Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium
Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosp...
Saved in:
Published in | The Journal of Medical Investigation Vol. 57; no. 1,2; pp. 95 - 108 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The University of Tokushima Faculty of Medicine
2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1343-1420 1349-6867 |
DOI | 10.2152/jmi.57.95 |
Cover
Abstract | Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D3 in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis. J. Med. Invest. 57: 95-108, February, 2010 |
---|---|
AbstractList | Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D(3) in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis. Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D3 in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis. J. Med. Invest. 57: 95-108, February, 2010 |
Author | Ito, Mikiko Hanabusa, Etsuyo Furutani, Junya Tatsumi, Sawako Aranami, Fumito Kuwahara, Shoji Miyamoto, Ken-ichi Segawa, Hiroko Kido, Shinsuke Tominaga, Rieko |
Author_xml | – sequence: 1 fullname: Furutani, Junya organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Ito, Mikiko organization: School of Human Science and Environment, University of Hyogo – sequence: 1 fullname: Kuwahara, Shoji organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Hanabusa, Etsuyo organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Miyamoto, Ken-ichi organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Tominaga, Rieko organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Aranami, Fumito organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Kido, Shinsuke organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Tatsumi, Sawako organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School – sequence: 1 fullname: Segawa, Hiroko organization: Deprtment of Molecular Nutrition, Institution of Health Biosciences, University of Tokushima Graduate School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20299748$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtPwzAQhC0Eog848AeQrxzS-pk0R6goRarEBc7W2nEaV3nJdoX496SU9oA4zUrz7WhnJ-iy7VqL0B0lM0Ylm-8aN5PZLJcXaEy5yJN0kWaXPzNPqGBkhCYh7AjhXEp5jUaMsDzPxGKM1iunfadrCBFvffcZK1yCiZ3HjOPGFg6iDThWFvdVF_oK4t47gwfEdW3AXYkNFI3bNzfoqoQ62NtfnaKP1fP7cp1s3l5el4-bxMhsERMKqRCpIJKK0gBYKHWaEl1QxqEwRaHtwAnDmLapZqSkLBOFyXQuitIOLp-i-2Nuv9fDfar3rgH_pU6VBuDhCBjfheBteUYoUYd3qeFdSmYqlwM7_8MaF-FQLXpw9b8bT8eNXYiwteds8NGZ2p5IqthJcnk2TQVe2ZZ_A3CEhpw |
CitedBy_id | crossref_primary_10_1186_s12014_019_9231_7 crossref_primary_10_1016_j_ecoenv_2024_116101 crossref_primary_10_1002_biof_1376 crossref_primary_10_1093_toxsci_kfu043 crossref_primary_10_4103_jfmpc_jfmpc_1836_23 crossref_primary_10_1080_10937404_2020_1860842 crossref_primary_10_53518_mjavl_1196166 crossref_primary_10_1002_1873_3468_13494 crossref_primary_10_1016_j_bone_2013_01_011 crossref_primary_10_1016_j_marpolbul_2021_113007 crossref_primary_10_34172_apb_2020_023 crossref_primary_10_3390_nu11040849 |
Cites_doi | 10.1146/annurev.nutr.25.050304.092642 10.1074/jbc.C500457200 10.1210/en.2005-0777 10.1007/s00424-008-0580-8 10.1016/0041-008X(92)90066-2 10.1006/taap.1993.1134 10.1073/pnas.101545198 10.1172/JCI36479 10.1152/ajprenal.00156.2009 10.1359/jbmr.2000.15.8.1579 10.1016/j.tox.2004.06.005 10.1074/jbc.M200943200 10.1038/81664 10.1042/BJ20041799 10.1007/s00424-003-1084-1 10.1007/s00467-009-1260-4 10.1007/s00774-007-0776-6 10.1073/pnas.95.9.5372 10.1007/s10875-009-9277-9 10.1006/taap.1997.8180 10.1359/JBMR.0301264 10.2170/jjphysiol.54.93 10.1016/j.bone.2008.02.014 10.1507/endocrj.45.431 10.1086/499410 10.1152/ajprenal.90765.2008 10.1681/ASN.2008020177 10.1006/taap.1995.1147 10.1111/j.1600-0773.1988.tb00966.x 10.1016/j.bone.2003.12.002 10.2302/kjm.18.181 10.1016/S0278-6915(97)00068-9 10.1152/ajprenal.90538.2008 10.1152/ajprenal.00097.2004 10.1007/s004240050141 10.1016/S0140-6736(98)09356-8 10.1152/ajprenal.00252.2003 10.1210/jc.2008-2396 10.1016/0378-4274(91)90123-N 10.1152/ajprenal.00248.2006 10.1016/j.bone.2009.06.017 10.1159/000107069 10.1086/499409 10.1097/MNH.0b013e328331a8c8 10.1016/j.mce.2008.10.052 10.1007/BF00377675 |
ContentType | Journal Article |
Copyright | 2010 by The University of Tokushima Faculty of Medicine |
Copyright_xml | – notice: 2010 by The University of Tokushima Faculty of Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.2152/jmi.57.95 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-6867 |
EndPage | 108 |
ExternalDocumentID | 20299748 10_2152_jmi_57_95 article_jmi_57_1_2_57_1_2_95_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 123 29L 2WC 3O- 53G 5GY 7.U ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P JSF JSH KQ8 OK1 OVT RJT RNS RZJ TKC TR2 X7M XSB ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c578t-1a644640514fcaaeafb660bd123adcddbec574c22be6b20f1274dc7b94dfedbe3 |
ISSN | 1343-1420 |
IngestDate | Fri Sep 17 20:48:23 EDT 2021 Tue Jul 01 01:05:53 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Wed Sep 03 06:30:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1,2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c578t-1a644640514fcaaeafb660bd123adcddbec574c22be6b20f1274dc7b94dfedbe3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jmi/57/1,2/57_1,2_95/_article/-char/en |
PMID | 20299748 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_20299748 crossref_primary_10_2152_jmi_57_95 crossref_citationtrail_10_2152_jmi_57_95 jstage_primary_article_jmi_57_1_2_57_1_2_95_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-00-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | The Journal of Medical Investigation |
PublicationTitleAlternate | J. Med. Invest. |
PublicationYear | 2010 |
Publisher | The University of Tokushima Faculty of Medicine |
Publisher_xml | – name: The University of Tokushima Faculty of Medicine |
References | 9. Tenenhouse HS: Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr 25: 197-214, 2005 7. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M: Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281: 6120-6123, 2006 46. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K: Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288: F587-596, 2005 29. Shimizu Y, Tada Y, Yamauchi M, Okamoto T, Suzuki H, Ito N, Fukumoto S, Sugimoto T, Fujita T: Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone 45: 814-816, 2009 30. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG: FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 94: 2332-2337, 2009 47. Wolf M: Fibroblast growth factor 23 and the future of phosphorus management. Curr Opin Nephrol Hypertens 18: 463-468, 2009 39. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K: Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 292: F769-779, 2007 19. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K: Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 285: F1271-1278, 2003 32. Herak-Kramberger CM, Spindler B, Biber J, Murer H, Sabolic I: Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432: 336-344, 1996 17. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM: Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78: 193-201, 2006 23. Tsuchiya K: Causation of Ouch-Ouch Disease (Itai-Itai Byo)--an introductory review. I. Nature of the disease. Keio J Med 18: 181-194, 1969 36. Yusufi AN, Dousa TP: Studies on rabbit kidney brush border membranes: relationship between phosphate transport, alkaline phosphatase and NAD. Miner Electrolyte Metab 13: 397-404, 1987 4. White KE, Evans WE, O’Riordan J, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, TM. S: Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26: 345-348, 2000 33. Brzoska MM, Majewska K, Moniuszko-Jakoniuk J: Mineral status and mechanical properties of lumbar spine of female rats chronically exposed to various levels of cadmium. Bone 34: 517-526, 2004 24. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R: Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet 353: 1140-1144, 1999 25. Alfven T, Elinder CG, Carlsson MD, Grubb A, Hellstrom L, Persson B, Pettersson C, Spang G, Schutz A, Jarup L: Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15: 1579-1586, 2000 13. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H: New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27: 503-515, 2007 44. Ahn DW, Park YS: Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats. Toxicol Appl Pharmacol 133: 239-243, 1995 49. Sato K, Shiraki M: Saccharated ferric oxide-induced osteomalacia in Japan: Iron-induced osteopathy due to nephropathy. Endocrine Journal 45: 431-439, 1998 1. Quarles LD: Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118: 3820-3828, 2008 8. Kuro-o M: Overview of the FGF23-Klotho axis. Pediatr Nephrol 2009 3. Razzaque MS: FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am J Physiol Renal Physiol 296: F470-476, 2009 6. Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, Furutani J, Ito M, Kuwahata M, Saito H, Fukushima N, Kato S, Kanayama HO, Miyamoto K: Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390: 325-331, 2005 21. Adams RG, Harrison JF, Scott P: The development of cadmium-induced proteinuria, impaired renal function, and osteomalacia in alkaline battery workers. Q J Med 38: 425-443, 1969 48. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T: FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19: 429-435, 2004 12. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K: Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277: 19665-19672, 2002 43. Robinson MK, Barfuss DW, Zalups RK: Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule. Toxicol Appl Pharmacol 121: 103-111, 1993 2. Kurosu H, Kuro-o M: The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 299: 72-78, 2009 26. Nogawa K, Tsuritani I, Kido T, Honda R, Yamada Y, Ishizaki M: Mechanism for bone disease found in inhabitants environmentally exposed to cadmium: decreased serum 1 alpha, 25-dihydroxyvitamin D level. Int Arch Occup Environ Health 59: 21-30, 1987 5. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T: Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98: 6500-6505, 2001 22. Ishizaki A, Funkushima M: [Studies on ”Itai-itai” disease (Review)]. Nippon Eiseigaku Zasshi 23: 271-285, 1968 (in Japanese) 38. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K: Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297: F671-678, 2009 31. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T: Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42: 1235-1239, 2008 37. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K: Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch 446: 585-592, 2003 20. Kim YK, Choi JK, Kim JS, Park YS: Changes in renal function in cadmium-intoxicated rats. Pharmacol Toxicol 63: 342-350, 1988 34. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K: Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20: 104-113, 2009 45. Park K, Kim KR, Kim JY, Park YS: Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Toxicol Appl Pharmacol 145: 255-259, 1997 10. Biber J, Hernando N, Forster I, Murer H: Regulation of phosphate transport in proximal tubules. Pflugers Arch 458: 39-52, 2009 15. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K: Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab 25: 407-413, 2007 11. Miyamoto K, Segawa H, Ito M, Kuwahata M: Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54: 93-102, 2004 18. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS: Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95: 5372-5377, 1998 28. Takaki A, Jimi S, Segawa M, Hisano S, Takebayashi S, Iwasaki H: Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203: 145-154, 2004 14. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M: Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297: F350-361, 2009 27. Aoshima K, Kasuya M: Preliminary study on serum levels of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D in cadmium-induced renal tubular dysfunction. Toxicol Lett 57: 91-99, 1991 41. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA: Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146: 5358-5364, 2005 40. Lind Y, Engman J, Jorhem L, Glynn AW: Cadmium accumulation in liver and kidney of mice exposed to the same weekly cadmium dose continuously or once a week. Food Chem Toxicol 35: 891-895, 1997 42. Dorian C, Gattone VH, 2nd, Klaasen CD: Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules--A light microscopic autoradiography study with 109CdMT. Toxicol Appl Pharmacol 114: 173-181, 1992 16. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H: SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predic 44 45 46 47 48 49 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 6. Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, Furutani J, Ito M, Kuwahata M, Saito H, Fukushima N, Kato S, Kanayama HO, Miyamoto K: Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390: 325-331, 2005 – reference: 7. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M: Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281: 6120-6123, 2006 – reference: 14. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M: Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297: F350-361, 2009 – reference: 8. Kuro-o M: Overview of the FGF23-Klotho axis. Pediatr Nephrol 2009 – reference: 31. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, Minagawa M, Sugimoto T, Yamauchi M, Michigami T, Matsumoto T: Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42: 1235-1239, 2008 – reference: 16. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H: SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78: 179-192, 2006 – reference: 12. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K: Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277: 19665-19672, 2002 – reference: 22. Ishizaki A, Funkushima M: [Studies on ”Itai-itai” disease (Review)]. Nippon Eiseigaku Zasshi 23: 271-285, 1968 (in Japanese) – reference: 17. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM: Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78: 193-201, 2006 – reference: 29. Shimizu Y, Tada Y, Yamauchi M, Okamoto T, Suzuki H, Ito N, Fukumoto S, Sugimoto T, Fujita T: Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone 45: 814-816, 2009 – reference: 45. Park K, Kim KR, Kim JY, Park YS: Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Toxicol Appl Pharmacol 145: 255-259, 1997 – reference: 13. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H: New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 27: 503-515, 2007 – reference: 25. Alfven T, Elinder CG, Carlsson MD, Grubb A, Hellstrom L, Persson B, Pettersson C, Spang G, Schutz A, Jarup L: Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15: 1579-1586, 2000 – reference: 46. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K: Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288: F587-596, 2005 – reference: 21. Adams RG, Harrison JF, Scott P: The development of cadmium-induced proteinuria, impaired renal function, and osteomalacia in alkaline battery workers. Q J Med 38: 425-443, 1969 – reference: 10. Biber J, Hernando N, Forster I, Murer H: Regulation of phosphate transport in proximal tubules. Pflugers Arch 458: 39-52, 2009 – reference: 37. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K: Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch 446: 585-592, 2003 – reference: 30. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG: FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab 94: 2332-2337, 2009 – reference: 15. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K: Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab 25: 407-413, 2007 – reference: 20. Kim YK, Choi JK, Kim JS, Park YS: Changes in renal function in cadmium-intoxicated rats. Pharmacol Toxicol 63: 342-350, 1988 – reference: 5. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T: Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98: 6500-6505, 2001 – reference: 26. Nogawa K, Tsuritani I, Kido T, Honda R, Yamada Y, Ishizaki M: Mechanism for bone disease found in inhabitants environmentally exposed to cadmium: decreased serum 1 alpha, 25-dihydroxyvitamin D level. Int Arch Occup Environ Health 59: 21-30, 1987 – reference: 40. Lind Y, Engman J, Jorhem L, Glynn AW: Cadmium accumulation in liver and kidney of mice exposed to the same weekly cadmium dose continuously or once a week. Food Chem Toxicol 35: 891-895, 1997 – reference: 2. Kurosu H, Kuro-o M: The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 299: 72-78, 2009 – reference: 38. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K: Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297: F671-678, 2009 – reference: 4. White KE, Evans WE, O’Riordan J, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, TM. S: Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26: 345-348, 2000 – reference: 1. Quarles LD: Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118: 3820-3828, 2008 – reference: 34. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K: Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20: 104-113, 2009 – reference: 35. Selvaraj P, Prabhu Anand S, Harishankar M, Alagarasu K: Plasma 1,25 dihydroxy vitamin D3 level and expression of vitamin d receptor and cathelicidin in pulmonary tuberculosis. J Clin Immunol 29: 470-478, 2009 – reference: 23. Tsuchiya K: Causation of Ouch-Ouch Disease (Itai-Itai Byo)--an introductory review. I. Nature of the disease. Keio J Med 18: 181-194, 1969 – reference: 18. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS: Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95: 5372-5377, 1998 – reference: 32. Herak-Kramberger CM, Spindler B, Biber J, Murer H, Sabolic I: Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432: 336-344, 1996 – reference: 33. Brzoska MM, Majewska K, Moniuszko-Jakoniuk J: Mineral status and mechanical properties of lumbar spine of female rats chronically exposed to various levels of cadmium. Bone 34: 517-526, 2004 – reference: 36. Yusufi AN, Dousa TP: Studies on rabbit kidney brush border membranes: relationship between phosphate transport, alkaline phosphatase and NAD. Miner Electrolyte Metab 13: 397-404, 1987 – reference: 49. Sato K, Shiraki M: Saccharated ferric oxide-induced osteomalacia in Japan: Iron-induced osteopathy due to nephropathy. Endocrine Journal 45: 431-439, 1998 – reference: 11. Miyamoto K, Segawa H, Ito M, Kuwahata M: Physiological regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol 54: 93-102, 2004 – reference: 28. Takaki A, Jimi S, Segawa M, Hisano S, Takebayashi S, Iwasaki H: Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203: 145-154, 2004 – reference: 19. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K: Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 285: F1271-1278, 2003 – reference: 24. Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R: Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study Group. Lancet 353: 1140-1144, 1999 – reference: 3. Razzaque MS: FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am J Physiol Renal Physiol 296: F470-476, 2009 – reference: 39. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K: Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol 292: F769-779, 2007 – reference: 47. Wolf M: Fibroblast growth factor 23 and the future of phosphorus management. Curr Opin Nephrol Hypertens 18: 463-468, 2009 – reference: 43. Robinson MK, Barfuss DW, Zalups RK: Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule. Toxicol Appl Pharmacol 121: 103-111, 1993 – reference: 42. Dorian C, Gattone VH, 2nd, Klaasen CD: Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules--A light microscopic autoradiography study with 109CdMT. Toxicol Appl Pharmacol 114: 173-181, 1992 – reference: 44. Ahn DW, Park YS: Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats. Toxicol Appl Pharmacol 133: 239-243, 1995 – reference: 48. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T: FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19: 429-435, 2004 – reference: 41. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA: Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146: 5358-5364, 2005 – reference: 9. Tenenhouse HS: Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr 25: 197-214, 2005 – reference: 27. Aoshima K, Kasuya M: Preliminary study on serum levels of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D in cadmium-induced renal tubular dysfunction. Toxicol Lett 57: 91-99, 1991 – ident: 9 doi: 10.1146/annurev.nutr.25.050304.092642 – ident: 7 doi: 10.1074/jbc.C500457200 – ident: 41 doi: 10.1210/en.2005-0777 – ident: 10 doi: 10.1007/s00424-008-0580-8 – ident: 42 doi: 10.1016/0041-008X(92)90066-2 – ident: 43 doi: 10.1006/taap.1993.1134 – ident: 5 doi: 10.1073/pnas.101545198 – ident: 1 doi: 10.1172/JCI36479 – ident: 22 – ident: 38 doi: 10.1152/ajprenal.00156.2009 – ident: 25 doi: 10.1359/jbmr.2000.15.8.1579 – ident: 28 doi: 10.1016/j.tox.2004.06.005 – ident: 12 doi: 10.1074/jbc.M200943200 – ident: 4 doi: 10.1038/81664 – ident: 6 doi: 10.1042/BJ20041799 – ident: 37 doi: 10.1007/s00424-003-1084-1 – ident: 8 doi: 10.1007/s00467-009-1260-4 – ident: 15 doi: 10.1007/s00774-007-0776-6 – ident: 18 doi: 10.1073/pnas.95.9.5372 – ident: 35 doi: 10.1007/s10875-009-9277-9 – ident: 45 doi: 10.1006/taap.1997.8180 – ident: 48 doi: 10.1359/JBMR.0301264 – ident: 11 doi: 10.2170/jjphysiol.54.93 – ident: 31 doi: 10.1016/j.bone.2008.02.014 – ident: 49 doi: 10.1507/endocrj.45.431 – ident: 17 doi: 10.1086/499410 – ident: 14 doi: 10.1152/ajprenal.90765.2008 – ident: 34 doi: 10.1681/ASN.2008020177 – ident: 44 doi: 10.1006/taap.1995.1147 – ident: 20 doi: 10.1111/j.1600-0773.1988.tb00966.x – ident: 33 doi: 10.1016/j.bone.2003.12.002 – ident: 23 doi: 10.2302/kjm.18.181 – ident: 40 doi: 10.1016/S0278-6915(97)00068-9 – ident: 3 doi: 10.1152/ajprenal.90538.2008 – ident: 46 doi: 10.1152/ajprenal.00097.2004 – ident: 32 doi: 10.1007/s004240050141 – ident: 24 doi: 10.1016/S0140-6736(98)09356-8 – ident: 19 doi: 10.1152/ajprenal.00252.2003 – ident: 30 doi: 10.1210/jc.2008-2396 – ident: 36 – ident: 27 doi: 10.1016/0378-4274(91)90123-N – ident: 39 doi: 10.1152/ajprenal.00248.2006 – ident: 29 doi: 10.1016/j.bone.2009.06.017 – ident: 13 doi: 10.1159/000107069 – ident: 16 doi: 10.1086/499409 – ident: 47 doi: 10.1097/MNH.0b013e328331a8c8 – ident: 2 doi: 10.1016/j.mce.2008.10.052 – ident: 21 – ident: 26 doi: 10.1007/BF00377675 |
SSID | ssj0033555 |
Score | 1.8959973 |
Snippet | Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Animals cadmium Cadmium - toxicity Extracellular Matrix Proteins - genetics Female FGF23 Fibroblast Growth Factors - genetics Fibroblast Growth Factors - physiology Hypophosphatemia, Familial - chemically induced Mice Mice, Inbred C57BL Mice, Knockout PHEX Phosphate Regulating Neutral Endopeptidase - genetics phosphate proximal tubule RNA, Messenger - analysis Sodium-Phosphate Cotransporter Proteins, Type IIa - analysis Sodium-Phosphate Cotransporter Proteins, Type IIa - physiology transporter |
Title | Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium |
URI | https://www.jstage.jst.go.jp/article/jmi/57/1,2/57_1,2_95/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/20299748 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Medical Investigation, 2010, Vol.57(1,2), pp.95-108 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKQIgL4pvyJQtxQKpSEseJE3GagKps2sRhk3aL_JW1hTRTSVTBX89z7LgZ22FwSSvHdhS_5_fhvPd7CL0jqc4iKniQlpQGtIziIFOwr0KlQJnrLJRlFyB7nM5P6cFZcjYabYfZJY2Yyt_X5pX8D1WhDehqsmT_gbJ-UmiA_0BfuAKF4XojGs_A160F2L_N5Bzc6WbhyudMSGxTQsyhapcLtah_XiwMhqeBZ5U--k1yVS0dGMNqxzcDOInKfchZ7vA4dh_u90HR8aqLB5i1FcgGf16jz_m2M0vny0393bfP2k3b2CpSk4N2_cvrhMN2yw10dHcYu6hXy-FphItItaIzNmCnlNgm3bflQZrZghu9vLWA1D1fwbxkIEBtxU2niqMO8uGKlDeleI2Ur5bThE37EUMk7b80nI87BI_HDC5gaJGwIk9uoduEscjEgn7-etir8BiMsKTz1N0rWUgqM_SDf-olQ-bOCmx5A9JwyTfpbJSTB-i-cy7wvuWUh2ik14_Q3SMXPvEYzXcMgy3DYMswmMS4ZxgMDIOHDIMdw-C6xI5hnqDT2ZeTT_PAldIIJIjkJog42L0pNWD3peRc81KkaSgU2C1cSaVgJyeMSkKETgUJy4gwqiQTOVWlhrvxU7S3rtf6OcKKs1BnWRzyLKdcCp4yMKNhUq4inct4jN7361JIhzNvyp38KK6s_hi99V0vLLjKdZ0-2sX1Xdx-67tEBel_8sTfNEmLICPG6JmliB9NQrDAGM1e3OThL9E9Gy5iztxeob1m0-rXYIU24k3HMXA9_nb0B2c8j74 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibroblast+growth+factor+23+mediates+the+phosphaturic+actions+of+cadmium&rft.jtitle=The+journal+of+medical+investigation&rft.au=Aranami%2C+Fumito&rft.au=Segawa%2C+Hiroko&rft.au=Furutani%2C+Junya&rft.au=Kuwahara%2C+Shoji&rft.date=2010&rft.issn=1343-1420&rft.eissn=1349-6867&rft.volume=57&rft.issue=1%2C2&rft.spage=95&rft.epage=108&rft_id=info:doi/10.2152%2Fjmi.57.95&rft.externalDBID=n%2Fa&rft.externalDocID=10_2152_jmi_57_95 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-1420&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-1420&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-1420&client=summon |