Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila

Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex phe...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 36; no. 5; pp. 2588 - 2596
Main Authors Montagné, Nicolas, Chertemps, Thomas, Brigaud, Isabelle, François, Adrien, François, Marie-Christine, de Fouchier, Arthur, Lucas, Philippe, Larsson, Mattias C., Jacquin-Joly, Emmanuelle
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2012
Wiley
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/j.1460-9568.2012.08183.x

Cover

Loading…
Abstract Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila.
AbstractList Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.
Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila.
Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.
Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal-expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full-length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)-9,12-tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)-9,12-tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.
Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis. Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to (Z,E)‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context. A candidate pheromone receptor of the noctuid moth Spodoptera littoralis, was deorphanised using Drosophila antennae as a heterologous expression system. We identified a single component of the pheromone blend of S. littoralis, (Z,E)‐9,12‐tetradecadienyl acetate, as the ligand of this receptor, named SlitOR6. To our knowledge, we report here the first de novo deorphanization of an odorant receptor outside Diptera using heterologous expression in Drosophila.
Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understanding the specificity and sensitivity of this communication system, but only few of these receptors have as yet been functionally characterised. In this context, we aim at unravelling the molecular bases of pheromone reception in the noctuid moth Spodoptera littoralis . Taking advantage of a collection of antennal‐expressed sequence tags, we previously identified three fragments of candidate pheromone receptors in this species. Here, we report full‐length cloning of one of these receptors, named SlitOR6. Both sequence and expression pattern analyses were consistent with its annotation as a pheromone receptor, which we further confirmed by functional characterization. Using Drosophila antennae as a heterologous expression system, we identified a single component of the pheromone blend of S. littoralis , ( Z,E )‐9,12‐tetradecadienyl acetate, as the ligand of SlitOR6. Two strategies were employed: (i) expressing SlitOR6 in the majority of Drosophila olfactory neurons, in addition to endogenous receptors, and monitoring the responses to pheromone stimuli by electroantennography; (ii) replacing the Drosophila pheromone receptor OR67d with SlitOR6 and monitoring the response by single sensillum recordings. Results were fully congruent and responses to ( Z,E )‐9,12‐tetradecadienyl acetate were highly specific in both heterologous systems. This approach appears to be efficient and reliable for studying moth pheromone receptors in an in vivo context.
Author Brigaud, Isabelle
Larsson, Mattias C.
Chertemps, Thomas
François, Marie-Christine
Montagné, Nicolas
Jacquin-Joly, Emmanuelle
Lucas, Philippe
François, Adrien
de Fouchier, Arthur
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Montagné
  fullname: Montagné, Nicolas
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 2
  givenname: Thomas
  surname: Chertemps
  fullname: Chertemps, Thomas
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 3
  givenname: Isabelle
  surname: Brigaud
  fullname: Brigaud, Isabelle
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 4
  givenname: Adrien
  surname: François
  fullname: François, Adrien
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 5
  givenname: Marie-Christine
  surname: François
  fullname: François, Marie-Christine
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 6
  givenname: Arthur
  surname: de Fouchier
  fullname: de Fouchier, Arthur
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 7
  givenname: Philippe
  surname: Lucas
  fullname: Lucas, Philippe
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
– sequence: 8
  givenname: Mattias C.
  surname: Larsson
  fullname: Larsson, Mattias C.
  organization: Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Alnarp, Sweden
– sequence: 9
  givenname: Emmanuelle
  surname: Jacquin-Joly
  fullname: Jacquin-Joly, Emmanuelle
  organization: UPMC - Université Paris 6, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22748123$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01001292$$DView record in HAL
https://res.slu.se/id/publ/44035$$DView record from Swedish Publication Index
BookMark eNqNks1y0zAUhTVMGZoWXoHREhYOkmVb8gJm2tA2MJmy4C87jaxcYwXFMpJNE16A10Zu2jKwijbSXH3n6OeeE3TUuhYQwpRMaRyv1lOaFSQp80JMU0LTKRFUsOn2EZo8bByhCSlzlghaLI_RSQhrQogosvwJOk5Tngmasgn6fTm0ujeuVRbrRnmle_DmlxpL2NVY4QBb3DXg3SbeAXvQ0PXOY9PivgHcQejxxvUN_ti5leuiWmFr-ogoawKudriBWHTWfXNDwLDtPIQwukeHt94F1zXGqqfoca1sgGd38yn6fHnxaTZPFh-u3s3OFonOuWDJqoxPYiKtleacUU0EVFmdVlWV87TmlBBgus54yXWW57piQuQ156kogesiK9gpSva-4Qa6oZKdNxvld9IpI4MdKuXHSQaQWUZYHvmXe75R9h94fraQY43EM2lapj9pZF_s2c67H0P8GLkxQYO1qoX4dklJUdJSxF4dgDIRaU54RJ_foUO1gdXDJe57GIE3e0DH3wweaqlNf9vA3itjo5ccQyPXcsyGHLMhx9DI29DIbTQQ_xncn3GA9PVeemMs7A7WyYv31-PqbztM6GH7oFf-uyw447n8en0lZ0vyZTmbzeU5-wOmReos
CitedBy_id crossref_primary_10_1021_acs_jafc_3c09791
crossref_primary_10_1016_j_ibmb_2014_02_010
crossref_primary_10_3389_fphys_2018_01188
crossref_primary_10_3389_fncel_2018_00425
crossref_primary_10_7554_eLife_29100
crossref_primary_10_1093_molbev_msaa300
crossref_primary_10_3389_fphys_2016_00271
crossref_primary_10_3390_ijms24065595
crossref_primary_10_3389_fevo_2015_00105
crossref_primary_10_3389_fevo_2022_797287
crossref_primary_10_1371_journal_pone_0302496
crossref_primary_10_1007_s00018_017_2627_5
crossref_primary_10_1007_s00018_014_1639_7
crossref_primary_10_1016_j_jinsphys_2019_103941
crossref_primary_10_1186_s12864_019_5815_x
crossref_primary_10_1111_1744_7917_12510
crossref_primary_10_1007_s00441_020_03401_8
crossref_primary_10_1093_chemse_bju052
crossref_primary_10_3389_fphys_2022_970915
crossref_primary_10_3389_fevo_2022_900818
crossref_primary_10_1007_s10340_022_01585_2
crossref_primary_10_3389_fevo_2016_00024
crossref_primary_10_1007_s00239_014_9650_z
crossref_primary_10_1007_s00359_017_1205_5
crossref_primary_10_1016_j_ibmb_2019_103289
crossref_primary_10_1016_j_ijbiomac_2024_131503
crossref_primary_10_1021_acs_jafc_4c11699
crossref_primary_10_1111_eea_12982
crossref_primary_10_3389_fnmol_2023_1182361
crossref_primary_10_1371_journal_pone_0060263
crossref_primary_10_3389_fphys_2020_00176
crossref_primary_10_3390_insects11030193
crossref_primary_10_7554_eLife_49826
crossref_primary_10_1371_journal_pone_0062098
crossref_primary_10_1038_ncomms15709
crossref_primary_10_1016_j_ibmb_2020_103375
crossref_primary_10_1038_s42003_024_06921_z
crossref_primary_10_1111_1744_7917_13098
crossref_primary_10_1016_j_ibmb_2015_09_007
crossref_primary_10_3389_fevo_2014_00005
crossref_primary_10_3389_fnbeh_2018_00189
crossref_primary_10_1038_srep32636
crossref_primary_10_1016_j_ibmb_2013_05_009
crossref_primary_10_1016_j_isci_2024_111243
crossref_primary_10_3389_fphys_2019_00367
crossref_primary_10_3389_fphys_2018_01163
crossref_primary_10_1016_j_ibmb_2021_103708
crossref_primary_10_1039_D2SD00112H
crossref_primary_10_1111_imb_12096
crossref_primary_10_1038_srep41105
crossref_primary_10_1371_journal_pone_0144267
crossref_primary_10_3389_fphys_2020_00413
crossref_primary_10_1016_j_ibmb_2017_03_007
crossref_primary_10_1016_j_cbd_2018_04_003
crossref_primary_10_1146_annurev_ento_010715_023638
crossref_primary_10_1371_journal_pone_0077345
crossref_primary_10_3389_fevo_2015_00053
crossref_primary_10_3389_fevo_2015_00131
crossref_primary_10_1007_s11829_020_09791_4
crossref_primary_10_1016_j_biochi_2014_07_018
crossref_primary_10_1016_j_ibmb_2014_08_005
crossref_primary_10_1016_j_pestbp_2019_04_011
crossref_primary_10_1016_j_ibmb_2020_103439
crossref_primary_10_1007_s00359_013_0837_3
crossref_primary_10_1002_ps_7806
crossref_primary_10_1038_srep11001
crossref_primary_10_1111_imb_12109
crossref_primary_10_3389_fmolb_2023_1275901
crossref_primary_10_1002_ps_6831
crossref_primary_10_1038_srep32806
crossref_primary_10_1186_1471_2164_15_597
crossref_primary_10_1371_journal_pone_0131407
crossref_primary_10_3389_fevo_2015_00095
Cites_doi 10.1111/j.1365-2583.2009.00939.x
10.1111/j.1744-7917.2011.01423.x
10.1111/j.1365-3032.2008.00645.x
10.1242/dev.118.2.401
10.1016/0022-1910(93)90096-A
10.1007/s10886-009-9737-y
10.1093/chemse/bjp010
10.1371/journal.pbio.0040020
10.1016/0022-1910(74)90142-5
10.1371/journal.pone.0008685
10.1016/j.neuron.2004.08.019
10.1073/pnas.0407596101
10.1073/pnas.0403052101
10.7150/ijbs.5.745
10.1126/science.1106267
10.1073/pnas.151105698
10.1046/j.1432-1327.2000.01772.x
10.1038/nature06328
10.1016/j.neuron.2005.04.007
10.1038/newbio244208a0
10.1007/BF02027947
10.1016/S0896-6273(03)00094-1
10.1093/chemse/bjm087
10.1038/nature05672
10.1073/pnas.0803309105
10.1111/j.1460-9568.2005.04058.x
10.1016/j.cell.2004.05.012
10.1007/BF02981888
10.1038/nature08834
10.1093/chemse/bjp002
10.1017/S0007485300007689
10.1093/molbev/msp259
10.7150/ijbs.5.319
10.1186/1471-2164-12-86
10.1016/j.cub.2005.02.007
10.1111/j.1365-2583.2010.01045.x
10.1073/pnas.0607874103
10.1093/chemse/bjj059
10.1073/pnas.1003881107
10.1111/j.1460-9568.2008.06429.x
10.1303/aez.11.45
10.1111/j.1460-9568.2007.05512.x
10.1111/j.1365-2583.2007.00708.x
10.1093/bioinformatics/btm404
10.1016/j.cell.2006.01.050
10.1073/pnas.92.1.44
ContentType Journal Article
Copyright 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
– notice: 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QR
7SS
7TK
8FD
F1W
FR3
H95
L.G
P64
1XC
ADTPV
AOWAS
DOI 10.1111/j.1460-9568.2012.08183.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Chemoreception Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Entomology Abstracts
MEDLINE - Academic


CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Zoology
EISSN 1460-9568
EndPage 2596
ExternalDocumentID oai_slubar_slu_se_44035
oai_HAL_hal_01001292v1
22748123
10_1111_j_1460_9568_2012_08183_x
EJN8183
ark_67375_WNG_CX0VXCCH_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7QR
7SS
7TK
8FD
F1W
FR3
H95
L.G
P64
1XC
ADTPV
AOWAS
ID FETCH-LOGICAL-c5783-d9953382fac7731c08eb4f2bbb572f7100e3cf4797c455cb3885f77289e7c6463
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Thu Aug 21 07:00:57 EDT 2025
Wed Sep 03 07:04:47 EDT 2025
Fri Jul 11 05:32:18 EDT 2025
Fri Jul 11 09:48:12 EDT 2025
Thu Apr 03 07:07:03 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Tue Jul 01 04:00:32 EDT 2025
Wed Jan 22 16:34:07 EST 2025
Wed Oct 30 09:52:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords olfaction
electroantennography
pheromone
insects
odorant receptor
single sensillum recordings
Language English
License 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5783-d9953382fac7731c08eb4f2bbb572f7100e3cf4797c455cb3885f77289e7c6463
Notes istex:E3299EDF1FA015E57B79C8D68AF117E9480F14E1
ArticleID:EJN8183
ark:/67375/WNG-CX0VXCCH-B
CNRS – Université Claude Bernard Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, F‐69622 Villeurbanne Cedex, France.
Present address
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0673-7380
0000-0003-2166-8248
0000-0002-6904-2036
PMID 22748123
PQID 1038069707
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_slubar_slu_se_44035
hal_primary_oai_HAL_hal_01001292v1
proquest_miscellaneous_1069198081
proquest_miscellaneous_1038069707
pubmed_primary_22748123
crossref_citationtrail_10_1111_j_1460_9568_2012_08183_x
crossref_primary_10_1111_j_1460_9568_2012_08183_x
wiley_primary_10_1111_j_1460_9568_2012_08183_x_EJN8183
istex_primary_ark_67375_WNG_CX0VXCCH_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Grosse-Wilde, E., Stieber, R., Forstner, M., Krieger, J., Wicher, D. & Hansson, B.S. (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front. Cell. Neurosci., 4, 22.
Hallem, E.A. & Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell, 125, 143-160.
Nesbitt, B.F., Beevor, P.S., Cole, R.A., Lester, R. & Poppi, R.G. (1973) Sex pheromones of two noctuid moths. Nat. New Biol., 244, 208-209.
Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H. & Krieger, J. (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci., 25, 2364-2373.
Forstner, M., Gohl, T., Gondesen, I., Raming, K., Breer, H. & Krieger, J. (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses, 33, 291-299.
Kehat, M., Greenberg, S. & Tamaki, Y. (1976) Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel. Appl. Entomol. Zool., 11, 45-52.
Grosse-Wilde, E., Svatos, A. & Krieger, J. (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses, 31, 547-555.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
Quero, C., Lucas, P., Renou, M. & Guerrero, A. (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J. Chem. Ecol., 22, 1087-1102.
Campion, D.G., Hunter-Jones, P., McVeigh, L.J., Hall, D.R., Lester, R. & Nesbitt, B.F. (1980) Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals. Bull. Entomol. Res., 70, 417-434.
Miura, N., Nakagawa, T., Tatsuki, S., Touhara, K. & Ishikawa, Y. (2009) A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. Int. J. Biol. Sci., 5, 319-330.
Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., Robertson, H.M. & Luetje, C.W. (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE, 5, e8685.
Jacquin-Joly, E., Bohbot, J., Francois, M.C., Cain, A.H. & Nagnan-Le Meillour, P. (2000) Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur. J. Biochem., 267, 6708-6714.
Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Tanoue, S., Yasukochi, Y., Touhara, K. & Nishioka, T. (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 101, 16653-16658.
Jin, X., Ha, T.S. & Smith, D.P. (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 10996-11001.
Legeai, F., Malpel, S., Montagné, N., Monsempes, C., Cousserans, F., Merlin, C., Francois, M.C., Maibèche-Coisne, M., Gavory, F., Poulain, J. & Jacquin-Joly, E. (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics, 12, 86.
Durand, N., Carot-Sans, G., Chertemps, T., Montagné, N., Jacquin-Joly, E., Debernard, S. & Maibèche-Coisne, M. (2010) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol. Biol., 19, 87-97.
Jones, W.D., Nguyen, T.A., Kloss, B., Lee, K.J. & Vosshall, L.B. (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol., 15, R119-R121.
Kreher, S.A., Kwon, J.Y. & Carlson, J.R. (2005) The molecular basis of odor coding in the Drosophila larva. Neuron, 46, 445-456.
Munoz, L., Rosell, G., Quero, C. & Guerrero, A. (2008) Biosynthetic pathways of the pheromone of the Egyptian armyworm Spodoptera littoralis. Physiol. Entomol., 33, 275-290.
Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827-841.
Garczynski, S.F., Wanner, K.W. & Unruh, T.R. (2011) Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub-family in Lepidoptera. Insect Science, 19, 64-74.
Witzgall, P., Kirsch, P. & Cork, A. (2010) Sex pheromones and their impact on pest management. J. Chem. Ecol., 36, 80-100.
Patch, H.M., Velarde, R.A., Walden, K.K. & Robertson, H.M. (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem. Senses, 34, 305-316.
Jordan, M.D., Anderson, A., Begum, D., Carraher, C., Authier, A., Marshall, S.D., Kiely, A., Gatehouse, L.N., Greenwood, D.R., Christie, D.L., Kralicek, A.V., Trowell, S.C. & Newcomb, R.D. (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem. Senses, 34, 383-394.
Sonnhammer, E.L., von Heijne, G. & Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 175-182.
Roelofs, W.L. (1995) Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 92, 44-49.
Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A. & Leal, W.S. (2006) Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA, 103, 16538-16543.
Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y.M., Raming, K. & Breer, H. (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA, 101, 11845-11850.
Brand, A.H. & Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415.
Dunkelblum, E., Kehat, M., Gothilf, S., Greenberg, S. & Sklarsz, B. (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica, 10, 21-26.
Syed, Z., Kopp, A., Kimbrell, D.A. & Leal, W.S. (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA, 107, 9436-9439.
Wang, G., Vasquez, G.M., Schal, C., Zwiebel, L.J. & Gould, F. (2010) Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol. Biol., 20, 125-133.
Carey, A.F., Wang, G., Su, C.Y., Zwiebel, L.J. & Carlson, J.R. (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature, 464, 66-71.
Kurtovic, A., Widmer, A. & Dickson, B.J. (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542-546.
Hallem, E.A., Ho, M.G. & Carlson, J.R. (2004) The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965-979.
Störtkuhl, K.F. & Kettler, R. (2001) Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 98, 9381-9385.
Ljungberg, H., Anderson, P. & Hansson, B.S. (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol., 39, 253-260.
Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol., 4, e20.
Wanner, K.W., Anderson, A.R., Trowell, S.C., Theilmann, D.A., Robertson, H.M. & Newcomb, R.D. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol., 16, 107-119.
Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol., 27, 221-224.
Mitsuno, H., Sakurai, T., Murai, M., Yasuda, T., Kugimiya, S., Ozawa, R., Toyohara, H., Takabayashi, J., Miyoshi, H. & Nishioka, T. (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur. J. Neurosci., 28, 893-902.
Tamaki, Y. & Yushima, T. (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J. Insect Physiol., 20, 1005-1014.
Benton, R., Vannice, K.S. & Vosshall, L.B. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature, 450, 289-293.
Krieger, J., Grosse-Wilde, E., Gohl, T. & Breer, H. (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci., 21, 2167-2176.
Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. & Vosshall, L.B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703-714.
Forstner, M., Breer, H. & Krieger, J. (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int. J. Biol. Sci., 5, 745-757.
Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 307, 1638-1642.
2004; 101
2004; 43
1973; 244
2006; 31
1995; 92
2007; 446
2010; 36
2010; 107
2010; 19
2011
2010; 464
1982; 10
2003; 37
2005; 21
2008; 105
2006; 4
1980; 70
2008; 33
2011; 12
2011; 19
2005; 46
2007; 16
2009; 34
2010; 20
1993; 118
2010; 27
1993; 39
1976; 11
1974; 20
2000; 267
2007; 450
2008; 28
2005; 307
2009; 5
2005; 15
1998; 6
2010; 5
2010; 4
2004; 117
2007; 23
2007; 25
2006; 125
2006; 103
1996; 22
2001; 98
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Grosse‐Wilde E. (e_1_2_7_16_1) 2010; 4
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Kehat M. (e_1_2_7_24_1) 1976; 11
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Sonnhammer E.L. (e_1_2_7_42_1) 1998; 6
References_xml – reference: Grosse-Wilde, E., Stieber, R., Forstner, M., Krieger, J., Wicher, D. & Hansson, B.S. (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front. Cell. Neurosci., 4, 22.
– reference: Witzgall, P., Kirsch, P. & Cork, A. (2010) Sex pheromones and their impact on pest management. J. Chem. Ecol., 36, 80-100.
– reference: Jones, W.D., Nguyen, T.A., Kloss, B., Lee, K.J. & Vosshall, L.B. (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol., 15, R119-R121.
– reference: Jordan, M.D., Anderson, A., Begum, D., Carraher, C., Authier, A., Marshall, S.D., Kiely, A., Gatehouse, L.N., Greenwood, D.R., Christie, D.L., Kralicek, A.V., Trowell, S.C. & Newcomb, R.D. (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem. Senses, 34, 383-394.
– reference: Forstner, M., Gohl, T., Gondesen, I., Raming, K., Breer, H. & Krieger, J. (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem. Senses, 33, 291-299.
– reference: Ljungberg, H., Anderson, P. & Hansson, B.S. (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J. Insect Physiol., 39, 253-260.
– reference: Jacquin-Joly, E., Bohbot, J., Francois, M.C., Cain, A.H. & Nagnan-Le Meillour, P. (2000) Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae. Eur. J. Biochem., 267, 6708-6714.
– reference: Störtkuhl, K.F. & Kettler, R. (2001) Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 98, 9381-9385.
– reference: Wanner, K.W., Anderson, A.R., Trowell, S.C., Theilmann, D.A., Robertson, H.M. & Newcomb, R.D. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol., 16, 107-119.
– reference: Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y.M., Raming, K. & Breer, H. (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA, 101, 11845-11850.
– reference: Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 307, 1638-1642.
– reference: Quero, C., Lucas, P., Renou, M. & Guerrero, A. (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J. Chem. Ecol., 22, 1087-1102.
– reference: Benton, R., Sachse, S., Michnick, S.W. & Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol., 4, e20.
– reference: Garczynski, S.F., Wanner, K.W. & Unruh, T.R. (2011) Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub-family in Lepidoptera. Insect Science, 19, 64-74.
– reference: Wang, G., Vasquez, G.M., Schal, C., Zwiebel, L.J. & Gould, F. (2010) Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Mol. Biol., 20, 125-133.
– reference: Legeai, F., Malpel, S., Montagné, N., Monsempes, C., Cousserans, F., Merlin, C., Francois, M.C., Maibèche-Coisne, M., Gavory, F., Poulain, J. & Jacquin-Joly, E. (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics, 12, 86.
– reference: Dunkelblum, E., Kehat, M., Gothilf, S., Greenberg, S. & Sklarsz, B. (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica, 10, 21-26.
– reference: Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D.A. & Leal, W.S. (2006) Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA, 103, 16538-16543.
– reference: Grosse-Wilde, E., Svatos, A. & Krieger, J. (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses, 31, 547-555.
– reference: Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., Robertson, H.M. & Luetje, C.W. (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE, 5, e8685.
– reference: Krieger, J., Grosse-Wilde, E., Gohl, T. & Breer, H. (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci., 21, 2167-2176.
– reference: Kreher, S.A., Kwon, J.Y. & Carlson, J.R. (2005) The molecular basis of odor coding in the Drosophila larva. Neuron, 46, 445-456.
– reference: Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
– reference: Munoz, L., Rosell, G., Quero, C. & Guerrero, A. (2008) Biosynthetic pathways of the pheromone of the Egyptian armyworm Spodoptera littoralis. Physiol. Entomol., 33, 275-290.
– reference: Nesbitt, B.F., Beevor, P.S., Cole, R.A., Lester, R. & Poppi, R.G. (1973) Sex pheromones of two noctuid moths. Nat. New Biol., 244, 208-209.
– reference: Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Tanoue, S., Yasukochi, Y., Touhara, K. & Nishioka, T. (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 101, 16653-16658.
– reference: Brand, A.H. & Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401-415.
– reference: Sonnhammer, E.L., von Heijne, G. & Krogh, A. (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6, 175-182.
– reference: Hallem, E.A. & Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell, 125, 143-160.
– reference: Campion, D.G., Hunter-Jones, P., McVeigh, L.J., Hall, D.R., Lester, R. & Nesbitt, B.F. (1980) Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals. Bull. Entomol. Res., 70, 417-434.
– reference: Forstner, M., Breer, H. & Krieger, J. (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int. J. Biol. Sci., 5, 745-757.
– reference: Roelofs, W.L. (1995) Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA, 92, 44-49.
– reference: Syed, Z., Kopp, A., Kimbrell, D.A. & Leal, W.S. (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA, 107, 9436-9439.
– reference: Jin, X., Ha, T.S. & Smith, D.P. (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA, 105, 10996-11001.
– reference: Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H. & Krieger, J. (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci., 25, 2364-2373.
– reference: Carey, A.F., Wang, G., Su, C.Y., Zwiebel, L.J. & Carlson, J.R. (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature, 464, 66-71.
– reference: Kehat, M., Greenberg, S. & Tamaki, Y. (1976) Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel. Appl. Entomol. Zool., 11, 45-52.
– reference: Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol., 27, 221-224.
– reference: Hallem, E.A., Ho, M.G. & Carlson, J.R. (2004) The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965-979.
– reference: Kurtovic, A., Widmer, A. & Dickson, B.J. (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542-546.
– reference: Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. & Vosshall, L.B. (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43, 703-714.
– reference: Mitsuno, H., Sakurai, T., Murai, M., Yasuda, T., Kugimiya, S., Ozawa, R., Toyohara, H., Takabayashi, J., Miyoshi, H. & Nishioka, T. (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur. J. Neurosci., 28, 893-902.
– reference: Durand, N., Carot-Sans, G., Chertemps, T., Montagné, N., Jacquin-Joly, E., Debernard, S. & Maibèche-Coisne, M. (2010) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol. Biol., 19, 87-97.
– reference: Miura, N., Nakagawa, T., Tatsuki, S., Touhara, K. & Ishikawa, Y. (2009) A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. Int. J. Biol. Sci., 5, 319-330.
– reference: Patch, H.M., Velarde, R.A., Walden, K.K. & Robertson, H.M. (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem. Senses, 34, 305-316.
– reference: Tamaki, Y. & Yushima, T. (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J. Insect Physiol., 20, 1005-1014.
– reference: Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827-841.
– reference: Benton, R., Vannice, K.S. & Vosshall, L.B. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature, 450, 289-293.
– year: 2011
– volume: 446
  start-page: 542
  year: 2007
  end-page: 546
  article-title: A single class of olfactory neurons mediates behavioural responses to a sex pheromone
  publication-title: Nature
– volume: 34
  start-page: 305
  year: 2009
  end-page: 316
  article-title: A candidate pheromone receptor and two odorant receptors of the hawkmoth
  publication-title: Chem. Senses
– volume: 36
  start-page: 80
  year: 2010
  end-page: 100
  article-title: Sex pheromones and their impact on pest management
  publication-title: J. Chem. Ecol.
– volume: 307
  start-page: 1638
  year: 2005
  end-page: 1642
  article-title: Insect sex‐pheromone signals mediated by specific combinations of olfactory receptors
  publication-title: Science
– volume: 450
  start-page: 289
  year: 2007
  end-page: 293
  article-title: An essential role for a CD36‐related receptor in pheromone detection in
  publication-title: Nature
– volume: 46
  start-page: 445
  year: 2005
  end-page: 456
  article-title: The molecular basis of odor coding in the larva
  publication-title: Neuron
– volume: 10
  start-page: 21
  year: 1982
  end-page: 26
  article-title: Optimized mixture of sex pheromonal components for trapping of male in Israel
  publication-title: Phytoparasitica
– volume: 267
  start-page: 6708
  year: 2000
  end-page: 6714
  article-title: Characterization of the general odorant‐binding protein 2 in the molecular coding of odorants in
  publication-title: Eur. J. Biochem.
– volume: 105
  start-page: 10996
  year: 2008
  end-page: 11001
  article-title: SNMP is a signaling component required for pheromone sensitivity in Drosophila
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 125
  year: 2010
  end-page: 133
  article-title: Functional characterization of pheromone receptors in the tobacco budworm
  publication-title: Insect Mol. Biol.
– volume: 21
  start-page: 2167
  year: 2005
  end-page: 2176
  article-title: Candidate pheromone receptors of the silkmoth
  publication-title: Eur. J. Neurosci.
– volume: 103
  start-page: 16538
  year: 2006
  end-page: 16543
  article-title: Pheromone reception in fruit flies expressing a moth’s odorant receptor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 45
  year: 1976
  end-page: 52
  article-title: Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, (Boisd.), in Israel
  publication-title: Appl. Entomol. Zool.
– volume: 33
  start-page: 275
  year: 2008
  end-page: 290
  article-title: Biosynthetic pathways of the pheromone of the Egyptian armyworm
  publication-title: Physiol. Entomol.
– volume: 4
  start-page: 22
  year: 2010
  article-title: Sex‐specific odorant receptors of the tobacco hornworm
  publication-title: Front. Cell. Neurosci.
– volume: 5
  start-page: 319
  year: 2009
  end-page: 330
  article-title: A male‐specific odorant receptor conserved through the evolution of sex pheromones in moth species
  publication-title: Int. J. Biol. Sci.
– volume: 244
  start-page: 208
  year: 1973
  end-page: 209
  article-title: Sex pheromones of two noctuid moths
  publication-title: Nat. New Biol.
– volume: 125
  start-page: 143
  year: 2006
  end-page: 160
  article-title: Coding of odors by a receptor repertoire
  publication-title: Cell
– volume: 12
  start-page: 86
  year: 2011
  article-title: An expressed sequence tag collection from the male antennae of the Noctuid moth : a resource for olfactory and pheromone detection research
  publication-title: BMC Genomics
– volume: 19
  start-page: 64
  year: 2011
  end-page: 74
  article-title: Identification and initial characterization of the 3′ end of gene transcripts encoding putative members of the pheromone receptor sub‐family in Lepidoptera
  publication-title: Insect Science
– volume: 101
  start-page: 11845
  year: 2004
  end-page: 11850
  article-title: Genes encoding candidate pheromone receptors in a moth ( )
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: e8685
  year: 2010
  article-title: Sex pheromone receptor specificity in the European corn borer moth,
  publication-title: PLoS ONE
– volume: 70
  start-page: 417
  year: 1980
  end-page: 434
  article-title: Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm, (Boisduval) (Lepidoptera: Noctuidae) by secondary pheromone components and related chemicals
  publication-title: Bull. Entomol. Res.
– volume: 117
  start-page: 965
  year: 2004
  end-page: 979
  article-title: The molecular basis of odor coding in the antenna
  publication-title: Cell
– volume: 16
  start-page: 107
  year: 2007
  end-page: 119
  article-title: Female‐biased expression of odourant receptor genes in the adult antennae of the silkworm,
  publication-title: Insect Mol. Biol.
– volume: 43
  start-page: 703
  year: 2004
  end-page: 714
  article-title: Or83b encodes a broadly expressed odorant receptor essential for olfaction
  publication-title: Neuron
– volume: 37
  start-page: 827
  year: 2003
  end-page: 841
  article-title: Integrating the molecular and cellular basis of odor coding in the antenna
  publication-title: Neuron
– volume: 118
  start-page: 401
  year: 1993
  end-page: 415
  article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes
  publication-title: Development
– volume: 101
  start-page: 16653
  year: 2004
  end-page: 16658
  article-title: Identification and functional characterization of a sex pheromone receptor in the silkmoth
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 1087
  year: 1996
  end-page: 1102
  article-title: Behavioral responses of males to sex pheromone components and virgin females in wind tunnel
  publication-title: J. Chem. Ecol.
– volume: 28
  start-page: 893
  year: 2008
  end-page: 902
  article-title: Identification of receptors of main sex‐pheromone components of three Lepidopteran species
  publication-title: Eur. J. Neurosci.
– volume: 31
  start-page: 547
  year: 2006
  end-page: 555
  article-title: A pheromone‐binding protein mediates the bombykol‐induced activation of a pheromone receptor
  publication-title: Chem. Senses
– volume: 15
  start-page: R119
  year: 2005
  end-page: R121
  article-title: Functional conservation of an insect odorant receptor gene across 250 million years of evolution
  publication-title: Curr. Biol.
– volume: 98
  start-page: 9381
  year: 2001
  end-page: 9385
  article-title: Functional analysis of an olfactory receptor in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 221
  year: 2010
  end-page: 224
  article-title: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building
  publication-title: Mol. Biol. Evol.
– volume: 4
  start-page: e20
  year: 2006
  article-title: Atypical membrane topology and heteromeric function of odorant receptors
  publication-title: PLoS Biol.
– volume: 19
  start-page: 87
  year: 2010
  end-page: 97
  article-title: A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth
  publication-title: Insect Mol. Biol.
– volume: 33
  start-page: 291
  year: 2008
  end-page: 299
  article-title: Differential expression of SNMP‐1 and SNMP‐2 proteins in pheromone‐sensitive hairs of moths
  publication-title: Chem. Senses
– volume: 20
  start-page: 1005
  year: 1974
  end-page: 1014
  article-title: Sex pheromone of the cotton leafworm,
  publication-title: J. Insect Physiol.
– volume: 6
  start-page: 175
  year: 1998
  end-page: 182
  article-title: A hidden Markov model for predicting transmembrane helices in protein sequences
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
– volume: 34
  start-page: 383
  year: 2009
  end-page: 394
  article-title: Odorant receptors from the light brown apple moth ( ) recognize important volatile compounds produced by plants
  publication-title: Chem. Senses
– volume: 5
  start-page: 745
  year: 2009
  end-page: 757
  article-title: A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth
  publication-title: Int. J. Biol. Sci.
– volume: 39
  start-page: 253
  year: 1993
  end-page: 260
  article-title: Physiology and morphology of pheromone‐specific sensilla on the antennae of male and female (Lepidoptera: Noctuidae)
  publication-title: J. Insect Physiol.
– volume: 25
  start-page: 2364
  year: 2007
  end-page: 2373
  article-title: Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds
  publication-title: Eur. J. Neurosci.
– volume: 464
  start-page: 66
  year: 2010
  end-page: 71
  article-title: Odorant reception in the malaria mosquito
  publication-title: Nature
– volume: 92
  start-page: 44
  year: 1995
  end-page: 49
  article-title: Chemistry of sex attraction
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 107
  start-page: 9436
  year: 2010
  end-page: 9439
  article-title: Bombykol receptors in the silkworm moth and the fruit fly
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2583.2009.00939.x
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1744-7917.2011.01423.x
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1365-3032.2008.00645.x
– ident: e_1_2_7_4_1
  doi: 10.1242/dev.118.2.401
– ident: e_1_2_7_32_1
  doi: 10.1016/0022-1910(93)90096-A
– ident: e_1_2_7_50_1
  doi: 10.1007/s10886-009-9737-y
– ident: e_1_2_7_23_1
  doi: 10.1093/chemse/bjp010
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pbio.0040020
– ident: e_1_2_7_46_1
  doi: 10.1016/0022-1910(74)90142-5
– ident: e_1_2_7_49_1
  doi: 10.1371/journal.pone.0008685
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuron.2004.08.019
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0407596101
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.0403052101
– ident: e_1_2_7_11_1
  doi: 10.7150/ijbs.5.745
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1106267
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.151105698
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1432-1327.2000.01772.x
– ident: e_1_2_7_3_1
  doi: 10.1038/nature06328
– ident: e_1_2_7_10_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuron.2005.04.007
– ident: e_1_2_7_37_1
  doi: 10.1038/newbio244208a0
– ident: e_1_2_7_39_1
  doi: 10.1007/BF02027947
– ident: e_1_2_7_7_1
  doi: 10.1016/S0896-6273(03)00094-1
– ident: e_1_2_7_12_1
  doi: 10.1093/chemse/bjm087
– ident: e_1_2_7_28_1
  doi: 10.1038/nature05672
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.0803309105
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1460-9568.2005.04058.x
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cell.2004.05.012
– ident: e_1_2_7_8_1
  doi: 10.1007/BF02981888
– volume: 4
  start-page: 22
  year: 2010
  ident: e_1_2_7_16_1
  article-title: Sex‐specific odorant receptors of the tobacco hornworm Manduca sexta
  publication-title: Front. Cell. Neurosci.
– ident: e_1_2_7_6_1
  doi: 10.1038/nature08834
– ident: e_1_2_7_38_1
  doi: 10.1093/chemse/bjp002
– ident: e_1_2_7_5_1
  doi: 10.1017/S0007485300007689
– ident: e_1_2_7_14_1
  doi: 10.1093/molbev/msp259
– ident: e_1_2_7_34_1
  doi: 10.7150/ijbs.5.319
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2164-12-86
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cub.2005.02.007
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-2583.2010.01045.x
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.0607874103
– ident: e_1_2_7_17_1
  doi: 10.1093/chemse/bjj059
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.1003881107
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1460-9568.2008.06429.x
– volume: 6
  start-page: 175
  year: 1998
  ident: e_1_2_7_42_1
  article-title: A hidden Markov model for predicting transmembrane helices in protein sequences
  publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
– volume: 11
  start-page: 45
  year: 1976
  ident: e_1_2_7_24_1
  article-title: Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.), in Israel
  publication-title: Appl. Entomol. Zool.
  doi: 10.1303/aez.11.45
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1460-9568.2007.05512.x
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-2583.2007.00708.x
– ident: e_1_2_7_29_1
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_2_7_18_1
  doi: 10.1016/j.cell.2006.01.050
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.92.1.44
SSID ssj0008645
Score 2.3653417
Snippet Moth sex pheromone communication is recognised as a long‐standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this...
Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this...
SourceID swepub
hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2588
SubjectTerms Action Potentials
Agricultural sciences
Amino Acid Sequence
Animals
Arthropod Antennae - metabolism
Arthropod Antennae - physiology
Biochemistry and Molecular Biology
Biokemi och molekylärbiologi
Diptera
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila - physiology
electroantennography
Gene Expression
Insect Proteins - genetics
Insect Proteins - metabolism
Insect Proteins - physiology
insects
Life Sciences
Molecular Sequence Data
Noctuidae
odorant receptor
olfaction
Olfactory Receptor Neurons - physiology
pheromone
Receptors, Pheromone - genetics
Receptors, Pheromone - metabolism
Receptors, Pheromone - physiology
Sensilla - physiology
Sex Attractants - pharmacology
single sensillum recordings
Spodoptera
Spodoptera littoralis
Zoologi
Zoology
Title Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila
URI https://api.istex.fr/ark:/67375/WNG-CX0VXCCH-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2012.08183.x
https://www.ncbi.nlm.nih.gov/pubmed/22748123
https://www.proquest.com/docview/1038069707
https://www.proquest.com/docview/1069198081
https://hal.science/hal-01001292
https://res.slu.se/id/publ/44035
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCFxy6P8JJBaG-p8rZ9LGVLtYIegIXeLNtxtFVLGiUt6vIH-NvMOGlQVyu0QpwSWXbiTsbjGfebbwh5EykGbodifpELF6CAHYxy4Ztcc8HBVgqNyckfp9nkLDmdpbMO_4S5MC0_RH_ghivD2Wtc4Eo3lxd54GO6GyK0ogGSs8UD9CcRuoX-0ac_TFI8c_WKkV3N52E22wf1XPmgvZ3q5jniJG-h6LdXOaM90-i-k-t2qfE9stj9vhacshhs1npgfl6ifvw_ArhP7nbOLB222veA3LDlITkalhDIf7-gx9TBS925_SG5PdqVljsiv8awm7aHkNT0jNFtQihdFVTRxm4pEh6sYJVYClbZVutVTeclBYeVViATijpGP1cQVleYRU0hnlgj3cC8ofqCniPMB1-92jTUbju4b4lPeFe72g3zpXpIzsYnX0YTv6sI4RuwLLGfC0TD8qhQhrE4NAG3OikirXXKogKJimxsioQJZpI0NTrmPC0gfuDCMpMlWfyIHJQw7yeEMp4bkWquhBaJElxlqUhEBM02EHkgPMJ2X1-aji4dq3Ys5V7YFEiUv0T5Syd_ufVI2I-sWsqQa4x5DQrWd0fO78nwg8S2IHSHhdGP0CPHTv_6bqpeIC6PpfLb9L0czYKvs9FoIt965NVOQSV8WfwLSJUW5C2RDj_IBAvY3_pkIhRYkcUjj1vt7t8YRSwBlzCGqbTqvjflZrnRqsaLbKxMkiBOPZI5Hb62JOTJ6RTvnv7rwGfkDja3OMDn5GBdb-wLcBzX-qUzCb8Bss9eaQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagPZQLhRbK8jQI9bbRvm0fQ9oQSpoDtJCbZXu9atSwWeVRpfwB_jYz3mRRqgpViFOilb3rzI7HM5NvviHkfaQYuB2K-UUuXIACdjDKhW9yzQUHWyk0FiefDrLeeXIyTIerdkBYC1PzQzQJN9wZzl7jBseE9M1dHvhY74YQraiF7GxxCxzKbWzwjbv06MsfLimeuY7FyK_m8zAbbsJ6br3Txll1_wKRktso_OVt7mjDNbrp5rpzqrtLxutfWMNTLluLuW6ZnzfIH_-TCB6Rhyt_lrZrBXxM7tlyj-y3S4jlf1zTQ-oQpi51v0d2OuvucvvkVxcO1DoPSU1DGl3XhNJJQRWd2SVFzoMJbBRLwTDbaj6Z0lFJwWelFQiFoprRrxVE1hUWUlMIKebIODCaUX1NLxDpg4-eLGbULleI3xLvcDR17RtGY_WEnHePzzo9f9UUwjdgXGI_FwiI5VGhDGNxaAJudVJEWuuURQVyFdnYFAkTzCRpanTMeVpACMGFZSZLsvgp2Sph3c8IZTw3ItVcCS0SJbjKUpGICC7bQOSB8Ahbv35pVozp2LhjLDcip0Ci_CXKXzr5y6VHwmZmVbOG3GHOO9CwZjjSfvfafYnXgtDlC6Or0COHTgGbYWp6idA8lsrvg4-yMwy-DTudnvzgkbdrDZXwZvFfIFVakLdERvwgEyxgfxuTiVBgUxaPHNTq3TwxilgCXmEMS6n1fWPJs_FCqyl-yJmVSRLEqUcyp8R3loQ8Phngt-f_OvEN2emdnfZl_9Pg8wvyAIfUsMCXZGs-XdhX4EfO9WtnH34DdTxigg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgk4CXARsf4dMgtLdU-bb9WNqVMkaFgEHfLNtxtKpdGvUDdfwD_NvcOW1QpwlNiKdElp24l_P5zv3d7wh5EykGbodifpELF6CAHYxy4Ztcc8HBVgqNyckfB1n_NDkepsM1_glzYWp-iObADVeGs9e4wKu8uLzIAx_T3RChFbWQnC1ugT-5C-0cA7Hu5z9UUjxzBYuRXs3nYTbcRvVc-aStrermGQIld1H2q6u80YZqdNvLddtU7y4Zb35gjU4Zt5YL3TI_L3E__h8J3CN7a2-Wtmv1u09u2HKfHLRLiOTPL-ghdfhSd3C_T253NrXlDsivHmyn9SkkNQ1ldJ0RSqcFVXRuVxQZD6awTCwFs2yrxXRGRyUFj5VWIBOKSka_VBBXV5hGTSGgWCDfwGhO9QU9Q5wPvnq6nFO7WuN9S3xCd-aKN4wm6gE57R197fT9dUkI34Bpif1cIByWR4UyjMWhCbjVSRFprVMWFchUZGNTJEwwk6Sp0THnaQEBBBeWmSzJ4odkp4R5PyaU8dyIVHMltEiU4CpLRSIiaLaByAPhEbb5-tKs-dKxbMdEbsVNgUT5S5S_dPKXK4-Ezciq5gy5xpjXoGBNdyT97rdPJLYFoTstjH6EHjl0-td0U7MxAvNYKr8P3snOMPg27HT68q1HXm0UVMKXxf-AVGlB3hL58INMsID9rU8mQoElWTzyqNbu5o1RxBLwCWOYSq3uW1OeT5ZazfAi51YmSRCnHsmcDl9bEvLoeIB3T_514Ety61O3J0_eDz48JXewR40JfEZ2FrOlfQ5O5EK_cNbhNxHRYTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+characterization+of+a+sex+pheromone+receptor+in+the+pest+moth+Spodoptera+littoralis+by+heterologous+expression+in+Drosophila&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Larsson%2C+Mattias&rft.date=2012-09-01&rft.issn=0953-816X&rft.volume=36&rft.spage=2588&rft_id=info:doi/10.1111%2Fj.1460-9568.2012.08183.x&rft.externalDocID=oai_slubar_slu_se_44035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon