Loss of TSC2 confers resistance to ceramide and nutrient deprivation

Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by de...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 33; no. 14; pp. 1776 - 1787
Main Authors Guenther, G G, Liu, G, Ramirez, M U, McMonigle, R J, Kim, S M, McCracken, A N, Joo, Y, Ushach, I, Nguyen, N L, Edinger, A L
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.04.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2 −/− MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2 −/− MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2 −/− MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
AbstractList Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2−/− MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2−/− MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2−/− MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, [TSC2.sup.-/-] MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As [TSC2.sup.-/-] MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of [TSC2.sup.-/-] MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mTORC1 signaling complex. Activating mTORC1 by deleting its negative regulator TSC2 leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2 −/− MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2 −/− MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive up-regulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2 −/− MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1 dependent translation facilitates the adaptive cellular response to nutrient stress.
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, [TSC2.sup.-/-] MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As [TSC2.sup.-/-] MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of [TSC2.sup.-/-] MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress. Oncogene (2014) 33, 1776-1787; doi: 10.1038/onc.2013.139; published online 22 April 2013 Keywords: TSC2; mTOR; nutrient transporters; 4F2hc; GLUT1; ceramide
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2(-/-) MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2(-/-) MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2(-/-) MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress. [PUBLICATION ABSTRACT]
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2(-/-) MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2(-/-) MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2(-/-) MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2 −/− MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2 −/− MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2 −/− MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism. One driver of biosynthesis in cancer cells is the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Activating mTORC1 by deleting its negative regulator tuberous sclerosis complex 2 (TSC2) leads to hypersensitivity to glucose deprivation. We have previously shown that ceramide kills cells in part by triggering nutrient transporter loss and restricting access to extracellular amino acids and glucose, suggesting that TSC2-deficient cells would be hypersensitive to ceramide. However, murine embryonic fibroblasts (MEFs) lacking TSC2 were highly resistant to ceramide-induced death. Consistent with the observation that ceramide limits access to both amino acids and glucose, TSC2 super(-/-) MEFs also had a survival advantage when extracellular amino acids and glucose were both reduced. As TSC2 super(-/-) MEFs were resistant to nutrient stress despite sustained mTORC1 activity, we assessed whether mTORC1 signaling might be beneficial under these conditions. In low amino acid and glucose medium, and following ceramide-induced nutrient transporter loss, elevated mTORC1 activity significantly enhanced the adaptive upregulation of new transporter proteins for amino acids and glucose. Strikingly, the introduction of oncogenic Ras abrogated the survival advantage of TSC2 super(-/-) MEFs upon ceramide treatment most likely by increasing nutrient demand. These results suggest that, in the absence of oncogene-driven biosynthetic demand, mTORC1-dependent translation facilitates the adaptive cellular response to nutrient stress.
Audience Academic
Author McMonigle, R J
Guenther, G G
Liu, G
Nguyen, N L
Ushach, I
Ramirez, M U
Edinger, A L
McCracken, A N
Joo, Y
Kim, S M
Author_xml – sequence: 1
  givenname: G G
  surname: Guenther
  fullname: Guenther, G G
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 2
  givenname: G
  surname: Liu
  fullname: Liu, G
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 3
  givenname: M U
  surname: Ramirez
  fullname: Ramirez, M U
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 4
  givenname: R J
  surname: McMonigle
  fullname: McMonigle, R J
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 5
  givenname: S M
  surname: Kim
  fullname: Kim, S M
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 6
  givenname: A N
  surname: McCracken
  fullname: McCracken, A N
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 7
  givenname: Y
  surname: Joo
  fullname: Joo, Y
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 8
  givenname: I
  surname: Ushach
  fullname: Ushach, I
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 9
  givenname: N L
  surname: Nguyen
  fullname: Nguyen, N L
  organization: Department of Developmental and Cell Biology, University of California
– sequence: 10
  givenname: A L
  surname: Edinger
  fullname: Edinger, A L
  email: aedinger@uci.edu
  organization: Department of Developmental and Cell Biology, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23604129$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1rFDEYxoNU7LZ68ywDXjx01nxn5iKU1aqw4MF6DpnkzZoyk9RkptD_3ixbaytFcgjk_b1P3o_nBB3FFAGh1wSvCWbd-xTtmmLC1oT1z9CKcCVbIXp-hFa4F7jtKaPH6KSUK4yx6jF9gY4pk5gT2q_Qx20qpUm-ufy-oY1N0UMuTYYSymyihWZOjYVspuCgMdE1cZlzgDg3Dq5zuDFzSPEleu7NWODV3X2Kflx8utx8abffPn_dnG9bK1Q3t8xLrPAwdIMx3DBlyUB7QpjAUknunPNMGecdcZxJwwbsBuL9YIlVmFNj2Sn6cNC9XoYJnK1lZDPqWsdk8q1OJujHkRh-6l260awTnVC8Cry7E8jp1wJl1lMoFsbRREhL0UQQqYSqc6ro23_Qq7TkWNvTVHIiqOCS_I-qWpRxyjD9S-3MCDpEn2p1dv-1PmdSqX5fXqXWT1D1OJhC3Qz4UN8fJZwdEmyuS8zg7ydBsN57Q1dv6L03dPVGxd88nN49_McMFWgPQKmhuIP8oJmnBH8DACHDbQ
CODEN ONCNES
CitedBy_id crossref_primary_10_1126_scisignal_aaa0899
crossref_primary_10_1038_s41598_017_14124_2
crossref_primary_10_1021_acscentsci_7b00582
crossref_primary_10_1016_j_expneurol_2020_113432
crossref_primary_10_1096_fj_202200748R
crossref_primary_10_1242_jcs_213314
crossref_primary_10_1016_j_bmc_2016_07_038
crossref_primary_10_1038_onc_2014_47
crossref_primary_10_1042_BJ20150586
crossref_primary_10_1016_j_cmet_2016_03_013
crossref_primary_10_1172_jci_insight_166850
crossref_primary_10_1038_s41568_018_0048_x
crossref_primary_10_1074_mcp_RA118_001053
crossref_primary_10_1016_j_celrep_2019_02_037
crossref_primary_10_3389_fcell_2022_854397
crossref_primary_10_1016_j_pharmthera_2021_108005
crossref_primary_10_1172_JCI79766
Cites_doi 10.1073/pnas.0506925102
10.4161/auto.7.10.16681
10.1128/MCB.01254-05
10.1074/jbc.M600341200
10.1016/j.devcel.2006.10.007
10.1152/ajpendo.90645.2008
10.1038/onc.2010.393
10.1146/annurev-biochem-062209-094414
10.1371/journal.pone.0006189
10.1042/BJ20080281
10.1038/ncb847
10.1016/j.molcel.2012.10.003
10.1016/j.molcel.2008.03.003
10.1038/embor.2011.257
10.1007/s00109-011-0726-6
10.1074/jbc.M703329200
10.1073/pnas.0706517104
10.1016/j.ccr.2010.03.019
10.1016/S0092-8674(03)00881-X
10.1016/S0014-5793(01)02126-3
10.1126/science.1157535
10.1128/MCB.24.8.3112-3124.2004
10.1073/pnas.0802781105
10.1016/j.molcel.2012.06.009
10.4161/auto.19496
10.1016/j.cell.2010.02.024
10.1101/gad.1110003
10.1016/j.molcel.2010.05.007
10.1042/BST0340007
10.1038/nrc1411
10.1038/ncb1753
10.1016/S0960-9822(03)00506-2
10.1016/j.ceb.2011.09.003
10.1073/pnas.1104361108
10.1016/S0092-8674(03)00929-2
10.1038/sj.onc.1207738
10.1016/B978-0-12-385114-7.00019-2
10.1016/j.molcel.2013.01.019
10.1158/0008-5472.CAN-07-5756
10.1038/cdd.2010.82
10.1093/jn/131.10.3023
10.1016/S1535-6108(03)00187-9
10.1074/jbc.273.37.23629
10.1172/JCI13505
10.1083/jcb.200403069
10.1074/jbc.M110699200
10.1016/S0140-6736(08)61279-9
10.1091/mbc.01-12-0584
10.1016/j.cmet.2007.11.015
10.1158/0008-5472.CAN-05-3375
10.1128/MCB.01946-08
10.1074/jbc.M009714200
10.1038/nrm3522
10.1128/MCB.00289-08
10.1074/jbc.273.26.16568
10.1016/j.ccr.2004.06.007
10.1042/BJ20110853
10.1038/sj.onc.1209106
10.1016/j.cell.2006.04.031
10.1074/jbc.275.18.13330
10.1016/S0021-9258(18)82288-8
10.1093/genetics/161.3.1053
ContentType Journal Article
Copyright Macmillan Publishers Limited 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Apr 3, 2014
Macmillan Publishers Limited 2014.
Copyright_xml – notice: Macmillan Publishers Limited 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 3, 2014
– notice: Macmillan Publishers Limited 2014.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PQEST
PQQKQ
PQUKI
PRINS
Q9U
RC3
5PM
DOI 10.1038/onc.2013.139
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Proquest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep



Research Library Prep
MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1476-5594
EndPage 1787
ExternalDocumentID 3264407341
A367798585
10_1038_onc_2013_139
23604129
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32CA009054
– fundername: NIGMS NIH HHS
  grantid: R01 GM089919
– fundername: NIGMS NIH HHS
  grantid: R01-GM089919
– fundername: NCI NIH HHS
  grantid: T32 CA009054
GroupedDBID ---
-Q-
0R~
123
29N
2WC
36B
39C
3V.
4.4
406
53G
5RE
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AANZL
AAWBL
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AGEZK
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FRP
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
IWAJR
JSO
JZLTJ
KQ8
L7B
LK8
M0L
M1P
M2O
M7P
N9A
NAO
NQJWS
NXXTH
O9-
OK1
OVD
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TSG
TUS
UKHRP
W2D
WH7
~8M
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
AADWK
AATNV
AAYFA
AAYJO
ABGIJ
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AFNRJ
AGGBP
AJCLW
AJDOV
AMRJV
NYICJ
ZA5
FIGPU
7TM
7TO
7U9
7XB
8FD
8FK
FR3
H94
K9.
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
RC3
5PM
ID FETCH-LOGICAL-c578t-3f6070bb8baa4a37c1b29113506764dddf37adfd1d436a3b0db1ffbc1c7042ac3
IEDL.DBID 8C1
ISSN 0950-9232
IngestDate Tue Sep 17 20:32:22 EDT 2024
Sat Oct 05 05:35:11 EDT 2024
Thu Oct 10 17:01:31 EDT 2024
Thu Oct 10 18:30:15 EDT 2024
Thu Feb 22 23:28:36 EST 2024
Fri Feb 02 04:24:05 EST 2024
Fri Sep 27 02:37:20 EDT 2024
Sat Sep 28 08:03:01 EDT 2024
Fri Oct 11 20:47:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords mTOR
GLUT1
TSC2
ceramide
nutrient transporters
4F2hc
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-3f6070bb8baa4a37c1b29113506764dddf37adfd1d436a3b0db1ffbc1c7042ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/onc2013139.pdf
PMID 23604129
PQID 1512342302
PQPubID 36330
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3858574
proquest_miscellaneous_1516757007
proquest_journals_2641525461
proquest_journals_1512342302
gale_infotracmisc_A367798585
gale_infotracacademiconefile_A367798585
crossref_primary_10_1038_onc_2013_139
pubmed_primary_23604129
springer_journals_10_1038_onc_2013_139
PublicationCentury 2000
PublicationDate 2014-04-03
PublicationDateYYYYMMDD 2014-04-03
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
PublicationTitle Oncogene
PublicationTitleAbbrev Oncogene
PublicationTitleAlternate Oncogene
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kim, Guan (CR52) 2011; 80
Harrington, Findlay, Gray, Tolkacheva, Wigfield, Rebholz (CR22) 2004; 166
Dibble, Elis, Menon, Qin, Klekota, Asara (CR4) 2012; 47
Edinger, Thompson (CR31) 2004; 23
Shaw, Bardeesy, Manning, Lopez, Kosmatka, DePinho (CR54) 2004; 6
Gwinn, Shackelford, Egan, Mihaylova, Mery, Vasquez (CR18) 2008; 30
Le Stunff, Giussani, Maceyka, Lepine, Milstien, Spiegel (CR11) 2007; 282
Inoki, Li, Xu, Guan (CR61) 2003; 17
Teske, Baird, Wek (CR63) 2011; 490
Lacher, Pincheira, Zhu, Camoretti-Mercado, Matli, Warren (CR37) 2010; 29
Yecies, Manning (CR2) 2011; 89
Inoki, Zhu, Guan (CR7) 2003; 115
Kim, Goraksha-Hicks, Li, Neufeld, Guan (CR58) 2008; 10
Ogretmen, Pettus, Rossi, Wood, Usta, Szulc (CR12) 2002; 277
Zhou, Summers, Birnbaum, Pittman (CR25) 1998; 273
Ng, Wu, Chen, Zhou, Shen (CR46) 2011; 7
Kang, Lu, Guan (CR45) 2011; 18
Bhattacharyya, Habermacher, Martine, Closs, Filipowicz (CR40) 2006; 125
Nobukuni, Joaquin, Roccio, Dann, Kim, Gulati (CR55) 2005; 102
Gaccioli, Huang, Wang, Bevilacqua, Franchi-Gazzola, Gazzola (CR44) 2006; 281
Menon, Manning (CR20) 2009; 27
Tee, Manning, Roux, Cantley, Blenis (CR60) 2003; 13
Li, Gordon, Du, Xu, Du (CR62) 2010; 17
Roccio, Bos, Zwartkruis (CR56) 2006; 25
Jewell, Russell, Guan (CR14) 2013; 14
Sancak, Bar-Peled, Zoncu, Markhard, Nada, Sabatini (CR16) 2010; 141
Schubert, Scheid, Duronio (CR26) 2000; 275
Ogretmen, Hannun (CR8) 2004; 4
Kanai, Segawa, Miyamoto, Uchino, Takeda, Endou (CR34) 1998; 273
Bhaskar, Nogueira, Patra, Jeon, Park, Robey (CR13) 2009; 29
Zhang, Huang, Duvel, Boback, Wu, Squillace (CR27) 2009; 4
Edinger, Thompson (CR32) 2002; 13
Bain, LeBlanc-Chaffin, Chen, Palii, Leach, Kilberg (CR42) 2002; 132
Huang, Dibble, Matsuzaki, Manning (CR28) 2008; 28
Dobrowsky, Kamibayashi, Mumby, Hannun (CR21) 1993; 268
Parkhitko, Myachina, Morrison, Hindi, Auricchio, Karbowniczek (CR47) 2011; 108
Avruch, Long, Ortiz-Vega, Rapley, Papageorgiou, Dai (CR53) 2009; 296
Park, Kim, Kim, Moon, Kim, Cho (CR35) 2008; 28
Short, Houston, Dere, Cai, Kim, Johnson (CR36) 2008; 68
Tremblay, Brule, Hee, Li, Masuda, Roden (CR23) 2007; 104
Curatolo, Bombardieri, Jozwiak (CR3) 2008; 372
Wek, Jiang, Anthony (CR39) 2006; 34
Manel, Kim, Kinet, Taylor, Sitbon, Battini (CR64) 2003; 115
Matsumoto, Bandyopadhyay, Kwiatkowski, Maitra, Matsumoto (CR33) 2002; 161
Dazert, Hall (CR1) 2011; 23
Brugarolas, Vazquez, Reddy, Sellers, Kaelin (CR49) 2003; 4
Guenther, Peralta, Rosales, Wong, Siskind, Edinger (CR9) 2008; 105
Yuan, Xiong, Guan (CR15) 2013; 49
Duran, Hall (CR51) 2012; 13
Choo, Kim, Vander Heiden, Mahoney, Vu, Yoon (CR6) 2010; 38
Fernandez, Yaman, Mishra, Merrick, Snider, Lamers (CR41) 2001; 276
Guertin, Stevens, Thoreen, Burds, Kalaany, Moffat (CR30) 2006; 11
Gazzola, Sala, Bussolati, Visigalli, Dall’Asta, Ganapathy (CR43) 2001; 490
Huang, Manning (CR5) 2008; 412
Romero Rosales, Singh, Wu, Chen, Janes, Lilly (CR10) 2011; 439
Shah, Hunter (CR24) 2006; 26
Aronova, Wedaman, Aronov, Fontes, Ramos, Hammock (CR29) 2008; 7
Kim, Hoffman, Poulogiannis, Buel, Jang, Lee (CR59) 2013; 49
Sancak, Peterson, Shaul, Lindquist, Thoreen, Bar-Peled (CR17) 2008; 320
Zhou, Myers, Li, Chen, Shen, Fenyk-Melody (CR38) 2001; 108
Klionsky, Abdalla, Abeliovich, Abraham, Acevedo-Arozena, Adeli (CR48) 2012; 8
Gao, Zhang, Arrazola, Hino, Kobayashi, Yeung (CR57) 2002; 4
Pende, Um, Mieulet, Sticker, Goss, Mestan (CR19) 2004; 24
Kaper, Dornhoefer, Giaccia (CR50) 2006; 66
17709744 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14056-61
22240970 - EMBO Rep. 2012 Feb;13(2):121-8
15286740 - Nat Rev Cancer. 2004 Aug;4(8):604-16
23361334 - Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9
23142078 - Mol Cell. 2013 Jan 10;49(1):172-85
18765678 - Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602
21963299 - Curr Opin Cell Biol. 2011 Dec;23(6):744-55
15060135 - Mol Cell Biol. 2004 Apr;24(8):3112-24
16452213 - Cancer Res. 2006 Feb 1;66(3):1561-9
18439900 - Mol Cell. 2008 Apr 25;30(2):214-26
14622599 - Cell. 2003 Nov 14;115(4):449-59
15133498 - Oncogene. 2004 Jul 22;23(33):5654-63
16914728 - Mol Cell Biol. 2006 Sep;26(17):6425-34
9632728 - J Biol Chem. 1998 Jun 26;273(26):16568-75
18411301 - Mol Cell Biol. 2008 Jun;28(12):4104-15
21548787 - Annu Rev Biochem. 2011;80:1001-32
16621798 - J Biol Chem. 2006 Jun 30;281(26):17929-40
21808151 - Autophagy. 2011 Oct;7(10):1173-86
20616807 - Cell Death Differ. 2011 Jan;18(1):133-44
20818424 - Oncogene. 2010 Dec 16;29(50):6543-56
18981422 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17402-7
17895250 - J Biol Chem. 2007 Nov 23;282(47):34372-80
19593385 - PLoS One. 2009;4(7):e6189
12368390 - J Nutr. 2002 Oct;132(10):3023-9
10788440 - J Biol Chem. 2000 May 5;275(18):13330-5
18497260 - Science. 2008 Jun 13;320(5882):1496-501
12136010 - Genetics. 2002 Jul;161(3):1053-63
9726963 - J Biol Chem. 1998 Sep 11;273(37):23629-32
22795129 - Mol Cell. 2012 Aug 24;47(4):535-46
20478529 - Cancer Cell. 2010 May 18;17(5):469-80
18604198 - Nat Cell Biol. 2008 Aug;10(8):935-45
8393446 - J Biol Chem. 1993 Jul 25;268(21):15523-30
12906785 - Curr Biol. 2003 Aug 5;13(15):1259-68
18701472 - Cancer Res. 2008 Aug 15;68(16):6496-506
12172555 - Nat Cell Biol. 2002 Sep;4(9):699-704
21301797 - J Mol Med (Berl). 2011 Mar;89(3):221-8
18249174 - Cell Metab. 2008 Feb;7(2):148-58
21266259 - Methods Enzymol. 2011;490:333-56
20381137 - Cell. 2010 Apr 16;141(2):290-303
14651849 - Cell. 2003 Nov 26;115(5):577-90
16176982 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43
15249583 - J Cell Biol. 2004 Jul 19;166(2):213-23
11172802 - FEBS Lett. 2001 Feb 9;490(1-2):11-4
12869586 - Genes Dev. 2003 Aug 1;17(15):1829-34
22966490 - Autophagy. 2012 Apr;8(4):445-544
20513425 - Mol Cell. 2010 May 28;38(4):487-99
19620286 - Mol Cell Biol. 2009 Sep;29(18):5136-47
21746920 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12455-60
11602624 - J Clin Invest. 2001 Oct;108(8):1167-74
11114306 - J Biol Chem. 2001 Apr 13;276(15):12285-91
12957289 - Cancer Cell. 2003 Aug;4(2):147-58
12134068 - Mol Biol Cell. 2002 Jul;13(7):2276-88
18466115 - Biochem J. 2008 Jun 1;412(2):179-90
19956179 - Oncogene. 2008 Dec;27 Suppl 2:S43-51
23395268 - Mol Cell. 2013 Feb 7;49(3):379-87
19035290 - Anticancer Res. 2008 Sep-Oct;28(5A):2649-55
16246168 - Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11
15261145 - Cancer Cell. 2004 Jul;6(1):91-9
16777601 - Cell. 2006 Jun 16;125(6):1111-24
18722871 - Lancet. 2008 Aug 23;372(9639):657-68
21767261 - Biochem J. 2011 Oct 15;439(2):299-311
17141160 - Dev Cell. 2006 Dec;11(6):859-71
11815611 - J Biol Chem. 2002 Apr 12;277(15):12960-9
16170341 - Oncogene. 2006 Feb 2;25(5):657-64
K Inoki (BFonc2013139_CR61) 2003; 17
X Gao (BFonc2013139_CR57) 2002; 4
YJ Kang (BFonc2013139_CR45) 2011; 18
RF Gazzola (BFonc2013139_CR43) 2001; 490
M Pende (BFonc2013139_CR19) 2004; 24
T Nobukuni (BFonc2013139_CR55) 2005; 102
GG Guenther (BFonc2013139_CR9) 2008; 105
AL Edinger (BFonc2013139_CR31) 2004; 23
B Ogretmen (BFonc2013139_CR12) 2002; 277
RT Dobrowsky (BFonc2013139_CR21) 1993; 268
J Avruch (BFonc2013139_CR53) 2009; 296
JL Yecies (BFonc2013139_CR2) 2011; 89
S Ng (BFonc2013139_CR46) 2011; 7
OJ Shah (BFonc2013139_CR24) 2006; 26
RJ Shaw (BFonc2013139_CR54) 2004; 6
H Zhou (BFonc2013139_CR25) 1998; 273
Y Kanai (BFonc2013139_CR34) 1998; 273
MD Lacher (BFonc2013139_CR37) 2010; 29
J Kim (BFonc2013139_CR52) 2011; 80
HH Zhang (BFonc2013139_CR27) 2009; 4
DA Guertin (BFonc2013139_CR30) 2006; 11
KM Schubert (BFonc2013139_CR26) 2000; 275
SN Bhattacharyya (BFonc2013139_CR40) 2006; 125
JL Jewell (BFonc2013139_CR14) 2013; 14
HX Yuan (BFonc2013139_CR15) 2013; 49
AY Choo (BFonc2013139_CR6) 2010; 38
H Le Stunff (BFonc2013139_CR11) 2007; 282
PT Bhaskar (BFonc2013139_CR13) 2009; 29
DM Gwinn (BFonc2013139_CR18) 2008; 30
B Ogretmen (BFonc2013139_CR8) 2004; 4
CC Dibble (BFonc2013139_CR4) 2012; 47
S Aronova (BFonc2013139_CR29) 2008; 7
J Fernandez (BFonc2013139_CR41) 2001; 276
P Curatolo (BFonc2013139_CR3) 2008; 372
J Huang (BFonc2013139_CR28) 2008; 28
Y Sancak (BFonc2013139_CR17) 2008; 320
N Manel (BFonc2013139_CR64) 2003; 115
S Matsumoto (BFonc2013139_CR33) 2002; 161
PJ Bain (BFonc2013139_CR42) 2002; 132
F Kaper (BFonc2013139_CR50) 2006; 66
S Menon (BFonc2013139_CR20) 2009; 27
AL Edinger (BFonc2013139_CR32) 2002; 13
J Huang (BFonc2013139_CR5) 2008; 412
M Roccio (BFonc2013139_CR56) 2006; 25
Y Sancak (BFonc2013139_CR16) 2010; 141
F Tremblay (BFonc2013139_CR23) 2007; 104
RC Wek (BFonc2013139_CR39) 2006; 34
DJ Klionsky (BFonc2013139_CR48) 2012; 8
JD Short (BFonc2013139_CR36) 2008; 68
AR Tee (BFonc2013139_CR60) 2003; 13
A Parkhitko (BFonc2013139_CR47) 2011; 108
K Romero Rosales (BFonc2013139_CR10) 2011; 439
JB Brugarolas (BFonc2013139_CR49) 2003; 4
BF Teske (BFonc2013139_CR63) 2011; 490
E Kim (BFonc2013139_CR58) 2008; 10
G Zhou (BFonc2013139_CR38) 2001; 108
LS Harrington (BFonc2013139_CR22) 2004; 166
NS Park (BFonc2013139_CR35) 2008; 28
E Dazert (BFonc2013139_CR1) 2011; 23
B Li (BFonc2013139_CR62) 2010; 17
F Gaccioli (BFonc2013139_CR44) 2006; 281
SG Kim (BFonc2013139_CR59) 2013; 49
K Inoki (BFonc2013139_CR7) 2003; 115
RV Duran (BFonc2013139_CR51) 2012; 13
References_xml – volume: 28
  start-page: 2649
  year: 2008
  end-page: 2655
  ident: CR35
  article-title: Characterization of amino acid transport system L in HTB-41 human salivary gland epidermoid carcinoma cells
  publication-title: Anticancer Res
  contributor:
    fullname: Cho
– volume: 102
  start-page: 14238
  year: 2005
  end-page: 14243
  ident: CR55
  article-title: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506925102
  contributor:
    fullname: Gulati
– volume: 7
  start-page: 1173
  year: 2011
  end-page: 1186
  ident: CR46
  article-title: Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress
  publication-title: Autophagy
  doi: 10.4161/auto.7.10.16681
  contributor:
    fullname: Shen
– volume: 268
  start-page: 15523
  year: 1993
  end-page: 15530
  ident: CR21
  article-title: Ceramide activates heterotrimeric protein phosphatase 2A
  publication-title: J Biol Chem
  contributor:
    fullname: Hannun
– volume: 26
  start-page: 6425
  year: 2006
  end-page: 6434
  ident: CR24
  article-title: Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01254-05
  contributor:
    fullname: Hunter
– volume: 281
  start-page: 17929
  year: 2006
  end-page: 17940
  ident: CR44
  article-title: Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600341200
  contributor:
    fullname: Gazzola
– volume: 11
  start-page: 859
  year: 2006
  end-page: 871
  ident: CR30
  article-title: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.10.007
  contributor:
    fullname: Moffat
– volume: 296
  start-page: E592
  year: 2009
  end-page: E602
  ident: CR53
  article-title: Amino acid regulation of TOR complex 1
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90645.2008
  contributor:
    fullname: Dai
– volume: 29
  start-page: 6543
  year: 2010
  end-page: 6556
  ident: CR37
  article-title: Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis
  publication-title: Oncogene
  doi: 10.1038/onc.2010.393
  contributor:
    fullname: Warren
– volume: 80
  start-page: 1001
  year: 2011
  end-page: 1032
  ident: CR52
  article-title: Amino acid signaling in TOR activation
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-062209-094414
  contributor:
    fullname: Guan
– volume: 4
  start-page: e6189
  year: 2009
  ident: CR27
  article-title: Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
  publication-title: PloS One
  doi: 10.1371/journal.pone.0006189
  contributor:
    fullname: Squillace
– volume: 412
  start-page: 179
  year: 2008
  end-page: 190
  ident: CR5
  article-title: The TSC1-TSC2 complex: a molecular switchboard controlling cell growth
  publication-title: Biochem J
  doi: 10.1042/BJ20080281
  contributor:
    fullname: Manning
– volume: 4
  start-page: 699
  year: 2002
  end-page: 704
  ident: CR57
  article-title: Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb847
  contributor:
    fullname: Yeung
– volume: 161
  start-page: 1053
  year: 2002
  end-page: 1063
  ident: CR33
  article-title: Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe
  publication-title: Genetics
  contributor:
    fullname: Matsumoto
– volume: 49
  start-page: 172
  year: 2013
  end-page: 185
  ident: CR59
  article-title: Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.003
  contributor:
    fullname: Lee
– volume: 30
  start-page: 214
  year: 2008
  end-page: 226
  ident: CR18
  article-title: AMPK phosphorylation of raptor mediates a metabolic checkpoint
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.03.003
  contributor:
    fullname: Vasquez
– volume: 13
  start-page: 121
  year: 2012
  end-page: 128
  ident: CR51
  article-title: Regulation of TOR by small GTPases
  publication-title: EMBO Rep
  doi: 10.1038/embor.2011.257
  contributor:
    fullname: Hall
– volume: 89
  start-page: 221
  year: 2011
  end-page: 228
  ident: CR2
  article-title: mTOR links oncogenic signaling to tumor cell metabolism
  publication-title: J Mol Med
  doi: 10.1007/s00109-011-0726-6
  contributor:
    fullname: Manning
– volume: 282
  start-page: 34372
  year: 2007
  end-page: 34380
  ident: CR11
  article-title: Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M703329200
  contributor:
    fullname: Spiegel
– volume: 104
  start-page: 14056
  year: 2007
  end-page: 14061
  ident: CR23
  article-title: Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706517104
  contributor:
    fullname: Roden
– volume: 17
  start-page: 469
  year: 2010
  end-page: 480
  ident: CR62
  article-title: Specific killing of Rb mutant cancer cells by inactivating TSC2
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.03.019
  contributor:
    fullname: Du
– volume: 115
  start-page: 449
  year: 2003
  end-page: 459
  ident: CR64
  article-title: The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00881-X
  contributor:
    fullname: Battini
– volume: 490
  start-page: 11
  year: 2001
  end-page: 14
  ident: CR43
  article-title: The adaptive regulation of amino acid transport system A is associated to changes in ATA2 expression
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02126-3
  contributor:
    fullname: Ganapathy
– volume: 320
  start-page: 1496
  year: 2008
  end-page: 1501
  ident: CR17
  article-title: The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
  publication-title: Science
  doi: 10.1126/science.1157535
  contributor:
    fullname: Bar-Peled
– volume: 24
  start-page: 3112
  year: 2004
  end-page: 3124
  ident: CR19
  article-title: S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.8.3112-3124.2004
  contributor:
    fullname: Mestan
– volume: 105
  start-page: 17402
  year: 2008
  end-page: 17407
  ident: CR9
  article-title: Ceramide starves cells to death by downregulating nutrient transporter proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0802781105
  contributor:
    fullname: Edinger
– volume: 47
  start-page: 535
  year: 2012
  end-page: 546
  ident: CR4
  article-title: TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.06.009
  contributor:
    fullname: Asara
– volume: 8
  start-page: 445
  year: 2012
  end-page: 544
  ident: CR48
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19496
  contributor:
    fullname: Adeli
– volume: 27
  start-page: S43
  issue: Suppl 2
  year: 2009
  end-page: S51
  ident: CR20
  article-title: Common corruption of the mTOR signaling network in human tumors
  publication-title: Oncogene
  contributor:
    fullname: Manning
– volume: 141
  start-page: 290
  year: 2010
  end-page: 303
  ident: CR16
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
  contributor:
    fullname: Sabatini
– volume: 17
  start-page: 1829
  year: 2003
  end-page: 1834
  ident: CR61
  article-title: Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
  publication-title: Genes Dev
  doi: 10.1101/gad.1110003
  contributor:
    fullname: Guan
– volume: 38
  start-page: 487
  year: 2010
  end-page: 499
  ident: CR6
  article-title: Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.007
  contributor:
    fullname: Yoon
– volume: 34
  start-page: 7
  year: 2006
  end-page: 11
  ident: CR39
  article-title: Coping with stress: eIF2 kinases and translational control
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0340007
  contributor:
    fullname: Anthony
– volume: 4
  start-page: 604
  year: 2004
  end-page: 616
  ident: CR8
  article-title: Biologically active sphingolipids in cancer pathogenesis and treatment
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1411
  contributor:
    fullname: Hannun
– volume: 10
  start-page: 935
  year: 2008
  end-page: 945
  ident: CR58
  article-title: Regulation of TORC1 by Rag GTPases in nutrient response
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1753
  contributor:
    fullname: Guan
– volume: 13
  start-page: 1259
  year: 2003
  end-page: 1268
  ident: CR60
  article-title: Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00506-2
  contributor:
    fullname: Blenis
– volume: 23
  start-page: 744
  year: 2011
  end-page: 755
  ident: CR1
  article-title: mTOR signaling in disease
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2011.09.003
  contributor:
    fullname: Hall
– volume: 108
  start-page: 12455
  year: 2011
  end-page: 12460
  ident: CR47
  article-title: Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1104361108
  contributor:
    fullname: Karbowniczek
– volume: 115
  start-page: 577
  year: 2003
  end-page: 590
  ident: CR7
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
  contributor:
    fullname: Guan
– volume: 23
  start-page: 5654
  year: 2004
  end-page: 5663
  ident: CR31
  article-title: An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207738
  contributor:
    fullname: Thompson
– volume: 490
  start-page: 333
  year: 2011
  end-page: 356
  ident: CR63
  article-title: Methods for analyzing eIF2 kinases and translational control in the unfolded protein response
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385114-7.00019-2
  contributor:
    fullname: Wek
– volume: 49
  start-page: 379
  year: 2013
  end-page: 387
  ident: CR15
  article-title: Nutrient sensing, metabolism, and cell growth control
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.01.019
  contributor:
    fullname: Guan
– volume: 68
  start-page: 6496
  year: 2008
  end-page: 6506
  ident: CR36
  article-title: AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5756
  contributor:
    fullname: Johnson
– volume: 18
  start-page: 133
  year: 2011
  end-page: 144
  ident: CR45
  article-title: The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2010.82
  contributor:
    fullname: Guan
– volume: 132
  start-page: 3023
  year: 2002
  end-page: 3029
  ident: CR42
  article-title: The mechanism for transcriptional activation of the human ATA2 transporter gene by amino acid deprivation is different than that for asparagine synthetase
  publication-title: J Nutr
  doi: 10.1093/jn/131.10.3023
  contributor:
    fullname: Kilberg
– volume: 4
  start-page: 147
  year: 2003
  end-page: 158
  ident: CR49
  article-title: TSC2 regulates VEGF through mTOR-dependent and -independent pathways
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00187-9
  contributor:
    fullname: Kaelin
– volume: 273
  start-page: 23629
  year: 1998
  end-page: 23632
  ident: CR34
  article-title: Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.37.23629
  contributor:
    fullname: Endou
– volume: 108
  start-page: 1167
  year: 2001
  end-page: 1174
  ident: CR38
  article-title: Role of AMP-activated protein kinase in mechanism of metformin action
  publication-title: J Clin Invest
  doi: 10.1172/JCI13505
  contributor:
    fullname: Fenyk-Melody
– volume: 166
  start-page: 213
  year: 2004
  end-page: 223
  ident: CR22
  article-title: The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200403069
  contributor:
    fullname: Rebholz
– volume: 277
  start-page: 12960
  year: 2002
  end-page: 12969
  ident: CR12
  article-title: Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110699200
  contributor:
    fullname: Szulc
– volume: 372
  start-page: 657
  year: 2008
  end-page: 668
  ident: CR3
  article-title: Tuberous sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61279-9
  contributor:
    fullname: Jozwiak
– volume: 13
  start-page: 2276
  year: 2002
  end-page: 2288
  ident: CR32
  article-title: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.01-12-0584
  contributor:
    fullname: Thompson
– volume: 7
  start-page: 148
  year: 2008
  end-page: 158
  ident: CR29
  article-title: Regulation of ceramide biosynthesis by TOR complex 2
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.11.015
  contributor:
    fullname: Hammock
– volume: 66
  start-page: 1561
  year: 2006
  end-page: 1569
  ident: CR50
  article-title: Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-3375
  contributor:
    fullname: Giaccia
– volume: 29
  start-page: 5136
  year: 2009
  end-page: 5147
  ident: CR13
  article-title: mTORC1 hyperactivity inhibits serum deprivation-induced apoptosis via increased hexokinase II and GLUT1 expression, sustained Mcl-1 expression, and glycogen synthase kinase 3beta inhibition
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01946-08
  contributor:
    fullname: Robey
– volume: 276
  start-page: 12285
  year: 2001
  end-page: 12291
  ident: CR41
  article-title: Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M009714200
  contributor:
    fullname: Lamers
– volume: 14
  start-page: 133
  year: 2013
  end-page: 139
  ident: CR14
  article-title: Amino acid signalling upstream of mTOR
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3522
  contributor:
    fullname: Guan
– volume: 28
  start-page: 4104
  year: 2008
  end-page: 4115
  ident: CR28
  article-title: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00289-08
  contributor:
    fullname: Manning
– volume: 273
  start-page: 16568
  year: 1998
  end-page: 16575
  ident: CR25
  article-title: Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.26.16568
  contributor:
    fullname: Pittman
– volume: 6
  start-page: 91
  year: 2004
  end-page: 99
  ident: CR54
  article-title: The LKB1 tumor suppressor negatively regulates mTOR signaling
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.06.007
  contributor:
    fullname: DePinho
– volume: 439
  start-page: 299
  year: 2011
  end-page: 311
  ident: CR10
  article-title: Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins
  publication-title: Biochem J
  doi: 10.1042/BJ20110853
  contributor:
    fullname: Lilly
– volume: 25
  start-page: 657
  year: 2006
  end-page: 664
  ident: CR56
  article-title: Regulation of the small GTPase Rheb by amino acids
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209106
  contributor:
    fullname: Zwartkruis
– volume: 125
  start-page: 1111
  year: 2006
  end-page: 1124
  ident: CR40
  article-title: Relief of microRNA-mediated translational repression in human cells subjected to stress
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.031
  contributor:
    fullname: Filipowicz
– volume: 275
  start-page: 13330
  year: 2000
  end-page: 13335
  ident: CR26
  article-title: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.18.13330
  contributor:
    fullname: Duronio
– volume: 10
  start-page: 935
  year: 2008
  ident: BFonc2013139_CR58
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1753
  contributor:
    fullname: E Kim
– volume: 115
  start-page: 449
  year: 2003
  ident: BFonc2013139_CR64
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00881-X
  contributor:
    fullname: N Manel
– volume: 108
  start-page: 12455
  year: 2011
  ident: BFonc2013139_CR47
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1104361108
  contributor:
    fullname: A Parkhitko
– volume: 275
  start-page: 13330
  year: 2000
  ident: BFonc2013139_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.18.13330
  contributor:
    fullname: KM Schubert
– volume: 268
  start-page: 15523
  year: 1993
  ident: BFonc2013139_CR21
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)82288-8
  contributor:
    fullname: RT Dobrowsky
– volume: 125
  start-page: 1111
  year: 2006
  ident: BFonc2013139_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.031
  contributor:
    fullname: SN Bhattacharyya
– volume: 29
  start-page: 5136
  year: 2009
  ident: BFonc2013139_CR13
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01946-08
  contributor:
    fullname: PT Bhaskar
– volume: 7
  start-page: 148
  year: 2008
  ident: BFonc2013139_CR29
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.11.015
  contributor:
    fullname: S Aronova
– volume: 68
  start-page: 6496
  year: 2008
  ident: BFonc2013139_CR36
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5756
  contributor:
    fullname: JD Short
– volume: 439
  start-page: 299
  year: 2011
  ident: BFonc2013139_CR10
  publication-title: Biochem J
  doi: 10.1042/BJ20110853
  contributor:
    fullname: K Romero Rosales
– volume: 49
  start-page: 172
  year: 2013
  ident: BFonc2013139_CR59
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.003
  contributor:
    fullname: SG Kim
– volume: 4
  start-page: e6189
  year: 2009
  ident: BFonc2013139_CR27
  publication-title: PloS One
  doi: 10.1371/journal.pone.0006189
  contributor:
    fullname: HH Zhang
– volume: 277
  start-page: 12960
  year: 2002
  ident: BFonc2013139_CR12
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110699200
  contributor:
    fullname: B Ogretmen
– volume: 11
  start-page: 859
  year: 2006
  ident: BFonc2013139_CR30
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.10.007
  contributor:
    fullname: DA Guertin
– volume: 29
  start-page: 6543
  year: 2010
  ident: BFonc2013139_CR37
  publication-title: Oncogene
  doi: 10.1038/onc.2010.393
  contributor:
    fullname: MD Lacher
– volume: 296
  start-page: E592
  year: 2009
  ident: BFonc2013139_CR53
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90645.2008
  contributor:
    fullname: J Avruch
– volume: 30
  start-page: 214
  year: 2008
  ident: BFonc2013139_CR18
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.03.003
  contributor:
    fullname: DM Gwinn
– volume: 13
  start-page: 2276
  year: 2002
  ident: BFonc2013139_CR32
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.01-12-0584
  contributor:
    fullname: AL Edinger
– volume: 412
  start-page: 179
  year: 2008
  ident: BFonc2013139_CR5
  publication-title: Biochem J
  doi: 10.1042/BJ20080281
  contributor:
    fullname: J Huang
– volume: 166
  start-page: 213
  year: 2004
  ident: BFonc2013139_CR22
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200403069
  contributor:
    fullname: LS Harrington
– volume: 49
  start-page: 379
  year: 2013
  ident: BFonc2013139_CR15
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.01.019
  contributor:
    fullname: HX Yuan
– volume: 320
  start-page: 1496
  year: 2008
  ident: BFonc2013139_CR17
  publication-title: Science
  doi: 10.1126/science.1157535
  contributor:
    fullname: Y Sancak
– volume: 490
  start-page: 11
  year: 2001
  ident: BFonc2013139_CR43
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(01)02126-3
  contributor:
    fullname: RF Gazzola
– volume: 490
  start-page: 333
  year: 2011
  ident: BFonc2013139_CR63
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385114-7.00019-2
  contributor:
    fullname: BF Teske
– volume: 141
  start-page: 290
  year: 2010
  ident: BFonc2013139_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
  contributor:
    fullname: Y Sancak
– volume: 80
  start-page: 1001
  year: 2011
  ident: BFonc2013139_CR52
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-062209-094414
  contributor:
    fullname: J Kim
– volume: 13
  start-page: 1259
  year: 2003
  ident: BFonc2013139_CR60
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00506-2
  contributor:
    fullname: AR Tee
– volume: 27
  start-page: S43
  issue: Suppl 2
  year: 2009
  ident: BFonc2013139_CR20
  publication-title: Oncogene
  contributor:
    fullname: S Menon
– volume: 132
  start-page: 3023
  year: 2002
  ident: BFonc2013139_CR42
  publication-title: J Nutr
  doi: 10.1093/jn/131.10.3023
  contributor:
    fullname: PJ Bain
– volume: 18
  start-page: 133
  year: 2011
  ident: BFonc2013139_CR45
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2010.82
  contributor:
    fullname: YJ Kang
– volume: 273
  start-page: 16568
  year: 1998
  ident: BFonc2013139_CR25
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.26.16568
  contributor:
    fullname: H Zhou
– volume: 4
  start-page: 604
  year: 2004
  ident: BFonc2013139_CR8
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1411
  contributor:
    fullname: B Ogretmen
– volume: 276
  start-page: 12285
  year: 2001
  ident: BFonc2013139_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M009714200
  contributor:
    fullname: J Fernandez
– volume: 115
  start-page: 577
  year: 2003
  ident: BFonc2013139_CR7
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
  contributor:
    fullname: K Inoki
– volume: 108
  start-page: 1167
  year: 2001
  ident: BFonc2013139_CR38
  publication-title: J Clin Invest
  doi: 10.1172/JCI13505
  contributor:
    fullname: G Zhou
– volume: 23
  start-page: 744
  year: 2011
  ident: BFonc2013139_CR1
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2011.09.003
  contributor:
    fullname: E Dazert
– volume: 24
  start-page: 3112
  year: 2004
  ident: BFonc2013139_CR19
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.8.3112-3124.2004
  contributor:
    fullname: M Pende
– volume: 34
  start-page: 7
  year: 2006
  ident: BFonc2013139_CR39
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0340007
  contributor:
    fullname: RC Wek
– volume: 13
  start-page: 121
  year: 2012
  ident: BFonc2013139_CR51
  publication-title: EMBO Rep
  doi: 10.1038/embor.2011.257
  contributor:
    fullname: RV Duran
– volume: 8
  start-page: 445
  year: 2012
  ident: BFonc2013139_CR48
  publication-title: Autophagy
  doi: 10.4161/auto.19496
  contributor:
    fullname: DJ Klionsky
– volume: 4
  start-page: 699
  year: 2002
  ident: BFonc2013139_CR57
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb847
  contributor:
    fullname: X Gao
– volume: 6
  start-page: 91
  year: 2004
  ident: BFonc2013139_CR54
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.06.007
  contributor:
    fullname: RJ Shaw
– volume: 372
  start-page: 657
  year: 2008
  ident: BFonc2013139_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61279-9
  contributor:
    fullname: P Curatolo
– volume: 23
  start-page: 5654
  year: 2004
  ident: BFonc2013139_CR31
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207738
  contributor:
    fullname: AL Edinger
– volume: 14
  start-page: 133
  year: 2013
  ident: BFonc2013139_CR14
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3522
  contributor:
    fullname: JL Jewell
– volume: 17
  start-page: 1829
  year: 2003
  ident: BFonc2013139_CR61
  publication-title: Genes Dev
  doi: 10.1101/gad.1110003
  contributor:
    fullname: K Inoki
– volume: 282
  start-page: 34372
  year: 2007
  ident: BFonc2013139_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M703329200
  contributor:
    fullname: H Le Stunff
– volume: 4
  start-page: 147
  year: 2003
  ident: BFonc2013139_CR49
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00187-9
  contributor:
    fullname: JB Brugarolas
– volume: 105
  start-page: 17402
  year: 2008
  ident: BFonc2013139_CR9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0802781105
  contributor:
    fullname: GG Guenther
– volume: 7
  start-page: 1173
  year: 2011
  ident: BFonc2013139_CR46
  publication-title: Autophagy
  doi: 10.4161/auto.7.10.16681
  contributor:
    fullname: S Ng
– volume: 28
  start-page: 2649
  year: 2008
  ident: BFonc2013139_CR35
  publication-title: Anticancer Res
  contributor:
    fullname: NS Park
– volume: 47
  start-page: 535
  year: 2012
  ident: BFonc2013139_CR4
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.06.009
  contributor:
    fullname: CC Dibble
– volume: 66
  start-page: 1561
  year: 2006
  ident: BFonc2013139_CR50
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-3375
  contributor:
    fullname: F Kaper
– volume: 28
  start-page: 4104
  year: 2008
  ident: BFonc2013139_CR28
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00289-08
  contributor:
    fullname: J Huang
– volume: 26
  start-page: 6425
  year: 2006
  ident: BFonc2013139_CR24
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01254-05
  contributor:
    fullname: OJ Shah
– volume: 104
  start-page: 14056
  year: 2007
  ident: BFonc2013139_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0706517104
  contributor:
    fullname: F Tremblay
– volume: 89
  start-page: 221
  year: 2011
  ident: BFonc2013139_CR2
  publication-title: J Mol Med
  doi: 10.1007/s00109-011-0726-6
  contributor:
    fullname: JL Yecies
– volume: 38
  start-page: 487
  year: 2010
  ident: BFonc2013139_CR6
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.007
  contributor:
    fullname: AY Choo
– volume: 102
  start-page: 14238
  year: 2005
  ident: BFonc2013139_CR55
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506925102
  contributor:
    fullname: T Nobukuni
– volume: 17
  start-page: 469
  year: 2010
  ident: BFonc2013139_CR62
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.03.019
  contributor:
    fullname: B Li
– volume: 25
  start-page: 657
  year: 2006
  ident: BFonc2013139_CR56
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209106
  contributor:
    fullname: M Roccio
– volume: 161
  start-page: 1053
  year: 2002
  ident: BFonc2013139_CR33
  publication-title: Genetics
  doi: 10.1093/genetics/161.3.1053
  contributor:
    fullname: S Matsumoto
– volume: 273
  start-page: 23629
  year: 1998
  ident: BFonc2013139_CR34
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.37.23629
  contributor:
    fullname: Y Kanai
– volume: 281
  start-page: 17929
  year: 2006
  ident: BFonc2013139_CR44
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M600341200
  contributor:
    fullname: F Gaccioli
SSID ssj0007902
Score 2.2673025
Snippet Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells, because oncogenic mutations constitutively drive anabolism....
Nutrient stress that produces quiescence and catabolism in normal cells is lethal to cancer cells because oncogenic mutations constitutively drive anabolism....
SourceID pubmedcentral
proquest
gale
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1776
SubjectTerms 631/67
631/80/86/2369
692/420/755
692/699/67/395
Adenosine Triphosphate - chemistry
Amino acids
Animals
Apoptosis
Biological Transport
Biosynthesis
Cancer
Care and treatment
Cell Biology
Ceramide
Ceramides
Ceramides - pharmacology
Chemotherapy
Culture Media - chemistry
Drug resistance
Embryo fibroblasts
Fibroblasts - metabolism
Gene Deletion
Genetic aspects
Glucose
Glucose - metabolism
Glucose Transporter Type 1 - metabolism
Human Genetics
Hypersensitivity
Internal Medicine
Mechanistic Target of Rapamycin Complex 1
Medicine
Medicine & Public Health
Mice
Multiprotein Complexes - metabolism
Neoplastic processes
Oncology
Oncology, Experimental
original-article
Properties
Protein transport
Proteins
Rapamycin
ras Proteins - metabolism
Signal Transduction
Stress, Physiological
TOR protein
TOR Serine-Threonine Kinases - metabolism
Tuberous sclerosis
Tuberous Sclerosis Complex 2
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Title Loss of TSC2 confers resistance to ceramide and nutrient deprivation
URI https://link.springer.com/article/10.1038/onc.2013.139
https://www.ncbi.nlm.nih.gov/pubmed/23604129
https://www.proquest.com/docview/1512342302
https://www.proquest.com/docview/2641525461
https://search.proquest.com/docview/1516757007
https://pubmed.ncbi.nlm.nih.gov/PMC3858574
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVlAuCJZXoKyMxOOUNrEdO3tCZWlVIagQtNLeLD8S0QNJ290e-PfMJM52d1VxtpXY4xnP2PN5PoB3ReA8yIKn6D7qFD1-SB13NhW1LHxwgmvfoXxP1cm5_DorZvHCbR5hlcOe2G3UofV0R35Anomq1WX80-VVSqxRlF2NFBpbsJOjYhJ1Qzm9hXjoHnOIUUSWYiDDI_A9E-VB21D9wlzs50QTvuKSNjfmFc-0iZrcSJ12Hun4MTyKoSQ77Nf-CdyrmhHc78kl_45gdzpwuY3gwfeYQn8KX77hGFhbs7NfU8589-BvzvDQTYEkagBbtMxX1_bPRaiYbQJrqF4_DoYRaDZyoT2D8-Ojs-lJGqkUUo8muUDRK7Rt50pnrbRC-9xx3OZEgc5KyRBCLbQNdciDFMoKlwWX17Xzuddo1daL57DdtE31EpidSMWrupCqLKXLucsm2quJtLi2wnufwPtBmuayr5hhuky3KA1K3ZDUDUo9gY8kakOGhPL0Nr4HwL9QSSpzKJTWE0pbJrC31hNl59ebh8Uy0QDn5lZd7mzGMJCIn6TKE3i7bKYPE-asqdqb7hN4mtKoRgm86Jd-OSEuFBUqw0noNaVYdqCq3estzcXvrnp3l4nVMoEPg_qsjPoOOb36__Rew0Ps2YOJxB5sL65vqjcYJy3cGLb0TI87kxjDzuej0x8__wErqxHd
link.rule.ids 230,315,786,790,891,12083,12250,21416,27955,27956,31752,31753,33299,33300,33777,33778,43343,43612,43838,74100,74369,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKigXBOFRQ4FF4nEytXfXu84JldAqQBohSKXerH3YoofapUkP_Htm7HVIoorz-rH77by8M_4G4E3mOfcy4zG6jypGj-9jy62JRSUz563g2rVVvjM1OZVfz7KzcOC2CGWVvU1sDbVvHJ2RH5BnIra6hH-8_B1T1yjKroYWGrdhhyg38wHsfDqaff-xssW6qzrEOCKJMZThofQ9EflBUxODYSo-pNQofM0pbZvmNd-0XTe5lTxtfdLxA7gfgkl22O3-Q7hV1kO407WX_DOE3XHfzW0Id09CEv0RfJ7iHFhTsfnPMWeu_eVvwfCzm0JJlAG2bJgrr8zFuS-ZqT2ribEfJ8OobDZ0Q3sMp8dH8_EkDs0UYodKuUTwFWq3tbk1RhqhXWo5GjqRobtS0ntfCW185VMvhTLCJt6mVWVd6jTqtXHiCQzqpi73gJmRVLysMqnyXNqU22SknRpJg7srnHMRvO3RLC47zoyizXWLvEDUC0K9QNQjeE9QF6RKiKcz4Y8AfAuRUhWHQmk9osRlBPsbVyJ2bnO436wiqOCi-CcwNw5jIEitn6RKI3i9GqYHU9VZXTbX7SPwe0qjGEXwtNv61YK4UERVhovQG0KxuoB4uzdH6vNfLX93m4vVMoJ3vfiszfoGnJ79f3mvYHcyP5kW0y-zb8_hHt7VlRaJfRgsr67LFxg1Le3LoBp_AUCCE_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BES0XBMsrUMBIPE5hE9uxsydUbVkVKBUSrbQ3y49E9NCkdLcH_j0zibPsrirOThx7POMZZz7PB_C2CJwHWfAU3UedoscPqePOpqKWhQ9OcO07lO-JOjqTX-fFPOKfFhFWOeyJ3UYdWk__yMfkmahaXcbHdYRF_Dicfbr8nRKDFGVaI53GbbiDXjIjGgc9Xx2-Mt3jDzGiyFIMangEwWeiHLcN1TLMxcecKMPX3NP2Jr3mpbYRlFtp1M47zR7A_RhWsoNeDx7CraoZwd2eaPLPCPamA6_bCHa_x3T6Izg8xjGwtmanP6ec-e7y34LhAZyCStQGtmyZr67sxXmomG0Ca6h2Pw6GEYA28qI9hrPZ59PpURppFVKP5rnEZVBo586Vzlpphfa547jliQIdl5IhhFpoG-qQBymUFS4LLq9r53Ov0cKtF09gp2mb6hkwO5GKV3UhVVlKl3OXTbRXE2lxnYX3PoF3gzTNZV89w3RZb1EalLohqRuUegIfSNSGjArl6W28G4BfofJU5kAorSeUwkxgf-NJlJ3fbB4Wy0RjXJh_qnNjM4aERAIlVZ7Am1UzdUz4s6Zqr7su8GSlUY0SeNov_WpCXCgqWoaT0BtKsXqAKnhvtjTnv7pK3l1WVssE3g_qszbqG-T0_P_Tew27aBPm-MvJtxdwD1_qMUZiH3aWV9fVSwyflu5VZxd_AXJeFq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+TSC2+confers+resistance+to+ceramide+and+nutrient+deprivation&rft.jtitle=Oncogene&rft.au=Guenther%2C+G+G&rft.au=Liu%2C+G&rft.au=Ramirez%2C+M+U&rft.au=McMonigle%2C+R+J&rft.date=2014-04-03&rft.issn=0950-9232&rft.volume=33&rft.issue=14&rft.spage=1776&rft.epage=1787&rft_id=info:doi/10.1038%2Fonc.2013.139&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-9232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-9232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-9232&client=summon