Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila
Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex phe...
Saved in:
Published in | The European journal of neuroscience Vol. 36; no. 5; pp. 2588 - 2596 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2012
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/j.1460-9568.2012.08183.x |
Cover
Loading…
Abstract | Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.
A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila. |
---|---|
AbstractList | Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila. Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila. Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis . Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis , ( Z,E )‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to ( Z,E )‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. |
Author | Brigaud, Isabelle Larsson, Mattias C. Chertemps, Thomas François, Marie-Christine Montagné, Nicolas Jacquin-Joly, Emmanuelle Lucas, Philippe François, Adrien de Fouchier, Arthur |
Author_xml | – sequence: 1 givenname: Nicolas surname: Montagné fullname: Montagné, Nicolas organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 2 givenname: Thomas surname: Chertemps fullname: Chertemps, Thomas organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 3 givenname: Isabelle surname: Brigaud fullname: Brigaud, Isabelle organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 4 givenname: Adrien surname: François fullname: François, Adrien organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 5 givenname: Marie-Christine surname: François fullname: François, Marie-Christine organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 6 givenname: Arthur surname: de Fouchier fullname: de Fouchier, Arthur organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 7 givenname: Philippe surname: Lucas fullname: Lucas, Philippe organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France – sequence: 8 givenname: Mattias C. surname: Larsson fullname: Larsson, Mattias C. organization: Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Alnarp, Sweden – sequence: 9 givenname: Emmanuelle surname: Jacquin-Joly fullname: Jacquin-Joly, Emmanuelle organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22748123$$D View this record in MEDLINE/PubMed https://hal.science/hal-01001292$$DView record in HAL https://res.slu.se/id/publ/44035$$DView record from Swedish Publication Index |
BookMark | eNqNks1y0zAUhTVMGZoWXoHREhYOkmVb8gJm2tA2MJmy4C87jaxcYwXFMpJNE16A10Zu2jKwijbSXH3n6OeeE3TUuhYQwpRMaRyv1lOaFSQp80JMU0LTKRFUsOn2EZo8bByhCSlzlghaLI_RSQhrQogosvwJOk5Tngmasgn6fTm0ujeuVRbrRnmle_DmlxpL2NVY4QBb3DXg3SbeAXvQ0PXOY9PivgHcQejxxvUN_ti5leuiWmFr-ogoawKudriBWHTWfXNDwLDtPIQwukeHt94F1zXGqqfoca1sgGd38yn6fHnxaTZPFh-u3s3OFonOuWDJqoxPYiKtleacUU0EVFmdVlWV87TmlBBgus54yXWW57piQuQ156kogesiK9gpSva-4Qa6oZKdNxvld9IpI4MdKuXHSQaQWUZYHvmXe75R9h94fraQY43EM2lapj9pZF_s2c67H0P8GLkxQYO1qoX4dklJUdJSxF4dgDIRaU54RJ_foUO1gdXDJe57GIE3e0DH3wweaqlNf9vA3itjo5ccQyPXcsyGHLMhx9DI29DIbTQQ_xncn3GA9PVeemMs7A7WyYv31-PqbztM6GH7oFf-uyw447n8en0lZ0vyZTmbzeU5-wOmReos |
CitedBy_id | crossref_primary_10_1021_acs_jafc_3c09791 crossref_primary_10_1016_j_ibmb_2014_02_010 crossref_primary_10_3389_fphys_2018_01188 crossref_primary_10_3389_fncel_2018_00425 crossref_primary_10_7554_eLife_29100 crossref_primary_10_1093_molbev_msaa300 crossref_primary_10_3389_fphys_2016_00271 crossref_primary_10_3390_ijms24065595 crossref_primary_10_3389_fevo_2015_00105 crossref_primary_10_3389_fevo_2022_797287 crossref_primary_10_1371_journal_pone_0302496 crossref_primary_10_1007_s00018_017_2627_5 crossref_primary_10_1007_s00018_014_1639_7 crossref_primary_10_1016_j_jinsphys_2019_103941 crossref_primary_10_1186_s12864_019_5815_x crossref_primary_10_1111_1744_7917_12510 crossref_primary_10_1007_s00441_020_03401_8 crossref_primary_10_1093_chemse_bju052 crossref_primary_10_3389_fphys_2022_970915 crossref_primary_10_3389_fevo_2022_900818 crossref_primary_10_1007_s10340_022_01585_2 crossref_primary_10_3389_fevo_2016_00024 crossref_primary_10_1007_s00239_014_9650_z crossref_primary_10_1007_s00359_017_1205_5 crossref_primary_10_1016_j_ibmb_2019_103289 crossref_primary_10_1016_j_ijbiomac_2024_131503 crossref_primary_10_1021_acs_jafc_4c11699 crossref_primary_10_1111_eea_12982 crossref_primary_10_3389_fnmol_2023_1182361 crossref_primary_10_1371_journal_pone_0060263 crossref_primary_10_3389_fphys_2020_00176 crossref_primary_10_3390_insects11030193 crossref_primary_10_7554_eLife_49826 crossref_primary_10_1371_journal_pone_0062098 crossref_primary_10_1038_ncomms15709 crossref_primary_10_1016_j_ibmb_2020_103375 crossref_primary_10_1038_s42003_024_06921_z crossref_primary_10_1111_1744_7917_13098 crossref_primary_10_1016_j_ibmb_2015_09_007 crossref_primary_10_3389_fevo_2014_00005 crossref_primary_10_3389_fnbeh_2018_00189 crossref_primary_10_1038_srep32636 crossref_primary_10_1016_j_ibmb_2013_05_009 crossref_primary_10_1016_j_isci_2024_111243 crossref_primary_10_3389_fphys_2019_00367 crossref_primary_10_3389_fphys_2018_01163 crossref_primary_10_1016_j_ibmb_2021_103708 crossref_primary_10_1039_D2SD00112H crossref_primary_10_1111_imb_12096 crossref_primary_10_1038_srep41105 crossref_primary_10_1371_journal_pone_0144267 crossref_primary_10_3389_fphys_2020_00413 crossref_primary_10_1016_j_ibmb_2017_03_007 crossref_primary_10_1016_j_cbd_2018_04_003 crossref_primary_10_1146_annurev_ento_010715_023638 crossref_primary_10_1371_journal_pone_0077345 crossref_primary_10_3389_fevo_2015_00053 crossref_primary_10_3389_fevo_2015_00131 crossref_primary_10_1007_s11829_020_09791_4 crossref_primary_10_1016_j_biochi_2014_07_018 crossref_primary_10_1016_j_ibmb_2014_08_005 crossref_primary_10_1016_j_pestbp_2019_04_011 crossref_primary_10_1016_j_ibmb_2020_103439 crossref_primary_10_1007_s00359_013_0837_3 crossref_primary_10_1002_ps_7806 crossref_primary_10_1038_srep11001 crossref_primary_10_1111_imb_12109 crossref_primary_10_3389_fmolb_2023_1275901 crossref_primary_10_1002_ps_6831 crossref_primary_10_1038_srep32806 crossref_primary_10_1186_1471_2164_15_597 crossref_primary_10_1371_journal_pone_0131407 crossref_primary_10_3389_fevo_2015_00095 |
Cites_doi | 10.1111/j.1365-2583.2009.00939.x 10.1111/j.1744-7917.2011.01423.x 10.1111/j.1365-3032.2008.00645.x 10.1242/dev.118.2.401 10.1016/0022-1910(93)90096-A 10.1007/s10886-009-9737-y 10.1093/chemse/bjp010 10.1371/journal.pbio.0040020 10.1016/0022-1910(74)90142-5 10.1371/journal.pone.0008685 10.1016/j.neuron.2004.08.019 10.1073/pnas.0407596101 10.1073/pnas.0403052101 10.7150/ijbs.5.745 10.1126/science.1106267 10.1073/pnas.151105698 10.1046/j.1432-1327.2000.01772.x 10.1038/nature06328 10.1016/j.neuron.2005.04.007 10.1038/newbio244208a0 10.1007/BF02027947 10.1016/S0896-6273(03)00094-1 10.1093/chemse/bjm087 10.1038/nature05672 10.1073/pnas.0803309105 10.1111/j.1460-9568.2005.04058.x 10.1016/j.cell.2004.05.012 10.1007/BF02981888 10.1038/nature08834 10.1093/chemse/bjp002 10.1017/S0007485300007689 10.1093/molbev/msp259 10.7150/ijbs.5.319 10.1186/1471-2164-12-86 10.1016/j.cub.2005.02.007 10.1111/j.1365-2583.2010.01045.x 10.1073/pnas.0607874103 10.1093/chemse/bjj059 10.1073/pnas.1003881107 10.1111/j.1460-9568.2008.06429.x 10.1303/aez.11.45 10.1111/j.1460-9568.2007.05512.x 10.1111/j.1365-2583.2007.00708.x 10.1093/bioinformatics/btm404 10.1016/j.cell.2006.01.050 10.1073/pnas.92.1.44 |
ContentType | Journal Article |
Copyright | 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd – notice: 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QR 7SS 7TK 8FD F1W FR3 H95 L.G P64 1XC ADTPV AOWAS |
DOI | 10.1111/j.1460-9568.2012.08183.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Hyper Article en Ligne (HAL) SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Chemoreception Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Entomology Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Zoology |
EISSN | 1460-9568 |
EndPage | 2596 |
ExternalDocumentID | oai_slubar_slu_se_44035 oai_HAL_hal_01001292v1 22748123 10_1111_j_1460_9568_2012_08183_x EJN8183 ark_67375_WNG_CX0VXCCH_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7QR 7SS 7TK 8FD F1W FR3 H95 L.G P64 1XC ADTPV AOWAS |
ID | FETCH-LOGICAL-c5783-d9953382fac7731c08eb4f2bbb572f7100e3cf4797c455cb3885f77289e7c6463 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 07:00:57 EDT 2025 Wed Sep 03 07:04:47 EDT 2025 Fri Jul 11 05:32:18 EDT 2025 Fri Jul 11 09:48:12 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 04:00:32 EDT 2025 Wed Jan 22 16:34:07 EST 2025 Wed Oct 30 09:52:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | olfaction electroantennography pheromone insects odorant receptor single sensillum recordings |
Language | English |
License | 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5783-d9953382fac7731c08eb4f2bbb572f7100e3cf4797c455cb3885f77289e7c6463 |
Notes | istex:E3299EDF1FA015E57B79C8D68AF117E9480F14E1 ArticleID:EJN8183 ark:/67375/WNG-CX0VXCCH-B CNRS – Université Claude Bernard Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, F‐69622 Villeurbanne Cedex, France. Present address ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0673-7380 0000-0003-2166-8248 0000-0002-6904-2036 |
PMID | 22748123 |
PQID | 1038069707 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_44035 hal_primary_oai_HAL_hal_01001292v1 proquest_miscellaneous_1069198081 proquest_miscellaneous_1038069707 pubmed_primary_22748123 crossref_citationtrail_10_1111_j_1460_9568_2012_08183_x crossref_primary_10_1111_j_1460_9568_2012_08183_x wiley_primary_10_1111_j_1460_9568_2012_08183_x_EJN8183 istex_primary_ark_67375_WNG_CX0VXCCH_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Grosse-Wilde, E., Stieber, R., Forstner, M., Krieger, J., Wicher, D. & Hansson, B.S. (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front. Cell. Neurosci., 4, 22. Hallem, E.A. & Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell, 125, 143-160. Nesbitt, B.F., Beevor, P.S., Cole, R.A., Lester, R. & Poppi, R.G. (1973) Sex pheromones of two noctuid moths. Nat. New Biol., 244, 208-209. Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H. & Krieger, J. (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci., 25, 2364-2373. Forstner, M., Gohl, T., Gondesen, I., Raming, K., Breer, H. & Krieger, J. (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses, 33, 291-299. Kehat, M., Greenberg, S. & Tamaki, Y. (1976) Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel. Appl. Entomol. Zool., 11, 45-52. Grosse-Wilde, E., Svatos, A. & Krieger, J. (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses, 31, 547-555. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948. Quero, C., Lucas, P., Renou, M. & Guerrero, A. (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J. Chem. Ecol., 22, 1087-1102. Campion, D.G., Hunter-Jones, P., McVeigh, L.J., Hall, D.R., Lester, R. & Nesbitt, B.F. (1980) Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals. Bull. Entomol. Res., 70, 417-434. Miura, N., Nakagawa, T., Tatsuki, S., Touhara, K. & Ishikawa, Y. (2009) A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. Int. J. Biol. Sci., 5, 319-330. Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., Robertson, H.M. & Luetje, C.W. (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE, 5, e8685. Jacquin-Joly, E., Bohbot, J., Francois, M.C., Cain, A.H. & Nagnan-Le Meillour, P. (2000) Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur. J. Biochem., 267, 6708-6714. Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Tanoue, S., Yasukochi, Y., Touhara, K. & Nishioka, T. (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 101, 16653-16658. Jin, X., Ha, T.S. & Smith, D.P. (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 10996-11001. Legeai, F., Malpel, S., Montagné, N., Monsempes, C., Cousserans, F., Merlin, C., Francois, M.C., Maibèche-Coisne, M., Gavory, F., Poulain, J. & Jacquin-Joly, E. (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics, 12, 86. Durand, N., Carot-Sans, G., Chertemps, T., Montagné, N., Jacquin-Joly, E., Debernard, S. & Maibèche-Coisne, M. (2010) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol. Biol., 19, 87-97. Jones, W.D., Nguyen, T.A., Kloss, B., Lee, K.J. & Vosshall, L.B. (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol., 15, R119-R121. Kreher, S.A., Kwon, J.Y. & Carlson, J.R. (2005) The molecular basis of odor coding in the Drosophila larva. Neuron, 46, 445-456. Munoz, L., Rosell, G., Quero, C. & Guerrero, A. (2008) Biosynthetic pathways of the pheromone of the Egyptian armyworm Spodoptera littoralis. Physiol. Entomol., 33, 275-290. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827-841. Garczynski, S.F., Wanner, K.W. & Unruh, T.R. (2011) Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub-family in Lepidoptera. Insect Science, 19, 64-74. Witzgall, P., Kirsch, P. & Cork, A. (2010) Sex pheromones and their impact on pest management. J. Chem. Ecol., 36, 80-100. Patch, H.M., Velarde, R.A., Walden, K.K. & Robertson, H.M. (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem. Senses, 34, 305-316. Jordan, M.D., Anderson, A., Begum, D., Carraher, C., Authier, A., Marshall, S.D., Kiely, A., Gatehouse, L.N., Greenwood, D.R., Christie, D.L., Kralicek, A.V., Trowell, S.C. & Newcomb, R.D. (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem. Senses, 34, 383-394. Sonnhammer, E.L., von Heijne, G. & Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 175-182. Roelofs, W.L. (1995) Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 92, 44-49. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A. & Leal, W.S. (2006) Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA, 103, 16538-16543. Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y.M., Raming, K. & Breer, H. (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA, 101, 11845-11850. Brand, A.H. & Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415. Dunkelblum, E., Kehat, M., Gothilf, S., Greenberg, S. & Sklarsz, B. (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica, 10, 21-26. Syed, Z., Kopp, A., Kimbrell, D.A. & Leal, W.S. (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA, 107, 9436-9439. Wang, G., Vasquez, G.M., Schal, C., Zwiebel, L.J. & Gould, F. (2010) Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol. Biol., 20, 125-133. Carey, A.F., Wang, G., Su, C.Y., Zwiebel, L.J. & Carlson, J.R. (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature, 464, 66-71. Kurtovic, A., Widmer, A. & Dickson, B.J. (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542-546. Hallem, E.A., Ho, M.G. & Carlson, J.R. (2004) The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965-979. Störtkuhl, K.F. & Kettler, R. (2001) Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 98, 9381-9385. Ljungberg, H., Anderson, P. & Hansson, B.S. (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol., 39, 253-260. Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol., 4, e20. Wanner, K.W., Anderson, A.R., Trowell, S.C., Theilmann, D.A., Robertson, H.M. & Newcomb, R.D. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol., 16, 107-119. Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol., 27, 221-224. Mitsuno, H., Sakurai, T., Murai, M., Yasuda, T., Kugimiya, S., Ozawa, R., Toyohara, H., Takabayashi, J., Miyoshi, H. & Nishioka, T. (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur. J. Neurosci., 28, 893-902. Tamaki, Y. & Yushima, T. (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J. Insect Physiol., 20, 1005-1014. Benton, R., Vannice, K.S. & Vosshall, L.B. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature, 450, 289-293. Krieger, J., Grosse-Wilde, E., Gohl, T. & Breer, H. (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci., 21, 2167-2176. Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. & Vosshall, L.B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703-714. Forstner, M., Breer, H. & Krieger, J. (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int. J. Biol. Sci., 5, 745-757. Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 307, 1638-1642. 2004; 101 2004; 43 1973; 244 2006; 31 1995; 92 2007; 446 2010; 36 2010; 107 2010; 19 2011 2010; 464 1982; 10 2003; 37 2005; 21 2008; 105 2006; 4 1980; 70 2008; 33 2011; 12 2011; 19 2005; 46 2007; 16 2009; 34 2010; 20 1993; 118 2010; 27 1993; 39 1976; 11 1974; 20 2000; 267 2007; 450 2008; 28 2005; 307 2009; 5 2005; 15 1998; 6 2010; 5 2010; 4 2004; 117 2007; 23 2007; 25 2006; 125 2006; 103 1996; 22 2001; 98 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Grosse‐Wilde E. (e_1_2_7_16_1) 2010; 4 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Kehat M. (e_1_2_7_24_1) 1976; 11 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Sonnhammer E.L. (e_1_2_7_42_1) 1998; 6 |
References_xml | – reference: Grosse-Wilde, E., Stieber, R., Forstner, M., Krieger, J., Wicher, D. & Hansson, B.S. (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front. Cell. Neurosci., 4, 22. – reference: Witzgall, P., Kirsch, P. & Cork, A. (2010) Sex pheromones and their impact on pest management. J. Chem. Ecol., 36, 80-100. – reference: Jones, W.D., Nguyen, T.A., Kloss, B., Lee, K.J. & Vosshall, L.B. (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol., 15, R119-R121. – reference: Jordan, M.D., Anderson, A., Begum, D., Carraher, C., Authier, A., Marshall, S.D., Kiely, A., Gatehouse, L.N., Greenwood, D.R., Christie, D.L., Kralicek, A.V., Trowell, S.C. & Newcomb, R.D. (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem. Senses, 34, 383-394. – reference: Forstner, M., Gohl, T., Gondesen, I., Raming, K., Breer, H. & Krieger, J. (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses, 33, 291-299. – reference: Ljungberg, H., Anderson, P. & Hansson, B.S. (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol., 39, 253-260. – reference: Jacquin-Joly, E., Bohbot, J., Francois, M.C., Cain, A.H. & Nagnan-Le Meillour, P. (2000) Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur. J. Biochem., 267, 6708-6714. – reference: Störtkuhl, K.F. & Kettler, R. (2001) Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 98, 9381-9385. – reference: Wanner, K.W., Anderson, A.R., Trowell, S.C., Theilmann, D.A., Robertson, H.M. & Newcomb, R.D. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol., 16, 107-119. – reference: Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y.M., Raming, K. & Breer, H. (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA, 101, 11845-11850. – reference: Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 307, 1638-1642. – reference: Quero, C., Lucas, P., Renou, M. & Guerrero, A. (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J. Chem. Ecol., 22, 1087-1102. – reference: Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol., 4, e20. – reference: Garczynski, S.F., Wanner, K.W. & Unruh, T.R. (2011) Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub-family in Lepidoptera. Insect Science, 19, 64-74. – reference: Wang, G., Vasquez, G.M., Schal, C., Zwiebel, L.J. & Gould, F. (2010) Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol. Biol., 20, 125-133. – reference: Legeai, F., Malpel, S., Montagné, N., Monsempes, C., Cousserans, F., Merlin, C., Francois, M.C., Maibèche-Coisne, M., Gavory, F., Poulain, J. & Jacquin-Joly, E. (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics, 12, 86. – reference: Dunkelblum, E., Kehat, M., Gothilf, S., Greenberg, S. & Sklarsz, B. (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica, 10, 21-26. – reference: Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A. & Leal, W.S. (2006) Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA, 103, 16538-16543. – reference: Grosse-Wilde, E., Svatos, A. & Krieger, J. (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses, 31, 547-555. – reference: Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., Robertson, H.M. & Luetje, C.W. (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE, 5, e8685. – reference: Krieger, J., Grosse-Wilde, E., Gohl, T. & Breer, H. (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci., 21, 2167-2176. – reference: Kreher, S.A., Kwon, J.Y. & Carlson, J.R. (2005) The molecular basis of odor coding in the Drosophila larva. Neuron, 46, 445-456. – reference: Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948. – reference: Munoz, L., Rosell, G., Quero, C. & Guerrero, A. (2008) Biosynthetic pathways of the pheromone of the Egyptian armyworm Spodoptera littoralis. Physiol. Entomol., 33, 275-290. – reference: Nesbitt, B.F., Beevor, P.S., Cole, R.A., Lester, R. & Poppi, R.G. (1973) Sex pheromones of two noctuid moths. Nat. New Biol., 244, 208-209. – reference: Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Tanoue, S., Yasukochi, Y., Touhara, K. & Nishioka, T. (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 101, 16653-16658. – reference: Brand, A.H. & Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415. – reference: Sonnhammer, E.L., von Heijne, G. & Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 175-182. – reference: Hallem, E.A. & Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell, 125, 143-160. – reference: Campion, D.G., Hunter-Jones, P., McVeigh, L.J., Hall, D.R., Lester, R. & Nesbitt, B.F. (1980) Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals. Bull. Entomol. Res., 70, 417-434. – reference: Forstner, M., Breer, H. & Krieger, J. (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int. J. Biol. Sci., 5, 745-757. – reference: Roelofs, W.L. (1995) Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 92, 44-49. – reference: Syed, Z., Kopp, A., Kimbrell, D.A. & Leal, W.S. (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA, 107, 9436-9439. – reference: Jin, X., Ha, T.S. & Smith, D.P. (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 10996-11001. – reference: Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H. & Krieger, J. (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci., 25, 2364-2373. – reference: Carey, A.F., Wang, G., Su, C.Y., Zwiebel, L.J. & Carlson, J.R. (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature, 464, 66-71. – reference: Kehat, M., Greenberg, S. & Tamaki, Y. (1976) Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel. Appl. Entomol. Zool., 11, 45-52. – reference: Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol., 27, 221-224. – reference: Hallem, E.A., Ho, M.G. & Carlson, J.R. (2004) The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965-979. – reference: Kurtovic, A., Widmer, A. & Dickson, B.J. (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542-546. – reference: Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. & Vosshall, L.B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703-714. – reference: Mitsuno, H., Sakurai, T., Murai, M., Yasuda, T., Kugimiya, S., Ozawa, R., Toyohara, H., Takabayashi, J., Miyoshi, H. & Nishioka, T. (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur. J. Neurosci., 28, 893-902. – reference: Durand, N., Carot-Sans, G., Chertemps, T., Montagné, N., Jacquin-Joly, E., Debernard, S. & Maibèche-Coisne, M. (2010) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol. Biol., 19, 87-97. – reference: Miura, N., Nakagawa, T., Tatsuki, S., Touhara, K. & Ishikawa, Y. (2009) A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. Int. J. Biol. Sci., 5, 319-330. – reference: Patch, H.M., Velarde, R.A., Walden, K.K. & Robertson, H.M. (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem. Senses, 34, 305-316. – reference: Tamaki, Y. & Yushima, T. (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J. Insect Physiol., 20, 1005-1014. – reference: Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827-841. – reference: Benton, R., Vannice, K.S. & Vosshall, L.B. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature, 450, 289-293. – year: 2011 – volume: 446 start-page: 542 year: 2007 end-page: 546 article-title: A single class of olfactory neurons mediates behavioural responses to a sex pheromone publication-title: Nature – volume: 34 start-page: 305 year: 2009 end-page: 316 article-title: A candidate pheromone receptor and two odorant receptors of the hawkmoth publication-title: Chem. Senses – volume: 36 start-page: 80 year: 2010 end-page: 100 article-title: Sex pheromones and their impact on pest management publication-title: J. Chem. Ecol. – volume: 307 start-page: 1638 year: 2005 end-page: 1642 article-title: Insect sex‐pheromone signals mediated by specific combinations of olfactory receptors publication-title: Science – volume: 450 start-page: 289 year: 2007 end-page: 293 article-title: An essential role for a CD36‐related receptor in pheromone detection in publication-title: Nature – volume: 46 start-page: 445 year: 2005 end-page: 456 article-title: The molecular basis of odor coding in the larva publication-title: Neuron – volume: 10 start-page: 21 year: 1982 end-page: 26 article-title: Optimized mixture of sex pheromonal components for trapping of male in Israel publication-title: Phytoparasitica – volume: 267 start-page: 6708 year: 2000 end-page: 6714 article-title: Characterization of the general odorant‐binding protein 2 in the molecular coding of odorants in publication-title: Eur. J. Biochem. – volume: 105 start-page: 10996 year: 2008 end-page: 11001 article-title: SNMP is a signaling component required for pheromone sensitivity in Drosophila publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 125 year: 2010 end-page: 133 article-title: Functional characterization of pheromone receptors in the tobacco budworm publication-title: Insect Mol. Biol. – volume: 21 start-page: 2167 year: 2005 end-page: 2176 article-title: Candidate pheromone receptors of the silkmoth publication-title: Eur. J. Neurosci. – volume: 103 start-page: 16538 year: 2006 end-page: 16543 article-title: Pheromone reception in fruit flies expressing a moth’s odorant receptor publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 45 year: 1976 end-page: 52 article-title: Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, (Boisd.), in Israel publication-title: Appl. Entomol. Zool. – volume: 33 start-page: 275 year: 2008 end-page: 290 article-title: Biosynthetic pathways of the pheromone of the Egyptian armyworm publication-title: Physiol. Entomol. – volume: 4 start-page: 22 year: 2010 article-title: Sex‐specific odorant receptors of the tobacco hornworm publication-title: Front. Cell. Neurosci. – volume: 5 start-page: 319 year: 2009 end-page: 330 article-title: A male‐specific odorant receptor conserved through the evolution of sex pheromones in moth species publication-title: Int. J. Biol. Sci. – volume: 244 start-page: 208 year: 1973 end-page: 209 article-title: Sex pheromones of two noctuid moths publication-title: Nat. New Biol. – volume: 125 start-page: 143 year: 2006 end-page: 160 article-title: Coding of odors by a receptor repertoire publication-title: Cell – volume: 12 start-page: 86 year: 2011 article-title: An expressed sequence tag collection from the male antennae of the Noctuid moth : a resource for olfactory and pheromone detection research publication-title: BMC Genomics – volume: 19 start-page: 64 year: 2011 end-page: 74 article-title: Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub‐family in Lepidoptera publication-title: Insect Science – volume: 101 start-page: 11845 year: 2004 end-page: 11850 article-title: Genes encoding candidate pheromone receptors in a moth ( ) publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: e8685 year: 2010 article-title: Sex pheromone receptor specificity in the European corn borer moth, publication-title: PLoS ONE – volume: 70 start-page: 417 year: 1980 end-page: 434 article-title: Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals publication-title: Bull. Entomol. Res. – volume: 117 start-page: 965 year: 2004 end-page: 979 article-title: The molecular basis of odor coding in the antenna publication-title: Cell – volume: 16 start-page: 107 year: 2007 end-page: 119 article-title: Female‐biased expression of odourant receptor genes in the adult antennae of the silkworm, publication-title: Insect Mol. Biol. – volume: 43 start-page: 703 year: 2004 end-page: 714 article-title: Or83b encodes a broadly expressed odorant receptor essential for olfaction publication-title: Neuron – volume: 37 start-page: 827 year: 2003 end-page: 841 article-title: Integrating the molecular and cellular basis of odor coding in the antenna publication-title: Neuron – volume: 118 start-page: 401 year: 1993 end-page: 415 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development – volume: 101 start-page: 16653 year: 2004 end-page: 16658 article-title: Identification and functional characterization of a sex pheromone receptor in the silkmoth publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 1087 year: 1996 end-page: 1102 article-title: Behavioral responses of males to sex pheromone components and virgin females in wind tunnel publication-title: J. Chem. Ecol. – volume: 28 start-page: 893 year: 2008 end-page: 902 article-title: Identification of receptors of main sex‐pheromone components of three Lepidopteran species publication-title: Eur. J. Neurosci. – volume: 31 start-page: 547 year: 2006 end-page: 555 article-title: A pheromone‐binding protein mediates the bombykol‐induced activation of a pheromone receptor publication-title: Chem. Senses – volume: 15 start-page: R119 year: 2005 end-page: R121 article-title: Functional conservation of an insect odorant receptor gene across 250 million years of evolution publication-title: Curr. Biol. – volume: 98 start-page: 9381 year: 2001 end-page: 9385 article-title: Functional analysis of an olfactory receptor in publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 221 year: 2010 end-page: 224 article-title: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building publication-title: Mol. Biol. Evol. – volume: 4 start-page: e20 year: 2006 article-title: Atypical membrane topology and heteromeric function of odorant receptors publication-title: PLoS Biol. – volume: 19 start-page: 87 year: 2010 end-page: 97 article-title: A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth publication-title: Insect Mol. Biol. – volume: 33 start-page: 291 year: 2008 end-page: 299 article-title: Differential expression of SNMP‐1 and SNMP‐2 proteins in pheromone‐sensitive hairs of moths publication-title: Chem. Senses – volume: 20 start-page: 1005 year: 1974 end-page: 1014 article-title: Sex pheromone of the cotton leafworm, publication-title: J. Insect Physiol. – volume: 6 start-page: 175 year: 1998 end-page: 182 article-title: A hidden Markov model for predicting transmembrane helices in protein sequences publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 23 start-page: 2947 year: 2007 end-page: 2948 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics – volume: 34 start-page: 383 year: 2009 end-page: 394 article-title: Odorant receptors from the light brown apple moth ( ) recognize important volatile compounds produced by plants publication-title: Chem. Senses – volume: 5 start-page: 745 year: 2009 end-page: 757 article-title: A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth publication-title: Int. J. Biol. Sci. – volume: 39 start-page: 253 year: 1993 end-page: 260 article-title: Physiology and morphology of pheromone‐specific sensilla on the antennae of male and female (Lepidoptera: Noctuidae) publication-title: J. Insect Physiol. – volume: 25 start-page: 2364 year: 2007 end-page: 2373 article-title: Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds publication-title: Eur. J. Neurosci. – volume: 464 start-page: 66 year: 2010 end-page: 71 article-title: Odorant reception in the malaria mosquito publication-title: Nature – volume: 92 start-page: 44 year: 1995 end-page: 49 article-title: Chemistry of sex attraction publication-title: Proc. Natl. Acad. Sci. USA – volume: 107 start-page: 9436 year: 2010 end-page: 9439 article-title: Bombykol receptors in the silkworm moth and the fruit fly publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2583.2009.00939.x – ident: e_1_2_7_13_1 doi: 10.1111/j.1744-7917.2011.01423.x – ident: e_1_2_7_35_1 doi: 10.1111/j.1365-3032.2008.00645.x – ident: e_1_2_7_4_1 doi: 10.1242/dev.118.2.401 – ident: e_1_2_7_32_1 doi: 10.1016/0022-1910(93)90096-A – ident: e_1_2_7_50_1 doi: 10.1007/s10886-009-9737-y – ident: e_1_2_7_23_1 doi: 10.1093/chemse/bjp010 – ident: e_1_2_7_2_1 doi: 10.1371/journal.pbio.0040020 – ident: e_1_2_7_46_1 doi: 10.1016/0022-1910(74)90142-5 – ident: e_1_2_7_49_1 doi: 10.1371/journal.pone.0008685 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuron.2004.08.019 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0407596101 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.0403052101 – ident: e_1_2_7_11_1 doi: 10.7150/ijbs.5.745 – ident: e_1_2_7_36_1 doi: 10.1126/science.1106267 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.151105698 – ident: e_1_2_7_20_1 doi: 10.1046/j.1432-1327.2000.01772.x – ident: e_1_2_7_3_1 doi: 10.1038/nature06328 – ident: e_1_2_7_10_1 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuron.2005.04.007 – ident: e_1_2_7_37_1 doi: 10.1038/newbio244208a0 – ident: e_1_2_7_39_1 doi: 10.1007/BF02027947 – ident: e_1_2_7_7_1 doi: 10.1016/S0896-6273(03)00094-1 – ident: e_1_2_7_12_1 doi: 10.1093/chemse/bjm087 – ident: e_1_2_7_28_1 doi: 10.1038/nature05672 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.0803309105 – ident: e_1_2_7_26_1 doi: 10.1111/j.1460-9568.2005.04058.x – ident: e_1_2_7_19_1 doi: 10.1016/j.cell.2004.05.012 – ident: e_1_2_7_8_1 doi: 10.1007/BF02981888 – volume: 4 start-page: 22 year: 2010 ident: e_1_2_7_16_1 article-title: Sex‐specific odorant receptors of the tobacco hornworm Manduca sexta publication-title: Front. Cell. Neurosci. – ident: e_1_2_7_6_1 doi: 10.1038/nature08834 – ident: e_1_2_7_38_1 doi: 10.1093/chemse/bjp002 – ident: e_1_2_7_5_1 doi: 10.1017/S0007485300007689 – ident: e_1_2_7_14_1 doi: 10.1093/molbev/msp259 – ident: e_1_2_7_34_1 doi: 10.7150/ijbs.5.319 – ident: e_1_2_7_31_1 doi: 10.1186/1471-2164-12-86 – ident: e_1_2_7_22_1 doi: 10.1016/j.cub.2005.02.007 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-2583.2010.01045.x – ident: e_1_2_7_44_1 doi: 10.1073/pnas.0607874103 – ident: e_1_2_7_17_1 doi: 10.1093/chemse/bjj059 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.1003881107 – ident: e_1_2_7_33_1 doi: 10.1111/j.1460-9568.2008.06429.x – volume: 6 start-page: 175 year: 1998 ident: e_1_2_7_42_1 article-title: A hidden Markov model for predicting transmembrane helices in protein sequences publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 11 start-page: 45 year: 1976 ident: e_1_2_7_24_1 article-title: Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel publication-title: Appl. Entomol. Zool. doi: 10.1303/aez.11.45 – ident: e_1_2_7_15_1 doi: 10.1111/j.1460-9568.2007.05512.x – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2583.2007.00708.x – ident: e_1_2_7_29_1 doi: 10.1093/bioinformatics/btm404 – ident: e_1_2_7_18_1 doi: 10.1016/j.cell.2006.01.050 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.92.1.44 |
SSID | ssj0008645 |
Score | 2.3653417 |
Snippet | Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this... Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this... |
SourceID | swepub hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2588 |
SubjectTerms | Action Potentials Agricultural sciences Amino Acid Sequence Animals Arthropod Antennae - metabolism Arthropod Antennae - physiology Biochemistry and Molecular Biology Biokemi och molekylärbiologi Diptera Drosophila Drosophila - genetics Drosophila - metabolism Drosophila - physiology electroantennography Gene Expression Insect Proteins - genetics Insect Proteins - metabolism Insect Proteins - physiology insects Life Sciences Molecular Sequence Data Noctuidae odorant receptor olfaction Olfactory Receptor Neurons - physiology pheromone Receptors, Pheromone - genetics Receptors, Pheromone - metabolism Receptors, Pheromone - physiology Sensilla - physiology Sex Attractants - pharmacology single sensillum recordings Spodoptera Spodoptera littoralis Zoologi Zoology |
Title | Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila |
URI | https://api.istex.fr/ark:/67375/WNG-CX0VXCCH-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2012.08183.x https://www.ncbi.nlm.nih.gov/pubmed/22748123 https://www.proquest.com/docview/1038069707 https://www.proquest.com/docview/1069198081 https://hal.science/hal-01001292 https://res.slu.se/id/publ/44035 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCFxy6P8JJBaG-p8rZ9LGVLtYIegIXeLNtxtFVLGiUt6vIH-NvMOGlQVyu0QpwSWXbiTsbjGfebbwh5EykGbodifpELF6CAHYxy4Ztcc8HBVgqNyckfp9nkLDmdpbMO_4S5MC0_RH_ghivD2Wtc4Eo3lxd54GO6GyK0ogGSs8UD9CcRuoX-0ac_TFI8c_WKkV3N52E22wf1XPmgvZ3q5jniJG-h6LdXOaM90-i-k-t2qfE9stj9vhacshhs1npgfl6ifvw_ArhP7nbOLB222veA3LDlITkalhDIf7-gx9TBS925_SG5PdqVljsiv8awm7aHkNT0jNFtQihdFVTRxm4pEh6sYJVYClbZVutVTeclBYeVViATijpGP1cQVleYRU0hnlgj3cC8ofqCniPMB1-92jTUbju4b4lPeFe72g3zpXpIzsYnX0YTv6sI4RuwLLGfC0TD8qhQhrE4NAG3OikirXXKogKJimxsioQJZpI0NTrmPC0gfuDCMpMlWfyIHJQw7yeEMp4bkWquhBaJElxlqUhEBM02EHkgPMJ2X1-aji4dq3Ys5V7YFEiUv0T5Syd_ufVI2I-sWsqQa4x5DQrWd0fO78nwg8S2IHSHhdGP0CPHTv_6bqpeIC6PpfLb9L0czYKvs9FoIt965NVOQSV8WfwLSJUW5C2RDj_IBAvY3_pkIhRYkcUjj1vt7t8YRSwBlzCGqbTqvjflZrnRqsaLbKxMkiBOPZI5Hb62JOTJ6RTvnv7rwGfkDja3OMDn5GBdb-wLcBzX-qUzCb8Bss9eaQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagPZQLhRbK8jQI9bbRvm0fQ9oQSpoDtJCbZXu9atSwWeVRpfwB_jYz3mRRqgpViFOilb3rzI7HM5NvviHkfaQYuB2K-UUuXIACdjDKhW9yzQUHWyk0FiefDrLeeXIyTIerdkBYC1PzQzQJN9wZzl7jBseE9M1dHvhY74YQraiF7GxxCxzKbWzwjbv06MsfLimeuY7FyK_m8zAbbsJ6br3Txll1_wKRktso_OVt7mjDNbrp5rpzqrtLxutfWMNTLluLuW6ZnzfIH_-TCB6Rhyt_lrZrBXxM7tlyj-y3S4jlf1zTQ-oQpi51v0d2OuvucvvkVxcO1DoPSU1DGl3XhNJJQRWd2SVFzoMJbBRLwTDbaj6Z0lFJwWelFQiFoprRrxVE1hUWUlMIKebIODCaUX1NLxDpg4-eLGbULleI3xLvcDR17RtGY_WEnHePzzo9f9UUwjdgXGI_FwiI5VGhDGNxaAJudVJEWuuURQVyFdnYFAkTzCRpanTMeVpACMGFZSZLsvgp2Sph3c8IZTw3ItVcCS0SJbjKUpGICC7bQOSB8Ahbv35pVozp2LhjLDcip0Ci_CXKXzr5y6VHwmZmVbOG3GHOO9CwZjjSfvfafYnXgtDlC6Or0COHTgGbYWp6idA8lsrvg4-yMwy-DTudnvzgkbdrDZXwZvFfIFVakLdERvwgEyxgfxuTiVBgUxaPHNTq3TwxilgCXmEMS6n1fWPJs_FCqyl-yJmVSRLEqUcyp8R3loQ8Phngt-f_OvEN2emdnfZl_9Pg8wvyAIfUsMCXZGs-XdhX4EfO9WtnH34DdTxigg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgk4CXARsf4dMgtLdU-bb9WNqVMkaFgEHfLNtxtKpdGvUDdfwD_NvcOW1QpwlNiKdElp24l_P5zv3d7wh5EykGbodifpELF6CAHYxy4Ztcc8HBVgqNyckfB1n_NDkepsM1_glzYWp-iObADVeGs9e4wKu8uLzIAx_T3RChFbWQnC1ugT-5C-0cA7Hu5z9UUjxzBYuRXs3nYTbcRvVc-aStrermGQIld1H2q6u80YZqdNvLddtU7y4Zb35gjU4Zt5YL3TI_L3E__h8J3CN7a2-Wtmv1u09u2HKfHLRLiOTPL-ghdfhSd3C_T253NrXlDsivHmyn9SkkNQ1ldJ0RSqcFVXRuVxQZD6awTCwFs2yrxXRGRyUFj5VWIBOKSka_VBBXV5hGTSGgWCDfwGhO9QU9Q5wPvnq6nFO7WuN9S3xCd-aKN4wm6gE57R197fT9dUkI34Bpif1cIByWR4UyjMWhCbjVSRFprVMWFchUZGNTJEwwk6Sp0THnaQEBBBeWmSzJ4odkp4R5PyaU8dyIVHMltEiU4CpLRSIiaLaByAPhEbb5-tKs-dKxbMdEbsVNgUT5S5S_dPKXK4-Ezciq5gy5xpjXoGBNdyT97rdPJLYFoTstjH6EHjl0-td0U7MxAvNYKr8P3snOMPg27HT68q1HXm0UVMKXxf-AVGlB3hL58INMsID9rU8mQoElWTzyqNbu5o1RxBLwCWOYSq3uW1OeT5ZazfAi51YmSRCnHsmcDl9bEvLoeIB3T_514Ety61O3J0_eDz48JXewR40JfEZ2FrOlfQ5O5EK_cNbhNxHRYTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+a+sex+pheromone+receptor+in+the+pest+moth+Spodoptera+littoralis+by+heterologous+expression+in+Drosophila&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Larsson%2C+Mattias&rft.date=2012-09-01&rft.issn=0953-816X&rft.volume=36&rft.spage=2588&rft_id=info:doi/10.1111%2Fj.1460-9568.2012.08183.x&rft.externalDocID=oai_slubar_slu_se_44035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |