 EDT 2025
Thu Aug 21 13:33:58 EDT 2025
Fri Jul 11 13:25:50 EDT 2025
Fri Jul 25 02:58:13 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Thu Apr 24 22:53:48 EDT 2025
Tue Jul 01 03:30:51 EDT 2025
Fri Feb 21 02:45:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Advanced heart failure
Prognosis
Dilated cardiomyopathy
Cardiac imaging
Right ventricle
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-56d26fbd77fa5f1dccee7d691cdcede31e6f3f06334de4b07b45c815bb409e643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doi.org/10.1007/s10741-022-10229-7
PMID 35315505
PQID 2703667488
PQPubID 44243
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_454619
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9388461
proquest_miscellaneous_2641864257
proquest_journals_2703667488
pubmed_primary_35315505
crossref_citationtrail_10_1007_s10741_022_10229_7
crossref_primary_10_1007_s10741_022_10229_7
springer_journals_10_1007_s10741_022_10229_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Heart failure reviews
PublicationTitleAbbrev Heart Fail Rev
PublicationTitleAlternate Heart Fail Rev
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gerges M, Gerges C, Pistritto AM et al (2015) Pulmonary hypertension in heart failure epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 192(10). https://doi.org/10.1164/rccm.201503-0529OC
Voelkel NF, Quaife RA, Leinwand LA et al (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17). https://doi.org/10.1161/CIRCULATIONAHA.106.632208
Alpendurada F, Guha K, Sharma R et al (2011) Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy. J Cardiovasc Magn Reson 13(1). https://doi.org/10.1186/1532-429X-13-68
Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27(10). https://doi.org/10.1016/j.healun.2008.07.021
Hansen MS, Andersen A, Nielsen-Kudsk JE (2018) Levosimendan in pulmonary hypertension and right heart failure. Pulm Circ 8(3). https://doi.org/10.1177/2045894018790905
Sack KL, Dabiri Y, Franz T, Solomon SD, Burkhoff D, Guccione JM (2018) Investigating the role of interventricular interdependence in development of right heart dysfunction during LVAD support: a patient-specific methods-based approach. Front Physiol 9(May). https://doi.org/10.3389/fphys.2018.00520
Leibundgut G, Rohner A, Grize L et al (2010) Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiog 23(2). https://doi.org/10.1016/j.echo.2009.11.016
Klima UP, Guerrero JL, Vlahakes GJ (1999) Myocardial perfusion and right ventricular function. Ann Thorac Cardiovasc Surg (2)
Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC: Cardiovasc Imaging 3(1). https://doi.org/10.1016/j.jcmg.2009.09.017
Rich JD, Gosev I, Patel CB et al (2017) The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J Heart Lung Transplant 36(1). https://doi.org/10.1016/j.healun.2016.08.010
Repetti GG, Toepfer CN, Seidman JG, Seidman CE (2019) Novel therapies for prevention and early treatment of cardiomyopathies: now and in the future. Circ Res 124(11). https://doi.org/10.1161/CIRCRESAHA.119.313569
MancaPCannatàANuzziVPrevalence and evolution of right ventricular dysfunction among different genetic backgrounds in dilated cardiomyopathyCanadian Journal of Cardiology Published online202110.1016/j.cjca.2021.06.024
Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13). https://doi.org/10.1161/CIRCULATIONAHA.107.653584
Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJM, Helbing WA (2010) Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 26(1). https://doi.org/10.1007/s10554-009-9501-y
Rominger MB, Bachmann GF, Geuer M et al (1999) Accuracy of right- and left-ventricular heart volume and left-ventricular muscle mass determinations by cine MRI in breath-hold technique. Rofo Fortschritte auf dem Gebiet der Rontgenstrahlen und der bildgebenden Verfahren 170(1). https://doi.org/10.1055/s-2007-1011007
Rao SD, Adusumalli S, Mazurek JA (2020) Pulmonary hypertension in heart failure patients. Card Fail Rev 6. https://doi.org/10.15420/cfr.2019.09
Khan T, Delgado RM, Radovancevic B et al (2003) Dobutamine stress echocardiography predicts myocardial improvement in patients supported by left ventricular assist devices (LVADs): Hemodynamic and histologic evidence of improvement before LVAD explantation. J Heart Lung Transplant 22(2). https://doi.org/10.1016/S1053-2498(02)00485-0
Raina A, Vaidya A, Gertz ZM, Susan Chambers, Forfia PR (2013) Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant 32(8). https://doi.org/10.1016/j.healun.2013.05.004
Chai RJ, Werner H, Li PY et al (2021) Disrupting the LINC complex by AAV mediated gene transduction prevents progression of Lamin induced cardiomyopathy. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-24849-4
Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Card Imaging 105(7). https://doi.org/10.1016/j.amjcard.2009.11.026
Pueschner A, Chattranukulchai P, Heitner JF et al (2017) The prevalence, correlates, and impact on cardiac mortality of right ventricular dysfunction in nonischemic cardiomyopathy. JACC Cardiovasc Imaging 10(10). https://doi.org/10.1016/j.jcmg.2017.06.013
Gopal AS, Chukwu EO, Iwuchukwu CJ et al (2007) Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiog 20(5). https://doi.org/10.1016/j.echo.2006.10.027
Yi JE, Park J, Lee HJ et al (2018) Prognostic implications of late gadolinium enhancement at the right ventricular insertion point in patients with non-ischemic dilated cardiomyopathy: a multicenter retrospective cohort study. PLoS One 13(11). https://doi.org/10.1371/journal.pone.0208100
Spieker M, Marpert J, Afzal S et al (2021) Right ventricular dysfunction assessed by cardiovascular magnetic resonance is associated with poor outcome in patients undergoing transcatheter mitral valve repair. PLoS One 16(1 January). https://doi.org/10.1371/journal.pone.0245637
Stobierska-Dzierzek B, Awad H, Michler RE (2001) The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol 38(4). https://doi.org/10.1016/S0735-1097(01)01486-3
Saito S, Sakaguchi T, Miyagawa S et al (2011) Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant 30(4). https://doi.org/10.1016/j.healun.2010.11.013
Carluccio E, Biagioli P, Alunni G et al (2018) Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging 11(1). https://doi.org/10.1161/CIRCIMAGING.117.006894
Neyer J, Arsanjani R, Moriguchi J, Siegel R, Kobashigawa J (2016) Echocardiographic parameters associated with right ventricular failure after left ventricular assist device: a review. J Heart Lung Transplant 35(3). https://doi.org/10.1016/j.healun.2015.12.018
Gulati A, Ismail TF, Jabbour A et al (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128(15). https://doi.org/10.1161/CIRCULATIONAHA.113.002518
Gulati G, Ruthazer R, Denofrio D, Vest AR, Kent D, Kiernan MS (2021) Understanding longitudinal changes in pulmonary vascular resistance after left ventricular assist device implantation. J Card Fail 27(5). https://doi.org/10.1016/j.cardfail.2021.01.004
Kato TS, Farr M, Schulze PC et al (2012) Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol 109(2). https://doi.org/10.1016/j.amjcard.2011.08.040
Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163(3). https://doi.org/10.1148/radiology.163.3.3575717
Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transpalant 32(8). https://doi.org/10.1016/j.healun.2013.05.016
la Vecchia L, Zanolla L, Varotto L et al (2001) Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J 142(1). https://doi.org/10.1067/mhj.2001.116071
Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107(3). https://doi.org/10.1016/0002-8703(84)90095-4
Besler C, Seeburger J, Thiele H, Lurz P (2018) Treatment options for severe functional tricuspid regurgitation: indications, techniques and current challenges. e-Journal of Cardiology Practice 16(31)
Carrier M, Blaise G, Bélisle S et al (1999) Nitric oxide inhalation in the treatment of primary graft failure following heart transplantation. J Heart Lung Transplant 18(7). https://doi.org/10.1016/S1053-2498(99)00025-X
Imamura T, Kinugawa K, Kato N et al (2014) Late-onset right ventricular failure in patients with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circulation J 78(3). https://doi.org/10.1253/circj.CJ-13-1201
Merlo M, Pyxaras SA, Pinamonti B, Barbati G, di Lenarda A, Sinagra G (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57(13). https://doi.org/10.1016/j.jacc.2010.11.030
Boxt LM (1999) Radiology of the right ventricle. Radiol Clin N Am 37(2). https://doi.org/10.1016/S0033-8389(05)70100-7
Kaneko H, Neuss M, Weissenborn J, Butter C (2016) Prognostic significance of right ventricular dysfunction in patients with functional mitral regurgitation undergoing MitraClip. Am J Cardiol 118(11). https://doi.org/10.1016/j.amjcard.2016.08.054
CavigliLFocardiMCameliMMandoliGEMondilloSD’A
10229_CR11
10229_CR55
10229_CR12
10229_CR56
10229_CR13
10229_CR57
10229_CR14
10229_CR58
10229_CR51
10229_CR52
10229_CR53
10229_CR54
10229_CR6
10229_CR19
10229_CR7
10229_CR4
10229_CR5
10229_CR15
10229_CR59
10229_CR16
10229_CR8
10229_CR9
10229_CR18
10229_CR91
10229_CR92
10229_CR93
10229_CR90
10229_CR44
10229_CR88
10229_CR45
10229_CR89
10229_CR46
10229_CR47
10229_CR40
10229_CR84
10229_CR41
10229_CR85
10229_CR42
10229_CR86
10229_CR43
10229_CR87
10229_CR48
10229_CR49
P Manca (10229_CR10) 2021
10229_CR2
10229_CR3
10229_CR1
10229_CR80
10229_CR81
10229_CR82
P Manca (10229_CR50) 2021
10229_CR83
10229_CR33
10229_CR77
10229_CR34
10229_CR78
10229_CR35
10229_CR79
10229_CR36
L Cavigli (10229_CR17) 2020
10229_CR73
10229_CR30
10229_CR74
10229_CR31
10229_CR75
10229_CR32
10229_CR76
10229_CR37
10229_CR38
10229_CR39
10229_CR70
10229_CR71
10229_CR72
10229_CR22
10229_CR66
10229_CR23
10229_CR67
10229_CR24
10229_CR68
10229_CR25
10229_CR69
10229_CR62
10229_CR63
10229_CR20
10229_CR64
10229_CR21
10229_CR65
10229_CR26
10229_CR27
10229_CR28
10229_CR29
10229_CR60
10229_CR61
References_xml – reference: Nagata Y, Wu VCC, Kado Y et al (2017) Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography. Circ Cardiovasc Imaging 10(2). https://doi.org/10.1161/CIRCIMAGING.116.005384
– reference: Liu T, Gao Y, Wang H et al (2021) Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy. Heart 107(15). https://doi.org/10.1136/heartjnl-2020-317949
– reference: Gulati A, Ismail TF, Jabbour A et al (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128(15). https://doi.org/10.1161/CIRCULATIONAHA.113.002518
– reference: la Vecchia L, Zanolla L, Varotto L et al (2001) Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J 142(1). https://doi.org/10.1067/mhj.2001.116071
– reference: Voelkel NF, Quaife RA, Leinwand LA et al (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17). https://doi.org/10.1161/CIRCULATIONAHA.106.632208
– reference: Kato TS, Farr M, Schulze PC et al (2012) Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol 109(2). https://doi.org/10.1016/j.amjcard.2011.08.040
– reference: Kurihara C, Critsinelis AC, Kawabori M et al (2018) Frequency and consequences of right-sided heart failure after continuous-flow left ventricular assist device implantation. Am J Cardiol 121(3). https://doi.org/10.1016/j.amjcard.2017.10.022
– reference: Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11). https://doi.org/10.1161/CIRCULATIONAHA.107.653576
– reference: Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7). https://doi.org/10.1016/j.echo.2010.05.010
– reference: Nuzzi V, Castrichini M, Collini V et al (2021) Impaired right ventricular longitudinal strain without pulmonary hypertension in patients who have recovered from COVID-19. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.120.012166
– reference: Kapelios CJ, Charitos C, Kaldara E et al (2015) Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant 34(12). https://doi.org/10.1016/j.healun.2015.05.024
– reference: Corrado D, Basso C, Judge DP (2017) Arrhythmogenic cardiomyopathy. Circ Res 121(7). https://doi.org/10.1161/CIRCRESAHA.117.309345
– reference: Vijiiac A, Onciul S, Guzu C et al (2021) Forgotten no more - the role of right ventricular dysfunction in heart failure with reduced ejection fraction: an echocardiographic perspective. Diagnostics 11(3). https://doi.org/10.3390/diagnostics11030548
– reference: Gopinathannair R, Cornwell WK, Dukes JW et al (2019) Device therapy and arrhythmia management in left ventricular assist device recipients: a scientific statement from the American Heart Association. Circulation 139(20). https://doi.org/10.1161/CIR.0000000000000673
– reference: Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transpalant 32(8). https://doi.org/10.1016/j.healun.2013.05.016
– reference: Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107(3). https://doi.org/10.1016/0002-8703(84)90095-4
– reference: Imamura T, Kinugawa K, Kato N et al (2014) Late-onset right ventricular failure in patients with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circulation J 78(3). https://doi.org/10.1253/circj.CJ-13-1201
– reference: Kirklin JK, Naftel DC, Kirklin JW, Blackstone EH, White-Williams C, Bourge RC (1988) Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant 7(5)
– reference: Alpendurada F, Guha K, Sharma R et al (2011) Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy. J Cardiovasc Magn Reson 13(1). https://doi.org/10.1186/1532-429X-13-68
– reference: Focardi M, Cameli M, Carbone SF et al (2015) Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 16(1). https://doi.org/10.1093/ehjci/jeu156
– reference: Shimada YJ, Shiota M, Siegel RJ, Shiota T (2010) Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. J Am Soc Echocardiog 23(9). https://doi.org/10.1016/j.echo.2010.06.029
– reference: Unsworth B, Casula RP, Yadav H et al (2013) Contrasting effect of different cardiothoracic operations on echocardiographic right ventricular long axis velocities, and implications for interpretation of post-operative values. Int J Cardiol 165(1). https://doi.org/10.1016/j.ijcard.2011.08.031
– reference: Carrier M, Blaise G, Bélisle S et al (1999) Nitric oxide inhalation in the treatment of primary graft failure following heart transplantation. J Heart Lung Transplant 18(7). https://doi.org/10.1016/S1053-2498(99)00025-X
– reference: Rominger MB, Bachmann GF, Geuer M et al (1999) Accuracy of right- and left-ventricular heart volume and left-ventricular muscle mass determinations by cine MRI in breath-hold technique. Rofo Fortschritte auf dem Gebiet der Rontgenstrahlen und der bildgebenden Verfahren 170(1). https://doi.org/10.1055/s-2007-1011007
– reference: Grigoratos C, Pantano A, Meschisi M et al (2020) Clinical importance of late gadolinium enhancement at right ventricular insertion points in otherwise normal hearts. Int J Card Imaging 36(5). https://doi.org/10.1007/s10554-020-01783-y
– reference: Rao SD, Adusumalli S, Mazurek JA (2020) Pulmonary hypertension in heart failure patients. Card Fail Rev 6. https://doi.org/10.15420/cfr.2019.09
– reference: Neyer J, Arsanjani R, Moriguchi J, Siegel R, Kobashigawa J (2016) Echocardiographic parameters associated with right ventricular failure after left ventricular assist device: a review. J Heart Lung Transplant 35(3). https://doi.org/10.1016/j.healun.2015.12.018
– reference: Ghio S, Recusani F, Klersy C et al (2000) Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Card Imaging 85(7). https://doi.org/10.1016/S0002-9149(99)00877-2
– reference: MancaPCannatàANuzziVPrevalence and evolution of right ventricular dysfunction among different genetic backgrounds in dilated cardiomyopathyCanadian Journal of Cardiology Published online202110.1016/j.cjca.2021.06.024
– reference: Schneider M, Aschauer S, Mascherbauer J et al (2019) Echocardiographic assessment of right ventricular function: current clinical practice. Int J Card Imaging 35(1). https://doi.org/10.1007/s10554-018-1428-8
– reference: Cittar M, Cipriani A, Merlo M et al (2021) Prognostic significance of feature-tracking right ventricular global longitudinal strain in non-ischemic dilated cardiomyopathy. Frontiers in Cardiovascular Medicine 8. https://doi.org/10.3389/fcvm.2021.765274
– reference: Boxt LM (1999) Radiology of the right ventricle. Radiol Clin N Am 37(2). https://doi.org/10.1016/S0033-8389(05)70100-7
– reference: Klima UP, Guerrero JL, Vlahakes GJ (1999) Myocardial perfusion and right ventricular function. Ann Thorac Cardiovasc Surg (2)
– reference: Kaneko H, Neuss M, Weissenborn J, Butter C (2016) Prognostic significance of right ventricular dysfunction in patients with functional mitral regurgitation undergoing MitraClip. Am J Cardiol 118(11). https://doi.org/10.1016/j.amjcard.2016.08.054
– reference: Stobierska-Dzierzek B, Awad H, Michler RE (2001) The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol 38(4). https://doi.org/10.1016/S0735-1097(01)01486-3
– reference: Khan T, Delgado RM, Radovancevic B et al (2003) Dobutamine stress echocardiography predicts myocardial improvement in patients supported by left ventricular assist devices (LVADs): Hemodynamic and histologic evidence of improvement before LVAD explantation. J Heart Lung Transplant 22(2). https://doi.org/10.1016/S1053-2498(02)00485-0
– reference: Sanz J, Conroy J, Narula J (2012) Imaging of the right ventricle. Cardiol Clin 30(2). https://doi.org/10.1016/j.ccl.2012.03.001
– reference: Gopal AS, Chukwu EO, Iwuchukwu CJ et al (2007) Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiog 20(5). https://doi.org/10.1016/j.echo.2006.10.027
– reference: Ruiz-Cano MJ, Ramazyan L, Schramm R et al (2021) Clinical implications of late-onset right ventricular failure after implantation of a continuous-flow left ventricular assist device as bridge to transplantation. Eur J Cardiothorac Surg 60(1). https://doi.org/10.1093/ejcts/ezab114
– reference: Besler C, Seeburger J, Thiele H, Lurz P (2018) Treatment options for severe functional tricuspid regurgitation: indications, techniques and current challenges. e-Journal of Cardiology Practice 16(31)
– reference: Spruijt OA, di Pasqua MC, Bogaard HJ (2017) Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echocardiographic parameters: a comparison with cardiac magnetic resonance imaging. J Cardiol 69(1). https://doi.org/10.1016/j.jjcc.2016.02.019
– reference: Patlolla B, Beygui R, Haddad F (2013) Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 28(2). https://doi.org/10.1097/HCO.0b013e32835dd12c
– reference: Saito S, Sakaguchi T, Miyagawa S et al (2011) Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant 30(4). https://doi.org/10.1016/j.healun.2010.11.013
– reference: Merlo M, Gobbo M, Stolfo D et al (2016) The prognostic impact of the evolution of RV function in idiopathic DCM. JACC Cardiovasc Imaging 9(9). https://doi.org/10.1016/j.jcmg.2016.01.027
– reference: Takeda K, Takayama H, Colombo PC et al (2015) Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant 34(8). https://doi.org/10.1016/j.healun.2015.03.011
– reference: Repetti GG, Toepfer CN, Seidman JG, Seidman CE (2019) Novel therapies for prevention and early treatment of cardiomyopathies: now and in the future. Circ Res 124(11). https://doi.org/10.1161/CIRCRESAHA.119.313569
– reference: Venner C, Selton-Suty C, Huttin O, Erpelding ML, Aliot E, Juillière Y (2016) Right ventricular dysfunction in patients with idiopathic dilated cardiomyopathy: prognostic value and predictive factors. Arch Cardiovasc Dis 109(4). https://doi.org/10.1016/j.acvd.2015.10.006
– reference: Anavekar NS, Gerson D, Skali H, Kwong RY, Kent Yucel E, Solomon SD (2007) Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography 24(5). https://doi.org/10.1111/j.1540-8175.2007.00424.x
– reference: Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Card Imaging 105(7). https://doi.org/10.1016/j.amjcard.2009.11.026
– reference: Manca P, Cossa S, Matta G et al (2020) Right ventricular function assessed by cardiac magnetic resonance predicts the response to resynchronization therapy. J Cardiovasc Med 21(4). https://doi.org/10.2459/JCM.0000000000000931
– reference: Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13). https://doi.org/10.1161/CIRCULATIONAHA.107.653584
– reference: Csecs I, Czimbalmos C, Suhai FI et al (2018) Left and right ventricular parameters corrected with threshold-based quantification method in a normal cohort analyzed by three independent observers with various training-degree. Int J Cardiovasc Imaging 34(7). https://doi.org/10.1007/s10554-018-1322-4
– reference: Hansen MS, Andersen A, Nielsen-Kudsk JE (2018) Levosimendan in pulmonary hypertension and right heart failure. Pulm Circ 8(3). https://doi.org/10.1177/2045894018790905
– reference: Grote Beverborg N, Später D, Knöll R et al (2021) Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-25439-0
– reference: CavigliLFocardiMCameliMMandoliGEMondilloSD’AscenziFThe right ventricle in “left-sided” cardiomyopathies: the dark side of the moonTrends in Cardiovascular Medicine Published online202010.1016/j.tcm.2020.10.003
– reference: Merlo M, Cannatà A, Gobbo M, Stolfo D, Elliott PM, Sinagra G (2018) Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail 20(2). https://doi.org/10.1002/ejhf.1103
– reference: Cannata A, Manca P, Nuzzi V et al (2020) Sex-specific prognostic implications in dilated cardiomyopathy after left ventricular reverse remodeling. J Clin Med Res 9(8). https://doi.org/10.3390/jcm9082426
– reference: Raina A, Meeran T (2018) Right ventricular dysfunction and its contribution to morbidity and mortality in left ventricular heart failure. Curr Heart Fail Rep 15(2). https://doi.org/10.1007/s11897-018-0378-8
– reference: Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit state of the art and clinical and research implications. Circulation 120(11). https://doi.org/10.1161/CIRCULATIONAHA.106.674028
– reference: Vîjîiac A, Onciul S, Guzu C et al (2021) The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy. Int J Card Imaging 37(11). https://doi.org/10.1007/s10554-021-02322-z
– reference: Francone M, Carbone I, Agati L et al (2011) Utility of T2-weighted short-tau inversion recovery (STIR) sequences in cardiac MRI: an overview of clinical applications in ischaemic and non-ischaemic heart disease. Radiol Med 116(1). https://doi.org/10.1007/s11547-010-0594-0
– reference: Smolarek D, Gruchała M, Sobiczewski W (2017) Echocardiographic evaluation of right ventricular systolic function: the traditional and innovative approach. Cardiol J 24(5). https://doi.org/10.5603/CJ.a2017.0051
– reference: Rominger MB, Bachmann GF, Pabst W, Rau WS (1999) Right ventricular volumes and ejection fraction with fast cine MR imaging in breath-hold technique: applicability, normal values from 52 volunteers, and evaluation of 325 adult cardiac patients. J Magn Reson Imaging 10(6). https://doi.org/10.1002/(SICI)1522-2586(199912)10:6<908::AID-JMRI2>3.0.CO;2-2
– reference: Leung CC, Moondra V, Catherwood E, Andrus BW (2010) Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol 106(2). https://doi.org/10.1016/j.amjcard.2010.02.039
– reference: Pinto YM, Elliott PM, Arbustini E et al (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37(23). https://doi.org/10.1093/eurheartj/ehv727
– reference: Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJM, Helbing WA (2010) Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 26(1). https://doi.org/10.1007/s10554-009-9501-y
– reference: Lopez-Candales A, Hernandez-Suarez DF (2016) Strain imaging echocardiography: what imaging cardiologists should know. Curr Cardiol Rev 13(2). https://doi.org/10.2174/1573403x12666161028122649
– reference: Leibundgut G, Rohner A, Grize L et al (2010) Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiog 23(2). https://doi.org/10.1016/j.echo.2009.11.016
– reference: di Mauro M, Calafiore AM, Penco M, Romano S, di Giammarco G, Gallina S (2007) Mitral valve repair for dilated cardiomyopathy: predictive role of right ventricular dysfunction. Eur Heart J 28(20). https://doi.org/10.1093/eurheartj/ehm375
– reference: Becker MAJ, van der Lingen ALCJ, Wubben M et al (2021) Characteristics and prognostic value of right ventricular (dys)function in patients with non-ischaemic dilated cardiomyopathy assessed with cardiac magnetic resonance imaging. ESC Heart Failure 8(2). https://doi.org/10.1002/ehf2.13072
– reference: MancaPNuzziVCannatàAMerloMSinagraGContemporary etiology and prognosis of dilated non-ischemic cardiomyopathyMinerva Cardiology and Angiology Published online202110.23736/s2724-5683.21.05736-7
– reference: Pueschner A, Chattranukulchai P, Heitner JF et al (2017) The prevalence, correlates, and impact on cardiac mortality of right ventricular dysfunction in nonischemic cardiomyopathy. JACC Cardiovasc Imaging 10(10). https://doi.org/10.1016/j.jcmg.2017.06.013
– reference: Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147(2). https://doi.org/10.1016/j.ahj.2003.10.005
– reference: Raina A, Vaidya A, Gertz ZM, Susan Chambers, Forfia PR (2013) Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant 32(8). https://doi.org/10.1016/j.healun.2013.05.004
– reference: Cowger J, Rao V, Massey T et al (2015) Comprehensive review and suggested strategies for the detection and management of aortic insufficiency in patients with a continuous-flow left ventricular assist device. J Heart Lung Transplant 34(2). https://doi.org/10.1016/j.healun.2014.09.045
– reference: Spieker M, Marpert J, Afzal S et al (2021) Right ventricular dysfunction assessed by cardiovascular magnetic resonance is associated with poor outcome in patients undergoing transcatheter mitral valve repair. PLoS One 16(1 January). https://doi.org/10.1371/journal.pone.0245637
– reference: Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27(10). https://doi.org/10.1016/j.healun.2008.07.021
– reference: Cipriani A, Bauce B, de Lazzari M et al (2020) Arrhythmogenic right ventricular cardiomyopathy: characterization of left ventricular phenotype and differential diagnosis with dilated cardiomyopathy. J Am Heart Assoc 9(5). https://doi.org/10.1161/JAHA.119.014628
– reference: Yi JE, Park J, Lee HJ et al (2018) Prognostic implications of late gadolinium enhancement at the right ventricular insertion point in patients with non-ischemic dilated cardiomyopathy: a multicenter retrospective cohort study. PLoS One 13(11). https://doi.org/10.1371/journal.pone.0208100
– reference: Seo J, Jung IH, Park JH et al (2019) The prognostic value of 2D strain in assessment of the right ventricle in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 20(9). https://doi.org/10.1093/ehjci/jez015
– reference: Merlo M, Cannatà A, Pio Loco C et al (2020) Contemporary survival trends and aetiological characterization in non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 22(7). https://doi.org/10.1002/ejhf.1914
– reference: Merlo M, Pyxaras SA, Pinamonti B, Barbati G, di Lenarda A, Sinagra G (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57(13). https://doi.org/10.1016/j.jacc.2010.11.030
– reference: Gulati G, Ruthazer R, Denofrio D, Vest AR, Kent D, Kiernan MS (2021) Understanding longitudinal changes in pulmonary vascular resistance after left ventricular assist device implantation. J Card Fail 27(5). https://doi.org/10.1016/j.cardfail.2021.01.004
– reference: Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16(3). https://doi.org/10.1093/ehjci/jev014
– reference: Potapov EV, Antonides C, Crespo-Leiro MG et al (2019) 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg 56(2). https://doi.org/10.1093/ejcts/ezz098
– reference: Gerges M, Gerges C, Pistritto AM et al (2015) Pulmonary hypertension in heart failure epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med 192(10). https://doi.org/10.1164/rccm.201503-0529OC
– reference: Sack KL, Dabiri Y, Franz T, Solomon SD, Burkhoff D, Guccione JM (2018) Investigating the role of interventricular interdependence in development of right heart dysfunction during LVAD support: a patient-specific methods-based approach. Front Physiol 9(May). https://doi.org/10.3389/fphys.2018.00520
– reference: Rich JD, Gosev I, Patel CB et al (2017) The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J Heart Lung Transplant 36(1). https://doi.org/10.1016/j.healun.2016.08.010
– reference: Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163(3). https://doi.org/10.1148/radiology.163.3.3575717
– reference: Chai RJ, Werner H, Li PY et al (2021) Disrupting the LINC complex by AAV mediated gene transduction prevents progression of Lamin induced cardiomyopathy. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-24849-4
– reference: Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC: Cardiovasc Imaging 3(1). https://doi.org/10.1016/j.jcmg.2009.09.017
– reference: Carluccio E, Biagioli P, Alunni G et al (2018) Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging 11(1). https://doi.org/10.1161/CIRCIMAGING.117.006894
– reference: Grosse-Wortmann L, Macgowan CK, Vidarsson L, Yoo SJ (2008) Late gadolinium enhancement of the right ventricular myocardium: is it really different from the left ? J Cardiovasc Magn Reson 10(1). https://doi.org/10.1186/1532-429X-10-20
– ident: 10229_CR77
  doi: 10.1016/j.healun.2016.08.010
– ident: 10229_CR3
  doi: 10.1016/j.jcmg.2016.01.027
– ident: 10229_CR46
  doi: 10.1007/s11547-010-0594-0
– ident: 10229_CR89
  doi: 10.1016/j.healun.2010.11.013
– ident: 10229_CR53
  doi: 10.1016/j.jacc.2010.11.030
– ident: 10229_CR1
  doi: 10.1093/eurheartj/ehv727
– ident: 10229_CR55
  doi: 10.15420/cfr.2019.09
– year: 2021
  ident: 10229_CR50
  publication-title: Minerva Cardiology and Angiology Published online
  doi: 10.23736/s2724-5683.21.05736-7
– ident: 10229_CR40
  doi: 10.1055/s-2007-1011007
– ident: 10229_CR92
  doi: 10.1038/s41467-021-24849-4
– ident: 10229_CR15
  doi: 10.1161/CIRCRESAHA.117.309345
– ident: 10229_CR21
  doi: 10.1016/0002-8703(84)90095-4
– ident: 10229_CR14
  doi: 10.1161/JAHA.119.014628
– ident: 10229_CR37
  doi: 10.1016/j.jcmg.2009.09.017
– ident: 10229_CR4
  doi: 10.1136/heartjnl-2020-317949
– ident: 10229_CR52
  doi: 10.1002/ejhf.1103
– ident: 10229_CR73
  doi: 10.1093/ejcts/ezab114
– ident: 10229_CR6
  doi: 10.1002/ehf2.13072
– ident: 10229_CR71
  doi: 10.1016/j.healun.2015.03.011
– ident: 10229_CR25
  doi: 10.1016/j.jjcc.2016.02.019
– ident: 10229_CR83
  doi: 10.1016/S0735-1097(01)01486-3
– ident: 10229_CR9
  doi: 10.1016/j.acvd.2015.10.006
– ident: 10229_CR30
  doi: 10.1016/j.ccl.2012.03.001
– ident: 10229_CR64
  doi: 10.1093/ejcts/ezz098
– ident: 10229_CR20
  doi: 10.1007/s10554-018-1428-8
– ident: 10229_CR67
  doi: 10.1016/j.healun.2008.07.021
– ident: 10229_CR24
  doi: 10.1016/j.ijcard.2011.08.031
– ident: 10229_CR18
  doi: 10.1016/S0033-8389(05)70100-7
– ident: 10229_CR28
  doi: 10.1161/CIRCULATIONAHA.106.674028
– ident: 10229_CR31
  doi: 10.1161/CIRCIMAGING.120.012166
– year: 2021
  ident: 10229_CR10
  publication-title: Canadian Journal of Cardiology Published online
  doi: 10.1016/j.cjca.2021.06.024
– ident: 10229_CR39
  doi: 10.1148/radiology.163.3.3575717
– ident: 10229_CR90
  doi: 10.1161/CIRCRESAHA.119.313569
– ident: 10229_CR43
  doi: 10.1016/j.ahj.2003.10.005
– ident: 10229_CR51
  doi: 10.1002/ejhf.1914
– ident: 10229_CR54
  doi: 10.3390/jcm9082426
– ident: 10229_CR48
  doi: 10.1371/journal.pone.0208100
– ident: 10229_CR13
  doi: 10.1161/CIRCULATIONAHA.106.632208
– ident: 10229_CR27
  doi: 10.5603/CJ.a2017.0051
– ident: 10229_CR45
  doi: 10.1002/(SICI)1522-2586(199912)10:6<908::AID-JMRI2>3.0.CO;2-2
– ident: 10229_CR69
  doi: 10.1016/j.cardfail.2021.01.004
– ident: 10229_CR91
  doi: 10.1038/s41467-021-25439-0
– ident: 10229_CR12
  doi: 10.1007/s11897-018-0378-8
– ident: 10229_CR75
  doi: 10.1016/j.amjcard.2017.10.022
– ident: 10229_CR36
  doi: 10.1016/j.echo.2009.11.016
– ident: 10229_CR63
  doi: 10.3389/fcvm.2021.765274
– ident: 10229_CR58
  doi: 10.1371/journal.pone.0245637
– ident: 10229_CR79
  doi: 10.1016/j.healun.2014.09.045
– ident: 10229_CR76
  doi: 10.3389/fphys.2018.00520
– ident: 10229_CR74
  doi: 10.1253/circj.CJ-13-1201
– ident: 10229_CR41
  doi: 10.1007/s10554-018-1322-4
– ident: 10229_CR34
  doi: 10.1161/CIRCIMAGING.117.006894
– ident: 10229_CR93
– ident: 10229_CR11
  doi: 10.1164/rccm.201503-0529OC
– ident: 10229_CR7
  doi: 10.1007/s10554-021-02322-z
– ident: 10229_CR87
  doi: 10.1016/j.healun.2013.05.004
– ident: 10229_CR38
  doi: 10.1016/j.echo.2010.06.029
– ident: 10229_CR33
  doi: 10.1093/ehjci/jez015
– ident: 10229_CR85
  doi: 10.1016/S1053-2498(99)00025-X
– ident: 10229_CR2
  doi: 10.1161/CIRCULATIONAHA.113.002518
– ident: 10229_CR86
  doi: 10.1161/CIRCULATIONAHA.107.653584
– year: 2020
  ident: 10229_CR17
  publication-title: Trends in Cardiovascular Medicine Published online
  doi: 10.1016/j.tcm.2020.10.003
– ident: 10229_CR70
  doi: 10.1016/j.amjcard.2010.02.039
– ident: 10229_CR57
  doi: 10.2459/JCM.0000000000000931
– ident: 10229_CR72
  doi: 10.1016/j.healun.2015.05.024
– ident: 10229_CR78
  doi: 10.1161/CIR.0000000000000673
– ident: 10229_CR42
  doi: 10.1007/s10554-009-9501-y
– ident: 10229_CR32
  doi: 10.1093/ehjci/jeu156
– ident: 10229_CR35
  doi: 10.3390/diagnostics11030548
– ident: 10229_CR82
  doi: 10.1016/S1053-2498(02)00485-0
– ident: 10229_CR16
– ident: 10229_CR81
  doi: 10.1016/j.amjcard.2011.08.040
– ident: 10229_CR59
  doi: 10.1016/j.amjcard.2016.08.054
– ident: 10229_CR22
  doi: 10.1093/ehjci/jev014
– ident: 10229_CR49
  doi: 10.1186/1532-429X-10-20
– ident: 10229_CR80
  doi: 10.1016/j.healun.2015.12.018
– ident: 10229_CR44
  doi: 10.1016/j.echo.2006.10.027
– ident: 10229_CR5
  doi: 10.1016/j.jcmg.2017.06.013
– ident: 10229_CR23
  doi: 10.1016/j.echo.2010.05.010
– ident: 10229_CR56
  doi: 10.1186/1532-429X-13-68
– ident: 10229_CR68
  doi: 10.1016/j.healun.2013.05.016
– ident: 10229_CR60
  doi: 10.1093/eurheartj/ehm375
– ident: 10229_CR65
  doi: 10.1016/j.amjcard.2009.11.026
– ident: 10229_CR26
  doi: 10.1111/j.1540-8175.2007.00424.x
– ident: 10229_CR84
– ident: 10229_CR8
  doi: 10.1067/mhj.2001.116071
– ident: 10229_CR88
  doi: 10.1177/2045894018790905
– ident: 10229_CR62
  doi: 10.1161/CIRCIMAGING.116.005384
– ident: 10229_CR66
  doi: 10.1097/HCO.0b013e32835dd12c
– ident: 10229_CR19
  doi: 10.1161/CIRCULATIONAHA.107.653576
– ident: 10229_CR47
  doi: 10.1007/s10554-020-01783-y
– ident: 10229_CR29
  doi: 10.2174/1573403x12666161028122649
– ident: 10229_CR61
  doi: 10.1016/S0002-9149(99)00877-2
SSID ssj0004940
Score 2.4203768
SecondaryResourceType review_article
Snippet Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical...
Abstract Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1795
SubjectTerms Cardiac muscle
Cardiology
Cardiomyopathy
Child abuse & neglect
Congestive heart failure
Coronary artery disease
Dilated cardiomyopathy
Epidemiology
Heart diseases
Medicine
Medicine & Public Health
Phenotypes
Ventricle
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiEuiDeBBRkJcQGLuHbshAtCiNUKaTmxUm9R_AhUuzil2z3sjZ_OjOOmlJV6atS4Ttx5eMYz8w3AaykIssR03Ehn0UExFe86W3Lf11ZpG3yZ4BhOvunjU_V1Xs3zgdtFTqvc6MSkqP3g6Iz8_YyQoqgzRv1x-ZtT1yiKruYWGjfhFkGXEVebudnWRTZjQaREK1IJZXLRTC6dw72UUy47-TwNN7sb0zVr83rS5BQ5_Q9lNO1MR_fgbjYp2aeRB-7DjRAfwO2THDR_CH-QFVhywhklN6YTv27FFhE1U0ILX-M184tzNDs9cylB9dfVQL2Krz6w5YoAwUn-WRc9o3yuOBC4M1v8k4zOhp6hKYkfaIPzGH5QNIBmo1rxR3B69OX752OeGy9whwK85pX2M91bb0zfVb3wDndS43UjHK7eBymC7mWPxo1UPihbGqsqV4vKWvQWA9o4j-EgDjE8BaZnVlvpcF5Vq772dZBlR710XVPq4MoCxOZfb11GJafmGOftFk-ZKNUikdpEqdYU8Hb6zXLE5Ng7-nBDzDbL50W75aYCXk23UbIoXNLFMFziGK1ErUmnFfBkpP30OImqi3y7AswOV0wDCLV7905c_Ezo3Y2s0eYTBbzb8M_2tfat4s3IYztPyF-d4VVoVYXTNs_2L_c53JkR06csuUM4WK8uwws0q9b2ZZKdvxCRIjA
  priority: 102
  providerName: ProQuest
Title The right ventricular involvement in dilated cardiomyopathy: prevalence and prognostic implications of the often-neglected child
URI https://link.springer.com/article/10.1007/s10741-022-10229-7
https://www.ncbi.nlm.nih.gov/pubmed/35315505
https://www.proquest.com/docview/2703667488
https://www.proquest.com/docview/2641864257
https://pubmed.ncbi.nlm.nih.gov/PMC9388461
http://kipublications.ki.se/Default.aspx?queryparsed=id:149079456
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVkJcKt4YSrRIiAtY8nrXuza3EKVUoFYIESmcLO_DJaLYVZoeeuOnM7N2HNKiSlxiy96MH7Oz-4135huA14ITZYmuYi2sQQdFZ3FVmSR2dW6kMt4lgY7h-EQdzeSneTbvaXIoF-ba-j2luOGcF1PMOfkmRax3YC_jQlOZhomabHIgiy75USBilFzqPkHm3zK2J6EbyPJmgOSwSnqNUTTMQof3Yb-Hj2zc6fsB3PHNQ7h73C-QP4LfqHYWHG5GgYzh6161ZIsGR6HADL7CfeYWZwgxHbMhGPXXVUt1ia_es_MlkX-TrbOqcYxit5qWiJzZ4q_Ac9bWDGEjbhBvx40_pS__JI3ywh_D7HD6bXIU90UWYovGuooz5VJVG6d1XWU1dxZnTe1UwS0-vfOCe1WLGoGMkM5Lk2gjM5vzzBj0DD3imSew27SNfwZMpUYZYVGuzGWdu9yLpKK6ubZIlLdJBHz91kvbM5BTIYyzcsOdTJoqUUll0FSpI3g7_Oe849-4tfXBWpllb4sXZUocY1RTJY_g1XAarYiWRqrGt5fYRkmeKxq_Inja6X64nMBhivy4CPRWrxgaEEP39plm8SMwdRciR3zHI3i37j-b27rtKd50fWzrCv2hn7jnS5mh2OL5_8l9AfdSMoIQIXcAu6vlpX-JkGplRrCj53oEe-OP3z9PcfthevLl6yhYGP7O0vEfmaIf0Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxBtDgUUCLmBhe9e7NhJCCKhS2vTUSrkZ78MQUeyQpkK58Yv4jcysHyFUyq0nW_Z6_ZjZeXhmvgF4xmOCLFFlqLjR6KCoNCxLHYW2yrSQ2tnIwzGMD-XoWHyepJMt-NPXwlBaZS8TvaC2jaF_5K8TQoqizhjZu9nPkLpGUXS1b6HRssW-W_5Cl-307d5HpO_zJNn9dPRhFHZdBUKD3LkIU2kTWWmrVFWmVWwNqgllZR4ba5x1PHay4hVqbi6sEzpSWqQmi1Ot0RVyqMBx3ktwGRVvRM6emqhVHWbeFmBytFpFLFRXpNOV6qHuDil3nnysPFTrivCcdXs-SXOI1P6Hauo14e4NuN6ZsOx9y3M3YcvVt-DKuAvS34bfyHrMO_2Mkin9H8ZyzqY1SkKPTr7AfWanJ2jmWmZ8QuyPZUO9kZdv2GxOAOQkb1hZW0b5Y3VDYNJs-k_yO2sqhqYrbtDmD2v3laIPNBvVpt-B4wshyV3Yrpva3QcmEy01NzivyESV2czxqKTevSaPpDNRAHH_1QvToaBTM46TYoXfTJQqkEiFp1ShAng5XDNrMUA2jt7piVl08uC0WHFvAE-H07iSKTxT1q45wzFSxJkkGRrAvZb2w-04ikryJQNQa1wxDCCU8PUz9fSbRwvPeYY2ZhzAq55_Vo-16S1etDy2dofu0Hfcc4VIcdr8webXfQJXR0fjg-Jg73D_IVxLaAH4DL0d2F7Mz9wjNOkW-rFfRwy-XPTC_QuoNmEr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4IN4YCiwScAGrtne9ayMhBLRRS2lUISr1ZrwP06jFDmkqlBu_i1_HjF8hVMqtp1jxev2Y2XnszHwD8JyHBFmicl9xo9FBUbGf5zrwbZFoIbWzQQ3HcDCSu0fi03F8vAZ_uloYSqvsZGItqG1laI98KyKkKOqMkWwVbVrE4fbw3eSnTx2kKNLatdNoWGTfzX-h-3b-dm8baf0iioY7Xz_u-m2HAd8gp878WNpIFtoqVeRxEVqDKkNZmYbGGmcdD50seIFanAvrhA6UFrFJwlhrdIscKnOc9xqsK_KKBrD-YWd0-GVRlZk25ZgcbVgRCtWW7LSFe6jJfcqkJ48r9dWyWrxk615O2ezjtv9hnNZ6cXgTbrQGLXvfcOAtWHPlbdg4aEP2d-A3MiKrtwAYpVbW-435lI1LlIs1VvkMj5kdn6HRa5mp02N_zCvqlDx_wyZTgiMn6cPy0jLKJisrgpZm439S4VlVMDRk8Qc9AL903ykWQbNRpfpdOLoSotyDQVmV7gEwGWmpucF5RSKKxCaOBzl18jVpIJ0JPAi7r56ZFhOdWnOcZQs0Z6JUhkTKakplyoNX_TWTBhFk5ejNjphZKx3OswUve_CsP43rmoI1eemqCxwjRZhIkqge3G9o39-Oo-Akz9IDtcQV_QDCDF8-U45PauzwlCdocYYevO74Z_FYq97iZcNjS3do_zrFI5eJGKdNH65-3aewgYs2-7w32n8E1yPi_zpdbxMGs-mFe4z23Uw_aRcSg29XvXb_AvotZsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+right+ventricular+involvement+in+dilated+cardiomyopathy%3A+prevalence+and+prognostic+implications+of+the+often-neglected+child&rft.jtitle=Heart+failure+reviews&rft.au=Manca%2C+Paolo&rft.au=Nuzzi%2C+Vincenzo&rft.au=Cannat%C3%A0%2C+Antonio&rft.au=Castrichini%2C+Matteo&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1382-4147&rft.eissn=1573-7322&rft.volume=27&rft.issue=5&rft.spage=1795&rft.epage=1805&rft_id=info:doi/10.1007%2Fs10741-022-10229-7&rft_id=info%3Apmid%2F35315505&rft.externalDocID=PMC9388461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4147&client=summon