Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the v...
Saved in:
Published in | Human brain mapping Vol. 30; no. 4; pp. 1120 - 1132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2009
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28‐years‐old) and older (n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO 2 ) and a simple checkerboard stimulus in healthy younger ( n = 10, mean: 28‐years‐old) and older ( n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M , the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO 2 ) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO 2 . For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO 2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M , which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc. Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO2) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28‐years‐old) and older (n = 10, mean: 53‐years‐old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO2) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO2. For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 ± 0.07%) compared to the younger group (0.95 ± 0.14%), despite the finding that the fractional CBF and CMRO2 changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 ± 0.4%) than younger subjects (6.5 ± 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 ± 4.8 mL/100 mL/min) compared to younger (59.6 ± 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post‐stimulus undershoot with no significant difference in this magnitude. However, the post‐undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. Hum Brain Mapp 2009. © 2008 Wiley‐Liss, Inc. Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone. |
Author | Ances, Beau M. Leontiev, Oleg Lansing, Amy E. Perthen, Joanna E. Buxton, Richard B. Fleisher, Adam S. Liang, Christine L. |
AuthorAffiliation | 1 Department of Neurosciences, University of California, San Diego, California 3 Department of Psychiatry, University of California, San Diego, California 2 Department of Radiology, University of California, San Diego, California |
AuthorAffiliation_xml | – name: 3 Department of Psychiatry, University of California, San Diego, California – name: 2 Department of Radiology, University of California, San Diego, California – name: 1 Department of Neurosciences, University of California, San Diego, California |
Author_xml | – sequence: 1 givenname: Beau M. surname: Ances fullname: Ances, Beau M. organization: Department of Neurosciences, University of California, San Diego, California – sequence: 2 givenname: Christine L. surname: Liang fullname: Liang, Christine L. organization: Department of Radiology, University of California, San Diego, California – sequence: 3 givenname: Oleg surname: Leontiev fullname: Leontiev, Oleg organization: Department of Radiology, University of California, San Diego, California – sequence: 4 givenname: Joanna E. surname: Perthen fullname: Perthen, Joanna E. organization: Department of Radiology, University of California, San Diego, California – sequence: 5 givenname: Adam S. surname: Fleisher fullname: Fleisher, Adam S. organization: Department of Neurosciences, University of California, San Diego, California – sequence: 6 givenname: Amy E. surname: Lansing fullname: Lansing, Amy E. organization: Department of Psychiatry, University of California, San Diego, California – sequence: 7 givenname: Richard B. surname: Buxton fullname: Buxton, Richard B. email: rbuxton@ucsd.edu organization: Department of Radiology, University of California, San Diego, California |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21261542$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18465743$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNURB-w4A8gb0BCalrbiZ1kUwmG0gEVEBKoS8uPm6nBsYc4mXaW_HM8jw4PCVjZ0v3O0bmPw2zPBw9Z9pjgE4IxPb1W3QnFrCrvZQcEN1WOSVPsrf6c5U1Zkf3sMMYvGBPCMHmQ7ZO65AkvDrLv520LeogotEjOrJ-h4JGGHlQvHVIuBINaF26OUbhdzsCjDgapgrOxO0bSmy2yKcrBJrWDBThkYA7egB9QD3EefISIhoAWNo7JOA62G92af5jdb6WL8Gj7HmWfX59_mkzzyw8XbyYvLnPNqrrMtQbNGqUZrWvMFZcV05wWhjaKFWBYbRRwWpZNpU0FnDeyNmULRkmm2obVxVF2tvGdj6oDo1O01KKY97aT_VIEacXvFW-vxSwsBK0JLhucDJ5tDfrwbYQ4iM5GDc5JD2GMgle4SFGr_4IUlxTXbOX45NdIuyx360nA0y0go5au7aXXNu44SignrKSJe77hdB9i7KH9aYXF6kREOhGxPpHEnv7BajusN5G6tu5fihvrYPl3azF9-e5OkW8UNg5wu1PI_muaUlExcfX-QpAJv3r76uNUkOIH5onfHQ |
CitedBy_id | crossref_primary_10_1016_j_cortex_2012_04_003 crossref_primary_10_1016_j_neurobiolaging_2014_12_025 crossref_primary_10_3389_fphys_2021_619714 crossref_primary_10_1016_j_neuroimage_2012_04_027 crossref_primary_10_1371_journal_pone_0068122 crossref_primary_10_1016_j_neuroimage_2016_09_007 crossref_primary_10_1017_S0007114513001384 crossref_primary_10_31083_j_jin2310189 crossref_primary_10_1152_japplphysiol_00292_2021 crossref_primary_10_1016_j_pnpbp_2013_09_001 crossref_primary_10_1017_S1355617713000246 crossref_primary_10_1161_STROKEAHA_111_000185 crossref_primary_10_1016_j_jns_2011_07_040 crossref_primary_10_1016_j_neuroimage_2010_09_081 crossref_primary_10_1016_j_neuroimage_2013_05_119 crossref_primary_10_1016_j_neuroimage_2012_11_050 crossref_primary_10_1016_j_neuroimage_2022_119081 crossref_primary_10_1093_cercor_bhac057 crossref_primary_10_3389_fphys_2020_584891 crossref_primary_10_1007_s11682_020_00377_5 crossref_primary_10_1134_S2079057017010143 crossref_primary_10_1016_j_neuroimage_2011_03_076 crossref_primary_10_1016_j_nicl_2017_05_009 crossref_primary_10_1016_j_neuroimage_2011_05_077 crossref_primary_10_1371_journal_pone_0163071 crossref_primary_10_1002_mrm_25463 crossref_primary_10_1016_j_neuroimage_2018_02_020 crossref_primary_10_1016_j_neuroimage_2011_12_017 crossref_primary_10_1002_hbm_70100 crossref_primary_10_1007_s00429_020_02083_w crossref_primary_10_1016_j_neuroimage_2012_02_022 crossref_primary_10_1016_j_neuroimage_2018_10_009 crossref_primary_10_1016_j_neuroimage_2011_04_030 crossref_primary_10_3389_fnhum_2019_00097 crossref_primary_10_1016_j_neuroimage_2018_05_050 crossref_primary_10_1002_jmri_24786 crossref_primary_10_1002_hbm_21097 crossref_primary_10_1016_j_arr_2013_01_006 crossref_primary_10_1002_hbm_21495 crossref_primary_10_1002_hipo_23259 crossref_primary_10_1016_j_dcn_2014_09_005 crossref_primary_10_1152_jn_00270_2010 crossref_primary_10_1002_ajh_24441 crossref_primary_10_3389_fnagi_2022_919343 crossref_primary_10_1016_j_neuroimage_2017_12_081 crossref_primary_10_1016_j_neuroimage_2021_118418 crossref_primary_10_1016_j_neuroimage_2020_116871 crossref_primary_10_1016_j_neuroimage_2014_09_061 crossref_primary_10_3389_fnsys_2020_00024 crossref_primary_10_1016_j_neuroimage_2011_07_092 crossref_primary_10_1159_000488491 crossref_primary_10_1016_j_neuroimage_2016_06_051 crossref_primary_10_1098_rstb_2019_0631 crossref_primary_10_1016_j_neuroimage_2019_116373 crossref_primary_10_1117_1_JBO_17_5_056002 crossref_primary_10_1002_hbm_22053 crossref_primary_10_1080_01616412_2021_2024714 crossref_primary_10_1016_j_neuroimage_2011_10_046 crossref_primary_10_3758_s13415_019_00718_y crossref_primary_10_1016_j_neubiorev_2019_09_005 crossref_primary_10_1002_hbm_21242 crossref_primary_10_1016_j_neuroimage_2009_11_014 crossref_primary_10_1016_j_neuroimage_2013_06_008 crossref_primary_10_1038_nrneurol_2012_179 crossref_primary_10_1016_j_neuroimage_2010_09_059 crossref_primary_10_1007_s00429_016_1362_2 crossref_primary_10_3988_jcn_2013_9_2_97 crossref_primary_10_1016_j_neuroimage_2013_09_035 crossref_primary_10_1016_j_neuroimage_2018_12_012 crossref_primary_10_1371_journal_pone_0125012 crossref_primary_10_1016_j_neuroimage_2015_02_068 crossref_primary_10_1002_hipo_20808 crossref_primary_10_1016_j_neuroimage_2013_04_099 crossref_primary_10_1016_j_irbm_2015_01_016 crossref_primary_10_1002_hbm_25352 crossref_primary_10_1016_j_neurobiolaging_2019_08_004 crossref_primary_10_1016_j_neuroimage_2017_03_028 crossref_primary_10_1148_radiol_2503080751 crossref_primary_10_1152_ajpheart_00088_2022 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_1002_hbm_22243 crossref_primary_10_1007_s00234_015_1571_z crossref_primary_10_1016_j_neuroimage_2017_07_041 crossref_primary_10_1016_j_neuroimage_2022_119208 crossref_primary_10_1371_journal_pone_0197055 crossref_primary_10_1016_j_neurobiolaging_2014_01_136 crossref_primary_10_1002_hbm_23608 crossref_primary_10_1002_jmri_28362 crossref_primary_10_1016_j_neuroimage_2020_116976 crossref_primary_10_3390_brainsci7060064 crossref_primary_10_1038_nrn3085 crossref_primary_10_1007_s00429_021_02226_7 crossref_primary_10_1097_QAI_0b013e31825a3668 crossref_primary_10_1016_j_neuroimage_2014_06_072 crossref_primary_10_1186_1756_0500_7_235 crossref_primary_10_1002_hbm_24934 crossref_primary_10_1016_j_neuroimage_2011_04_064 crossref_primary_10_1007_s11357_023_01008_9 crossref_primary_10_1016_j_neurobiolaging_2022_02_006 crossref_primary_10_1016_j_neuroimage_2018_03_018 crossref_primary_10_1111_psyp_13845 crossref_primary_10_1152_japplphysiol_00994_2015 crossref_primary_10_1093_cercor_bhs233 crossref_primary_10_7554_eLife_21397 crossref_primary_10_1016_j_neurobiolaging_2012_11_002 crossref_primary_10_1016_j_neulet_2014_01_027 crossref_primary_10_1007_s11682_019_00157_w crossref_primary_10_1016_j_neuroimage_2012_08_077 crossref_primary_10_1038_s41598_017_09752_7 crossref_primary_10_3389_fneur_2014_00249 crossref_primary_10_1016_j_neuron_2024_12_014 crossref_primary_10_3389_fnagi_2014_00288 crossref_primary_10_1016_j_bandl_2014_04_004 crossref_primary_10_1002_hipo_23290 crossref_primary_10_1002_hbm_23597 crossref_primary_10_1038_jcbfm_2010_133 crossref_primary_10_1002_jmri_23658 crossref_primary_10_3389_fneur_2017_00283 crossref_primary_10_1016_j_neuroimage_2012_09_066 crossref_primary_10_1177_0271678X15615133 crossref_primary_10_1016_j_neuroimage_2010_03_040 crossref_primary_10_4236_ojpsych_2017_73014 crossref_primary_10_1073_pnas_1101567108 crossref_primary_10_1371_journal_pone_0259243 crossref_primary_10_1016_j_cnp_2023_11_004 crossref_primary_10_1016_j_neuroimage_2016_02_031 crossref_primary_10_1007_s11682_021_00570_0 crossref_primary_10_1016_j_neurobiolaging_2018_06_017 crossref_primary_10_1016_j_neuroimage_2012_04_041 crossref_primary_10_1016_j_neuroimage_2016_06_010 crossref_primary_10_1177_0271678X16643090 crossref_primary_10_1002_hbm_22771 crossref_primary_10_1016_j_neuroimage_2023_120189 crossref_primary_10_1177_0271678X19831016 crossref_primary_10_1016_j_resp_2021_103770 crossref_primary_10_1007_s00234_013_1290_2 crossref_primary_10_1016_j_nicl_2015_08_012 crossref_primary_10_1016_j_neuroimage_2012_07_065 crossref_primary_10_1007_s10571_015_0261_z crossref_primary_10_1016_j_nicl_2019_101955 crossref_primary_10_1089_neu_2013_3069 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1002_nbm_2847 crossref_primary_10_1093_cercor_bhac209 crossref_primary_10_1093_cercor_bhp139 crossref_primary_10_1021_acsptsci_4c00151 crossref_primary_10_7717_peerj_5890 crossref_primary_10_1038_jcbfm_2013_48 crossref_primary_10_1002_mrm_25603 crossref_primary_10_1016_j_neurobiolaging_2014_08_018 crossref_primary_10_1016_j_neuroimage_2013_04_053 crossref_primary_10_1088_1741_2560_8_4_046013 |
Cites_doi | 10.1162/089892904970681 10.1002/nbm.1075 10.1016/S0022-510X(00)00396-8 10.1162/jocn.2006.18.4.594 10.1016/j.neuroimage.2006.01.026 10.1016/j.neuroimage.2006.10.044 10.1523/JNEUROSCI.16-13-04207.1996 10.1002/hbm.20307 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z 10.1073/pnas.89.1.212 10.1093/gerona/54.10.B407 10.1016/j.neuroimage.2004.12.010 10.1001/archneur.1992.00530280106030 10.1007/s11065-007-9028-8 10.1161/01.STR.5.5.630 10.1016/j.neuroimage.2003.12.023 10.1016/S0304-3940(01)01920-6 10.1172/JCI102783 10.1016/j.acra.2004.08.015 10.1002/mrm.20023 10.1038/jcbfm.1991.121 10.1161/01.STR.17.6.1220 10.1002/mrm.1910340412 10.1016/j.neuroimage.2007.05.024 10.1016/j.neuroimage.2004.12.057 10.1161/01.STR.31.3.680 10.1073/pnas.96.16.9403 10.1001/archneur.1977.00500190037005 10.1016/j.neuroimage.2005.04.036 10.1016/j.neuroimage.2006.05.040 10.1006/nimg.2002.1114 10.1073/pnas.89.13.5951 10.1093/brain/113.1.27 10.1016/j.neuroimage.2004.07.013 10.1097/00002826-199114001-00006 10.1016/j.pscychresns.2005.06.006 10.1007/BF00153694 10.1016/j.neuroimage.2007.11.015 10.1097/00004647-199906000-00012 10.1001/archneur.1992.00530340029014 10.1006/nimg.1999.0444 10.1038/nrn1246 10.1006/nimg.2000.0675 10.1073/pnas.95.4.1834 10.1002/mrm.1910380110 10.1016/0013-4694(84)90196-2 10.1002/mrm.21171 10.1016/j.neuroimage.2004.01.036 10.1006/cbmr.1996.0014 10.1097/00004728-199807000-00002 10.1002/mrm.1910390602 10.1002/mrm.20377 10.1016/j.neuroimage.2006.08.033 10.1038/nrn1929 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 10.1002/(SICI)1522-2594(199909)42:3<608::AID-MRM26>3.0.CO;2-I 10.1002/(SICI)1099-1492(199706/08)10:4/5<197::AID-NBM466>3.0.CO;2-S 10.1111/j.1471-4159.1979.tb00404.x 10.1172/JCI102870 10.1212/WNL.58.4.630 10.1148/radiol.2343040197 10.1097/01.WCB.0000071887.63724.B2 10.1162/089892900564046 10.1212/WNL.48.1.173 10.1172/JCI101995 10.1016/j.neuroimage.2004.09.047 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. 2009 INIST-CNRS 2008 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: 2009 INIST-CNRS – notice: 2008 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.20574 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | BOLD and CBF Responses in the Visual Cortex |
EISSN | 1097-0193 |
EndPage | 1132 |
ExternalDocumentID | PMC2810490 18465743 21261542 10_1002_hbm_20574 HBM20574 ark_67375_WNG_1C6WJDQH_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: American Federation of AIDS Research Fellowship funderid: 106729‐40‐RFRL – fundername: NIH funderid: 1K23MH081786; NS‐36722; NS‐42069 – fundername: UCSD General Clinical Research Center funderid: MO1 RR000827 – fundername: Dana Brain‐Immuno Imaging – fundername: NINDS NIH HHS grantid: NS-42069 – fundername: NINDS NIH HHS grantid: NS-36722 – fundername: NINDS NIH HHS grantid: R01 NS036722 – fundername: NIMH NIH HHS grantid: 1K23MH081786 – fundername: NIMH NIH HHS grantid: K23 MH081786 – fundername: NCRR NIH HHS grantid: M01 RR000827 – fundername: NCRR NIH HHS grantid: MO1 RR000827 – fundername: American Federation of AIDS Research Fellowship grantid: 106729‐40‐RFRL – fundername: UCSD General Clinical Research Center grantid: MO1 RR000827 – fundername: NIH grantid: 1K23MH081786; NS‐36722; NS‐42069 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM PMFND 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5784-ccec59bc528806b6a75c623d29b53ed58dbe624497cd7e669a8d4fedba5bf9583 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:45:22 EDT 2025 Fri Jul 11 07:12:23 EDT 2025 Tue Aug 05 10:25:47 EDT 2025 Fri May 30 11:01:43 EDT 2025 Mon Jul 21 09:17:20 EDT 2025 Tue Jul 01 04:25:55 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Wed Jan 22 16:52:32 EST 2025 Wed Oct 30 09:49:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cerebral blood flow (CBF) Visual cortex Oxygen Nervous system diseases Senescence Radiodiagnosis Central nervous system and cerebral metabolic rate of oxygen (CMRO2) functional magnetic resonance imaging (fMRI) Metabolism Nuclear magnetic resonance imaging Blood flow Encephalon blood oxygen level dependent (BOLD) effect Visual pathway Hemodynamics aging Oxygenation Functional imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5784-ccec59bc528806b6a75c623d29b53ed58dbe624497cd7e669a8d4fedba5bf9583 |
Notes | ark:/67375/WNG-1C6WJDQH-1 ArticleID:HBM20574 UCSD General Clinical Research Center - No. MO1 RR000827 NIH - No. 1K23MH081786; No. NS-36722; No. NS-42069 istex:82921AB8045C84255883C1E2E907449D26E31A2A Dana Brain-Immuno Imaging American Federation of AIDS Research Fellowship - No. 106729-40-RFRL ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/hbm.20574 |
PMID | 18465743 |
PQID | 20420850 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2810490 proquest_miscellaneous_67035787 proquest_miscellaneous_20420850 pubmed_primary_18465743 pascalfrancis_primary_21261542 crossref_primary_10_1002_hbm_20574 crossref_citationtrail_10_1002_hbm_20574 wiley_primary_10_1002_hbm_20574_HBM20574 istex_primary_ark_67375_WNG_1C6WJDQH_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2009 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: April 2009 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Kastrup A,Kruger G,Glover GH,Moseley ME ( 1999): Assessment of cerebral oxidative metabolism with breath holding and fMRI. Magn Reson Med 42: 608-611. Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999b): Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96: 9403-9408. Kety SS,Schmidt CF ( 1948): The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27: 484-492. Novack P,Shenkin HA,Bortin L,Goluboff B,Soffe AM ( 1953): The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 32: 696-702. Adachi-Usami E,Hosoda L,Toyonaga N ( 1988): Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol 69: 139-144. Ances BM,Leontiev O,Perthen JE,Liang CL,Lansing AE,Buxton RB ( 2008): Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD-fMRI. Neuroimage 39: 1510-1521. Leontiev O,Buxton RB ( 2007): Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 35: 175-184. Matsuda H,Ohnishi T,Asada T,Li ZJ,Kanetaka H,Imabayashi E,Tanaka F,Nakano S ( 2003): Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 44: 1243-1252. Hafkenschiel JH,Friedland CK,Zintel HA ( 1954): The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy. J Clin Invest 33: 57-62. Aizenstein HJ,Clark KA,Butters MA,Cochran J,Stenger VA,Meltzer CC,Reynolds CF,Carter CS ( 2004): The BOLD hemodynamic response in healthy aging. J Cogn Neurosci 16: 786-793. Woolrich MW,Behrens TE,Beckmann CF,Jenkinson M,Smith SM ( 2004): Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21: 1732-1747. Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. Hesselmann V,Zaro Weber O,Wedekind C,Krings T,Schulte O,Kugel H,Krug B,Klug N,Lackner KJ ( 2001): Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308: 141-144. Tekes A,Mohamed MA,Browner NM,Calhoun VD,Yousem DM ( 2005): Effect of age on visuomotor functional MR imaging. Acad Radiol 12: 739-745. Ross MH,Yurgelun-Todd DA,Renshaw PF,Maas LC,Mendelson JH,Mello NK,Cohen BM,Levin JM ( 1997): Age-related reduction in functional MRI response to photic stimulation. Neurology 48: 173-176. Liu TT,Wong EC ( 2005): A signal processing model for arterial spin labeling functional MRI. Neuroimage 24: 207-215. Matthews PM,Honey GD,Bullmore ET ( 2006): Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7: 732-744. Mattay VS,Fera F,Tessitore A,Hariri AR,Das S,Callicott JH,Weinberger DR ( 2002): Neurophysiological correlates of age-related changes in human motor function. Neurology 58: 630-635. Prvulovic D,Van de Ven V,Sack AT,Maurer K,Linden DE ( 2005): Functional activation imaging in aging and dementia. Psychiatry Res 140: 97-113. D'Esposito M,Deouell LY,Gazzaley A ( 2003): Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nat Rev Neurosci 4: 863-872. Raemaekers M,Vink M,van den Heuvel MP,Kahn RS,Ramsey NF ( 2006): Effects of aging on BOLD fMRI during prosaccades and antisaccades. J Cogn Neurosci 18: 594-603. Raz N,Torres IJ,Spencer WD,White K,Acker JD ( 1992): Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 49: 412-416. Chiarelli PA,Bulte DP,Gallichan D,Piechnik SK,Wise R,Jezzard P ( 2007a): Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 57: 538-547. Yamaguchi T,Kanno I,Uemura K,Shishido F,Inugami A,Ogawa T,Murakami M,Suzuki K ( 1986): Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17: 1220-1228. Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999a): Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model. Magn Reson Med 42: 849-863. Kliefoth AB,Grubb RLJr,Raichle ME ( 1979): Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J Neurochem 32: 661-663. Grubb RL,Raichle ME,Eichling JO,Ter-Pogossian MM ( 1974): The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5: 630-639. Restom K,Bangen KJ,Bondi MW,Perthen JE,Liu TT ( 2007): Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults. Neuroimage 37: 430-439. Buckner RL,Snyder AZ,Sanders AL,Raichle ME,Morris JC ( 2000): Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12( Suppl 2): 24-34. Jones M,Berwick J,Hewson-Stoate N,Gias C,Mayhew J ( 2005): The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage 27: 609-623. Loessner A,Alavi A,Lewandrowski KU,Mozley D,Souder E,Gur RE ( 1995): Regional cerebral function determined by FDG-PET in healthy volunteers: Normal patterns and changes with age. J Nucl Med 36: 1141-1149. Mintun MA,Vlassenko AG,Shulman GL,Snyder AZ ( 2002): Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 16: 531-537. Parkes LM,Rashid W,Chard DT,Tofts PS ( 2004): Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn Reson Med 51: 736-743. Mumford JA,Hernandez-Garcia L,Lee GR,Nichols TE ( 2006): Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 33: 103-114. Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233. Marchal G,Rioux P,Petit-Taboue MC,Sette G,Travere JM,Le Poec C,Courtheoux P,Derlon JM,Baron JC ( 1992): Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013-1020. Kim S-G,Ugurbil K ( 1997): Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change. Magn Reson Med 38: 59-65. Burock MA,Dale AM ( 2000): Estimation and detection of event-related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach. Hum Brain Mapp 11: 249-260. Sicard KM,Duong TQ ( 2005): Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25: 850-858. Celesia GG,Daly RF ( 1977): Effects of aging on visual evoked responses. Arch Neurol 34: 403-407. Donahue MJ,Lu H,Jones CK,Pekar JJ,van Zijl PC ( 2006): An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19: 1043-1054. Behzadi Y,Liu TT ( 2005): An arteriolar compliance model of the cerebral blood flow response to neural stimulus. Neuroimage 25: 1100-1111. Taoka T,Iwasaki S,Uchida H,Fukusumi A,Nakagawa H,Kichikawa K,Takayama K,Yoshioka T,Takewa M,Ohishi H ( 1998): Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr 22: 514-517. Leenders KL,Perani D,Lammertsma AA,Heather JD,Buckingham P,Healy MJ,Gibbs JM,Wise RJ,Hatazawa J,Herold S,Beaney RP,Brooks DJ,Spinks T,Rhodes C,Frackowiak RSJ,Jones T( 1990): Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113: 27-47. Long JM,Mouton PR,Jucker M,Ingram DK ( 1999): What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54: B407-B417. Restom K,Behzadi Y,Liu TT ( 2006): Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31: 1104-1115. Brown GG,Eyler Zorrilla LT,Georgy B,Kindermann SS,Wong EC,Buxton RB ( 2003): BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. J Cereb Blood Flow Metab 23: 829-837. Davis TL,Kwong KK,Weisskoff RM,Rosen BR ( 1998): Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834-1839. Ogawa S,Tank DW,Menon R,Ellermann JM,Kim SG,Merkle H,Ugurbil K ( 1992): Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951-5955. Bandettini PA,Wong EC ( 1997): A hypercapnia-based normalization method for improved spatial localization of the human brain activation with fMRI. NMR Biomed 10: 197-203. Handwerker DA,Gazzaley A,Inglis BA,D'Esposito M ( 2007): Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28: 846-859. Huettel SA,Singerman JD,McCarthy G ( 2001): The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13: 161-175. D'Esposito M,Zarahn E,Aguirre GK,Rypma B ( 1999): The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10: 6-14. Boynton GM,Engel SA,Glover GH,Heeger DJ ( 1996): Linear systems analysis of functional magnetic resonance imaging in human. VI. J Neurosci 16: 4207-4221. Brown GG,Perthen JE,Liu TT,Buxton RB ( 2007): A primer on functional magnetic resonance imaging. Neuropsychol Rev 17: 107-125. Wong EC,Buxton RB,Frank LR ( 1999): Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9: 333-342. Chalela JA,Alsop DC,Gonzalez-Atavales JB,Maldjian JA,Kasner SE,Detre JA ( 2000): Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31: 68 2002; 16 2004; 21 2004; 22 2002; 58 2006; 31 1991; 14 1995; 36 1991; 11 2006; 33 1997; 48 2004; 23 2008; 39 1999; 42 2005; 27 2001; 308 1979; 32 2007; 35 1953; 32 1974; 5 2005; 24 2007; 37 2005; 25 2007; 28 1996; 29 2005; 140 1984; 58 1997; 10 1999a; 42 2000; 12 1999; 19 2000; 11 2003; 4 1999; 10 1999; 54 1977; 34 1992; 49 1998; 95 2001; 13 1992; 89 2003; 44 2007b; 34 1948; 27 2007; 17 2005; 234 2006; 7 1986; 17 2006; 18 2006; 19 1996; 16 1998; 22 1999; 9 1998; 39 2004; 51 1954; 33 2004; 16 1988; 69 2007a; 57 2000; 31 2005; 53 1997; 38 1995b; 34 1990; 113 2005; 12 2000; 181 2003; 23 1999b; 96 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 Wong EC (e_1_2_6_68_1) 1999; 9 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 Loessner A (e_1_2_6_43_1) 1995; 36 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Matsuda H (e_1_2_6_48_1) 2003; 44 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Mintun MA,Vlassenko AG,Shulman GL,Snyder AZ ( 2002): Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 16: 531-537. – reference: Tekes A,Mohamed MA,Browner NM,Calhoun VD,Yousem DM ( 2005): Effect of age on visuomotor functional MR imaging. Acad Radiol 12: 739-745. – reference: Kety SS,Schmidt CF ( 1948): The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27: 484-492. – reference: Sicard KM,Duong TQ ( 2005): Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25: 850-858. – reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. – reference: Chalela JA,Alsop DC,Gonzalez-Atavales JB,Maldjian JA,Kasner SE,Detre JA ( 2000): Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31: 680-687. – reference: Chiarelli PA,Bulte DP,Piechnik S,Jezzard P ( 2007b): Sources of systematic bias in hypercapnia-calibrated functional MRI estimation of oxygen metabolism. Neuroimage 34: 35-43. – reference: Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999b): Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 96: 9403-9408. – reference: Mattay VS,Fera F,Tessitore A,Hariri AR,Das S,Callicott JH,Weinberger DR ( 2002): Neurophysiological correlates of age-related changes in human motor function. Neurology 58: 630-635. – reference: Woolrich MW,Behrens TE,Beckmann CF,Jenkinson M,Smith SM ( 2004): Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21: 1732-1747. – reference: Allison T,Hume AL,Wood CC,Goff WR ( 1984): Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroencephalogr Clin Neurophysiol 58: 14-24. – reference: Celesia GG,Daly RF ( 1977): Effects of aging on visual evoked responses. Arch Neurol 34: 403-407. – reference: Behzadi Y,Liu TT ( 2005): An arteriolar compliance model of the cerebral blood flow response to neural stimulus. Neuroimage 25: 1100-1111. – reference: Wong EC,Buxton RB,Frank LR ( 1999): Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 9: 333-342. – reference: Boxerman JL,Hamberg LM,Rosen BR,Weisskoff RM ( 1995b): MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34: 555-566. – reference: Aizenstein HJ,Clark KA,Butters MA,Cochran J,Stenger VA,Meltzer CC,Reynolds CF,Carter CS ( 2004): The BOLD hemodynamic response in healthy aging. J Cogn Neurosci 16: 786-793. – reference: Martin AJ,Friston KJ,Colebatch JG,Frackowiak RS ( 1991): Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 11: 684-689. – reference: Matsuda H,Ohnishi T,Asada T,Li ZJ,Kanetaka H,Imabayashi E,Tanaka F,Nakano S ( 2003): Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 44: 1243-1252. – reference: Hafkenschiel JH,Friedland CK,Zintel HA ( 1954): The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy. J Clin Invest 33: 57-62. – reference: Williams DS,Detre JA,Leigh JS,Koretsky AP ( 1992): Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 89: 212-216. – reference: Parkes LM,Rashid W,Chard DT,Tofts PS ( 2004): Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn Reson Med 51: 736-743. – reference: Mandeville JB,Marota JJ,Ayata C,Zaharchuk G,Moskowitz MA,Rosen BR,Weisskoff RM ( 1999): Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19: 679-689. – reference: Donahue MJ,Lu H,Jones CK,Pekar JJ,van Zijl PC ( 2006): An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 19: 1043-1054. – reference: Ogawa S,Tank DW,Menon R,Ellermann JM,Kim SG,Merkle H,Ugurbil K ( 1992): Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951-5955. – reference: D'Esposito M,Zarahn E,Aguirre GK,Rypma B ( 1999): The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10: 6-14. – reference: Handwerker DA,Gazzaley A,Inglis BA,D'Esposito M ( 2007): Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28: 846-859. – reference: D'Esposito M,Deouell LY,Gazzaley A ( 2003): Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nat Rev Neurosci 4: 863-872. – reference: Loessner A,Alavi A,Lewandrowski KU,Mozley D,Souder E,Gur RE ( 1995): Regional cerebral function determined by FDG-PET in healthy volunteers: Normal patterns and changes with age. J Nucl Med 36: 1141-1149. – reference: Restom K,Bangen KJ,Bondi MW,Perthen JE,Liu TT ( 2007): Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults. Neuroimage 37: 430-439. – reference: Grubb RL,Raichle ME,Eichling JO,Ter-Pogossian MM ( 1974): The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5: 630-639. – reference: Ances BM,Leontiev O,Perthen JE,Liang CL,Lansing AE,Buxton RB ( 2008): Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD-fMRI. Neuroimage 39: 1510-1521. – reference: Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233. – reference: Stefanovic B,Warnking JM,Pike GB ( 2004): Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22: 771-778. – reference: Kim S-G,Ugurbil K ( 1997): Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change. Magn Reson Med 38: 59-65. – reference: Brown GG,Eyler Zorrilla LT,Georgy B,Kindermann SS,Wong EC,Buxton RB ( 2003): BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: Differential relationship to global perfusion. J Cereb Blood Flow Metab 23: 829-837. – reference: Yamaguchi T,Kanno I,Uemura K,Shishido F,Inugami A,Ogawa T,Murakami M,Suzuki K ( 1986): Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17: 1220-1228. – reference: Goldstein S,Reivich M ( 1991): Cerebral blood flow and metabolism in aging and dementia. Clin Neuropharmacol 14( Suppl 1): S34-S44. – reference: Jones M,Berwick J,Hewson-Stoate N,Gias C,Mayhew J ( 2005): The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation. Neuroimage 27: 609-623. – reference: Kliefoth AB,Grubb RLJr,Raichle ME ( 1979): Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J Neurochem 32: 661-663. – reference: Huettel SA,Singerman JD,McCarthy G ( 2001): The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13: 161-175. – reference: Leenders KL,Perani D,Lammertsma AA,Heather JD,Buckingham P,Healy MJ,Gibbs JM,Wise RJ,Hatazawa J,Herold S,Beaney RP,Brooks DJ,Spinks T,Rhodes C,Frackowiak RSJ,Jones T( 1990): Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113: 27-47. – reference: Leontiev O,Buxton RB ( 2007): Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 35: 175-184. – reference: Taoka T,Iwasaki S,Uchida H,Fukusumi A,Nakagawa H,Kichikawa K,Takayama K,Yoshioka T,Takewa M,Ohishi H ( 1998): Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr 22: 514-517. – reference: Kastrup A,Kruger G,Glover GH,Moseley ME ( 1999): Assessment of cerebral oxidative metabolism with breath holding and fMRI. Magn Reson Med 42: 608-611. – reference: Raz N,Torres IJ,Spencer WD,White K,Acker JD ( 1992): Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 49: 412-416. – reference: Johnson NA,Jahng GH,Weiner MW,Miller BL,Chui HC,Jagust WJ,Gorno-Tempini ML,Schuff N ( 2005): Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology 234: 851-859. – reference: Novack P,Shenkin HA,Bortin L,Goluboff B,Soffe AM ( 1953): The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 32: 696-702. – reference: Bentourkia M,Bol A,Ivanoiu A,Labar D,Sibomana M,Coppens A,Michel C,Cosnard G,De Volder AG ( 2000): Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging. J Neurol Sci 181: 19-28. – reference: Matthews PM,Honey GD,Bullmore ET ( 2006): Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7: 732-744. – reference: Buckner RL,Snyder AZ,Sanders AL,Raichle ME,Morris JC ( 2000): Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12( Suppl 2): 24-34. – reference: Prvulovic D,Van de Ven V,Sack AT,Maurer K,Linden DE ( 2005): Functional activation imaging in aging and dementia. Psychiatry Res 140: 97-113. – reference: Restom K,Behzadi Y,Liu TT ( 2006): Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31: 1104-1115. – reference: Hoge RD,Atkinson J,Gill B,Crelier GR,Marrett S,Pike GB ( 1999a): Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model. Magn Reson Med 42: 849-863. – reference: Bandettini PA,Wong EC ( 1997): A hypercapnia-based normalization method for improved spatial localization of the human brain activation with fMRI. NMR Biomed 10: 197-203. – reference: Marchal G,Rioux P,Petit-Taboue MC,Sette G,Travere JM,Le Poec C,Courtheoux P,Derlon JM,Baron JC ( 1992): Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013-1020. – reference: Chiarelli PA,Bulte DP,Gallichan D,Piechnik SK,Wise R,Jezzard P ( 2007a): Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 57: 538-547. – reference: Ross MH,Yurgelun-Todd DA,Renshaw PF,Maas LC,Mendelson JH,Mello NK,Cohen BM,Levin JM ( 1997): Age-related reduction in functional MRI response to photic stimulation. Neurology 48: 173-176. – reference: Davis TL,Kwong KK,Weisskoff RM,Rosen BR ( 1998): Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834-1839. – reference: Wang J,Qiu M,Constable RT ( 2005): In vivo method for correcting transmit/receive nonuniformities with phased array coils. Magn Reson Med 53: 666-674. – reference: Liu TT,Wong EC ( 2005): A signal processing model for arterial spin labeling functional MRI. Neuroimage 24: 207-215. – reference: Hesselmann V,Zaro Weber O,Wedekind C,Krings T,Schulte O,Kugel H,Krug B,Klug N,Lackner KJ ( 2001): Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308: 141-144. – reference: Boynton GM,Engel SA,Glover GH,Heeger DJ ( 1996): Linear systems analysis of functional magnetic resonance imaging in human. VI. J Neurosci 16: 4207-4221. – reference: Mumford JA,Hernandez-Garcia L,Lee GR,Nichols TE ( 2006): Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 33: 103-114. – reference: Buxton RB,Wong EC,Frank LR ( 1998): Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn Reson Med 39: 855-864. – reference: Raemaekers M,Vink M,van den Heuvel MP,Kahn RS,Ramsey NF ( 2006): Effects of aging on BOLD fMRI during prosaccades and antisaccades. J Cogn Neurosci 18: 594-603. – reference: Brown GG,Perthen JE,Liu TT,Buxton RB ( 2007): A primer on functional magnetic resonance imaging. Neuropsychol Rev 17: 107-125. – reference: Burock MA,Dale AM ( 2000): Estimation and detection of event-related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach. Hum Brain Mapp 11: 249-260. – reference: Long JM,Mouton PR,Jucker M,Ingram DK ( 1999): What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54: B407-B417. – reference: Adachi-Usami E,Hosoda L,Toyonaga N ( 1988): Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials. Doc Ophthalmol 69: 139-144. – volume: 16 start-page: 4207 year: 1996 end-page: 4221 article-title: Linear systems analysis of functional magnetic resonance imaging in human. VI publication-title: J Neurosci – volume: 39 start-page: 855 year: 1998 end-page: 864 article-title: Dynamics of blood flow and oxygenation changes during brain activation: The balloon model publication-title: Magn Reson Med – volume: 7 start-page: 732 year: 2006 end-page: 744 article-title: Applications of fMRI in translational medicine and clinical practice publication-title: Nat Rev Neurosci – volume: 23 start-page: 829 year: 2003 end-page: 837 article-title: BOLD and perfusion response to finger‐thumb apposition after acetazolamide administration: Differential relationship to global perfusion publication-title: J Cereb Blood Flow Metab – volume: 35 start-page: 175 year: 2007 end-page: 184 article-title: Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated‐BOLD fMRI publication-title: Neuroimage – volume: 10 start-page: 6 year: 1999 end-page: 14 article-title: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response publication-title: Neuroimage – volume: 42 start-page: 608 year: 1999 end-page: 611 article-title: Assessment of cerebral oxidative metabolism with breath holding and fMRI publication-title: Magn Reson Med – volume: 32 start-page: 696 year: 1953 end-page: 702 article-title: The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease publication-title: J Clin Invest – volume: 89 start-page: 212 year: 1992 end-page: 216 article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water publication-title: Proc Natl Acad Sci USA – volume: 89 start-page: 5951 year: 1992 end-page: 5955 article-title: Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 197 year: 1997 end-page: 203 article-title: A hypercapnia‐based normalization method for improved spatial localization of the human brain activation with fMRI publication-title: NMR Biomed – volume: 34 start-page: 35 year: 2007b end-page: 43 article-title: Sources of systematic bias in hypercapnia‐calibrated functional MRI estimation of oxygen metabolism publication-title: Neuroimage – volume: 23 start-page: S220 issue: Suppl 1 year: 2004 end-page: S233 article-title: Modeling the hemodynamic response to brain activation publication-title: Neuroimage – volume: 16 start-page: 531 year: 2002 end-page: 537 article-title: Time‐related increase of oxygen utilization in continuously activated human visual cortex publication-title: Neuroimage – volume: 54 start-page: B407 year: 1999 end-page: B417 article-title: What counts in brain aging? Design‐based stereological analysis of cell number publication-title: J Gerontol A Biol Sci Med Sci – volume: 12 start-page: 24 issue: Suppl 2 year: 2000 end-page: 34 article-title: Functional brain imaging of young, nondemented, and demented older adults publication-title: J Cogn Neurosci – volume: 29 start-page: 162 year: 1996 end-page: 173 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput Biomed Res – volume: 32 start-page: 661 year: 1979 end-page: 663 article-title: Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey publication-title: J Neurochem – volume: 34 start-page: 555 year: 1995b end-page: 566 article-title: MR contrast due to intravascular magnetic susceptibility perturbations publication-title: Magn Reson Med – volume: 9 start-page: 333 year: 1999 end-page: 342 article-title: Quantitative perfusion imaging using arterial spin labeling publication-title: Neuroimaging Clin N Am – volume: 42 start-page: 849 year: 1999a end-page: 863 article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model publication-title: Magn Reson Med – volume: 38 start-page: 59 year: 1997 end-page: 65 article-title: Comparison of blood oxygenation and cerebral blood flow effects in fMRI: Estimation of relative oxygen consumption change publication-title: Magn Reson Med – volume: 22 start-page: 514 year: 1998 end-page: 517 article-title: Age correlation of the time lag in signal change on EPI‐fMRI publication-title: J Comput Assist Tomogr – volume: 37 start-page: 430 year: 2007 end-page: 439 article-title: Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults publication-title: Neuroimage – volume: 34 start-page: 403 year: 1977 end-page: 407 article-title: Effects of aging on visual evoked responses publication-title: Arch Neurol – volume: 113 start-page: 27 year: 1990 end-page: 47 article-title: Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age publication-title: Brain – volume: 11 start-page: 684 year: 1991 end-page: 689 article-title: Decreases in regional cerebral blood flow with normal aging publication-title: J Cereb Blood Flow Metab – volume: 17 start-page: 107 year: 2007 end-page: 125 article-title: A primer on functional magnetic resonance imaging publication-title: Neuropsychol Rev – volume: 58 start-page: 14 year: 1984 end-page: 24 article-title: Developmental and aging changes in somatosensory, auditory and visual evoked potentials publication-title: Electroencephalogr Clin Neurophysiol – volume: 33 start-page: 57 year: 1954 end-page: 62 article-title: The blood flow and oxygen consumption of the brain in patients with essential hypertension before and after adrenalectomy publication-title: J Clin Invest – volume: 25 start-page: 1100 year: 2005 end-page: 1111 article-title: An arteriolar compliance model of the cerebral blood flow response to neural stimulus publication-title: Neuroimage – volume: 4 start-page: 863 year: 2003 end-page: 872 article-title: Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging publication-title: Nat Rev Neurosci – volume: 58 start-page: 630 year: 2002 end-page: 635 article-title: Neurophysiological correlates of age‐related changes in human motor function publication-title: Neurology – volume: 96 start-page: 9403 year: 1999b end-page: 9408 article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 679 year: 1999 end-page: 689 article-title: Evidence of a cerebrovascular postarteriole windkessel with delayed compliance publication-title: J Cereb Blood Flow Metab – volume: 27 start-page: 484 year: 1948 end-page: 492 article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men publication-title: J Clin Invest – volume: 44 start-page: 1243 year: 2003 end-page: 1252 article-title: Correction for partial‐volume effects on brain perfusion SPECT in healthy men publication-title: J Nucl Med – volume: 25 start-page: 850 year: 2005 end-page: 858 article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus‐evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals publication-title: Neuroimage – volume: 22 start-page: 771 year: 2004 end-page: 778 article-title: Hemodynamic and metabolic responses to neuronal inhibition publication-title: Neuroimage – volume: 36 start-page: 1141 year: 1995 end-page: 1149 article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: Normal patterns and changes with age publication-title: J Nucl Med – volume: 14 start-page: S34 issue: Suppl 1 year: 1991 end-page: S44 article-title: Cerebral blood flow and metabolism in aging and dementia publication-title: Clin Neuropharmacol – volume: 5 start-page: 630 year: 1974 end-page: 639 article-title: The effects of changes in PaCO on cerebral blood volume, blood flow, and vascular mean transit time publication-title: Stroke – volume: 17 start-page: 1220 year: 1986 end-page: 1228 article-title: Reduction in regional cerebral metabolic rate of oxygen during human aging publication-title: Stroke – volume: 308 start-page: 141 year: 2001 end-page: 144 article-title: Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans publication-title: Neurosci Lett – volume: 57 start-page: 538 year: 2007a end-page: 547 article-title: Flow‐metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging publication-title: Magn Reson Med – volume: 53 start-page: 666 year: 2005 end-page: 674 article-title: In vivo method for correcting transmit/receive nonuniformities with phased array coils publication-title: Magn Reson Med – volume: 18 start-page: 594 year: 2006 end-page: 603 article-title: Effects of aging on BOLD fMRI during prosaccades and antisaccades publication-title: J Cogn Neurosci – volume: 31 start-page: 1104 year: 2006 end-page: 1115 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 21 start-page: 1732 year: 2004 end-page: 1747 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: Neuroimage – volume: 48 start-page: 173 year: 1997 end-page: 176 article-title: Age‐related reduction in functional MRI response to photic stimulation publication-title: Neurology – volume: 69 start-page: 139 year: 1988 end-page: 144 article-title: Effects of aging on the temporal frequency characteristics determined by pattern visually evoked cortical potentials publication-title: Doc Ophthalmol – volume: 28 start-page: 846 year: 2007 end-page: 859 article-title: Reducing vascular variability of fMRI data across aging populations using a breathholding task publication-title: Hum Brain Mapp – volume: 27 start-page: 609 year: 2005 end-page: 623 article-title: The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation publication-title: Neuroimage – volume: 33 start-page: 103 year: 2006 end-page: 114 article-title: Estimation efficiency and statistical power in arterial spin labeling fMRI publication-title: Neuroimage – volume: 140 start-page: 97 year: 2005 end-page: 113 article-title: Functional activation imaging in aging and dementia publication-title: Psychiatry Res – volume: 181 start-page: 19 year: 2000 end-page: 28 article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging publication-title: J Neurol Sci – volume: 31 start-page: 680 year: 2000 end-page: 687 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke – volume: 19 start-page: 1043 year: 2006 end-page: 1054 article-title: An account of the discrepancy between MRI and PET cerebral blood flow measures. A high‐field MRI investigation publication-title: NMR Biomed – volume: 39 start-page: 1510 year: 2008 end-page: 1521 article-title: Regional coupling differences in cerebral blood flow and oxygen metabolism: Implications for BOLD‐fMRI publication-title: Neuroimage – volume: 16 start-page: 786 year: 2004 end-page: 793 article-title: The BOLD hemodynamic response in healthy aging publication-title: J Cogn Neurosci – volume: 95 start-page: 1834 year: 1998 end-page: 1839 article-title: Calibrated functional MRI: Mapping the dynamics of oxidative metabolism publication-title: Proc Natl Acad Sci USA – volume: 49 start-page: 412 year: 1992 end-page: 416 article-title: Age‐related regional differences in cerebellar vermis observed in vivo publication-title: Arch Neurol – volume: 11 start-page: 249 year: 2000 end-page: 260 article-title: Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach publication-title: Hum Brain Mapp – volume: 13 start-page: 161 year: 2001 end-page: 175 article-title: The effects of aging upon the hemodynamic response measured by functional MRI publication-title: Neuroimage – volume: 24 start-page: 207 year: 2005 end-page: 215 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 51 start-page: 736 year: 2004 end-page: 743 article-title: Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects publication-title: Magn Reson Med – volume: 49 start-page: 1013 year: 1992 end-page: 1020 article-title: Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging publication-title: Arch Neurol – volume: 12 start-page: 739 year: 2005 end-page: 745 article-title: Effect of age on visuomotor functional MR imaging publication-title: Acad Radiol – volume: 234 start-page: 851 year: 2005 end-page: 859 article-title: Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin‐labeling MR imaging: Initial experience publication-title: Radiology – ident: e_1_2_6_3_1 doi: 10.1162/089892904970681 – volume: 9 start-page: 333 year: 1999 ident: e_1_2_6_68_1 article-title: Quantitative perfusion imaging using arterial spin labeling publication-title: Neuroimaging Clin N Am – ident: e_1_2_6_25_1 doi: 10.1002/nbm.1075 – ident: e_1_2_6_8_1 doi: 10.1016/S0022-510X(00)00396-8 – ident: e_1_2_6_57_1 doi: 10.1162/jocn.2006.18.4.594 – volume: 44 start-page: 1243 year: 2003 ident: e_1_2_6_48_1 article-title: Correction for partial‐volume effects on brain perfusion SPECT in healthy men publication-title: J Nucl Med – ident: e_1_2_6_60_1 doi: 10.1016/j.neuroimage.2006.01.026 – ident: e_1_2_6_41_1 doi: 10.1016/j.neuroimage.2006.10.044 – ident: e_1_2_6_10_1 doi: 10.1523/JNEUROSCI.16-13-04207.1996 – ident: e_1_2_6_29_1 doi: 10.1002/hbm.20307 – ident: e_1_2_6_31_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z – ident: e_1_2_6_67_1 doi: 10.1073/pnas.89.1.212 – ident: e_1_2_6_44_1 doi: 10.1093/gerona/54.10.B407 – ident: e_1_2_6_62_1 doi: 10.1016/j.neuroimage.2004.12.010 – ident: e_1_2_6_58_1 doi: 10.1001/archneur.1992.00530280106030 – ident: e_1_2_6_12_1 doi: 10.1007/s11065-007-9028-8 – ident: e_1_2_6_27_1 doi: 10.1161/01.STR.5.5.630 – ident: e_1_2_6_69_1 doi: 10.1016/j.neuroimage.2003.12.023 – ident: e_1_2_6_30_1 doi: 10.1016/S0304-3940(01)01920-6 – ident: e_1_2_6_53_1 doi: 10.1172/JCI102783 – volume: 36 start-page: 1141 year: 1995 ident: e_1_2_6_43_1 article-title: Regional cerebral function determined by FDG‐PET in healthy volunteers: Normal patterns and changes with age publication-title: J Nucl Med – ident: e_1_2_6_65_1 doi: 10.1016/j.acra.2004.08.015 – ident: e_1_2_6_55_1 doi: 10.1002/mrm.20023 – ident: e_1_2_6_47_1 doi: 10.1038/jcbfm.1991.121 – ident: e_1_2_6_70_1 doi: 10.1161/01.STR.17.6.1220 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.1910340412 – ident: e_1_2_6_59_1 doi: 10.1016/j.neuroimage.2007.05.024 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroimage.2004.12.057 – ident: e_1_2_6_18_1 doi: 10.1161/01.STR.31.3.680 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.96.16.9403 – ident: e_1_2_6_17_1 doi: 10.1001/archneur.1977.00500190037005 – ident: e_1_2_6_35_1 doi: 10.1016/j.neuroimage.2005.04.036 – ident: e_1_2_6_52_1 doi: 10.1016/j.neuroimage.2006.05.040 – ident: e_1_2_6_51_1 doi: 10.1006/nimg.2002.1114 – ident: e_1_2_6_54_1 doi: 10.1073/pnas.89.13.5951 – ident: e_1_2_6_40_1 doi: 10.1093/brain/113.1.27 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuroimage.2004.07.013 – ident: e_1_2_6_26_1 doi: 10.1097/00002826-199114001-00006 – ident: e_1_2_6_56_1 doi: 10.1016/j.pscychresns.2005.06.006 – ident: e_1_2_6_2_1 doi: 10.1007/BF00153694 – ident: e_1_2_6_5_1 doi: 10.1016/j.neuroimage.2007.11.015 – ident: e_1_2_6_45_1 doi: 10.1097/00004647-199906000-00012 – ident: e_1_2_6_46_1 doi: 10.1001/archneur.1992.00530340029014 – ident: e_1_2_6_23_1 doi: 10.1006/nimg.1999.0444 – ident: e_1_2_6_22_1 doi: 10.1038/nrn1246 – ident: e_1_2_6_33_1 doi: 10.1006/nimg.2000.0675 – ident: e_1_2_6_24_1 doi: 10.1073/pnas.95.4.1834 – ident: e_1_2_6_38_1 doi: 10.1002/mrm.1910380110 – ident: e_1_2_6_4_1 doi: 10.1016/0013-4694(84)90196-2 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.21171 – ident: e_1_2_6_63_1 doi: 10.1016/j.neuroimage.2004.01.036 – ident: e_1_2_6_21_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_6_64_1 doi: 10.1097/00004728-199807000-00002 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.1910390602 – ident: e_1_2_6_66_1 doi: 10.1002/mrm.20377 – ident: e_1_2_6_20_1 doi: 10.1016/j.neuroimage.2006.08.033 – ident: e_1_2_6_50_1 doi: 10.1038/nrn1929 – ident: e_1_2_6_14_1 doi: 10.1002/1097-0193(200012)11:4<249::AID-HBM20>3.0.CO;2-5 – ident: e_1_2_6_36_1 doi: 10.1002/(SICI)1522-2594(199909)42:3<608::AID-MRM26>3.0.CO;2-I – ident: e_1_2_6_6_1 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<197::AID-NBM466>3.0.CO;2-S – ident: e_1_2_6_39_1 doi: 10.1111/j.1471-4159.1979.tb00404.x – ident: e_1_2_6_28_1 doi: 10.1172/JCI102870 – ident: e_1_2_6_49_1 doi: 10.1212/WNL.58.4.630 – ident: e_1_2_6_34_1 doi: 10.1148/radiol.2343040197 – ident: e_1_2_6_11_1 doi: 10.1097/01.WCB.0000071887.63724.B2 – ident: e_1_2_6_13_1 doi: 10.1162/089892900564046 – ident: e_1_2_6_61_1 doi: 10.1212/WNL.48.1.173 – ident: e_1_2_6_37_1 doi: 10.1172/JCI101995 – ident: e_1_2_6_42_1 doi: 10.1016/j.neuroimage.2004.09.047 |
SSID | ssj0011501 |
Score | 2.368549 |
Snippet | Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1120 |
SubjectTerms | Adult aging Aging - physiology Biological and medical sciences blood oxygen level dependent (BOLD) effect Brain Mapping Cardiovascular system cerebral blood flow (CBF) cerebral metabolic rate of oxygen (CMRO2) Cerebrovascular Circulation - physiology Female functional magnetic resonance imaging (fMRI) Humans Hypercapnia - metabolism Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged Nervous system Nonlinear Dynamics Oxygen - blood Oxygen Consumption - physiology Photic Stimulation - methods Radiodiagnosis. Nmr imagery. Nmr spectrometry visual cortex Visual Cortex - blood supply Visual Cortex - physiology Young Adult |
Title | Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation |
URI | https://api.istex.fr/ark:/67375/WNG-1C6WJDQH-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20574 https://www.ncbi.nlm.nih.gov/pubmed/18465743 https://www.proquest.com/docview/20420850 https://www.proquest.com/docview/67035787 https://pubmed.ncbi.nlm.nih.gov/PMC2810490 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KBfHFH63aWK2LSPGhaZNcNrvBp1qtR-EKiqV9EMLuZkOP5pJyyfnrzf_c2d0k9bQF8e0gk8tm8u3st5nJNwAv05GUUZFTX6a88GMRaD-Ng8JPAhZJqWSsbEuWyXEyPomPzujZCrzuv4Vx-hDDCzczM2y8NhNcyGbvSjT0XJoPySkzWqCmVssQoo-DdJQhOnazhUssXp2FvapQEO0NZy6tRbeMW7-Z2kjRoHsK19fiOuL5d_3k77zWLkyH9-Bzf0uuHuVid9HKXfXjD7XH_7zn-3C3I6xk3yHsAazoag3W9yvcrM--k21iS0jtu_k1uD3pMvXr8NPJIjekLohthETqiig9N3nqkthyeVKU9dcdgsNGEJOZbhGP5bSZ7RBR5Z2JO2jRQ0pT30T6rr0tmbvyXt2QtiZfps0C_xgD1qxrSPYQTg7ffToY-127Bx_xwGNfKa1oKhWNMKYkMhGMKiRneZRKOtI55bnUCbKRlKmc6SRJBc_jQudSUFmklI8ewWpVV3oDSKA4K5AoUYa7V8mZ4AEGUq5inrNEh8qDV_2Dz1SnhW5acpSZU3GOMvR0Zj3twYvB9NIJgFxntG3RM1iI-YWpmGM0Oz1-n4UHyenR2w_jLPRgawlewwnIIJBbxpEHz3u8ZTjRTfZGVLpeNHghUwlBg5stEozeJgB78Njh82rAyDJxmCMP2BJyBwMjMr58pJqeW7HxiIcmOYwes8C82QfZ-M3E_njy76abcKfPzgXhU1ht5wv9DEleK7fsbP4FQKJQwQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVgIuPFoe4dFaCCoOTZtk49g5cChdyvaxK4FatbcQO4666m6CNllKufF_-Cv8J8bOoyy0EpceuK2U2cSZ8Xg-Z8bfALwMO0J4aUJtEfLU9mNH2aHvpHbgME8IKXxpWrL0B0Hv0N89psdz8KM5C1PxQ7Qf3LRnmPVaO7j-IL1xwRp6IvRJcsr8uqRyT52f4YateLPTReu-8rztdwdbPbvuKWDjQ7lvS6kkDYWkHk7cQAQxoxIRQOKFgnZUQnkiVIAhL2QyYSoIwpgnfqoSEVORhpR38L43YEF3ENdM_d2PLVmVhlZme4dBHd-XuQ2PkeNttEOdiX4L2pBfdTVmXKBB0qqTxmVQ9--Kzd-RtAmF23fhZ6PEqgLmdH1ainX57Q9-yf9Fy_fgTo3JyWblRPdhTmWLsLSZxWU-PierxFTJmvTDItzs18UIS_C9Yn4uSJ4S0-uJ5BmRaqJT8SNiTgSQdJSfrRHUE_opGasSXW40LMZrJM6SWqS6aByEjHQJF2kaE5dkUlUwq4KUOfkyLKZ4Y1yTx3XPtQdweC16eQjzWZ6px0AcyVmKWJAy3KALzmLuYKzg0ucJC5QrLXjdzLRI1nTvuuvIKKqIqr0ILRsZy1rwohX9XHGcXCa0aqZrKxFPTnVRIKPR0eB95G4FR7vdD73ItWB5Zj63f0CQhPDZ9yxYaSZ4hGuZTlDFmcqnBT5IF3tQ52qJAAOUjjEWPKoc4mLACKRxmB0L2IyrtAKaR332SjY8MXzqHnd1_hs1Zjzhah1Evbd98-PJv4uuwK3eQX8_2t8Z7D2F200y0nGfwXw5marniGlLsWyWEgKfrturfgFCiLDC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVqq48Gh5hEdrIag4NG2SjWPnwKF0WbYtWwGiam8hdhx11d2k2mQp5cbv4a_woxg7j7LQSlx64BYpk8Q74_GMdz5_A_A87AjhpQm1RchT248dZYe-k9qBwzwhpPClacky2A_6B_7uET2agx_NWZiKH6L9w017hlmvtYOfJunmBWnosdAHySnza0Tlnjo_w_1a8Wqni8Z94Xm9N5-2-3bdUsDGb3LfllJJGgpJPZy3gQhiRiUmAIkXCtpRCeWJUAFGvJDJhKkgCGOe-KlKRExFGlLewffegAU_cELdJ6L7seWq0pmV2d1hTMefy9yGxsjxNtuhzgS_BW3HrxqMGRdoj7RqpHFZpvs3YPP3RNpEwt5t-NnosALAnGxMS7Ehv_1BL_mfKPkO3KozcrJVudBdmFPZEixvZXGZj8_JGjEYWVN8WILFQQ1FWIbvFe9zQfKUmE5PJM-IVBNdiB8Rcx6ApKP8bJ2gmtBLyViV6HCjYTFeJ3GW1CLVTeMeZKQBXKRpS1ySSYVfVgUpc_JlWEzxxbgij-uOa_fg4Fr0ch_mszxTD4E4krMUM0HKcHsuOIu5g5GCS58nLFCutOBlM9EiWZO9654jo6iiqfYitGxkLGvBs1b0tGI4uUxozczWViKenGhIIKPR4f7byN0ODne7H_qRa8HKzHRuH8AUCZNn37NgtZnfEa5kujwVZyqfFvghDfWgztUSAYYnHWEseFD5w8WAMY3GYXYsYDOe0gpoFvXZO9nw2LCpe9zV1W_UmHGEq3UQ9V8PzMWjfxddhcX33V70bmd_7zHcbCqRjvsE5svJVD3FhLYUK2YhIfD5up3qF4lVr3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+aging+on+cerebral+blood+flow%2C+oxygen+metabolism%2C+and+blood+oxygenation+level+dependent+responses+to+visual+stimulation&rft.jtitle=Human+brain+mapping&rft.au=Ances%2C+Beau+M&rft.au=Liang%2C+Christine+L&rft.au=Leontiev%2C+Oleg&rft.au=Perthen%2C+Joanna+E&rft.date=2009-04-01&rft.eissn=1097-0193&rft.volume=30&rft.issue=4&rft.spage=1120&rft_id=info:doi/10.1002%2Fhbm.20574&rft_id=info%3Apmid%2F18465743&rft.externalDocID=18465743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |