Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation

Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the v...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 30; no. 4; pp. 1120 - 1132
Main Authors Ances, Beau M., Liang, Christine L., Leontiev, Oleg, Perthen, Joanna E., Fleisher, Adam S., Lansing, Amy E., Buxton, Richard B.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2009
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28‐years‐old) and older (n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc.
AbstractList Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO 2 ) and a simple checkerboard stimulus in healthy younger ( n = 10, mean: 28‐years‐old) and older ( n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M , the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO 2 ) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO 2 . For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO 2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M , which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28‐years‐old) and older (n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.
Author Ances, Beau M.
Leontiev, Oleg
Lansing, Amy E.
Perthen, Joanna E.
Buxton, Richard B.
Fleisher, Adam S.
Liang, Christine L.
AuthorAffiliation 1 Department of Neurosciences, University of California, San Diego, California
3 Department of Psychiatry, University of California, San Diego, California
2 Department of Radiology, University of California, San Diego, California
AuthorAffiliation_xml – name: 3 Department of Psychiatry, University of California, San Diego, California
– name: 2 Department of Radiology, University of California, San Diego, California
– name: 1 Department of Neurosciences, University of California, San Diego, California
Author_xml – sequence: 1
  givenname: Beau M.
  surname: Ances
  fullname: Ances, Beau M.
  organization: Department of Neurosciences, University of California, San Diego, California
– sequence: 2
  givenname: Christine L.
  surname: Liang
  fullname: Liang, Christine L.
  organization: Department of Radiology, University of California, San Diego, California
– sequence: 3
  givenname: Oleg
  surname: Leontiev
  fullname: Leontiev, Oleg
  organization: Department of Radiology, University of California, San Diego, California
– sequence: 4
  givenname: Joanna E.
  surname: Perthen
  fullname: Perthen, Joanna E.
  organization: Department of Radiology, University of California, San Diego, California
– sequence: 5
  givenname: Adam S.
  surname: Fleisher
  fullname: Fleisher, Adam S.
  organization: Department of Neurosciences, University of California, San Diego, California
– sequence: 6
  givenname: Amy E.
  surname: Lansing
  fullname: Lansing, Amy E.
  organization: Department of Psychiatry, University of California, San Diego, California
– sequence: 7
  givenname: Richard B.
  surname: Buxton
  fullname: Buxton, Richard B.
  email: rbuxton@ucsd.edu
  organization: Department of Radiology, University of California, San Diego, California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21261542$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18465743$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-w4A8gb0BCalrbiZ1kUwmG0gEVEBKoS8uPm6nBsYc4mXaW_HM8jw4PCVjZ0v3O0bmPw2zPBw9Z9pjgE4IxPb1W3QnFrCrvZQcEN1WOSVPsrf6c5U1Zkf3sMMYvGBPCMHmQ7ZO65AkvDrLv520LeogotEjOrJ-h4JGGHlQvHVIuBINaF26OUbhdzsCjDgapgrOxO0bSmy2yKcrBJrWDBThkYA7egB9QD3EefISIhoAWNo7JOA62G92af5jdb6WL8Gj7HmWfX59_mkzzyw8XbyYvLnPNqrrMtQbNGqUZrWvMFZcV05wWhjaKFWBYbRRwWpZNpU0FnDeyNmULRkmm2obVxVF2tvGdj6oDo1O01KKY97aT_VIEacXvFW-vxSwsBK0JLhucDJ5tDfrwbYQ4iM5GDc5JD2GMgle4SFGr_4IUlxTXbOX45NdIuyx360nA0y0go5au7aXXNu44SignrKSJe77hdB9i7KH9aYXF6kREOhGxPpHEnv7BajusN5G6tu5fihvrYPl3azF9-e5OkW8UNg5wu1PI_muaUlExcfX-QpAJv3r76uNUkOIH5onfHQ
CitedBy_id crossref_primary_10_1016_j_cortex_2012_04_003
crossref_primary_10_1016_j_neurobiolaging_2014_12_025
crossref_primary_10_3389_fphys_2021_619714
crossref_primary_10_1016_j_neuroimage_2012_04_027
crossref_primary_10_1371_journal_pone_0068122
crossref_primary_10_1016_j_neuroimage_2016_09_007
crossref_primary_10_1017_S0007114513001384
crossref_primary_10_31083_j_jin2310189
crossref_primary_10_1152_japplphysiol_00292_2021
crossref_primary_10_1016_j_pnpbp_2013_09_001
crossref_primary_10_1017_S1355617713000246
crossref_primary_10_1161_STROKEAHA_111_000185
crossref_primary_10_1016_j_jns_2011_07_040
crossref_primary_10_1016_j_neuroimage_2010_09_081
crossref_primary_10_1016_j_neuroimage_2013_05_119
crossref_primary_10_1016_j_neuroimage_2012_11_050
crossref_primary_10_1016_j_neuroimage_2022_119081
crossref_primary_10_1093_cercor_bhac057
crossref_primary_10_3389_fphys_2020_584891
crossref_primary_10_1007_s11682_020_00377_5
crossref_primary_10_1134_S2079057017010143
crossref_primary_10_1016_j_neuroimage_2011_03_076
crossref_primary_10_1016_j_nicl_2017_05_009
crossref_primary_10_1016_j_neuroimage_2011_05_077
crossref_primary_10_1371_journal_pone_0163071
crossref_primary_10_1002_mrm_25463
crossref_primary_10_1016_j_neuroimage_2018_02_020
crossref_primary_10_1016_j_neuroimage_2011_12_017
crossref_primary_10_1002_hbm_70100
crossref_primary_10_1007_s00429_020_02083_w
crossref_primary_10_1016_j_neuroimage_2012_02_022
crossref_primary_10_1016_j_neuroimage_2018_10_009
crossref_primary_10_1016_j_neuroimage_2011_04_030
crossref_primary_10_3389_fnhum_2019_00097
crossref_primary_10_1016_j_neuroimage_2018_05_050
crossref_primary_10_1002_jmri_24786
crossref_primary_10_1002_hbm_21097
crossref_primary_10_1016_j_arr_2013_01_006
crossref_primary_10_1002_hbm_21495
crossref_primary_10_1002_hipo_23259
crossref_primary_10_1016_j_dcn_2014_09_005
crossref_primary_10_1152_jn_00270_2010
crossref_primary_10_1002_ajh_24441
crossref_primary_10_3389_fnagi_2022_919343
crossref_primary_10_1016_j_neuroimage_2017_12_081
crossref_primary_10_1016_j_neuroimage_2021_118418
crossref_primary_10_1016_j_neuroimage_2020_116871
crossref_primary_10_1016_j_neuroimage_2014_09_061
crossref_primary_10_3389_fnsys_2020_00024
crossref_primary_10_1016_j_neuroimage_2011_07_092
crossref_primary_10_1159_000488491
crossref_primary_10_1016_j_neuroimage_2016_06_051
crossref_primary_10_1098_rstb_2019_0631
crossref_primary_10_1016_j_neuroimage_2019_116373
crossref_primary_10_1117_1_JBO_17_5_056002
crossref_primary_10_1002_hbm_22053
crossref_primary_10_1080_01616412_2021_2024714
crossref_primary_10_1016_j_neuroimage_2011_10_046
crossref_primary_10_3758_s13415_019_00718_y
crossref_primary_10_1016_j_neubiorev_2019_09_005
crossref_primary_10_1002_hbm_21242
crossref_primary_10_1016_j_neuroimage_2009_11_014
crossref_primary_10_1016_j_neuroimage_2013_06_008
crossref_primary_10_1038_nrneurol_2012_179
crossref_primary_10_1016_j_neuroimage_2010_09_059
crossref_primary_10_1007_s00429_016_1362_2
crossref_primary_10_3988_jcn_2013_9_2_97
crossref_primary_10_1016_j_neuroimage_2013_09_035
crossref_primary_10_1016_j_neuroimage_2018_12_012
crossref_primary_10_1371_journal_pone_0125012
crossref_primary_10_1016_j_neuroimage_2015_02_068
crossref_primary_10_1002_hipo_20808
crossref_primary_10_1016_j_neuroimage_2013_04_099
crossref_primary_10_1016_j_irbm_2015_01_016
crossref_primary_10_1002_hbm_25352
crossref_primary_10_1016_j_neurobiolaging_2019_08_004
crossref_primary_10_1016_j_neuroimage_2017_03_028
crossref_primary_10_1148_radiol_2503080751
crossref_primary_10_1152_ajpheart_00088_2022
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_1002_hbm_22243
crossref_primary_10_1007_s00234_015_1571_z
crossref_primary_10_1016_j_neuroimage_2017_07_041
crossref_primary_10_1016_j_neuroimage_2022_119208
crossref_primary_10_1371_journal_pone_0197055
crossref_primary_10_1016_j_neurobiolaging_2014_01_136
crossref_primary_10_1002_hbm_23608
crossref_primary_10_1002_jmri_28362
crossref_primary_10_1016_j_neuroimage_2020_116976
crossref_primary_10_3390_brainsci7060064
crossref_primary_10_1038_nrn3085
crossref_primary_10_1007_s00429_021_02226_7
crossref_primary_10_1097_QAI_0b013e31825a3668
crossref_primary_10_1016_j_neuroimage_2014_06_072
crossref_primary_10_1186_1756_0500_7_235
crossref_primary_10_1002_hbm_24934
crossref_primary_10_1016_j_neuroimage_2011_04_064
crossref_primary_10_1007_s11357_023_01008_9
crossref_primary_10_1016_j_neurobiolaging_2022_02_006
crossref_primary_10_1016_j_neuroimage_2018_03_018
crossref_primary_10_1111_psyp_13845
crossref_primary_10_1152_japplphysiol_00994_2015
crossref_primary_10_1093_cercor_bhs233
crossref_primary_10_7554_eLife_21397
crossref_primary_10_1016_j_neurobiolaging_2012_11_002
crossref_primary_10_1016_j_neulet_2014_01_027
crossref_primary_10_1007_s11682_019_00157_w
crossref_primary_10_1016_j_neuroimage_2012_08_077
crossref_primary_10_1038_s41598_017_09752_7
crossref_primary_10_3389_fneur_2014_00249
crossref_primary_10_1016_j_neuron_2024_12_014
crossref_primary_10_3389_fnagi_2014_00288
crossref_primary_10_1016_j_bandl_2014_04_004
crossref_primary_10_1002_hipo_23290
crossref_primary_10_1002_hbm_23597
crossref_primary_10_1038_jcbfm_2010_133
crossref_primary_10_1002_jmri_23658
crossref_primary_10_3389_fneur_2017_00283
crossref_primary_10_1016_j_neuroimage_2012_09_066
crossref_primary_10_1177_0271678X15615133
crossref_primary_10_1016_j_neuroimage_2010_03_040
crossref_primary_10_4236_ojpsych_2017_73014
crossref_primary_10_1073_pnas_1101567108
crossref_primary_10_1371_journal_pone_0259243
crossref_primary_10_1016_j_cnp_2023_11_004
crossref_primary_10_1016_j_neuroimage_2016_02_031
crossref_primary_10_1007_s11682_021_00570_0
crossref_primary_10_1016_j_neurobiolaging_2018_06_017
crossref_primary_10_1016_j_neuroimage_2012_04_041
crossref_primary_10_1016_j_neuroimage_2016_06_010
crossref_primary_10_1177_0271678X16643090
crossref_primary_10_1002_hbm_22771
crossref_primary_10_1016_j_neuroimage_2023_120189
crossref_primary_10_1177_0271678X19831016
crossref_primary_10_1016_j_resp_2021_103770
crossref_primary_10_1007_s00234_013_1290_2
crossref_primary_10_1016_j_nicl_2015_08_012
crossref_primary_10_1016_j_neuroimage_2012_07_065
crossref_primary_10_1007_s10571_015_0261_z
crossref_primary_10_1016_j_nicl_2019_101955
crossref_primary_10_1089_neu_2013_3069
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1002_nbm_2847
crossref_primary_10_1093_cercor_bhac209
crossref_primary_10_1093_cercor_bhp139
crossref_primary_10_1021_acsptsci_4c00151
crossref_primary_10_7717_peerj_5890
crossref_primary_10_1038_jcbfm_2013_48
crossref_primary_10_1002_mrm_25603
crossref_primary_10_1016_j_neurobiolaging_2014_08_018
crossref_primary_10_1016_j_neuroimage_2013_04_053
crossref_primary_10_1088_1741_2560_8_4_046013
Cites_doi 10.1162/089892904970681
10.1002/nbm.1075
10.1016/S0022-510X(00)00396-8
10.1162/jocn.2006.18.4.594
10.1016/j.neuroimage.2006.01.026
10.1016/j.neuroimage.2006.10.044
10.1523/JNEUROSCI.16-13-04207.1996
10.1002/hbm.20307
10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
10.1073/pnas.89.1.212
10.1093/gerona/54.10.B407
10.1016/j.neuroimage.2004.12.010
10.1001/archneur.1992.00530280106030
10.1007/s11065-007-9028-8
10.1161/01.STR.5.5.630
10.1016/j.neuroimage.2003.12.023
10.1016/S0304-3940(01)01920-6
10.1172/JCI102783
10.1016/j.acra.2004.08.015
10.1002/mrm.20023
10.1038/jcbfm.1991.121
10.1161/01.STR.17.6.1220
10.1002/mrm.1910340412
10.1016/j.neuroimage.2007.05.024
10.1016/j.neuroimage.2004.12.057
10.1161/01.STR.31.3.680
10.1073/pnas.96.16.9403
10.1001/archneur.1977.00500190037005
10.1016/j.neuroimage.2005.04.036
10.1016/j.neuroimage.2006.05.040
10.1006/nimg.2002.1114
10.1073/pnas.89.13.5951
10.1093/brain/113.1.27
10.1016/j.neuroimage.2004.07.013
10.1097/00002826-199114001-00006
10.1016/j.pscychresns.2005.06.006
10.1007/BF00153694
10.1016/j.neuroimage.2007.11.015
10.1097/00004647-199906000-00012
10.1001/archneur.1992.00530340029014
10.1006/nimg.1999.0444
10.1038/nrn1246
10.1006/nimg.2000.0675
10.1073/pnas.95.4.1834
10.1002/mrm.1910380110
10.1016/0013-4694(84)90196-2
10.1002/mrm.21171
10.1016/j.neuroimage.2004.01.036
10.1006/cbmr.1996.0014
10.1097/00004728-199807000-00002
10.1002/mrm.1910390602
10.1002/mrm.20377
10.1016/j.neuroimage.2006.08.033
10.1038/nrn1929
10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5
10.1002/(SICI)1522-2594(199909)42:3<608::AID-MRM26>3.0.CO;2-I
10.1002/(SICI)1099-1492(199706/08)10:4/5<197::AID-NBM466>3.0.CO;2-S
10.1111/j.1471-4159.1979.tb00404.x
10.1172/JCI102870
10.1212/WNL.58.4.630
10.1148/radiol.2343040197
10.1097/01.WCB.0000071887.63724.B2
10.1162/089892900564046
10.1212/WNL.48.1.173
10.1172/JCI101995
10.1016/j.neuroimage.2004.09.047
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
2009 INIST-CNRS
2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
– notice: 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/hbm.20574
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate BOLD and CBF Responses in the Visual Cortex
EISSN 1097-0193
EndPage 1132
ExternalDocumentID PMC2810490
18465743
21261542
10_1002_hbm_20574
HBM20574
ark_67375_WNG_1C6WJDQH_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Federation of AIDS Research Fellowship
  funderid: 106729‐40‐RFRL
– fundername: NIH
  funderid: 1K23MH081786; NS‐36722; NS‐42069
– fundername: UCSD General Clinical Research Center
  funderid: MO1 RR000827
– fundername: Dana Brain‐Immuno Imaging
– fundername: NINDS NIH HHS
  grantid: NS-42069
– fundername: NINDS NIH HHS
  grantid: NS-36722
– fundername: NINDS NIH HHS
  grantid: R01 NS036722
– fundername: NIMH NIH HHS
  grantid: 1K23MH081786
– fundername: NIMH NIH HHS
  grantid: K23 MH081786
– fundername: NCRR NIH HHS
  grantid: M01 RR000827
– fundername: NCRR NIH HHS
  grantid: MO1 RR000827
– fundername: American Federation of AIDS Research Fellowship
  grantid: 106729‐40‐RFRL
– fundername: UCSD General Clinical Research Center
  grantid: MO1 RR000827
– fundername: NIH
  grantid: 1K23MH081786; NS‐36722; NS‐42069
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7X8
5PM
ID FETCH-LOGICAL-c5784-ccec59bc528806b6a75c623d29b53ed58dbe624497cd7e669a8d4fedba5bf9583
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:45:22 EDT 2025
Fri Jul 11 07:12:23 EDT 2025
Tue Aug 05 10:25:47 EDT 2025
Fri May 30 11:01:43 EDT 2025
Mon Jul 21 09:17:20 EDT 2025
Tue Jul 01 04:25:55 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Jan 22 16:52:32 EST 2025
Wed Oct 30 09:49:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cerebral blood flow (CBF)
Visual cortex
Oxygen
Nervous system diseases
Senescence
Radiodiagnosis
Central nervous system
and cerebral metabolic rate of oxygen (CMRO2)
functional magnetic resonance imaging (fMRI)
Metabolism
Nuclear magnetic resonance imaging
Blood flow
Encephalon
blood oxygen level dependent (BOLD) effect
Visual pathway
Hemodynamics
aging
Oxygenation
Functional imaging
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5784-ccec59bc528806b6a75c623d29b53ed58dbe624497cd7e669a8d4fedba5bf9583
Notes ark:/67375/WNG-1C6WJDQH-1
ArticleID:HBM20574
UCSD General Clinical Research Center - No. MO1 RR000827
NIH - No. 1K23MH081786; No. NS-36722; No. NS-42069
istex:82921AB8045C84255883C1E2E907449D26E31A2A
Dana Brain-Immuno Imaging
American Federation of AIDS Research Fellowship - No. 106729-40-RFRL
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1002/hbm.20574
PMID 18465743
PQID 20420850
PQPubID 23462
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2810490
proquest_miscellaneous_67035787
proquest_miscellaneous_20420850
pubmed_primary_18465743
pascalfrancis_primary_21261542
crossref_primary_10_1002_hbm_20574
crossref_citationtrail_10_1002_hbm_20574
wiley_primary_10_1002_hbm_20574_HBM20574
istex_primary_ark_67375_WNG_1C6WJDQH_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2009
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: April 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Kastrup A,Kruger G,Glover GH,Moseley ME ( 1999): Assessment of cerebral oxidative metabolism with breath holding and fMRI. Magn Reson Med 42: 608-611.
Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999b): Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96: 9403-9408.
Kety SS,Schmidt CF ( 1948): The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27: 484-492.
Novack P,Shenkin HA,Bortin L,Goluboff B,Soffe AM ( 1953): The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 32: 696-702.
Adachi-Usami E,Hosoda L,Toyonaga N ( 1988): Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol 69: 139-144.
Ances BM,Leontiev O,Perthen JE,Liang CL,Lansing AE,Buxton RB ( 2008): Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD-fMRI. Neuroimage 39: 1510-1521.
Leontiev O,Buxton RB ( 2007): Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 35: 175-184.
Matsuda H,Ohnishi T,Asada T,Li ZJ,Kanetaka H,Imabayashi E,Tanaka F,Nakano S ( 2003): Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 44: 1243-1252.
Hafkenschiel JH,Friedland CK,Zintel HA ( 1954): The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy. J Clin Invest 33: 57-62.
Aizenstein HJ,Clark KA,Butters MA,Cochran J,Stenger VA,Meltzer CC,Reynolds CF,Carter CS ( 2004): The BOLD hemodynamic response in healthy aging. J Cogn Neurosci 16: 786-793.
Woolrich MW,Behrens TE,Beckmann CF,Jenkinson M,Smith SM ( 2004): Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21: 1732-1747.
Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
Hesselmann V,Zaro Weber O,Wedekind C,Krings T,Schulte O,Kugel H,Krug B,Klug N,Lackner KJ ( 2001): Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308: 141-144.
Tekes A,Mohamed MA,Browner NM,Calhoun VD,Yousem DM ( 2005): Effect of age on visuomotor functional MR imaging. Acad Radiol 12: 739-745.
Ross MH,Yurgelun-Todd DA,Renshaw PF,Maas LC,Mendelson JH,Mello NK,Cohen BM,Levin JM ( 1997): Age-related reduction in functional MRI response to photic stimulation. Neurology 48: 173-176.
Liu TT,Wong EC ( 2005): A signal processing model for arterial spin labeling functional MRI. Neuroimage 24: 207-215.
Matthews PM,Honey GD,Bullmore ET ( 2006): Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7: 732-744.
Mattay VS,Fera F,Tessitore A,Hariri AR,Das S,Callicott JH,Weinberger DR ( 2002): Neurophysiological correlates of age-related changes in human motor function. Neurology 58: 630-635.
Prvulovic D,Van de Ven V,Sack AT,Maurer K,Linden DE ( 2005): Functional activation imaging in aging and dementia. Psychiatry Res 140: 97-113.
D'Esposito M,Deouell LY,Gazzaley A ( 2003): Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nat Rev Neurosci 4: 863-872.
Raemaekers M,Vink M,van den Heuvel MP,Kahn RS,Ramsey NF ( 2006): Effects of aging on BOLD fMRI during prosaccades and antisaccades. J Cogn Neurosci 18: 594-603.
Raz N,Torres IJ,Spencer WD,White K,Acker JD ( 1992): Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 49: 412-416.
Chiarelli PA,Bulte DP,Gallichan D,Piechnik SK,Wise R,Jezzard P ( 2007a): Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 57: 538-547.
Yamaguchi T,Kanno I,Uemura K,Shishido F,Inugami A,Ogawa T,Murakami M,Suzuki K ( 1986): Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17: 1220-1228.
Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999a): Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model. Magn Reson Med 42: 849-863.
Kliefoth AB,Grubb RLJr,Raichle ME ( 1979): Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J Neurochem 32: 661-663.
Grubb RL,Raichle ME,Eichling JO,Ter-Pogossian MM ( 1974): The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5: 630-639.
Restom K,Bangen KJ,Bondi MW,Perthen JE,Liu TT ( 2007): Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults. Neuroimage 37: 430-439.
Buckner RL,Snyder AZ,Sanders AL,Raichle ME,Morris JC ( 2000): Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12( Suppl 2): 24-34.
Jones M,Berwick J,Hewson-Stoate N,Gias C,Mayhew J ( 2005): The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage 27: 609-623.
Loessner A,Alavi A,Lewandrowski KU,Mozley D,Souder E,Gur RE ( 1995): Regional cerebral function determined by FDG-PET in healthy volunteers: Normal patterns and changes with age. J Nucl Med 36: 1141-1149.
Mintun MA,Vlassenko AG,Shulman GL,Snyder AZ ( 2002): Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 16: 531-537.
Parkes LM,Rashid W,Chard DT,Tofts PS ( 2004): Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn Reson Med 51: 736-743.
Mumford JA,Hernandez-Garcia L,Lee GR,Nichols TE ( 2006): Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 33: 103-114.
Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233.
Marchal G,Rioux P,Petit-Taboue MC,Sette G,Travere JM,Le Poec C,Courtheoux P,Derlon JM,Baron JC ( 1992): Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013-1020.
Kim S-G,Ugurbil K ( 1997): Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change. Magn Reson Med 38: 59-65.
Burock MA,Dale AM ( 2000): Estimation and detection of event-related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach. Hum Brain Mapp 11: 249-260.
Sicard KM,Duong TQ ( 2005): Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25: 850-858.
Celesia GG,Daly RF ( 1977): Effects of aging on visual evoked responses. Arch Neurol 34: 403-407.
Donahue MJ,Lu H,Jones CK,Pekar JJ,van Zijl PC ( 2006): An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19: 1043-1054.
Behzadi Y,Liu TT ( 2005): An arteriolar compliance model of the cerebral blood flow response to neural stimulus. Neuroimage 25: 1100-1111.
Taoka T,Iwasaki S,Uchida H,Fukusumi A,Nakagawa H,Kichikawa K,Takayama K,Yoshioka T,Takewa M,Ohishi H ( 1998): Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr 22: 514-517.
Leenders KL,Perani D,Lammertsma AA,Heather JD,Buckingham P,Healy MJ,Gibbs JM,Wise RJ,Hatazawa J,Herold S,Beaney RP,Brooks DJ,Spinks T,Rhodes C,Frackowiak RSJ,Jones T( 1990): Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113: 27-47.
Long JM,Mouton PR,Jucker M,Ingram DK ( 1999): What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54: B407-B417.
Restom K,Behzadi Y,Liu TT ( 2006): Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31: 1104-1115.
Brown GG,Eyler Zorrilla LT,Georgy B,Kindermann SS,Wong EC,Buxton RB ( 2003): BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. J Cereb Blood Flow Metab 23: 829-837.
Davis TL,Kwong KK,Weisskoff RM,Rosen BR ( 1998): Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834-1839.
Ogawa S,Tank DW,Menon R,Ellermann JM,Kim SG,Merkle H,Ugurbil K ( 1992): Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951-5955.
Bandettini PA,Wong EC ( 1997): A hypercapnia-based normalization method for improved spatial localization of the human brain activation with fMRI. NMR Biomed 10: 197-203.
Handwerker DA,Gazzaley A,Inglis BA,D'Esposito M ( 2007): Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28: 846-859.
Huettel SA,Singerman JD,McCarthy G ( 2001): The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13: 161-175.
D'Esposito M,Zarahn E,Aguirre GK,Rypma B ( 1999): The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10: 6-14.
Boynton GM,Engel SA,Glover GH,Heeger DJ ( 1996): Linear systems analysis of functional magnetic resonance imaging in human. VI. J Neurosci 16: 4207-4221.
Brown GG,Perthen JE,Liu TT,Buxton RB ( 2007): A primer on functional magnetic resonance imaging. Neuropsychol Rev 17: 107-125.
Wong EC,Buxton RB,Frank LR ( 1999): Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9: 333-342.
Chalela JA,Alsop DC,Gonzalez-Atavales JB,Maldjian JA,Kasner SE,Detre JA ( 2000): Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31: 68
2002; 16
2004; 21
2004; 22
2002; 58
2006; 31
1991; 14
1995; 36
1991; 11
2006; 33
1997; 48
2004; 23
2008; 39
1999; 42
2005; 27
2001; 308
1979; 32
2007; 35
1953; 32
1974; 5
2005; 24
2007; 37
2005; 25
2007; 28
1996; 29
2005; 140
1984; 58
1997; 10
1999a; 42
2000; 12
1999; 19
2000; 11
2003; 4
1999; 10
1999; 54
1977; 34
1992; 49
1998; 95
2001; 13
1992; 89
2003; 44
2007b; 34
1948; 27
2007; 17
2005; 234
2006; 7
1986; 17
2006; 18
2006; 19
1996; 16
1998; 22
1999; 9
1998; 39
2004; 51
1954; 33
2004; 16
1988; 69
2007a; 57
2000; 31
2005; 53
1997; 38
1995b; 34
1990; 113
2005; 12
2000; 181
2003; 23
1999b; 96
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
Wong EC (e_1_2_6_68_1) 1999; 9
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Loessner A (e_1_2_6_43_1) 1995; 36
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Matsuda H (e_1_2_6_48_1) 2003; 44
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Mintun MA,Vlassenko AG,Shulman GL,Snyder AZ ( 2002): Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 16: 531-537.
– reference: Tekes A,Mohamed MA,Browner NM,Calhoun VD,Yousem DM ( 2005): Effect of age on visuomotor functional MR imaging. Acad Radiol 12: 739-745.
– reference: Kety SS,Schmidt CF ( 1948): The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27: 484-492.
– reference: Sicard KM,Duong TQ ( 2005): Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25: 850-858.
– reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
– reference: Chalela JA,Alsop DC,Gonzalez-Atavales JB,Maldjian JA,Kasner SE,Detre JA ( 2000): Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31: 680-687.
– reference: Chiarelli PA,Bulte DP,Piechnik S,Jezzard P ( 2007b): Sources of systematic bias in hypercapnia-calibrated functional MRI estimation of oxygen metabolism. Neuroimage 34: 35-43.
– reference: Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999b): Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96: 9403-9408.
– reference: Mattay VS,Fera F,Tessitore A,Hariri AR,Das S,Callicott JH,Weinberger DR ( 2002): Neurophysiological correlates of age-related changes in human motor function. Neurology 58: 630-635.
– reference: Woolrich MW,Behrens TE,Beckmann CF,Jenkinson M,Smith SM ( 2004): Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21: 1732-1747.
– reference: Allison T,Hume AL,Wood CC,Goff WR ( 1984): Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalogr Clin Neurophysiol 58: 14-24.
– reference: Celesia GG,Daly RF ( 1977): Effects of aging on visual evoked responses. Arch Neurol 34: 403-407.
– reference: Behzadi Y,Liu TT ( 2005): An arteriolar compliance model of the cerebral blood flow response to neural stimulus. Neuroimage 25: 1100-1111.
– reference: Wong EC,Buxton RB,Frank LR ( 1999): Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9: 333-342.
– reference: Boxerman JL,Hamberg LM,Rosen BR,Weisskoff RM ( 1995b): MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34: 555-566.
– reference: Aizenstein HJ,Clark KA,Butters MA,Cochran J,Stenger VA,Meltzer CC,Reynolds CF,Carter CS ( 2004): The BOLD hemodynamic response in healthy aging. J Cogn Neurosci 16: 786-793.
– reference: Martin AJ,Friston KJ,Colebatch JG,Frackowiak RS ( 1991): Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 11: 684-689.
– reference: Matsuda H,Ohnishi T,Asada T,Li ZJ,Kanetaka H,Imabayashi E,Tanaka F,Nakano S ( 2003): Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 44: 1243-1252.
– reference: Hafkenschiel JH,Friedland CK,Zintel HA ( 1954): The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy. J Clin Invest 33: 57-62.
– reference: Williams DS,Detre JA,Leigh JS,Koretsky AP ( 1992): Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89: 212-216.
– reference: Parkes LM,Rashid W,Chard DT,Tofts PS ( 2004): Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn Reson Med 51: 736-743.
– reference: Mandeville JB,Marota JJ,Ayata C,Zaharchuk G,Moskowitz MA,Rosen BR,Weisskoff RM ( 1999): Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19: 679-689.
– reference: Donahue MJ,Lu H,Jones CK,Pekar JJ,van Zijl PC ( 2006): An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19: 1043-1054.
– reference: Ogawa S,Tank DW,Menon R,Ellermann JM,Kim SG,Merkle H,Ugurbil K ( 1992): Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951-5955.
– reference: D'Esposito M,Zarahn E,Aguirre GK,Rypma B ( 1999): The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10: 6-14.
– reference: Handwerker DA,Gazzaley A,Inglis BA,D'Esposito M ( 2007): Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28: 846-859.
– reference: D'Esposito M,Deouell LY,Gazzaley A ( 2003): Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nat Rev Neurosci 4: 863-872.
– reference: Loessner A,Alavi A,Lewandrowski KU,Mozley D,Souder E,Gur RE ( 1995): Regional cerebral function determined by FDG-PET in healthy volunteers: Normal patterns and changes with age. J Nucl Med 36: 1141-1149.
– reference: Restom K,Bangen KJ,Bondi MW,Perthen JE,Liu TT ( 2007): Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults. Neuroimage 37: 430-439.
– reference: Grubb RL,Raichle ME,Eichling JO,Ter-Pogossian MM ( 1974): The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5: 630-639.
– reference: Ances BM,Leontiev O,Perthen JE,Liang CL,Lansing AE,Buxton RB ( 2008): Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD-fMRI. Neuroimage 39: 1510-1521.
– reference: Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233.
– reference: Stefanovic B,Warnking JM,Pike GB ( 2004): Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22: 771-778.
– reference: Kim S-G,Ugurbil K ( 1997): Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change. Magn Reson Med 38: 59-65.
– reference: Brown GG,Eyler Zorrilla LT,Georgy B,Kindermann SS,Wong EC,Buxton RB ( 2003): BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. J Cereb Blood Flow Metab 23: 829-837.
– reference: Yamaguchi T,Kanno I,Uemura K,Shishido F,Inugami A,Ogawa T,Murakami M,Suzuki K ( 1986): Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17: 1220-1228.
– reference: Goldstein S,Reivich M ( 1991): Cerebral blood flow and metabolism in aging and dementia. Clin Neuropharmacol 14( Suppl 1): S34-S44.
– reference: Jones M,Berwick J,Hewson-Stoate N,Gias C,Mayhew J ( 2005): The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage 27: 609-623.
– reference: Kliefoth AB,Grubb RLJr,Raichle ME ( 1979): Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J Neurochem 32: 661-663.
– reference: Huettel SA,Singerman JD,McCarthy G ( 2001): The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13: 161-175.
– reference: Leenders KL,Perani D,Lammertsma AA,Heather JD,Buckingham P,Healy MJ,Gibbs JM,Wise RJ,Hatazawa J,Herold S,Beaney RP,Brooks DJ,Spinks T,Rhodes C,Frackowiak RSJ,Jones T( 1990): Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113: 27-47.
– reference: Leontiev O,Buxton RB ( 2007): Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 35: 175-184.
– reference: Taoka T,Iwasaki S,Uchida H,Fukusumi A,Nakagawa H,Kichikawa K,Takayama K,Yoshioka T,Takewa M,Ohishi H ( 1998): Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr 22: 514-517.
– reference: Kastrup A,Kruger G,Glover GH,Moseley ME ( 1999): Assessment of cerebral oxidative metabolism with breath holding and fMRI. Magn Reson Med 42: 608-611.
– reference: Raz N,Torres IJ,Spencer WD,White K,Acker JD ( 1992): Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 49: 412-416.
– reference: Johnson NA,Jahng GH,Weiner MW,Miller BL,Chui HC,Jagust WJ,Gorno-Tempini ML,Schuff N ( 2005): Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology 234: 851-859.
– reference: Novack P,Shenkin HA,Bortin L,Goluboff B,Soffe AM ( 1953): The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 32: 696-702.
– reference: Bentourkia M,Bol A,Ivanoiu A,Labar D,Sibomana M,Coppens A,Michel C,Cosnard G,De Volder AG ( 2000): Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging. J Neurol Sci 181: 19-28.
– reference: Matthews PM,Honey GD,Bullmore ET ( 2006): Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7: 732-744.
– reference: Buckner RL,Snyder AZ,Sanders AL,Raichle ME,Morris JC ( 2000): Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12( Suppl 2): 24-34.
– reference: Prvulovic D,Van de Ven V,Sack AT,Maurer K,Linden DE ( 2005): Functional activation imaging in aging and dementia. Psychiatry Res 140: 97-113.
– reference: Restom K,Behzadi Y,Liu TT ( 2006): Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31: 1104-1115.
– reference: Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999a): Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model. Magn Reson Med 42: 849-863.
– reference: Bandettini PA,Wong EC ( 1997): A hypercapnia-based normalization method for improved spatial localization of the human brain activation with fMRI. NMR Biomed 10: 197-203.
– reference: Marchal G,Rioux P,Petit-Taboue MC,Sette G,Travere JM,Le Poec C,Courtheoux P,Derlon JM,Baron JC ( 1992): Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013-1020.
– reference: Chiarelli PA,Bulte DP,Gallichan D,Piechnik SK,Wise R,Jezzard P ( 2007a): Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 57: 538-547.
– reference: Ross MH,Yurgelun-Todd DA,Renshaw PF,Maas LC,Mendelson JH,Mello NK,Cohen BM,Levin JM ( 1997): Age-related reduction in functional MRI response to photic stimulation. Neurology 48: 173-176.
– reference: Davis TL,Kwong KK,Weisskoff RM,Rosen BR ( 1998): Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834-1839.
– reference: Wang J,Qiu M,Constable RT ( 2005): In vivo method for correcting transmit/receive nonuniformities with phased array coils. Magn Reson Med 53: 666-674.
– reference: Liu TT,Wong EC ( 2005): A signal processing model for arterial spin labeling functional MRI. Neuroimage 24: 207-215.
– reference: Hesselmann V,Zaro Weber O,Wedekind C,Krings T,Schulte O,Kugel H,Krug B,Klug N,Lackner KJ ( 2001): Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308: 141-144.
– reference: Boynton GM,Engel SA,Glover GH,Heeger DJ ( 1996): Linear systems analysis of functional magnetic resonance imaging in human. VI. J Neurosci 16: 4207-4221.
– reference: Mumford JA,Hernandez-Garcia L,Lee GR,Nichols TE ( 2006): Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 33: 103-114.
– reference: Buxton RB,Wong EC,Frank LR ( 1998): Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn Reson Med 39: 855-864.
– reference: Raemaekers M,Vink M,van den Heuvel MP,Kahn RS,Ramsey NF ( 2006): Effects of aging on BOLD fMRI during prosaccades and antisaccades. J Cogn Neurosci 18: 594-603.
– reference: Brown GG,Perthen JE,Liu TT,Buxton RB ( 2007): A primer on functional magnetic resonance imaging. Neuropsychol Rev 17: 107-125.
– reference: Burock MA,Dale AM ( 2000): Estimation and detection of event-related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach. Hum Brain Mapp 11: 249-260.
– reference: Long JM,Mouton PR,Jucker M,Ingram DK ( 1999): What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54: B407-B417.
– reference: Adachi-Usami E,Hosoda L,Toyonaga N ( 1988): Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol 69: 139-144.
– volume: 16
  start-page: 4207
  year: 1996
  end-page: 4221
  article-title: Linear systems analysis of functional magnetic resonance imaging in human. VI
  publication-title: J Neurosci
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
  publication-title: Magn Reson Med
– volume: 7
  start-page: 732
  year: 2006
  end-page: 744
  article-title: Applications of fMRI in translational medicine and clinical practice
  publication-title: Nat Rev Neurosci
– volume: 23
  start-page: 829
  year: 2003
  end-page: 837
  article-title: BOLD and perfusion response to finger‐thumb apposition after acetazolamide administration: Differential relationship to global perfusion
  publication-title: J Cereb Blood Flow Metab
– volume: 35
  start-page: 175
  year: 2007
  end-page: 184
  article-title: Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated‐BOLD fMRI
  publication-title: Neuroimage
– volume: 10
  start-page: 6
  year: 1999
  end-page: 14
  article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response
  publication-title: Neuroimage
– volume: 42
  start-page: 608
  year: 1999
  end-page: 611
  article-title: Assessment of cerebral oxidative metabolism with breath holding and fMRI
  publication-title: Magn Reson Med
– volume: 32
  start-page: 696
  year: 1953
  end-page: 702
  article-title: The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease
  publication-title: J Clin Invest
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci USA
– volume: 89
  start-page: 5951
  year: 1992
  end-page: 5955
  article-title: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 197
  year: 1997
  end-page: 203
  article-title: A hypercapnia‐based normalization method for improved spatial localization of the human brain activation with fMRI
  publication-title: NMR Biomed
– volume: 34
  start-page: 35
  year: 2007b
  end-page: 43
  article-title: Sources of systematic bias in hypercapnia‐calibrated functional MRI estimation of oxygen metabolism
  publication-title: Neuroimage
– volume: 23
  start-page: S220
  issue: Suppl 1
  year: 2004
  end-page: S233
  article-title: Modeling the hemodynamic response to brain activation
  publication-title: Neuroimage
– volume: 16
  start-page: 531
  year: 2002
  end-page: 537
  article-title: Time‐related increase of oxygen utilization in continuously activated human visual cortex
  publication-title: Neuroimage
– volume: 54
  start-page: B407
  year: 1999
  end-page: B417
  article-title: What counts in brain aging? Design‐based stereological analysis of cell number
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 12
  start-page: 24
  issue: Suppl 2
  year: 2000
  end-page: 34
  article-title: Functional brain imaging of young, nondemented, and demented older adults
  publication-title: J Cogn Neurosci
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
– volume: 32
  start-page: 661
  year: 1979
  end-page: 663
  article-title: Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey
  publication-title: J Neurochem
– volume: 34
  start-page: 555
  year: 1995b
  end-page: 566
  article-title: MR contrast due to intravascular magnetic susceptibility perturbations
  publication-title: Magn Reson Med
– volume: 9
  start-page: 333
  year: 1999
  end-page: 342
  article-title: Quantitative perfusion imaging using arterial spin labeling
  publication-title: Neuroimaging Clin N Am
– volume: 42
  start-page: 849
  year: 1999a
  end-page: 863
  article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model
  publication-title: Magn Reson Med
– volume: 38
  start-page: 59
  year: 1997
  end-page: 65
  article-title: Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change
  publication-title: Magn Reson Med
– volume: 22
  start-page: 514
  year: 1998
  end-page: 517
  article-title: Age correlation of the time lag in signal change on EPI‐fMRI
  publication-title: J Comput Assist Tomogr
– volume: 37
  start-page: 430
  year: 2007
  end-page: 439
  article-title: Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults
  publication-title: Neuroimage
– volume: 34
  start-page: 403
  year: 1977
  end-page: 407
  article-title: Effects of aging on visual evoked responses
  publication-title: Arch Neurol
– volume: 113
  start-page: 27
  year: 1990
  end-page: 47
  article-title: Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age
  publication-title: Brain
– volume: 11
  start-page: 684
  year: 1991
  end-page: 689
  article-title: Decreases in regional cerebral blood flow with normal aging
  publication-title: J Cereb Blood Flow Metab
– volume: 17
  start-page: 107
  year: 2007
  end-page: 125
  article-title: A primer on functional magnetic resonance imaging
  publication-title: Neuropsychol Rev
– volume: 58
  start-page: 14
  year: 1984
  end-page: 24
  article-title: Developmental and aging changes in somatosensory, auditory and visual evoked potentials
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 33
  start-page: 57
  year: 1954
  end-page: 62
  article-title: The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy
  publication-title: J Clin Invest
– volume: 25
  start-page: 1100
  year: 2005
  end-page: 1111
  article-title: An arteriolar compliance model of the cerebral blood flow response to neural stimulus
  publication-title: Neuroimage
– volume: 4
  start-page: 863
  year: 2003
  end-page: 872
  article-title: Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging
  publication-title: Nat Rev Neurosci
– volume: 58
  start-page: 630
  year: 2002
  end-page: 635
  article-title: Neurophysiological correlates of age‐related changes in human motor function
  publication-title: Neurology
– volume: 96
  start-page: 9403
  year: 1999b
  end-page: 9408
  article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 679
  year: 1999
  end-page: 689
  article-title: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance
  publication-title: J Cereb Blood Flow Metab
– volume: 27
  start-page: 484
  year: 1948
  end-page: 492
  article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: J Clin Invest
– volume: 44
  start-page: 1243
  year: 2003
  end-page: 1252
  article-title: Correction for partial‐volume effects on brain perfusion SPECT in healthy men
  publication-title: J Nucl Med
– volume: 25
  start-page: 850
  year: 2005
  end-page: 858
  article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus‐evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals
  publication-title: Neuroimage
– volume: 22
  start-page: 771
  year: 2004
  end-page: 778
  article-title: Hemodynamic and metabolic responses to neuronal inhibition
  publication-title: Neuroimage
– volume: 36
  start-page: 1141
  year: 1995
  end-page: 1149
  article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: Normal patterns and changes with age
  publication-title: J Nucl Med
– volume: 14
  start-page: S34
  issue: Suppl 1
  year: 1991
  end-page: S44
  article-title: Cerebral blood flow and metabolism in aging and dementia
  publication-title: Clin Neuropharmacol
– volume: 5
  start-page: 630
  year: 1974
  end-page: 639
  article-title: The effects of changes in PaCO on cerebral blood volume, blood flow, and vascular mean transit time
  publication-title: Stroke
– volume: 17
  start-page: 1220
  year: 1986
  end-page: 1228
  article-title: Reduction in regional cerebral metabolic rate of oxygen during human aging
  publication-title: Stroke
– volume: 308
  start-page: 141
  year: 2001
  end-page: 144
  article-title: Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans
  publication-title: Neurosci Lett
– volume: 57
  start-page: 538
  year: 2007a
  end-page: 547
  article-title: Flow‐metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 53
  start-page: 666
  year: 2005
  end-page: 674
  article-title: In vivo method for correcting transmit/receive nonuniformities with phased array coils
  publication-title: Magn Reson Med
– volume: 18
  start-page: 594
  year: 2006
  end-page: 603
  article-title: Effects of aging on BOLD fMRI during prosaccades and antisaccades
  publication-title: J Cogn Neurosci
– volume: 31
  start-page: 1104
  year: 2006
  end-page: 1115
  article-title: Physiological noise reduction for arterial spin labeling functional MRI
  publication-title: Neuroimage
– volume: 21
  start-page: 1732
  year: 2004
  end-page: 1747
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: Neuroimage
– volume: 48
  start-page: 173
  year: 1997
  end-page: 176
  article-title: Age‐related reduction in functional MRI response to photic stimulation
  publication-title: Neurology
– volume: 69
  start-page: 139
  year: 1988
  end-page: 144
  article-title: Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials
  publication-title: Doc Ophthalmol
– volume: 28
  start-page: 846
  year: 2007
  end-page: 859
  article-title: Reducing vascular variability of fMRI data across aging populations using a breathholding task
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 609
  year: 2005
  end-page: 623
  article-title: The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation
  publication-title: Neuroimage
– volume: 33
  start-page: 103
  year: 2006
  end-page: 114
  article-title: Estimation efficiency and statistical power in arterial spin labeling fMRI
  publication-title: Neuroimage
– volume: 140
  start-page: 97
  year: 2005
  end-page: 113
  article-title: Functional activation imaging in aging and dementia
  publication-title: Psychiatry Res
– volume: 181
  start-page: 19
  year: 2000
  end-page: 28
  article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging
  publication-title: J Neurol Sci
– volume: 31
  start-page: 680
  year: 2000
  end-page: 687
  article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling
  publication-title: Stroke
– volume: 19
  start-page: 1043
  year: 2006
  end-page: 1054
  article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high‐field MRI investigation
  publication-title: NMR Biomed
– volume: 39
  start-page: 1510
  year: 2008
  end-page: 1521
  article-title: Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD‐fMRI
  publication-title: Neuroimage
– volume: 16
  start-page: 786
  year: 2004
  end-page: 793
  article-title: The BOLD hemodynamic response in healthy aging
  publication-title: J Cogn Neurosci
– volume: 95
  start-page: 1834
  year: 1998
  end-page: 1839
  article-title: Calibrated functional MRI: Mapping the dynamics of oxidative metabolism
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 412
  year: 1992
  end-page: 416
  article-title: Age‐related regional differences in cerebellar vermis observed in vivo
  publication-title: Arch Neurol
– volume: 11
  start-page: 249
  year: 2000
  end-page: 260
  article-title: Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach
  publication-title: Hum Brain Mapp
– volume: 13
  start-page: 161
  year: 2001
  end-page: 175
  article-title: The effects of aging upon the hemodynamic response measured by functional MRI
  publication-title: Neuroimage
– volume: 24
  start-page: 207
  year: 2005
  end-page: 215
  article-title: A signal processing model for arterial spin labeling functional MRI
  publication-title: Neuroimage
– volume: 51
  start-page: 736
  year: 2004
  end-page: 743
  article-title: Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects
  publication-title: Magn Reson Med
– volume: 49
  start-page: 1013
  year: 1992
  end-page: 1020
  article-title: Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging
  publication-title: Arch Neurol
– volume: 12
  start-page: 739
  year: 2005
  end-page: 745
  article-title: Effect of age on visuomotor functional MR imaging
  publication-title: Acad Radiol
– volume: 234
  start-page: 851
  year: 2005
  end-page: 859
  article-title: Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin‐labeling MR imaging: Initial experience
  publication-title: Radiology
– ident: e_1_2_6_3_1
  doi: 10.1162/089892904970681
– volume: 9
  start-page: 333
  year: 1999
  ident: e_1_2_6_68_1
  article-title: Quantitative perfusion imaging using arterial spin labeling
  publication-title: Neuroimaging Clin N Am
– ident: e_1_2_6_25_1
  doi: 10.1002/nbm.1075
– ident: e_1_2_6_8_1
  doi: 10.1016/S0022-510X(00)00396-8
– ident: e_1_2_6_57_1
  doi: 10.1162/jocn.2006.18.4.594
– volume: 44
  start-page: 1243
  year: 2003
  ident: e_1_2_6_48_1
  article-title: Correction for partial‐volume effects on brain perfusion SPECT in healthy men
  publication-title: J Nucl Med
– ident: e_1_2_6_60_1
  doi: 10.1016/j.neuroimage.2006.01.026
– ident: e_1_2_6_41_1
  doi: 10.1016/j.neuroimage.2006.10.044
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– ident: e_1_2_6_29_1
  doi: 10.1002/hbm.20307
– ident: e_1_2_6_31_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
– ident: e_1_2_6_67_1
  doi: 10.1073/pnas.89.1.212
– ident: e_1_2_6_44_1
  doi: 10.1093/gerona/54.10.B407
– ident: e_1_2_6_62_1
  doi: 10.1016/j.neuroimage.2004.12.010
– ident: e_1_2_6_58_1
  doi: 10.1001/archneur.1992.00530280106030
– ident: e_1_2_6_12_1
  doi: 10.1007/s11065-007-9028-8
– ident: e_1_2_6_27_1
  doi: 10.1161/01.STR.5.5.630
– ident: e_1_2_6_69_1
  doi: 10.1016/j.neuroimage.2003.12.023
– ident: e_1_2_6_30_1
  doi: 10.1016/S0304-3940(01)01920-6
– ident: e_1_2_6_53_1
  doi: 10.1172/JCI102783
– volume: 36
  start-page: 1141
  year: 1995
  ident: e_1_2_6_43_1
  article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: Normal patterns and changes with age
  publication-title: J Nucl Med
– ident: e_1_2_6_65_1
  doi: 10.1016/j.acra.2004.08.015
– ident: e_1_2_6_55_1
  doi: 10.1002/mrm.20023
– ident: e_1_2_6_47_1
  doi: 10.1038/jcbfm.1991.121
– ident: e_1_2_6_70_1
  doi: 10.1161/01.STR.17.6.1220
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.1910340412
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neuroimage.2007.05.024
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2004.12.057
– ident: e_1_2_6_18_1
  doi: 10.1161/01.STR.31.3.680
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.96.16.9403
– ident: e_1_2_6_17_1
  doi: 10.1001/archneur.1977.00500190037005
– ident: e_1_2_6_35_1
  doi: 10.1016/j.neuroimage.2005.04.036
– ident: e_1_2_6_52_1
  doi: 10.1016/j.neuroimage.2006.05.040
– ident: e_1_2_6_51_1
  doi: 10.1006/nimg.2002.1114
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.89.13.5951
– ident: e_1_2_6_40_1
  doi: 10.1093/brain/113.1.27
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuroimage.2004.07.013
– ident: e_1_2_6_26_1
  doi: 10.1097/00002826-199114001-00006
– ident: e_1_2_6_56_1
  doi: 10.1016/j.pscychresns.2005.06.006
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00153694
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuroimage.2007.11.015
– ident: e_1_2_6_45_1
  doi: 10.1097/00004647-199906000-00012
– ident: e_1_2_6_46_1
  doi: 10.1001/archneur.1992.00530340029014
– ident: e_1_2_6_23_1
  doi: 10.1006/nimg.1999.0444
– ident: e_1_2_6_22_1
  doi: 10.1038/nrn1246
– ident: e_1_2_6_33_1
  doi: 10.1006/nimg.2000.0675
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.95.4.1834
– ident: e_1_2_6_38_1
  doi: 10.1002/mrm.1910380110
– ident: e_1_2_6_4_1
  doi: 10.1016/0013-4694(84)90196-2
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.21171
– ident: e_1_2_6_63_1
  doi: 10.1016/j.neuroimage.2004.01.036
– ident: e_1_2_6_21_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_6_64_1
  doi: 10.1097/00004728-199807000-00002
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.1910390602
– ident: e_1_2_6_66_1
  doi: 10.1002/mrm.20377
– ident: e_1_2_6_20_1
  doi: 10.1016/j.neuroimage.2006.08.033
– ident: e_1_2_6_50_1
  doi: 10.1038/nrn1929
– ident: e_1_2_6_14_1
  doi: 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5
– ident: e_1_2_6_36_1
  doi: 10.1002/(SICI)1522-2594(199909)42:3<608::AID-MRM26>3.0.CO;2-I
– ident: e_1_2_6_6_1
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<197::AID-NBM466>3.0.CO;2-S
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1471-4159.1979.tb00404.x
– ident: e_1_2_6_28_1
  doi: 10.1172/JCI102870
– ident: e_1_2_6_49_1
  doi: 10.1212/WNL.58.4.630
– ident: e_1_2_6_34_1
  doi: 10.1148/radiol.2343040197
– ident: e_1_2_6_11_1
  doi: 10.1097/01.WCB.0000071887.63724.B2
– ident: e_1_2_6_13_1
  doi: 10.1162/089892900564046
– ident: e_1_2_6_61_1
  doi: 10.1212/WNL.48.1.173
– ident: e_1_2_6_37_1
  doi: 10.1172/JCI101995
– ident: e_1_2_6_42_1
  doi: 10.1016/j.neuroimage.2004.09.047
SSID ssj0011501
Score 2.368549
Snippet Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1120
SubjectTerms Adult
aging
Aging - physiology
Biological and medical sciences
blood oxygen level dependent (BOLD) effect
Brain Mapping
Cardiovascular system
cerebral blood flow (CBF)
cerebral metabolic rate of oxygen (CMRO2)
Cerebrovascular Circulation - physiology
Female
functional magnetic resonance imaging (fMRI)
Humans
Hypercapnia - metabolism
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Nervous system
Nonlinear Dynamics
Oxygen - blood
Oxygen Consumption - physiology
Photic Stimulation - methods
Radiodiagnosis. Nmr imagery. Nmr spectrometry
visual cortex
Visual Cortex - blood supply
Visual Cortex - physiology
Young Adult
Title Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation
URI https://api.istex.fr/ark:/67375/WNG-1C6WJDQH-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20574
https://www.ncbi.nlm.nih.gov/pubmed/18465743
https://www.proquest.com/docview/20420850
https://www.proquest.com/docview/67035787
https://pubmed.ncbi.nlm.nih.gov/PMC2810490
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KBfHFH63aWK2LSPGhaZNcNrvBp1qtR-EKiqV9EMLuZkOP5pJyyfnrzf_c2d0k9bQF8e0gk8tm8u3st5nJNwAv05GUUZFTX6a88GMRaD-Ng8JPAhZJqWSsbEuWyXEyPomPzujZCrzuv4Vx-hDDCzczM2y8NhNcyGbvSjT0XJoPySkzWqCmVssQoo-DdJQhOnazhUssXp2FvapQEO0NZy6tRbeMW7-Z2kjRoHsK19fiOuL5d_3k77zWLkyH9-Bzf0uuHuVid9HKXfXjD7XH_7zn-3C3I6xk3yHsAazoag3W9yvcrM--k21iS0jtu_k1uD3pMvXr8NPJIjekLohthETqiig9N3nqkthyeVKU9dcdgsNGEJOZbhGP5bSZ7RBR5Z2JO2jRQ0pT30T6rr0tmbvyXt2QtiZfps0C_xgD1qxrSPYQTg7ffToY-127Bx_xwGNfKa1oKhWNMKYkMhGMKiRneZRKOtI55bnUCbKRlKmc6SRJBc_jQudSUFmklI8ewWpVV3oDSKA4K5AoUYa7V8mZ4AEGUq5inrNEh8qDV_2Dz1SnhW5acpSZU3GOMvR0Zj3twYvB9NIJgFxntG3RM1iI-YWpmGM0Oz1-n4UHyenR2w_jLPRgawlewwnIIJBbxpEHz3u8ZTjRTfZGVLpeNHghUwlBg5stEozeJgB78Njh82rAyDJxmCMP2BJyBwMjMr58pJqeW7HxiIcmOYwes8C82QfZ-M3E_njy76abcKfPzgXhU1ht5wv9DEleK7fsbP4FQKJQwQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgIuPFoe4dFaCCoOTZtk49g5cChdyvaxK4FatbcQO4666m6CNllKufF_-Cv8J8bOoyy0EpceuK2U2cSZ8Xg-Z8bfALwMO0J4aUJtEfLU9mNH2aHvpHbgME8IKXxpWrL0B0Hv0N89psdz8KM5C1PxQ7Qf3LRnmPVaO7j-IL1xwRp6IvRJcsr8uqRyT52f4YateLPTReu-8rztdwdbPbvuKWDjQ7lvS6kkDYWkHk7cQAQxoxIRQOKFgnZUQnkiVIAhL2QyYSoIwpgnfqoSEVORhpR38L43YEF3ENdM_d2PLVmVhlZme4dBHd-XuQ2PkeNttEOdiX4L2pBfdTVmXKBB0qqTxmVQ9--Kzd-RtAmF23fhZ6PEqgLmdH1ainX57Q9-yf9Fy_fgTo3JyWblRPdhTmWLsLSZxWU-PierxFTJmvTDItzs18UIS_C9Yn4uSJ4S0-uJ5BmRaqJT8SNiTgSQdJSfrRHUE_opGasSXW40LMZrJM6SWqS6aByEjHQJF2kaE5dkUlUwq4KUOfkyLKZ4Y1yTx3XPtQdweC16eQjzWZ6px0AcyVmKWJAy3KALzmLuYKzg0ucJC5QrLXjdzLRI1nTvuuvIKKqIqr0ILRsZy1rwohX9XHGcXCa0aqZrKxFPTnVRIKPR0eB95G4FR7vdD73ItWB5Zj63f0CQhPDZ9yxYaSZ4hGuZTlDFmcqnBT5IF3tQ52qJAAOUjjEWPKoc4mLACKRxmB0L2IyrtAKaR332SjY8MXzqHnd1_hs1Zjzhah1Evbd98-PJv4uuwK3eQX8_2t8Z7D2F200y0nGfwXw5marniGlLsWyWEgKfrturfgFCiLDC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqq48Gh5hEdrIag4NG2SjWPnwKF0WbYtWwGiam8hdhx11d2k2mQp5cbv4a_woxg7j7LQSlx64BYpk8Q74_GMdz5_A_A87AjhpQm1RchT248dZYe-k9qBwzwhpPClacky2A_6B_7uET2agx_NWZiKH6L9w017hlmvtYOfJunmBWnosdAHySnza0Tlnjo_w_1a8Wqni8Z94Xm9N5-2-3bdUsDGb3LfllJJGgpJPZy3gQhiRiUmAIkXCtpRCeWJUAFGvJDJhKkgCGOe-KlKRExFGlLewffegAU_cELdJ6L7seWq0pmV2d1hTMefy9yGxsjxNtuhzgS_BW3HrxqMGRdoj7RqpHFZpvs3YPP3RNpEwt5t-NnosALAnGxMS7Ehv_1BL_mfKPkO3KozcrJVudBdmFPZEixvZXGZj8_JGjEYWVN8WILFQQ1FWIbvFe9zQfKUmE5PJM-IVBNdiB8Rcx6ApKP8bJ2gmtBLyViV6HCjYTFeJ3GW1CLVTeMeZKQBXKRpS1ySSYVfVgUpc_JlWEzxxbgij-uOa_fg4Fr0ch_mszxTD4E4krMUM0HKcHsuOIu5g5GCS58nLFCutOBlM9EiWZO9654jo6iiqfYitGxkLGvBs1b0tGI4uUxozczWViKenGhIIKPR4f7byN0ODne7H_qRa8HKzHRuH8AUCZNn37NgtZnfEa5kujwVZyqfFvghDfWgztUSAYYnHWEseFD5w8WAMY3GYXYsYDOe0gpoFvXZO9nw2LCpe9zV1W_UmHGEq3UQ9V8PzMWjfxddhcX33V70bmd_7zHcbCqRjvsE5svJVD3FhLYUK2YhIfD5up3qF4lVr3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+aging+on+cerebral+blood+flow%2C+oxygen+metabolism%2C+and+blood+oxygenation+level+dependent+responses+to+visual+stimulation&rft.jtitle=Human+brain+mapping&rft.au=Ances%2C+Beau+M&rft.au=Liang%2C+Christine+L&rft.au=Leontiev%2C+Oleg&rft.au=Perthen%2C+Joanna+E&rft.date=2009-04-01&rft.eissn=1097-0193&rft.volume=30&rft.issue=4&rft.spage=1120&rft_id=info:doi/10.1002%2Fhbm.20574&rft_id=info%3Apmid%2F18465743&rft.externalDocID=18465743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon