Expression of PTPRO in the interneurons of adult mouse olfactory bulb
PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III‐like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implic...
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 518; no. 2; pp. 119 - 136 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.01.2010
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III‐like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as γ‐aminobutyric acid (GABA)‐ergic or calretinin (CR)‐positive granule cells. In addition, PTPRO is expressed in GABAergic, CR‐positive, tyrosine hydroxylase‐positive, or neurocalcin‐positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119–136, 2010. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as gamma-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III‐like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as γ‐aminobutyric acid (GABA)‐ergic or calretinin (CR)‐positive granule cells. In addition, PTPRO is expressed in GABAergic, CR‐positive, tyrosine hydroxylase‐positive, or neurocalcin‐positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119–136, 2010. © 2009 Wiley‐Liss, Inc. Abstract PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III‐like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as γ‐aminobutyric acid (GABA)‐ergic or calretinin (CR)‐positive granule cells. In addition, PTPRO is expressed in GABAergic, CR‐positive, tyrosine hydroxylase‐positive, or neurocalcin‐positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119–136, 2010. © 2009 Wiley‐Liss, Inc. PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as [gamma]-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119-136, 2010. © 2009 Wiley-Liss, Inc. PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as γ-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as -aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB. J. Comp. Neurol. 518:119-136, 2010. |
Author | Murata, Yoji Saito, Yasuyuki Kotani, Takenori Bixby, John L. Ohnishi, Hiroshi Okazawa, Hideki Mori, Munemasa Kusakari, Shinya Matozaki, Takashi |
AuthorAffiliation | 1 Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan 2 Department of Molecular and Cellular Pharmacology, and Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Miami, Florida 33136 |
AuthorAffiliation_xml | – name: 2 Department of Molecular and Cellular Pharmacology, and Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Miami, Florida 33136 – name: 1 Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan |
Author_xml | – sequence: 1 givenname: Takenori surname: Kotani fullname: Kotani, Takenori organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 2 givenname: Yoji surname: Murata fullname: Murata, Yoji organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 3 givenname: Hiroshi surname: Ohnishi fullname: Ohnishi, Hiroshi organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 4 givenname: Munemasa surname: Mori fullname: Mori, Munemasa organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 5 givenname: Shinya surname: Kusakari fullname: Kusakari, Shinya organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 6 givenname: Yasuyuki surname: Saito fullname: Saito, Yasuyuki organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 7 givenname: Hideki surname: Okazawa fullname: Okazawa, Hideki organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan – sequence: 8 givenname: John L. surname: Bixby fullname: Bixby, John L. organization: Department of Molecular and Cellular Pharmacology, and Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, Miami, Florida 33136 – sequence: 9 givenname: Takashi surname: Matozaki fullname: Matozaki, Takashi email: matozaki@showa.gunma-u.ac.jp organization: Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19924828$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URNPCgj-ARmKBWEzr92ODVEJoQVVaQRHsLI9zh06Z2MGegebf4zahPCTE6i6-c498_e2hnRADIPSY4AOCMT30AQ4opczcQxOCjayNlmQHTUpGamOk2kV7OV9hjI1h-gHaJcZQrqmeoNnsepUg5y6GKrbV-cX5u7OqC9VwCWUMkAKMKYZ8E7rF2A_VMo4Zqti3zg8xratm7JuH6H7r-gyPtnMffXg9u5ie1Kdnx2-mR6e1F0qbmlFMWSsVZwIDAUUWUtCm0UJqLRxRzji2oEJ7pRgHzqV3mhjVAmu951SwffRi412NzRIWHsKQXG9XqVu6tLbRdfbPJHSX9nP8ZplhTGldBM-2ghS_jpAHu-yyh753AcpdVgkuBGUY_59knEiJb8mnf5FXcUyh_IMlWkoqiZG8UM83lE8x5wTt3asJtjct2tKivW2xsE9-P_MXua2tAIcb4HvXw_rfJjudz34q681Glwe4vttw6YuViilhP86PLXs1Ny8_nby179kPjDC12w |
CitedBy_id | crossref_primary_10_1016_j_cellsig_2010_07_001 crossref_primary_10_1016_j_jpsychires_2011_11_001 crossref_primary_10_1007_s00018_013_1259_7 crossref_primary_10_3389_fnana_2022_1097467 crossref_primary_10_1016_j_bbadis_2024_167141 crossref_primary_10_1016_j_bbrc_2018_03_064 crossref_primary_10_1111_ejn_15075 crossref_primary_10_3389_fgene_2022_825974 crossref_primary_10_1016_j_aanat_2021_151881 crossref_primary_10_3390_ani12091079 crossref_primary_10_1523_JNEUROSCI_0729_17_2017 crossref_primary_10_1074_jbc_M113_529503 crossref_primary_10_1111_j_1365_2443_2010_01398_x crossref_primary_10_1523_JNEUROSCI_4707_12_2013 crossref_primary_10_1172_jci_insight_166306 |
Cites_doi | 10.1016/j.pnpbp.2004.05.025 10.1038/nn1697 10.1523/JNEUROSCI.14-03-01834.1994 10.1007/s00018-003-3123-7 10.1523/JNEUROSCI.4531-04.2005 10.1523/JNEUROSCI.3981-06.2006 10.1096/fj.05-4826fje 10.1016/S0925-4773(98)00119-1 10.1083/jcb.200106025 10.1083/jcb.200306033 10.1016/S0168-0102(98)00002-9 10.1038/79162 10.1006/bbrc.2000.3584 10.1016/j.tins.2005.03.005 10.1002/neu.10284 10.1128/MCB.21.21.7117-7136.2001 10.1016/j.semcdb.2006.04.006 10.1002/(SICI)1097-4695(199904)39:1<81::AID-NEU7>3.0.CO;2-K 10.1101/gad.1256405 10.1111/j.1471-4159.2008.05416.x 10.1002/cne.21909 10.1002/cne.20437 10.1002/cne.20896 10.1111/j.1365-2443.2008.01270.x 10.1016/j.tcb.2008.07.002 10.1097/01.ASN.0000130167.30769.55 10.1083/jcb.200809151 10.1007/s11068-005-8355-z 10.1002/cne.20758 10.1016/j.cell.2004.05.018 10.1002/jnr.10457 10.1042/bj3160515 10.1074/jbc.M400950200 10.1385/JMN:29:3:241 10.1083/jcb.200105019 10.1128/MCB.20.13.4791-4805.2000 10.1016/S0021-9258(17)32113-0 10.1042/bj3210865 10.1523/JNEUROSCI.1633-07.2007 10.1523/JNEUROSCI.5625-07.2008 10.1523/JNEUROSCI.2870-06.2007 10.1002/cne.10532 10.1016/j.brainresrev.2006.04.006 10.1016/j.conb.2008.04.001 10.1172/JCI7236 10.1093/oxfordjournals.jbchem.a003205 10.1016/S0165-3806(00)00136-X 10.1242/dev.116.1.201 10.1016/j.tcb.2007.06.006 10.1182/blood.V94.7.2403.419k39_2403_2413 10.1002/cne.10371 10.1016/S0092-8674(01)00314-2 10.1002/dneu.20389 10.1002/cne.21205 10.1002/(SICI)1097-4695(199611)31:3<309::AID-NEU4>3.0.CO;2-E 10.1074/jbc.270.45.27339 10.1016/0304-3940(96)12640-9 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. Copyright © 2009 Wiley-Liss, Inc. 2009 Wiley-Liss, Inc. 2009 |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: Copyright © 2009 Wiley-Liss, Inc. – notice: 2009 Wiley-Liss, Inc. 2009 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/cne.22239 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 136 |
ExternalDocumentID | 4312893141 10_1002_cne_22239 19924828 CNE22239 ark_67375_WNG_3DN9BXHJ_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: NS38920 – fundername: The Ministry of Education, Culture, Sports, Science, and Technology of Japan funderid: 20370044; 1979025 – fundername: NINDS NIH HHS grantid: NS38920 – fundername: NINDS NIH HHS grantid: R01 NS038920 – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS038920 || NS |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5789-32023f674350e1e71d652bb856885a17a9a3d258c7734e446ca8197fe3fcc4253 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 |
IngestDate | Tue Sep 17 21:18:19 EDT 2024 Fri Aug 16 02:35:18 EDT 2024 Fri Aug 16 04:11:04 EDT 2024 Thu Oct 10 18:37:45 EDT 2024 Fri Aug 23 03:41:18 EDT 2024 Sat Sep 28 07:45:55 EDT 2024 Sat Aug 24 00:53:42 EDT 2024 Wed Oct 30 10:04:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5789-32023f674350e1e71d652bb856885a17a9a3d258c7734e446ca8197fe3fcc4253 |
Notes | The Ministry of Education, Culture, Sports, Science, and Technology of Japan - No. 20370044; No. 1979025 istex:C26F7E5D05FA5A4BC5ED9EE9DA267CD362120419 ark:/67375/WNG-3DN9BXHJ-S ArticleID:CNE22239 National Institutes of Health - No. NS38920 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://europepmc.org/articles/pmc3933788?pdf=render |
PMID | 19924828 |
PQID | 1866261964 |
PQPubID | 1006438 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933788 proquest_miscellaneous_754552300 proquest_miscellaneous_734166000 proquest_journals_1866261964 crossref_primary_10_1002_cne_22239 pubmed_primary_19924828 wiley_primary_10_1002_cne_22239_CNE22239 istex_primary_ark_67375_WNG_3DN9BXHJ_S |
PublicationCentury | 2000 |
PublicationDate | 15 January 2010 |
PublicationDateYYYYMMDD | 2010-01-15 |
PublicationDate_xml | – month: 01 year: 2010 text: 15 January 2010 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Pixley FJ, Lee PS, Dominguez MG, Einstein DB, Stanley ER. 1995. A heteromorphic protein-tyrosine phosphatase, PTPϕ, is regulated by CSF-1 in macrophages. J Biol Chem 270: 27339-27347. De Marchis S, Bovetti S, Carletti B, Hsieh YC, Garzotto D, Peretto P, Fasolo A, Puche AC, Rossi F. 2007. Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci 27: 657-664. Wharram BL, Goyal M, Gillespie PJ, Wiggins JE, Kershaw DB, Holzman LB, Dysko RC, Saunders TL, Samuelson LC, Wiggins RC. 2000. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J Clin Invest 106: 1281-1290. Goldshmit Y, McLenachan S, Turnley A. 2006. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev 52: 327-345. Yang DH, Goyal M, Sharif K, Kershaw D, Thomas P, Dysko R, Wiggins R. 1996. Glomerular epithelial protein 1 and podocalyxin-like protein 1 in inflammatory glomerular disease (crescentic nephritis) in rabbit and man. Lab Invest 74: 571-584. Egger V, Urban NN. 2006. Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin Cell Dev Biol 17: 424-432. Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. 2001. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155: 65-76. Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, Sato T, Yamauchi E, Oda Y, Takai Y. 2009. Synaptic activity prompts γ-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185: 551-564. Stepanek L, Stoker AW, Stoeckli E, Bixby JL. 2005. Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci 25: 3813-3823. Whitman MC, Greer CA. 2007a. Adult-generated neurons exhibit diverse developmental fates. Dev Neurobiol 67: 1079-1093. Huynh DP, Figueroa K, Hoang N, Pulst SM. 2000. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26: 44-50. Lamprianou S, Harroch S. 2006. Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system. J Mol Neurosci 29: 241-255. Penzes P, Cahill ME, Jones KA, Srivastava DP. 2008. Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol 18: 405-413. Kosaka K, Toida K, Aika Y, Kosaka T. 1998. How simple is the organization of the olfactory glomerulus? The heterogeneity of so-called periglomerular cells. Neurosci Res 30: 101-110. Singec I, Knoth R, Ditter M, Hagemeyer CE, Rosenbrock H, Frotscher M, Volk B. 2002. Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J Comp Neurol 452: 139-153. Kim JH, Lee JA, Song YM, Park CH, Hwang SJ, Kim YS, Kaang BK, Son H. 2006. Overexpression of calbindin-D28K in hippocampal progenitor cells increases neuronal differentiation and neurite outgrowth. FASEB J 20: 109-111. Paul S, Lombroso PJ. 2003. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system. Cell Mol Life Sci 60: 2465-2482. Thomas PE, Wharram BL, Goyal M, Wiggins JE, Holzman LB, Wiggins RC. 1994. GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. J Biol Chem 269: 19953-19962. Benzing T. 2004. Signaling at the slit diaphragm. J Am Soc Nephrol 15: 1382-1391. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. 2000. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol 20: 4791-4805. Dehmelt L, Halpain S. 2004. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 58: 18-33. Fuentes-Santamaria V, Alvarado JC, Taylor AR, Brunso-Bechtold JK, Henkel CK. 2005. Quantitative changes in calretinin immunostaining in the cochlear nuclei after unilateral cochlear removal in young ferrets. J Comp Neurol 483: 458-475. Whitman MC, Greer CA. 2007b. Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27: 9951-9961. Trowern AR, Laight R, MacLean N, Mann DA. 1996. Detection of neuron-specific protein gene product (PGP) 9.5 in the rat and zebrafish using anti-human PGP9.5 antibodies. Neurosci Lett 210: 21-24. Beltran PJ, Bixby JL, Masters BA. 2003. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3- and NGF-dependent neurons. J Comp Neurol 456: 384-395. Bouvier D, Corera AT, Tremblay ME, Riad M, Chagnon M, Murai KK, Pasquale EB, Fon EA, Doucet G. 2008. Pre-synaptic and post-synaptic localization of EphA4 and EphB2 in adult mouse forebrain. J Neurochem 106: 682-695. Fong AY, Stornetta RL, Foley CM, Potts JT. 2005. Immunohistochemical localization of GAD67-expressing neurons and processes in the rat brainstem: subregional distribution in the nucleus tractus solitarius. J Comp Neurol 493: 274-290. Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211. Wang R, St John PL, Wiggins RC, Abrahamson DR. 1999. 32 molecular cloning and expression of glomerular epithelial protein 1 (GLEPP1) in developing mouse kidney. J Histochem Cytochem 47: 1650. Lledo PM, Saghatelyan A. 2005. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28: 248-254. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. 2007. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17: 428-437. Govek EE, Newey SE, Van Aelst L. 2005. The role of the Rho GTPases in neuronal development. Genes Dev 19: 1-49. Imamura F, Nagao H, Naritsuka H, Murata Y, Taniguchi H, Mori K. 2006. A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J Comp Neurol 495: 754-768. Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC. 2007. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501: 825-836. Aguiar RC, Yakushijin Y, Kharbanda S, Tiwari S, Freeman GJ, Shipp MA. 1999. PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood 94: 2403-2413. Duan X, Kang E, Liu CY, Ming GL, Song H. 2008. Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18: 108-115. Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR. 1994. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14: 1834-1855. Burette AC, Strehler EE, Weinberg RJ. 2009. "Fast" plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. J Comp Neurol 512: 500-513. Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. 2003. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163: 1313-1326. Negishi M, Katoh H. 2002. Rho family GTPases as key regulators for neuronal network formation. J Biochem 132: 157-166. Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M. 2006. Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nat Neurosci 9: 761-769. Hayashi A, Ohnishi H, Okazawa H, Nakazawa S, Ikeda H, Motegi S, Aoki N, Kimura S, Mikuni M, Matozaki T. 2004. Positive regulation of phagocytosis by SIRPβ and its signaling mechanism in macrophages. J Biol Chem 279: 29450-29460. Wu LW, Baylink DJ, Lau KH. 1996. Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem J 316: 515-523. Huot J. 2004. Ephrin signaling in axon guidance. Prog Neuropsychopharmacol Biol Psychiatry 28: 813-818. Batista-Brito R, Close J, Machold R, Fishell G. 2008. The distinct temporal origins of olfactory bulb interneuron subtypes. J Neurosci 28: 3966-3975. Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A, Greenberg ME. 2001. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105: 233-244. Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, Miyashita M, Itoh H, Oldenborg PA, Furuya N, Matozaki T. 2006. CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J Neurosci 26: 12397-12407. Tomemori T, Seki N, Suzuki Y, Shimizu T, Nagata H, Konno A, Shirasawa T. 2000. Isolation and characterization of murine orthologue of PTP-BK. Biochem Biophys Res Commun 276: 974-981. Sadakata H, Okazawa H, Sato T, Supriatna Y, Ohnishi H, Kusakari S, Murata Y, Ito T, Nishiyama U, Minegishi T, Harada A, Matozaki T. 2009. SAP-1 is a microvillus-specific protein tyrosine phosphatase that modulates intestinal tumorigenesis. Genes Cells 14: 295-308. Tagawa M, Shirasawa T, Yahagi Y, Tomoda T, Kuroyanagi H, Fujimura S, Sakiyama S, Maruyama N. 1997. Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system. Biochem J 321: 865-871. Liebl DJ, Morris CJ, Henkemeyer M, Parada LF. 2003. mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71: 7-22. Schaapveld RQ, Schepens JT, Bächner D, Attema J, Wieringa B, Jap PH, Hendriks WJ. 1998. Developmental expression of the cell adhesion molecule-like protein tyrosine phosphatases LAR, RPTPδ and 2005; 493 2007; 501 2004; 28 1999; 47 2007a; 67 2006; 495 1996; 74 2008; 106 2005; 28 2007b; 27 1996; 31 2009; 512 2001; 105 2005; 25 2009; 14 2006; 20 1994; 269 2008; 28 2006; 26 1992; 116 2006; 29 1996; 210 1999; 94 2005; 34 2007; 27 2003; 163 2007; 17 2006; 52 2000; 26 2002; 132 2008; 18 2006; 17 2006; 9 2002; 452 2000; 20 2000; 276 2003; 456 2003; 71 2001; 126 1995; 270 2001; 21 2001; 155 2001; 154 2005; 19 2004; 279 2005; 483 2004; 58 1999; 39 2000; 106 2004; 15 1997; 321 1994; 14 2009; 185 1998; 30 2003; 60 2004; 117 1998; 77 1996; 316 1483388 - Development. 1992 Sep;116(1):201-11 12532410 - J Comp Neurol. 2003 Feb 17;456(4):384-95 10973246 - Nat Genet. 2000 Sep;26(1):44-50 16506198 - J Comp Neurol. 2006 Apr 20;495(6):754-68 8910789 - J Neurobiol. 1996 Nov;31(3):309-24 17085782 - J Mol Neurosci. 2006;29(3):241-55 16680165 - Nat Neurosci. 2006 Jun;9(6):761-9 17565001 - Dev Neurobiol. 2007 Jul;67(8):1079-93 15829633 - J Neurosci. 2005 Apr 13;25(15):3813-23 8762182 - Neurosci Lett. 1996 May 24;210(1):21-4 14625689 - Cell Mol Life Sci. 2003 Nov;60(11):2465-82 12478610 - J Neurosci Res. 2003 Jan 1;71(1):7-22 17234597 - J Neurosci. 2007 Jan 17;27(3):657-64 8687395 - Biochem J. 1996 Jun 1;316 ( Pt 2):515-23 16889994 - Semin Cell Dev Biol. 2006 Aug;17(4):424-32 11514594 - J Cell Biol. 2001 Aug 20;154(4):867-78 8126575 - J Neurosci. 1994 Mar;14(3 Pt 2):1834-55 17135401 - J Neurosci. 2006 Nov 29;26(48):12397-407 11172885 - Brain Res Dev Brain Res. 2001 Jan 31;126(1):43-56 19170756 - Genes Cells. 2009 Mar;14(3):295-308 18701290 - Trends Cell Biol. 2008 Sep;18(9):405-13 11336673 - Cell. 2001 Apr 20;105(2):233-44 10848605 - Mol Cell Biol. 2000 Jul;20(13):4791-805 18410519 - J Neurochem. 2008 Jul;106(2):682-95 18514504 - Curr Opin Neurobiol. 2008 Feb;18(1):108-15 15363605 - Prog Neuropsychopharmacol Biol Psychiatry. 2004 Aug;28(5):813-8 7519601 - J Biol Chem. 1994 Aug 5;269(31):19953-62 15866199 - Trends Neurosci. 2005 May;28(5):248-54 7592997 - J Biol Chem. 1995 Nov 10;270(45):27339-47 15700274 - J Comp Neurol. 2005 Mar 21;483(4):458-75 18400896 - J Neurosci. 2008 Apr 9;28(15):3966-75 14598367 - J Neurobiol. 2004 Jan;58(1):18-33 11027578 - Biochem Biophys Res Commun. 2000 Oct 5;276(3):974-81 16278289 - FASEB J. 2006 Jan;20(1):109-11 15123631 - J Biol Chem. 2004 Jul 9;279(28):29450-60 15153549 - J Am Soc Nephrol. 2004 Jun;15(6):1382-91 10567479 - J Histochem Cytochem. 1999 Dec;47(12):1650 15630019 - Genes Dev. 2005 Jan 1;19(1):1-49 17311323 - J Comp Neurol. 2007 Apr 20;501(6):825-36 12271488 - J Comp Neurol. 2002 Oct 14;452(2):139-53 9579643 - Neurosci Res. 1998 Feb;30(2):101-10 8600307 - Lab Invest. 1996 Mar;74(3):571-84 10498613 - Blood. 1999 Oct 1;94(7):2403-13 16841165 - J Neurocytol. 2005 Sep;34(3-5):217-40 19414612 - J Cell Biol. 2009 May 4;185(3):551-64 9032477 - Biochem J. 1997 Feb 1;321 ( Pt 3):865-71 15186772 - Cell. 2004 Jun 11;117(6):699-711 11086029 - J Clin Invest. 2000 Nov;106(10):1281-90 19025983 - J Comp Neurol. 2009 Feb 1;512(4):500-13 11585896 - Mol Cell Biol. 2001 Nov;21(21):7117-36 14691139 - J Cell Biol. 2003 Dec 22;163(6):1313-26 17804239 - Trends Cell Biol. 2007 Sep;17(9):428-37 16255028 - J Comp Neurol. 2005 Dec 12;493(2):274-90 17855609 - J Neurosci. 2007 Sep 12;27(37):9951-61 9784606 - Mech Dev. 1998 Sep;77(1):59-62 16774788 - Brain Res Rev. 2006 Sep;52(2):327-45 10213455 - J Neurobiol. 1999 Apr;39(1):81-96 12153710 - J Biochem. 2002 Aug;132(2):157-66 11581286 - J Cell Biol. 2001 Oct 1;155(1):65-76 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Wang R (e_1_2_6_54_1) 1999; 47 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Thomas PE (e_1_2_6_51_1) 1994; 269 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 Yang DH (e_1_2_6_60_1) 1996; 74 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 Aguiar RC (e_1_2_6_2_1) 1999; 94 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 28 start-page: 813 year: 2004 end-page: 818 article-title: Ephrin signaling in axon guidance publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 77 start-page: 59 year: 1998 end-page: 62 article-title: Developmental expression of the cell adhesion molecule‐like protein tyrosine phosphatases LAR, RPTPδ and RPTPσ in the mouse publication-title: Mech Dev – volume: 52 start-page: 327 year: 2006 end-page: 345 article-title: Roles of Eph receptors and ephrins in the normal and damaged adult CNS publication-title: Brain Res Rev – volume: 71 start-page: 7 year: 2003 end-page: 22 article-title: mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system publication-title: J Neurosci Res – volume: 321 start-page: 865 year: 1997 end-page: 871 article-title: Identification of a receptor‐type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system publication-title: Biochem J – volume: 116 start-page: 201 year: 1992 end-page: 211 article-title: NeuN, a neuronal specific nuclear protein in vertebrates publication-title: Development – volume: 27 start-page: 9951 year: 2007b end-page: 9961 article-title: Synaptic integration of adult‐generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits publication-title: J Neurosci – volume: 276 start-page: 974 year: 2000 end-page: 981 article-title: Isolation and characterization of murine orthologue of PTP‐BK publication-title: Biochem Biophys Res Commun – volume: 47 start-page: 1650 year: 1999 article-title: 32 molecular cloning and expression of glomerular epithelial protein 1 (GLEPP1) in developing mouse kidney publication-title: J Histochem Cytochem – volume: 279 start-page: 29450 year: 2004 end-page: 29460 article-title: Positive regulation of phagocytosis by SIRPβ and its signaling mechanism in macrophages publication-title: J Biol Chem – volume: 501 start-page: 825 year: 2007 end-page: 836 article-title: Quantitative analysis of neuronal diversity in the mouse olfactory bulb publication-title: J Comp Neurol – volume: 126 start-page: 43 year: 2001 end-page: 56 article-title: EphB2 and two of its ligands have dynamic protein expression patterns in the developing olfactory system publication-title: Brain Res Dev Brain Res – volume: 452 start-page: 139 year: 2002 end-page: 153 article-title: Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons publication-title: J Comp Neurol – volume: 163 start-page: 1313 year: 2003 end-page: 1326 article-title: Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus publication-title: J Cell Biol – volume: 483 start-page: 458 year: 2005 end-page: 475 article-title: Quantitative changes in calretinin immunostaining in the cochlear nuclei after unilateral cochlear removal in young ferrets publication-title: J Comp Neurol – volume: 15 start-page: 1382 year: 2004 end-page: 1391 article-title: Signaling at the slit diaphragm publication-title: J Am Soc Nephrol – volume: 132 start-page: 157 year: 2002 end-page: 166 article-title: Rho family GTPases as key regulators for neuronal network formation publication-title: J Biochem – volume: 106 start-page: 682 year: 2008 end-page: 695 article-title: Pre‐synaptic and post‐synaptic localization of EphA4 and EphB2 in adult mouse forebrain publication-title: J Neurochem – volume: 512 start-page: 500 year: 2009 end-page: 513 article-title: “Fast” plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain publication-title: J Comp Neurol – volume: 58 start-page: 18 year: 2004 end-page: 33 article-title: Actin and microtubules in neurite initiation: are MAPs the missing link? publication-title: J Neurobiol – volume: 74 start-page: 571 year: 1996 end-page: 584 article-title: Glomerular epithelial protein 1 and podocalyxin‐like protein 1 in inflammatory glomerular disease (crescentic nephritis) in rabbit and man publication-title: Lab Invest – volume: 28 start-page: 3966 year: 2008 end-page: 3975 article-title: The distinct temporal origins of olfactory bulb interneuron subtypes publication-title: J Neurosci – volume: 210 start-page: 21 year: 1996 end-page: 24 article-title: Detection of neuron‐specific protein gene product (PGP) 9.5 in the rat and zebrafish using anti‐human PGP9.5 antibodies publication-title: Neurosci Lett – volume: 26 start-page: 12397 year: 2006 end-page: 12407 article-title: CD47 promotes neuronal development through Src‐ and FRG/Vav2‐mediated activation of Rac and Cdc42 publication-title: J Neurosci – volume: 106 start-page: 1281 year: 2000 end-page: 1290 article-title: Altered podocyte structure in GLEPP1 (Ptpro)‐deficient mice associated with hypertension and low glomerular filtration rate publication-title: J Clin Invest – volume: 18 start-page: 405 year: 2008 end-page: 413 article-title: Convergent CaMK and RacGEF signals control dendritic structure and function publication-title: Trends Cell Biol – volume: 270 start-page: 27339 year: 1995 end-page: 27347 article-title: A heteromorphic protein‐tyrosine phosphatase, PTPϕ, is regulated by CSF‐1 in macrophages publication-title: J Biol Chem – volume: 9 start-page: 761 year: 2006 end-page: 769 article-title: Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O publication-title: Nat Neurosci – volume: 185 start-page: 551 year: 2009 end-page: 564 article-title: Synaptic activity prompts γ‐secretase‐mediated cleavage of EphA4 and dendritic spine formation publication-title: J Cell Biol – volume: 30 start-page: 101 year: 1998 end-page: 110 article-title: How simple is the organization of the olfactory glomerulus? The heterogeneity of so‐called periglomerular cells publication-title: Neurosci Res – volume: 60 start-page: 2465 year: 2003 end-page: 2482 article-title: Receptor and nonreceptor protein tyrosine phosphatases in the nervous system publication-title: Cell Mol Life Sci – volume: 17 start-page: 428 year: 2007 end-page: 437 article-title: Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton publication-title: Trends Cell Biol – volume: 29 start-page: 241 year: 2006 end-page: 255 article-title: Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system publication-title: J Mol Neurosci – volume: 20 start-page: 4791 year: 2000 end-page: 4805 article-title: Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors publication-title: Mol Cell Biol – volume: 154 start-page: 867 year: 2001 end-page: 878 article-title: CRYP‐2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro publication-title: J Cell Biol – volume: 31 start-page: 309 year: 1996 end-page: 324 article-title: CRYP‐2: a receptor‐type tyrosine phosphatase selectively expressed by developing vertebrate neurons publication-title: J Neurobiol – volume: 316 start-page: 515 year: 1996 end-page: 523 article-title: Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase publication-title: Biochem J – volume: 26 start-page: 44 year: 2000 end-page: 50 article-title: Nuclear localization or inclusion body formation of ataxin‐2 are not necessary for SCA2 pathogenesis in mouse or human publication-title: Nat Genet – volume: 20 start-page: 109 year: 2006 end-page: 111 article-title: Overexpression of calbindin‐D28K in hippocampal progenitor cells increases neuronal differentiation and neurite outgrowth publication-title: FASEB J – volume: 17 start-page: 424 year: 2006 end-page: 432 article-title: Dynamic connectivity in the mitral cell–granule cell microcircuit publication-title: Semin Cell Dev Biol – volume: 155 start-page: 65 year: 2001 end-page: 76 article-title: Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization publication-title: J Cell Biol – volume: 94 start-page: 2403 year: 1999 end-page: 2413 article-title: PTPROt: an alternatively spliced and developmentally regulated B‐lymphoid phosphatase that promotes G0/G1 arrest publication-title: Blood – volume: 67 start-page: 1079 year: 2007a end-page: 1093 article-title: Adult‐generated neurons exhibit diverse developmental fates publication-title: Dev Neurobiol – volume: 25 start-page: 3813 year: 2005 end-page: 3823 article-title: Receptor tyrosine phosphatases guide vertebrate motor axons during development publication-title: J Neurosci – volume: 493 start-page: 274 year: 2005 end-page: 290 article-title: Immunohistochemical localization of GAD67‐expressing neurons and processes in the rat brainstem: subregional distribution in the nucleus tractus solitarius publication-title: J Comp Neurol – volume: 456 start-page: 384 year: 2003 end-page: 395 article-title: Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT‐3‐ and NGF‐dependent neurons publication-title: J Comp Neurol – volume: 28 start-page: 248 year: 2005 end-page: 254 article-title: Integrating new neurons into the adult olfactory bulb: joining the network, life‐death decisions, and the effects of sensory experience publication-title: Trends Neurosci – volume: 269 start-page: 19953 year: 1994 end-page: 19962 article-title: GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein‐tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit publication-title: J Biol Chem – volume: 19 start-page: 1 year: 2005 end-page: 49 article-title: The role of the Rho GTPases in neuronal development publication-title: Genes Dev – volume: 14 start-page: 1834 year: 1994 end-page: 1855 article-title: Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms publication-title: J Neurosci – volume: 495 start-page: 754 year: 2006 end-page: 768 article-title: A leucine‐rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb publication-title: J Comp Neurol – volume: 27 start-page: 657 year: 2007 end-page: 664 article-title: Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population publication-title: J Neurosci – volume: 14 start-page: 295 year: 2009 end-page: 308 article-title: SAP‐1 is a microvillus‐specific protein tyrosine phosphatase that modulates intestinal tumorigenesis publication-title: Genes Cells – volume: 105 start-page: 233 year: 2001 end-page: 244 article-title: EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin publication-title: Cell – volume: 34 start-page: 217 year: 2005 end-page: 240 article-title: Olfactory epithelia differentially express neuronal markers publication-title: J Neurocytol – volume: 21 start-page: 7117 year: 2001 end-page: 7136 article-title: Structural and evolutionary relationships among protein tyrosine phosphatase domains publication-title: Mol Cell Biol – volume: 18 start-page: 108 year: 2008 end-page: 115 article-title: Development of neural stem cell in the adult brain publication-title: Curr Opin Neurobiol – volume: 39 start-page: 81 year: 1999 end-page: 96 article-title: Expression of receptor tyrosine phosphatases during development of the retinotectal projection of the chick publication-title: J Neurobiol – volume: 117 start-page: 699 year: 2004 end-page: 711 article-title: Protein tyrosine phosphatases in the human genome publication-title: Cell – ident: e_1_2_6_24_1 doi: 10.1016/j.pnpbp.2004.05.025 – ident: e_1_2_6_44_1 doi: 10.1038/nn1697 – ident: e_1_2_6_16_1 doi: 10.1523/JNEUROSCI.14-03-01834.1994 – ident: e_1_2_6_38_1 doi: 10.1007/s00018-003-3123-7 – ident: e_1_2_6_48_1 doi: 10.1523/JNEUROSCI.4531-04.2005 – ident: e_1_2_6_35_1 doi: 10.1523/JNEUROSCI.3981-06.2006 – ident: e_1_2_6_28_1 doi: 10.1096/fj.05-4826fje – ident: e_1_2_6_42_1 doi: 10.1016/S0925-4773(98)00119-1 – ident: e_1_2_6_50_1 doi: 10.1083/jcb.200106025 – ident: e_1_2_6_23_1 doi: 10.1083/jcb.200306033 – ident: e_1_2_6_29_1 doi: 10.1016/S0168-0102(98)00002-9 – ident: e_1_2_6_25_1 doi: 10.1038/79162 – ident: e_1_2_6_52_1 doi: 10.1006/bbrc.2000.3584 – ident: e_1_2_6_33_1 doi: 10.1016/j.tins.2005.03.005 – ident: e_1_2_6_13_1 doi: 10.1002/neu.10284 – ident: e_1_2_6_4_1 doi: 10.1128/MCB.21.21.7117-7136.2001 – ident: e_1_2_6_15_1 doi: 10.1016/j.semcdb.2006.04.006 – ident: e_1_2_6_31_1 doi: 10.1002/(SICI)1097-4695(199904)39:1<81::AID-NEU7>3.0.CO;2-K – volume: 74 start-page: 571 year: 1996 ident: e_1_2_6_60_1 article-title: Glomerular epithelial protein 1 and podocalyxin‐like protein 1 in inflammatory glomerular disease (crescentic nephritis) in rabbit and man publication-title: Lab Invest contributor: fullname: Yang DH – ident: e_1_2_6_21_1 doi: 10.1101/gad.1256405 – ident: e_1_2_6_10_1 doi: 10.1111/j.1471-4159.2008.05416.x – ident: e_1_2_6_11_1 doi: 10.1002/cne.21909 – ident: e_1_2_6_19_1 doi: 10.1002/cne.20437 – ident: e_1_2_6_26_1 doi: 10.1002/cne.20896 – ident: e_1_2_6_41_1 doi: 10.1111/j.1365-2443.2008.01270.x – ident: e_1_2_6_39_1 doi: 10.1016/j.tcb.2008.07.002 – volume: 47 start-page: 1650 year: 1999 ident: e_1_2_6_54_1 article-title: 32 molecular cloning and expression of glomerular epithelial protein 1 (GLEPP1) in developing mouse kidney publication-title: J Histochem Cytochem contributor: fullname: Wang R – ident: e_1_2_6_7_1 doi: 10.1097/01.ASN.0000130167.30769.55 – ident: e_1_2_6_27_1 doi: 10.1083/jcb.200809151 – ident: e_1_2_6_55_1 doi: 10.1007/s11068-005-8355-z – ident: e_1_2_6_18_1 doi: 10.1002/cne.20758 – ident: e_1_2_6_3_1 doi: 10.1016/j.cell.2004.05.018 – ident: e_1_2_6_32_1 doi: 10.1002/jnr.10457 – ident: e_1_2_6_59_1 doi: 10.1042/bj3160515 – ident: e_1_2_6_22_1 doi: 10.1074/jbc.M400950200 – ident: e_1_2_6_30_1 doi: 10.1385/JMN:29:3:241 – ident: e_1_2_6_47_1 doi: 10.1083/jcb.200105019 – ident: e_1_2_6_8_1 doi: 10.1128/MCB.20.13.4791-4805.2000 – volume: 269 start-page: 19953 year: 1994 ident: e_1_2_6_51_1 article-title: GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein‐tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)32113-0 contributor: fullname: Thomas PE – ident: e_1_2_6_49_1 doi: 10.1042/bj3210865 – ident: e_1_2_6_58_1 doi: 10.1523/JNEUROSCI.1633-07.2007 – ident: e_1_2_6_5_1 doi: 10.1523/JNEUROSCI.5625-07.2008 – ident: e_1_2_6_12_1 doi: 10.1523/JNEUROSCI.2870-06.2007 – ident: e_1_2_6_6_1 doi: 10.1002/cne.10532 – ident: e_1_2_6_20_1 doi: 10.1016/j.brainresrev.2006.04.006 – ident: e_1_2_6_14_1 doi: 10.1016/j.conb.2008.04.001 – ident: e_1_2_6_56_1 doi: 10.1172/JCI7236 – ident: e_1_2_6_36_1 doi: 10.1093/oxfordjournals.jbchem.a003205 – ident: e_1_2_6_46_1 doi: 10.1016/S0165-3806(00)00136-X – ident: e_1_2_6_34_1 doi: 10.1242/dev.116.1.201 – ident: e_1_2_6_17_1 doi: 10.1016/j.tcb.2007.06.006 – volume: 94 start-page: 2403 year: 1999 ident: e_1_2_6_2_1 article-title: PTPROt: an alternatively spliced and developmentally regulated B‐lymphoid phosphatase that promotes G0/G1 arrest publication-title: Blood doi: 10.1182/blood.V94.7.2403.419k39_2403_2413 contributor: fullname: Aguiar RC – ident: e_1_2_6_45_1 doi: 10.1002/cne.10371 – ident: e_1_2_6_43_1 doi: 10.1016/S0092-8674(01)00314-2 – ident: e_1_2_6_57_1 doi: 10.1002/dneu.20389 – ident: e_1_2_6_37_1 doi: 10.1002/cne.21205 – ident: e_1_2_6_9_1 doi: 10.1002/(SICI)1097-4695(199611)31:3<309::AID-NEU4>3.0.CO;2-E – ident: e_1_2_6_40_1 doi: 10.1074/jbc.270.45.27339 – ident: e_1_2_6_53_1 doi: 10.1016/0304-3940(96)12640-9 |
SSID | ssj0009938 |
Score | 2.083472 |
Snippet | PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III‐like... PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like... Abstract PTPRO is a receptor‐type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 119 |
SubjectTerms | Animals Antibodies, Monoclonal - chemistry Biomarkers Cells, Cultured CNS Female Fluorescent Antibody Technique gamma-Aminobutyric Acid - metabolism granule cells Indicators and Reagents Interneurons - metabolism localization Male maturation Mice Mice, Inbred C57BL Olfactory Bulb - cytology Olfactory Bulb - metabolism periglomerular cells Plasmids - genetics Pregnancy Receptor, EphA4 - metabolism Receptor-Like Protein Tyrosine Phosphatases, Class 3 - biosynthesis Receptor-Like Protein Tyrosine Phosphatases, Class 3 - genetics Receptor-Like Protein Tyrosine Phosphatases, Class 3 - isolation & purification receptor-type tyrosine phosphatase Transfection |
Title | Expression of PTPRO in the interneurons of adult mouse olfactory bulb |
URI | https://api.istex.fr/ark:/67375/WNG-3DN9BXHJ-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.22239 https://www.ncbi.nlm.nih.gov/pubmed/19924828 https://www.proquest.com/docview/1866261964 https://search.proquest.com/docview/734166000 https://search.proquest.com/docview/754552300 https://pubmed.ncbi.nlm.nih.gov/PMC3933788 |
Volume | 518 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KRfDF74_VKkFEfNnrZrNJNvik7dWj4Flqi4cIIclm8WjZk94dVP96M9nbPc8vxLeFTGAzmcn8Mpn8AvBMZqrKilqknss6LbhkqcmcSCtqKu9sCNkWT3TfjsXotDic8MkWvOzuwrT8EH3CDT0jrtfo4MbOd9ekoa7xAwxueHmPMonlXPvHa-qoEHfbVRhLEJSQHatQlu_2PTdi0RVU6-XvgOav9ZI_4tgYiA5uwKduCG39ydlgubAD9-0ndsf_HONNuL4CqORVa1G3YMs3t-Hqx1lMv9-B4fByVTrbkFlNjk6Ojt-RaUMCjiTTmF1Eto9mjo2R24NgbsGT2Xn7ss9XYpfn9i6cHgxP9kbp6imG1AWXVml8Zb3GCws889RLWgmeW1tyUZbcUGmUYVXOSyclK3zYYjoToIasPaudC8sCuwfbzazxD4BkNTU-t1XoIwpVCVVIz1nmjOAVLVWVwNNuUvSXlnFDt9zKuQ760FEfCTyP09VLmIszLFGTXH8Yv9Fsf6xeT0aH-n0CO9186pV3zjWS_OHOURQJkL45-BUelpjGB73oMA4qAhrM_iIS0Ccm1YPI_dZA1j-swr42bGYTkBum0wsgq_dmSzP9HNm9mWLI8Z_Ai2gZf9aB3hsP48fDfxd9BNfa8geaUr4D24uLpX8cUNXCPonu8x06qxx4 |
link.rule.ids | 230,315,783,787,888,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYi98A0LDLAQQrykS-LYjiVeYOsoYwvT6LQKCVmO44hqU4q2Vhr89ficJqV8CfEWyWcpPt_Pdz6ffwZ4JiJZRmnFQ8tEFaZM0FBHhodlrEtrCueyCzzRPcj54DjdG7HRCrxs78I0_BBdwg2R4ddrBDgmpLcWrKGmtj30bvIKrDm4U4TlztGCPMp53mYdxiIEyUXLKxQlW13XJW-0hoq9_F2o-WvF5I-RrHdFuzfgUzuIpgLltDebFj3z7Sd-x_8d5U24Po9RyavGqG7Biq1vw9WPE5-BvwP9_uW8erYmk4ocDg-P3pNxTVwoScY-wYiEH_UFNnp6D4LpBUsmZ83jPl9JMTsr7sLxbn-4PQjnrzGExqFahv6h9QrvLLDIxlbEJWdJUWSMZxnTsdBS0zJhmRGCptbtMo120YaoLK2McSsDvQer9aS2G0CiKtY2KUrXh6ey5DIVltHIaM7KOJNlAE_bWVFfGtIN1dArJ8rpQ3l9BPDcz1cnoc9PsUpNMHWSv1F0J5evR4M99SGAzXZC1RygFwp5_nDzyNMASNfsoIXnJbq2Ti_KjSPmLiCM_iLiAlDMqzuR-42FLH5Yuq2t288GIJZspxNAYu_llnr82RN8U0mR5j-AF940_qwDtZ33_ceDfxd9AtcGw4N9tf82f_cQ1ptqiDiM2SasTs9n9pELsqbFY4-l7-SAIJE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi-KL39rVqkFEfNnrfiXZ4JO2d55V16O2eIgQskmWHi17pb2D6l_vJHu75_mF-LaQCWwmM5lfJpNfAJ7ySJgoq1hoKa_CjPI0VJFmoYmVsbrEkF26E933BRseZntjOl6DF-1dmIYfoku4Oc_w67Vz8FNTbS9JQ3Vtey64iUuwkTE0VYeI9pfcURh4m2XY1SAIxltaoSjZ7rquBKMNp9eL3yHNXwsmfwSyPhINrsOXdgxNAcpxbz4re_rbT_SO_znIG3BtgVDJy8akbsKarW_B5c9Tn3-_Df3-xaJ2tibTiowORvsfyKQmCCTJxKcXHd1Hfe4aPbkHcckFS6YnzdM-X0k5PynvwOGgf7AzDBdvMYQafVqE_pn1yt1YoJGNLY8No0lZ5pTlOVUxV0KlJqG55jzNLO4xtUKswSubVlrjupDehfV6WttNIFEVK5uUBvuwTBgmMm5pGmnFqIlzYQJ40k6KPG0oN2RDrpxI1If0-gjgmZ-uTkKdHbsaNU7lp-K1THcL8Wo83JMfA9hq51Mu3PNcOpY_t3VkWQCka0bHcqclqraoF4njiBnCwegvIgg_XVYdRe41BrL8YYEbW9zNBsBXTKcTcLTeqy315MjTe6cidST_ATz3lvFnHcidou8_7v-76GO4MtodyHdvircP4GpTChGHMd2C9dnZ3D5EhDUrH3lP-g5six9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+PTPRO+in+the+interneurons+of+adult+mouse+olfactory+bulb&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Kotani%2C+Takenori&rft.au=Murata%2C+Yoji&rft.au=Ohnishi%2C+Hiroshi&rft.au=Mori%2C+Munemasa&rft.date=2010-01-15&rft.eissn=1096-9861&rft.volume=518&rft.issue=2&rft.spage=119&rft_id=info:doi/10.1002%2Fcne.22239&rft_id=info%3Apmid%2F19924828&rft.externalDocID=19924828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |