A second major histocompatibility complex susceptibility locus for multiple sclerosis

Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence sus...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 61; no. 3; pp. 228 - 236
Main Authors Yeo, Tai Wai, De Jager, Philip L., Gregory, Simon G., Barcellos, Lisa F., Walton, Amie, Goris, An, Fenoglio, Chiara, Ban, Maria, Taylor, Craig J., Goodman, Reyna S., Walsh, Emily, Wolfish, Cara S., Horton, Roger, Traherne, James, Beck, Stephan, Trowsdale, John, Caillier, Stacy J., Ivinson, Adrian J., Green, Todd, Pobywajlo, Susan, Lander, Eric S., Pericak-Vance, Margaret A., Haines, Jonathan L., Daly, Mark J., Oksenberg, Jorge R., Hauser, Stephen L., Compston, Alastair, Hafler, David A., Rioux, John D., Sawcer, Stephen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2007
Willey-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA‐C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA‐DRB1 locus, but also reflects an independent effect from the HLA‐C gene. Specifically, the HLA‐C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 × 10−5). Interpretation Variation in the HLA‐C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA‐DRB1 gene. Ann Neurol 2007
AbstractList Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 X 10-5). Interpretation Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene. Ann Neurol 2007.
Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA‐C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA‐DRB1 locus, but also reflects an independent effect from the HLA‐C gene. Specifically, the HLA‐C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 × 10−5). Interpretation Variation in the HLA‐C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA‐DRB1 gene. Ann Neurol 2007
Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.OBJECTIVEVariation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects.METHODSUsing a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects.Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)).RESULTSScreening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)).Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene.INTERPRETATIONVariation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene.
Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)). Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene.
Author Wolfish, Cara S.
Goodman, Reyna S.
Traherne, James
Horton, Roger
Beck, Stephan
Sawcer, Stephen
Trowsdale, John
Caillier, Stacy J.
Green, Todd
Rioux, John D.
Hafler, David A.
Gregory, Simon G.
Fenoglio, Chiara
Walton, Amie
Hauser, Stephen L.
Yeo, Tai Wai
Walsh, Emily
Ban, Maria
Barcellos, Lisa F.
Lander, Eric S.
Goris, An
Daly, Mark J.
Haines, Jonathan L.
Compston, Alastair
Taylor, Craig J.
Pobywajlo, Susan
Pericak-Vance, Margaret A.
Ivinson, Adrian J.
Oksenberg, Jorge R.
De Jager, Philip L.
AuthorAffiliation 7 Division of Epidemiology, School of Public Health, University of California at Berkeley Berkeley, CA
15 Institute for Human Genetics, School of Medicine, University of California San Francisco San Francisco, CA
6 Department of Neurology, School of Medicine, University of California San Francisco San Francisco
5 Duke University Medical Center, Center for Human Genetics Durham, NC
1 Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
10 Wellcome Trust Sanger Institute, Genome Campus Hinxton, United Kingdom
4 Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University Cambridge, MA
9 Tissue Typing Laboratory, Addenbrooke's Hospital United Kingdom
13 The Center for Genome Research, Massachusetts General Hospital Boston, MA
16 Montréal Heart Institute and Université de Montréal Montréal, Québec, Canada
8 Department of Neurological Sciences, Dino Ferrari Center, Univers
AuthorAffiliation_xml – name: 6 Department of Neurology, School of Medicine, University of California San Francisco San Francisco
– name: 1 Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
– name: 4 Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University Cambridge, MA
– name: 16 Montréal Heart Institute and Université de Montréal Montréal, Québec, Canada
– name: 2 Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital Boston
– name: 12 Harvard Center for Neurodegeneration and Repair Boston, MA
– name: 8 Department of Neurological Sciences, Dino Ferrari Center, University of Milan, IRCCS Ospedale Maggiore Policlinico Milan, Italy
– name: 15 Institute for Human Genetics, School of Medicine, University of California San Francisco San Francisco, CA
– name: 3 Harvard Medical School Boston
– name: 9 Tissue Typing Laboratory, Addenbrooke's Hospital United Kingdom
– name: 7 Division of Epidemiology, School of Public Health, University of California at Berkeley Berkeley, CA
– name: 10 Wellcome Trust Sanger Institute, Genome Campus Hinxton, United Kingdom
– name: 11 Department of Pathology, Immunology Division, University of Cambridge Cambridge, United Kingdom
– name: 13 The Center for Genome Research, Massachusetts General Hospital Boston, MA
– name: 5 Duke University Medical Center, Center for Human Genetics Durham, NC
– name: 14 Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN
Author_xml – sequence: 1
  givenname: Tai Wai
  surname: Yeo
  fullname: Yeo, Tai Wai
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 2
  givenname: Philip L.
  surname: De Jager
  fullname: De Jager, Philip L.
  organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston
– sequence: 3
  givenname: Simon G.
  surname: Gregory
  fullname: Gregory, Simon G.
  organization: Duke University Medical Center, Center for Human Genetics, Durham, NC
– sequence: 4
  givenname: Lisa F.
  surname: Barcellos
  fullname: Barcellos, Lisa F.
  organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco
– sequence: 5
  givenname: Amie
  surname: Walton
  fullname: Walton, Amie
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 6
  givenname: An
  surname: Goris
  fullname: Goris, An
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 7
  givenname: Chiara
  surname: Fenoglio
  fullname: Fenoglio, Chiara
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 8
  givenname: Maria
  surname: Ban
  fullname: Ban, Maria
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 9
  givenname: Craig J.
  surname: Taylor
  fullname: Taylor, Craig J.
  organization: Tissue Typing Laboratory, Addenbrooke's Hospital, United Kingdom
– sequence: 10
  givenname: Reyna S.
  surname: Goodman
  fullname: Goodman, Reyna S.
  organization: Tissue Typing Laboratory, Addenbrooke's Hospital, United Kingdom
– sequence: 11
  givenname: Emily
  surname: Walsh
  fullname: Walsh, Emily
  organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA
– sequence: 12
  givenname: Cara S.
  surname: Wolfish
  fullname: Wolfish, Cara S.
  organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston
– sequence: 13
  givenname: Roger
  surname: Horton
  fullname: Horton, Roger
  organization: Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
– sequence: 14
  givenname: James
  surname: Traherne
  fullname: Traherne, James
  organization: Department of Pathology, Immunology Division, University of Cambridge, Cambridge, United Kingdom
– sequence: 15
  givenname: Stephan
  surname: Beck
  fullname: Beck, Stephan
  organization: Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
– sequence: 16
  givenname: John
  surname: Trowsdale
  fullname: Trowsdale, John
  organization: Department of Pathology, Immunology Division, University of Cambridge, Cambridge, United Kingdom
– sequence: 17
  givenname: Stacy J.
  surname: Caillier
  fullname: Caillier, Stacy J.
  organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco
– sequence: 18
  givenname: Adrian J.
  surname: Ivinson
  fullname: Ivinson, Adrian J.
  organization: Harvard Medical School, Boston
– sequence: 19
  givenname: Todd
  surname: Green
  fullname: Green, Todd
  organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA
– sequence: 20
  givenname: Susan
  surname: Pobywajlo
  fullname: Pobywajlo, Susan
  organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston
– sequence: 21
  givenname: Eric S.
  surname: Lander
  fullname: Lander, Eric S.
  organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA
– sequence: 22
  givenname: Margaret A.
  surname: Pericak-Vance
  fullname: Pericak-Vance, Margaret A.
  organization: Duke University Medical Center, Center for Human Genetics, Durham, NC
– sequence: 23
  givenname: Jonathan L.
  surname: Haines
  fullname: Haines, Jonathan L.
  organization: Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN
– sequence: 24
  givenname: Mark J.
  surname: Daly
  fullname: Daly, Mark J.
  organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA
– sequence: 25
  givenname: Jorge R.
  surname: Oksenberg
  fullname: Oksenberg, Jorge R.
  organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco
– sequence: 26
  givenname: Stephen L.
  surname: Hauser
  fullname: Hauser, Stephen L.
  organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco
– sequence: 27
  givenname: Alastair
  surname: Compston
  fullname: Compston, Alastair
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
– sequence: 28
  givenname: David A.
  surname: Hafler
  fullname: Hafler, David A.
  organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston
– sequence: 29
  givenname: John D.
  surname: Rioux
  fullname: Rioux, John D.
  organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston
– sequence: 30
  givenname: Stephen
  surname: Sawcer
  fullname: Sawcer, Stephen
  email: sjs1016@mole.bio.cam.ac.uk
  organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18638669$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17252545$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS3Uim4LB74AygWkHtLacfwnF6SlKqVSWzhQcbSciU1dnHhrJ9D99njZ7VIQiNPI9u89zbzxPtoZwmAQekHwEcG4OtaDPqoI5vQJmhFGSSmrutlBM0x5XTJC6z20n9ItxrjhBD9Fe0RUrGI1m6HreZEMhKEren0bYnHj0hgg9As9utZ5Ny6L1cmb-yJNCcxie-0DTKmwWdNPfnQZKRJ4E0Ny6Rnatdon83xTD9D1u9NPJ-_Liw9n5yfzixKYkLTkdWc6Sy0WnaDEWGFa1gpGGqslrU3DOpA1tm0HAje5ttBlHBoQAFa3kh6gN2vfxdT2pgMzjFF7tYiu13Gpgnbq95fB3agv4ZuqBBU5imzwemMQw91k0qh6l6f0Xg8mTEkJTCteNeK_IMkMl_UKfPm4pW0vD5Fn4NUG0Am0t1EP4NIvTnIqOW8yd7zmIEeaorEK3Ji3ElaTOK8IVqvlq7x89XP5WXH4h2Jr-hd24_7debP8N6jmV_MHRblW5B9i7rcKHb8qntNk6vPVmfoo3xJ6yaXC9AdFBdBD
CODEN ANNED3
CitedBy_id crossref_primary_10_1016_j_nrleng_2015_03_020
crossref_primary_10_1016_j_jneuroim_2016_02_008
crossref_primary_10_1093_hmg_ddm165
crossref_primary_10_1016_j_febslet_2011_05_025
crossref_primary_10_1073_pnas_0909307106
crossref_primary_10_1111_j_1744_3121_2010_00926_x
crossref_primary_10_1016_S1474_4422_14_70041_9
crossref_primary_10_4061_2011_932351
crossref_primary_10_1590_0004_282X20160100
crossref_primary_10_1186_1471_2164_11_626
crossref_primary_10_1007_s00251_008_0295_1
crossref_primary_10_2217_pgs_16_2
crossref_primary_10_1016_j_jneuroim_2009_01_012
crossref_primary_10_1371_journal_pone_0036779
crossref_primary_10_1016_j_ajhg_2010_02_027
crossref_primary_10_1111_j_1744_313X_2010_00926_x
crossref_primary_10_1212_WNL_0b013e3181ed9c9c
crossref_primary_10_1016_S0035_3787_07_90479_8
crossref_primary_10_1016_j_pathog_2016_04_001
crossref_primary_10_1038_gene_2008_26
crossref_primary_10_1371_journal_pone_0036140
crossref_primary_10_1016_j_smim_2009_08_003
crossref_primary_10_1177_1352458510376778
crossref_primary_10_1097_WCO_0b013e3282fd10cc
crossref_primary_10_1111_j_1744_313X_2008_00765_x
crossref_primary_10_1016_S0213_9626_07_70078_1
crossref_primary_10_1172_JCI37878
crossref_primary_10_1016_j_febslet_2011_03_037
crossref_primary_10_1038_nri2554
crossref_primary_10_1371_journal_pone_0011296
crossref_primary_10_3389_fimmu_2021_644838
crossref_primary_10_1177_1352458509104588
crossref_primary_10_1186_1471_2156_8_25
crossref_primary_10_1016_j_jaut_2011_11_003
crossref_primary_10_1016_j_cca_2009_05_004
crossref_primary_10_1038_ng_401
crossref_primary_10_1042_BSR20171503
crossref_primary_10_1016_S0213_9626_08_70045_3
crossref_primary_10_1038_gene_2008_41
crossref_primary_10_4049_jimmunol_0900784
crossref_primary_10_1093_infdis_jir024
crossref_primary_10_1111_j_1399_0039_2008_01101_x
crossref_primary_10_1074_mcp_M900001_MCP200
crossref_primary_10_1016_j_jneuroim_2010_03_019
crossref_primary_10_1093_hmg_ddn388
crossref_primary_10_1002_ana_21695
crossref_primary_10_1007_s00251_007_0262_2
crossref_primary_10_1038_nrneurol_2010_91
crossref_primary_10_1111_j_1468_1331_2007_01825_x
crossref_primary_10_1212_01_CON_0000293640_98116_18
crossref_primary_10_1038_gene_2011_3
crossref_primary_10_1016_S0140_6736_08_61620_7
crossref_primary_10_3109_08916930903567492
crossref_primary_10_1016_j_humimm_2007_09_005
crossref_primary_10_1056_NEJMoa073493
crossref_primary_10_1016_j_gde_2010_12_006
crossref_primary_10_1016_j_ncl_2010_12_002
crossref_primary_10_1038_gene_2008_59
crossref_primary_10_1016_j_ajhg_2010_01_017
crossref_primary_10_4045_tidsskr_10_0823
crossref_primary_10_1177_1352458515581439
crossref_primary_10_1111_j_1399_0039_2007_00962_x
crossref_primary_10_1371_journal_pone_0013454
crossref_primary_10_1016_j_nrl_2015_03_011
crossref_primary_10_3389_fneur_2023_1326738
crossref_primary_10_1186_gm217
crossref_primary_10_1002_ana_21744
crossref_primary_10_1007_s00281_012_0307_y
crossref_primary_10_3389_fimmu_2022_931831
crossref_primary_10_1038_gene_2010_20
crossref_primary_10_1586_14737175_7_9_1175
crossref_primary_10_1371_journal_pone_0006526
crossref_primary_10_1212_WNL_0b013e31826c1b1c
crossref_primary_10_1093_brain_awn081
crossref_primary_10_1038_gene_2009_34
crossref_primary_10_1177_1352458511415562
crossref_primary_10_1111_j_1600_065X_2012_01134_x
crossref_primary_10_1016_j_jaut_2015_06_010
crossref_primary_10_1212_01_CON_0000389939_15155_eb
crossref_primary_10_1073_pnas_0801042105
crossref_primary_10_1111_j_1365_2567_2012_03623_x
crossref_primary_10_1016_j_jneuroim_2014_01_009
crossref_primary_10_1038_s41598_017_01345_8
crossref_primary_10_1038_gene_2009_101
crossref_primary_10_1038_sj_gene_6364437
crossref_primary_10_1371_journal_pgen_1000024
crossref_primary_10_1016_j_autrev_2022_103033
crossref_primary_10_1038_nrg2395
crossref_primary_10_1038_s41435_017_0006_8
crossref_primary_10_1111_imm_12869
crossref_primary_10_1038_nri2361
crossref_primary_10_1249_JSR_0000000000000446
crossref_primary_10_1007_s12026_016_8817_7
crossref_primary_10_1177_1352458515624270
crossref_primary_10_1093_brain_aws159
crossref_primary_10_1093_rheumatology_ket252
crossref_primary_10_1212_01_wnl_0000296821_72466_d3
crossref_primary_10_1016_j_jneuroim_2007_09_024
crossref_primary_10_3390_ijms130911718
crossref_primary_10_1093_aje_kwq086
crossref_primary_10_1016_j_legalmed_2024_102419
crossref_primary_10_1177_1352458517733551
crossref_primary_10_1016_j_jneuroim_2010_06_003
crossref_primary_10_1097_WCO_0b013e328352ea8b
crossref_primary_10_1038_gene_2008_83
crossref_primary_10_1097_WCO_0b013e32832b5417
crossref_primary_10_1177_1352458507084267
crossref_primary_10_2217_fnl_11_32
crossref_primary_10_1093_brain_awn301
crossref_primary_10_1111_j_1399_0039_2008_01066_x
crossref_primary_10_1016_j_jneuroim_2015_01_004
crossref_primary_10_1371_journal_pgen_1003926
Cites_doi 10.1038/nri1031
10.1093/hmg/7.8.1235
10.2337/diabetes.53.5.1360
10.1111/j.1399-0039.1992.tb01940.x
10.1016/S0165-5728(98)00074-5
10.1034/j.1399-0039.2000.560602.x
10.1086/367781
10.1038/ng1433
10.1034/j.1399-0039.2000.550205.x
10.1038/ng0896-469
10.1038/nrg1489
10.1111/j.1399-0039.1991.tb02029.x
10.1093/bioinformatics/bti529
10.1212/WNL.59.4.549
10.1093/hmg/10.25.2907
10.1034/j.1399-0039.2001.057005397.x
10.1093/hmg/ddl223
10.1038/ng1706
10.1002/ana.1032
10.1007/s00251-001-0425-5
10.1086/380997
10.1086/301904
10.1038/ng786
10.1093/bioinformatics/19.1.149
10.1126/science.273.5281.1516
10.1002/ana.410130302
10.1093/hmg/7.8.1229
10.1073/pnas.88.16.7276
10.1086/429393
10.1034/j.1399-0039.1999.540302.x
10.1086/323480
10.1038/ng0896-464
10.1016/j.jneuroim.2003.08.009
10.1111/j.0001-2815.2004.00173.x
10.1371/journal.pgen.0020009
10.1093/hmg/ddi206
10.1084/jem.20050499
10.1086/426948
10.1038/ng1647
10.1101/gr.2188104
10.1046/j.1365-2370.1997.00252.x
10.1086/338007
10.1101/gr.7.5.541
10.1038/ng0896-472
10.1086/339932
10.1111/j.1399-0039.1998.tb02972.x
10.1016/S0140-6736(72)90962-2
10.1002/gepi.10252
10.1046/j.1469-1809.2000.6430207.x
10.1034/j.1399-0039.2000.550601.x
10.1111/j.1399-0039.1987.tb01610.x
10.4049/jimmunol.173.7.4273
10.1016/0198-8859(89)90074-8
10.1086/378101
10.1086/444547
ContentType Journal Article
Copyright Copyright © 2007 American Neurological Association
2007 INIST-CNRS
Copyright © 2007 Wiley-Liss, Inc., A Wiley Company
Copyright_xml – notice: Copyright © 2007 American Neurological Association
– notice: 2007 INIST-CNRS
– notice: Copyright © 2007 Wiley-Liss, Inc., A Wiley Company
DBID BSCLL
24P
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
5PM
DOI 10.1002/ana.21063
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 236
ExternalDocumentID PMC2737610
17252545
18638669
10_1002_ana_21063
ANA21063
ark_67375_WNG_P8B13M68_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: GlaxoSmithKline Clinical Fellowship
– fundername: Cancer Research Institute fellowship
– fundername: The Penates Foundation
– fundername: Wellcome Trust
  funderid: 048880; 057097
– fundername: European Neurological Society fellowship
– fundername: Postdoctoral Fellowship of the Research Foundation–Flanders (FWO–Vlaanderen)
– fundername: Wellcome Trust Prize Studentship
– fundername: Cambridge Commonwealth Trust and Cambridge Philosophical Society
– fundername: William C. Fowler scholarship in Multiple Sclerosis
– fundername: Medical Research Council (United Kingdom)
  funderid: G0000648
– fundername: Wellcome Trust
– fundername: Multiple Sclerosis Society
  grantid: 588
– fundername: NINDS NIH HHS
  grantid: NS026799
– fundername: NINDS NIH HHS
  grantid: NS032830
– fundername: NINDS NIH HHS
  grantid: R01 NS032830
– fundername: NINDS NIH HHS
  grantid: K08 NS046341
– fundername: Wellcome Trust
  grantid: 057097
– fundername: NINDS NIH HHS
  grantid: R01 NS026799
– fundername: Medical Research Council
  grantid: G0401569
– fundername: NINDS NIH HHS
  grantid: K08 NS46341
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
24P
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5783-64dedf3f07d731ef7eb5b7519fa834e95dc840fbdc7090fbbcddf3c9c7ccfab83
IEDL.DBID DR2
ISSN 0364-5134
IngestDate Thu Aug 21 18:37:09 EDT 2025
Fri Jul 11 09:12:04 EDT 2025
Fri Jul 11 03:32:40 EDT 2025
Fri May 30 10:49:33 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Tue Jul 01 02:23:55 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
Wed Oct 30 09:57:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multiple sclerosis
Nervous system diseases
Locus
Major histocompatibility system
Central nervous system disease
Inflammatory disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5783-64dedf3f07d731ef7eb5b7519fa834e95dc840fbdc7090fbbcddf3c9c7ccfab83
Notes European Neurological Society fellowship
Wellcome Trust - No. 048880; No. 057097
Cancer Research Institute fellowship
Wellcome Trust Prize Studentship
National Multiple Sclerosis Society Center Grant - No. AP 3758-A-16
Cambridge Commonwealth Trust and Cambridge Philosophical Society
Postdoctoral Fellowship of the Research Foundation-Flanders (FWO-Vlaanderen)
ark:/67375/WNG-P8B13M68-0
GlaxoSmithKline Clinical Fellowship
istex:FD341487A234405A5B7C443E02FFBED99AD702EC
National Institutes of Health - No. K08 NS46341; No. NS049477; No. NS026799; No. NS032830
Medical Research Council (United Kingdom) - No. G0000648
ArticleID:ANA21063
St. Edmund's College
William C. Fowler scholarship in Multiple Sclerosis
The Penates Foundation
T.W.Y. and P.L.D. contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21063
PMID 17252545
PQID 19736847
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737610
proquest_miscellaneous_70326297
proquest_miscellaneous_19736847
pubmed_primary_17252545
pascalfrancis_primary_18638669
crossref_citationtrail_10_1002_ana_21063
crossref_primary_10_1002_ana_21063
wiley_primary_10_1002_ana_21063_ANA21063
istex_primary_ark_67375_WNG_P8B13M68_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2007
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: March 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Willey-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Willey-Liss
References Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1-15.
Harbo HF, Lie BA, Sawcer S, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237-247.
Rubio JP, Bahlo M, Butzkueven H, et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 2002; 70: 1125-1137.
Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149-150.
Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124-141.
Olerup O, Carlsson B, Wallin J, et al. Genomic HLA-typing by RFLP-analysis using DR beta and DQ beta cDNA probes reveals normal DR-DQ linkages in patients with multiple sclerosis. Tissue Antigens 1987; 30: 135-138.
Ligers A, Dyment DA, Willer CJ, et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 2001; 69: 900-903.
Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004; 36: 1045-1051.
Barcellos LF, Sawcer S, Ramsay PP, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813-2824.
Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889-899.
International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454-467.
Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710-716.
Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227-231.
McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127.
Traherne JA, Horton R, Roberts AN, et al. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet 2006; 2: e9.
Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class II region. Tissue Antigens 2000; 56: 492-500.
Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173: 4273-4276.
Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005; 201: 1025-1029.
Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 1991; 88: 7276-7280.
Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97-101.
Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445-3447.
Vartdal F, Sollid LM, Vandvik B, et al. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences. Hum Immunol 1989; 25: 103-110.
Haines JL, Terwedow HA, Burgess K, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 1998; 7: 1229-1234.
Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360-1368.
Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class III region. Tissue Antigens 2001; 57: 397-404.
Schuler GD. Sequence mapping by electronic PCR. Genome Res 1997; 7: 541-550.
Sawcer S, Jones HB, Feakes R, et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464-468.
Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7: 1235-1237.
Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-1517.
Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet 1972; 1: 1240-1241.
Walsh EC, Mather KA, Schaffner SF, et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73: 580-590.
Tamiya G, Shiina T, Oka A, et al. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-228.
Stewart CA, Horton R, Allcock RJ, et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004; 14: 1176-1187.
de Jong BA, Huizinga TW, Zanelli E, et al. Evidence for additional genetic risk indicators of relapse-onset MS within the HLA region. Neurology 2002; 59: 549-555.
Foissac A, Salhi M, Cambon-Thomsen A. Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000; 55: 477-509.
Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74: 160-167.
Ebers GC, Kukay K, Bulman DE, et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472-476.
Fogdell-Hahn A, Ligers A, Gronning M, et al. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140-148.
Marrosu MG, Murru R, Murru MR, et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet 2001; 10: 2907-2916.
GAMES and the Transatlantic Multiple Sclerosis Genetics Consortium. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143: 39-46.
Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225-235.
Rajalingam R, Krausa P, Shilling HG, et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics 2002; 53: 1009-1019.
Coraddu F, Reyes-Yanez MP, Parra A, et al. HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998; 87: 130-135.
Compston A, Confavreux C, Lassmann H, et al. McAlpine's multiple sclerosis. 4th ed. London: Churchill Livingstone, 2006.
Koeleman BP, Dudbridge F, Cordell HJ, Todd JA. Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test. Ann Hum Genet 2000; 64: 207-213.
Lincoln MR, Montpetit A, Cader MZ, et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108-1112.
Stewart GJ, Teutsch SM, Castle M, et al. HLA-DR, -DQA1 and -DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet 1997; 24: 81-92.
Tamiya G, Ota M, Katsuyama Y, et al. Twenty-six new polymorphic microsatellite markers around the HLA-B, -C and -E loci in the human MHC class I region. Tissue Antigens 1998; 51: 337-346.
Orru S, Giuressi E, Carcassi C, et al. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). Am J Hum Genet 2005; 76: 164-171.
Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634-646.
Dyment DA, Herrera BM, Cader MZ, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet 2005; 14: 2019-2026.
Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209-213.
Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13: 469-471.
Rogner UC, Avner P. Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 2003; 3: 243-252.
Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115-121.
O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259-266.
2004; 63
2002; 59
2001; 50
1987; 30
2002; 53
2006; 38
2004; 5
2005; 21
2003; 19
1998; 87
1983; 13
1936
1997; 7
2004; 74
2000; 56
1991; 88
2004; 36
2000; 55
2004; 173
2003; 3
2005; 76
1999; 54
2005; 37
1998; 51
2001; 57
2005; 77
2001; 10
1991; 38
2002; 30
1997; 24
2000; 64
2006; 15
1992; 39
2006
2006; 2
1998; 63
2003; 72
1996; 13
2003; 73
1989; 25
2001; 69
1972; 1
2004; 53
2005; 201
2004; 14
2003; 25
2002; 70
1996; 273
1998; 7
2003; 143
2005; 14
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
Compston A (e_1_2_6_11_2) 2006
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Vartdal F, Sollid LM, Vandvik B, et al. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences. Hum Immunol 1989; 25: 103-110.
– reference: Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115-121.
– reference: Tamiya G, Shiina T, Oka A, et al. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-228.
– reference: Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209-213.
– reference: Rogner UC, Avner P. Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 2003; 3: 243-252.
– reference: Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360-1368.
– reference: Rajalingam R, Krausa P, Shilling HG, et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics 2002; 53: 1009-1019.
– reference: Stewart CA, Horton R, Allcock RJ, et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004; 14: 1176-1187.
– reference: Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889-899.
– reference: Olerup O, Carlsson B, Wallin J, et al. Genomic HLA-typing by RFLP-analysis using DR beta and DQ beta cDNA probes reveals normal DR-DQ linkages in patients with multiple sclerosis. Tissue Antigens 1987; 30: 135-138.
– reference: Ebers GC, Kukay K, Bulman DE, et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472-476.
– reference: Fogdell-Hahn A, Ligers A, Gronning M, et al. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140-148.
– reference: Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74: 160-167.
– reference: Sawcer S, Jones HB, Feakes R, et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464-468.
– reference: Barcellos LF, Sawcer S, Ramsay PP, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813-2824.
– reference: Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005; 201: 1025-1029.
– reference: de Jong BA, Huizinga TW, Zanelli E, et al. Evidence for additional genetic risk indicators of relapse-onset MS within the HLA region. Neurology 2002; 59: 549-555.
– reference: Rubio JP, Bahlo M, Butzkueven H, et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 2002; 70: 1125-1137.
– reference: Coraddu F, Reyes-Yanez MP, Parra A, et al. HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998; 87: 130-135.
– reference: GAMES and the Transatlantic Multiple Sclerosis Genetics Consortium. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143: 39-46.
– reference: Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13: 469-471.
– reference: McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127.
– reference: Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 1991; 88: 7276-7280.
– reference: Stewart GJ, Teutsch SM, Castle M, et al. HLA-DR, -DQA1 and -DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet 1997; 24: 81-92.
– reference: Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124-141.
– reference: Harbo HF, Lie BA, Sawcer S, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237-247.
– reference: Schuler GD. Sequence mapping by electronic PCR. Genome Res 1997; 7: 541-550.
– reference: Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710-716.
– reference: Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97-101.
– reference: Orru S, Giuressi E, Carcassi C, et al. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). Am J Hum Genet 2005; 76: 164-171.
– reference: Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149-150.
– reference: Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634-646.
– reference: Tamiya G, Ota M, Katsuyama Y, et al. Twenty-six new polymorphic microsatellite markers around the HLA-B, -C and -E loci in the human MHC class I region. Tissue Antigens 1998; 51: 337-346.
– reference: Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class II region. Tissue Antigens 2000; 56: 492-500.
– reference: Koeleman BP, Dudbridge F, Cordell HJ, Todd JA. Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test. Ann Hum Genet 2000; 64: 207-213.
– reference: Dyment DA, Herrera BM, Cader MZ, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet 2005; 14: 2019-2026.
– reference: Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227-231.
– reference: Walsh EC, Mather KA, Schaffner SF, et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73: 580-590.
– reference: Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225-235.
– reference: Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7: 1235-1237.
– reference: Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445-3447.
– reference: Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004; 36: 1045-1051.
– reference: Traherne JA, Horton R, Roberts AN, et al. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet 2006; 2: e9.
– reference: Lincoln MR, Montpetit A, Cader MZ, et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108-1112.
– reference: Ligers A, Dyment DA, Willer CJ, et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 2001; 69: 900-903.
– reference: O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259-266.
– reference: Marrosu MG, Murru R, Murru MR, et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet 2001; 10: 2907-2916.
– reference: Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173: 4273-4276.
– reference: Foissac A, Salhi M, Cambon-Thomsen A. Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000; 55: 477-509.
– reference: Haines JL, Terwedow HA, Burgess K, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 1998; 7: 1229-1234.
– reference: Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet 1972; 1: 1240-1241.
– reference: Compston A, Confavreux C, Lassmann H, et al. McAlpine's multiple sclerosis. 4th ed. London: Churchill Livingstone, 2006.
– reference: International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454-467.
– reference: Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class III region. Tissue Antigens 2001; 57: 397-404.
– reference: Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-1517.
– reference: Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1-15.
– volume: 55
  start-page: 140
  year: 2000
  end-page: 148
  article-title: Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease
  publication-title: Tissue Antigens
– volume: 3
  start-page: 243
  year: 2003
  end-page: 252
  article-title: Congenic mice: cutting tools for complex immune disorders
  publication-title: Nat Rev Immunol
– volume: 25
  start-page: 115
  year: 2003
  end-page: 121
  article-title: Pedigree disequilibrium tests for multilocus haplotypes
  publication-title: Genet Epidemiol
– volume: 74
  start-page: 160
  year: 2004
  end-page: 167
  article-title: Mapping multiple sclerosis susceptibility to the HLA‐DR locus in African Americans
  publication-title: Am J Hum Genet
– volume: 1
  start-page: 1240
  year: 1972
  end-page: 1241
  article-title: HL‐A antigens and multiple sclerosis
  publication-title: Lancet
– volume: 36
  start-page: 1045
  year: 2004
  end-page: 1051
  article-title: The use of pedigree, sib‐pair and association studies of common diseases for genetic mapping and epidemiology
  publication-title: Nat Genet
– start-page: 3
  year: 1936
  end-page: 62
– volume: 54
  start-page: 221
  year: 1999
  end-page: 228
  article-title: New polymorphic microsatellite markers in the human MHC class I region
  publication-title: Tissue Antigens
– volume: 24
  start-page: 81
  year: 1997
  end-page: 92
  article-title: HLA‐DR, ‐DQA1 and ‐DQB1 associations in Australian multiple sclerosis patients
  publication-title: Eur J Immunogenet
– volume: 39
  start-page: 225
  year: 1992
  end-page: 235
  article-title: HLA‐DR typing by PCR amplification with sequence‐specific primers (PCR‐SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor‐recipient matching in cadaveric transplantation
  publication-title: Tissue Antigens
– volume: 63
  start-page: 259
  year: 1998
  end-page: 266
  article-title: PedCheck: a program for identification of genotype incompatibilities in linkage analysis
  publication-title: Am J Hum Genet
– volume: 273
  start-page: 1516
  year: 1996
  end-page: 1517
  article-title: The future of genetic studies of complex human diseases
  publication-title: Science
– volume: 2
  start-page: e9
  year: 2006
  article-title: Genetic analysis of completely sequenced disease‐associated MHC haplotypes identifies shuffling of segments in recent human history
  publication-title: PLoS Genet
– volume: 38
  start-page: 1
  year: 1991
  end-page: 15
  article-title: HLA class II‐associated genetic susceptibility in multiple sclerosis: a critical evaluation
  publication-title: Tissue Antigens
– volume: 76
  start-page: 634
  year: 2005
  end-page: 646
  article-title: A high‐resolution linkage‐disequilibrium map of the human major histocompatibility complex and first generation of tag single‐nucleotide polymorphisms
  publication-title: Am J Hum Genet
– volume: 76
  start-page: 164
  year: 2005
  end-page: 171
  article-title: Mapping of the major psoriasis‐susceptibility locus (PSORS1) in a 70‐Kb interval around the corneodesmosin gene (CDSN)
  publication-title: Am J Hum Genet
– volume: 50
  start-page: 121
  year: 2001
  end-page: 127
  article-title: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis
  publication-title: Ann Neurol
– volume: 55
  start-page: 477
  year: 2000
  end-page: 509
  article-title: Microsatellites in the HLA region: 1999 update
  publication-title: Tissue Antigens
– volume: 63
  start-page: 237
  year: 2004
  end-page: 247
  article-title: Genes in the HLA class I region may contribute to the HLA class II‐associated genetic susceptibility to multiple sclerosis
  publication-title: Tissue Antigens
– volume: 19
  start-page: 149
  year: 2003
  end-page: 150
  article-title: Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits
  publication-title: Bioinformatics
– volume: 53
  start-page: 1360
  year: 2004
  end-page: 1368
  article-title: Haplotype structure and genotype‐phenotype correlations of the sulfonylurea receptor and the islet ATP‐sensitive potassium channel gene region
  publication-title: Diabetes
– volume: 13
  start-page: 227
  year: 1983
  end-page: 231
  article-title: New diagnostic criteria for multiple sclerosis: guidelines for research protocols
  publication-title: Ann Neurol
– volume: 77
  start-page: 454
  year: 2005
  end-page: 467
  article-title: A high‐density screen for linkage in multiple sclerosis
  publication-title: Am J Hum Genet
– volume: 69
  start-page: 900
  year: 2001
  end-page: 903
  article-title: Evidence of linkage with HLA‐DR in DRB1*15‐negative families with multiple sclerosis
  publication-title: Am J Hum Genet
– volume: 38
  start-page: 209
  year: 2006
  end-page: 213
  article-title: Joint analysis is more efficient than replication‐based analysis for two‐stage genome‐wide association studies
  publication-title: Nat Genet
– volume: 14
  start-page: 1176
  year: 2004
  end-page: 1187
  article-title: Complete MHC haplotype sequencing for common disease gene mapping
  publication-title: Genome Res
– volume: 64
  start-page: 207
  year: 2000
  end-page: 213
  article-title: Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test
  publication-title: Ann Hum Genet
– volume: 7
  start-page: 1229
  year: 1998
  end-page: 1234
  article-title: Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity
  publication-title: Hum Mol Genet
– volume: 73
  start-page: 580
  year: 2003
  end-page: 590
  article-title: An integrated haplotype map of the human major histocompatibility complex
  publication-title: Am J Hum Genet
– volume: 7
  start-page: 1235
  year: 1998
  end-page: 1237
  article-title: DRB1‐DQA1‐DQB1 loci and multiple sclerosis predisposition in the Sardinian population
  publication-title: Hum Mol Genet
– volume: 51
  start-page: 337
  year: 1998
  end-page: 346
  article-title: Twenty‐six new polymorphic microsatellite markers around the HLA‐B, ‐C and ‐E loci in the human MHC class I region
  publication-title: Tissue Antigens
– volume: 13
  start-page: 464
  year: 1996
  end-page: 468
  article-title: A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22
  publication-title: Nat Genet
– volume: 13
  start-page: 469
  year: 1996
  end-page: 471
  article-title: A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex
  publication-title: Nat Genet
– volume: 25
  start-page: 103
  year: 1989
  end-page: 110
  article-title: Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences
  publication-title: Hum Immunol
– volume: 72
  start-page: 710
  year: 2003
  end-page: 716
  article-title: HLA‐DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course
  publication-title: Am J Hum Genet
– volume: 70
  start-page: 1125
  year: 2002
  end-page: 1137
  article-title: Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis
  publication-title: Am J Hum Genet
– volume: 5
  start-page: 889
  year: 2004
  end-page: 899
  article-title: Gene map of the extended human MHC
  publication-title: Nat Rev Genet
– volume: 173
  start-page: 4273
  year: 2004
  end-page: 4276
  article-title: Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig‐like receptor combinations in psoriatic arthritis
  publication-title: J Immunol
– volume: 10
  start-page: 2907
  year: 2001
  end-page: 2916
  article-title: Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia
  publication-title: Hum Mol Genet
– volume: 59
  start-page: 549
  year: 2002
  end-page: 555
  article-title: Evidence for additional genetic risk indicators of relapse‐onset MS within the HLA region
  publication-title: Neurology
– volume: 87
  start-page: 130
  year: 1998
  end-page: 135
  article-title: HLA associations with multiple sclerosis in the Canary Islands
  publication-title: J Neuroimmunol
– volume: 7
  start-page: 541
  year: 1997
  end-page: 550
  article-title: Sequence mapping by electronic PCR
  publication-title: Genome Res
– volume: 30
  start-page: 97
  year: 2002
  end-page: 101
  article-title: Merlin—rapid analysis of dense genetic maps using sparse gene flow trees
  publication-title: Nat Genet
– volume: 30
  start-page: 135
  year: 1987
  end-page: 138
  article-title: Genomic HLA‐typing by RFLP‐analysis using DR beta and DQ beta cDNA probes reveals normal DR‐DQ linkages in patients with multiple sclerosis
  publication-title: Tissue Antigens
– volume: 37
  start-page: 1108
  year: 2005
  end-page: 1112
  article-title: A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis
  publication-title: Nat Genet
– volume: 21
  start-page: 3445
  year: 2005
  end-page: 3447
  article-title: PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data
  publication-title: Bioinformatics
– year: 2006
– volume: 88
  start-page: 7276
  year: 1991
  end-page: 7280
  article-title: Detection of specific polymerase chain reaction product by utilizing the 5′‐3′ exonuclease activity of Thermus aquaticus DNA polymerase
  publication-title: Proc Natl Acad Sci U S A
– volume: 56
  start-page: 492
  year: 2000
  end-page: 500
  article-title: New polymorphic microsatellite markers in the human MHC class II region
  publication-title: Tissue Antigens
– volume: 70
  start-page: 124
  year: 2002
  end-page: 141
  article-title: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes
  publication-title: Am J Hum Genet
– volume: 14
  start-page: 2019
  year: 2005
  end-page: 2026
  article-title: Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance
  publication-title: Hum Mol Genet
– volume: 53
  start-page: 1009
  year: 2002
  end-page: 1019
  article-title: Distinctive KIR and HLA diversity in a panel of north Indian Hindus
  publication-title: Immunogenetics
– volume: 15
  start-page: 2813
  year: 2006
  end-page: 2824
  article-title: Heterogeneity at the HLA‐DRB1 locus and risk for multiple sclerosis
  publication-title: Hum Mol Genet
– volume: 13
  start-page: 472
  year: 1996
  end-page: 476
  article-title: A full genome search in multiple sclerosis
  publication-title: Nat Genet
– volume: 57
  start-page: 397
  year: 2001
  end-page: 404
  article-title: New polymorphic microsatellite markers in the human MHC class III region
  publication-title: Tissue Antigens
– volume: 201
  start-page: 1025
  year: 2005
  end-page: 1029
  article-title: Understanding how combinations of HLA and KIR genes influence disease
  publication-title: J Exp Med
– volume: 143
  start-page: 39
  year: 2003
  end-page: 46
  article-title: A meta‐analysis of whole genome linkage screens in multiple sclerosis
  publication-title: J Neuroimmunol
– ident: e_1_2_6_22_2
  doi: 10.1038/nri1031
– ident: e_1_2_6_5_2
  doi: 10.1093/hmg/7.8.1235
– ident: e_1_2_6_36_2
  doi: 10.2337/diabetes.53.5.1360
– ident: e_1_2_6_45_2
  doi: 10.1111/j.1399-0039.1992.tb01940.x
– ident: e_1_2_6_46_2
  doi: 10.1016/S0165-5728(98)00074-5
– ident: e_1_2_6_41_2
  doi: 10.1034/j.1399-0039.2000.560602.x
– ident: e_1_2_6_6_2
  doi: 10.1086/367781
– volume-title: McAlpine's multiple sclerosis
  year: 2006
  ident: e_1_2_6_11_2
– ident: e_1_2_6_53_2
  doi: 10.1038/ng1433
– ident: e_1_2_6_14_2
  doi: 10.1034/j.1399-0039.2000.550205.x
– ident: e_1_2_6_27_2
  doi: 10.1038/ng0896-469
– ident: e_1_2_6_10_2
  doi: 10.1038/nrg1489
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1399-0039.1991.tb02029.x
– ident: e_1_2_6_49_2
  doi: 10.1093/bioinformatics/bti529
– ident: e_1_2_6_16_2
  doi: 10.1212/WNL.59.4.549
– ident: e_1_2_6_12_2
  doi: 10.1093/hmg/10.25.2907
– ident: e_1_2_6_42_2
  doi: 10.1034/j.1399-0039.2001.057005397.x
– ident: e_1_2_6_21_2
  doi: 10.1093/hmg/ddl223
– ident: e_1_2_6_51_2
  doi: 10.1038/ng1706
– ident: e_1_2_6_32_2
  doi: 10.1002/ana.1032
– ident: e_1_2_6_44_2
  doi: 10.1007/s00251-001-0425-5
– ident: e_1_2_6_19_2
  doi: 10.1086/380997
– ident: e_1_2_6_48_2
  doi: 10.1086/301904
– ident: e_1_2_6_50_2
  doi: 10.1038/ng786
– ident: e_1_2_6_58_2
  doi: 10.1093/bioinformatics/19.1.149
– ident: e_1_2_6_29_2
  doi: 10.1126/science.273.5281.1516
– ident: e_1_2_6_31_2
  doi: 10.1002/ana.410130302
– ident: e_1_2_6_23_2
  doi: 10.1093/hmg/7.8.1229
– ident: e_1_2_6_37_2
  doi: 10.1073/pnas.88.16.7276
– ident: e_1_2_6_13_2
  doi: 10.1086/429393
– ident: e_1_2_6_39_2
  doi: 10.1034/j.1399-0039.1999.540302.x
– ident: e_1_2_6_24_2
  doi: 10.1086/323480
– ident: e_1_2_6_26_2
  doi: 10.1038/ng0896-464
– ident: e_1_2_6_30_2
  doi: 10.1016/j.jneuroim.2003.08.009
– ident: e_1_2_6_54_2
– ident: e_1_2_6_17_2
  doi: 10.1111/j.0001-2815.2004.00173.x
– ident: e_1_2_6_34_2
  doi: 10.1371/journal.pgen.0020009
– ident: e_1_2_6_7_2
  doi: 10.1093/hmg/ddi206
– ident: e_1_2_6_55_2
  doi: 10.1084/jem.20050499
– ident: e_1_2_6_56_2
  doi: 10.1086/426948
– ident: e_1_2_6_18_2
  doi: 10.1038/ng1647
– ident: e_1_2_6_33_2
  doi: 10.1101/gr.2188104
– ident: e_1_2_6_4_2
  doi: 10.1046/j.1365-2370.1997.00252.x
– ident: e_1_2_6_52_2
  doi: 10.1086/338007
– ident: e_1_2_6_43_2
  doi: 10.1101/gr.7.5.541
– ident: e_1_2_6_28_2
  doi: 10.1038/ng0896-472
– ident: e_1_2_6_15_2
  doi: 10.1086/339932
– ident: e_1_2_6_38_2
  doi: 10.1111/j.1399-0039.1998.tb02972.x
– ident: e_1_2_6_2_2
  doi: 10.1016/S0140-6736(72)90962-2
– ident: e_1_2_6_47_2
  doi: 10.1002/gepi.10252
– ident: e_1_2_6_20_2
  doi: 10.1046/j.1469-1809.2000.6430207.x
– ident: e_1_2_6_40_2
  doi: 10.1034/j.1399-0039.2000.550601.x
– ident: e_1_2_6_8_2
  doi: 10.1111/j.1399-0039.1987.tb01610.x
– ident: e_1_2_6_57_2
  doi: 10.4049/jimmunol.173.7.4273
– ident: e_1_2_6_9_2
  doi: 10.1016/0198-8859(89)90074-8
– ident: e_1_2_6_35_2
  doi: 10.1086/378101
– ident: e_1_2_6_25_2
  doi: 10.1086/444547
SSID ssj0009610
Score 2.2933507
Snippet Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the...
Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect...
Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms Adult
Biological and medical sciences
Female
Genetic Predisposition to Disease
HLA-D Antigens - genetics
Humans
Immunomodulators
Major Histocompatibility Complex - genetics
Male
Medical sciences
Microsatellite Repeats
Middle Aged
Multiple Sclerosis - genetics
Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis
Neurology
Original
Pharmacology. Drug treatments
Polymorphism, Single Nucleotide
Title A second major histocompatibility complex susceptibility locus for multiple sclerosis
URI https://api.istex.fr/ark:/67375/WNG-P8B13M68-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21063
https://www.ncbi.nlm.nih.gov/pubmed/17252545
https://www.proquest.com/docview/19736847
https://www.proquest.com/docview/70326297
https://pubmed.ncbi.nlm.nih.gov/PMC2737610
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rCuLLetfxMgYR8aWzbZM0LT6N4roIMyzi4D4IIVdcd-3IdAqrv96TpO04ugviU0t72tLTc5LvJF-_IPQ8Z1IDTLAJz0ubUMlYoohlkHiKcz-ZSI0fh5zNi8MFfX_MjnfQq_5fmKgPMQy4-cwI7bVPcKma_Y1oqKzlBOqVwit9eq6WB0QfNtJRVRGUCPw0W8IyQntVoTTfH67c6ouuereee26kbMA9Lq5rcRHw_Js_-TuuDR3TwQ30uX-lyEc5nbRrNdE__1B7_M93von2OsCKpzHCbqEdW99G12bdlPwdtJjixhfVBn-TX5crHASMA7N9HYm3P3Cgrdtz3LRNINF0h6EbbRsMoBn3rEbcwCPAVSfNXbQ4ePvxzWHSrdWQaMh5khTUWOOIS7nhJLOOW8UUB3joZEmorZjRUEo6ZTRPK9gqbcBcV5pr7aQqyT20Wy9r-wDhkhBHpYJG2FgqvcKgS1NjMwXFnbV5OkIv-68mdCdk7tfTOBNRgjkX4CYR3DRCzwbT71G94yKjF-HTDxZyderpbpyJT_N34qh8nZFZUQp48HgrNja3LKEVK4pqhJ72wSIgS_3Ui6ztsm1EVnFSABC43AJa3rzIK7C4H4Nrc3eeMyjj2QjxrbAbDLxC-PaZ-uRLUAoHbMohD8BjIaou94GYzqdh5-G_mz5C1-NAtyfkPUa761VrnwBCW6sxupLTo3FIyF83gTqf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVgIuvB_h0a4QIC5O7V2v1z5wCJSS0iZCqBG9LfuyKAUHxbFo-U38Ff4Ts-tHCLQSlx44xUpGa2dnZndm9vM3CD0mTGoIE2zASWqDWDIWKGoZOJ7i3B0mxsbVIUfjZDiJ3xywgxX0o30XpuaH6ApuzjP8eu0c3BWkNxesobKQfUhYkrZ19a49-QYJW_l8Zwu0-4SQ7Vf7L4dB01Mg0GCbNEhiY01O85AbTiObc6uY4hDG5DKlsc2Y0ZDy5MpoHmbwqbQBcZ1prnUuVUph3AtozXUQd0z9W-8WZFVZ4rkP3MFewCIatzxGIdnsHnVp91tzijx2aExZgkLyupPGaaHu34jN3yNpvxVuX0U_20msETBH_Wqu-vr7H_yS_8ssX0NXmpgcD2onuo5WbHEDXRw1qIObaDLApasbGPxFfprOsOdo9uD9eY0tPsEemW-PcVmVHifUfA2RQlViyAtwC9zEJdwCdHNY3kKTc_lTt9FqMS3sXYRTSvNYKthnjI2lI1HMw9DYSEH-ai0Je-hZayZCN1ztrmXIZ1GzTBMBahFeLT30qBP9WhOUnCb01NtaJyFnRw7Rx5l4P34t3qYvIjpKUgE3Xl8yxsWQKSzUSZL10EZrnQIWIne6JAs7rUoRZZwmEOucLQGbC0lIBhJ3amtejM4JIxDL9xBfsvNOwJGgL_9SHH70ZOgQfnNwPJgxb8Znz4EYjAf-4t6_i26gS8P90Z7Y2xnv3keX67q-wx8-QKvzWWUfQkA6V-t-HcDow3m7xC_Tb5zz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1VcEG-WR2shQFxCEzuOkwOHbcvSUna1B1b0ZvwU5ZGtNrtq-5v6Jxk7j2VFK3HpKVEychLPjD3j-fIZoVeESQ1hgo04yW2USsYiRS0Dx1Oc-2Jiavw65HCUHUzST8fseA1dtv_C1PwQ3YKb94wwXnsHPzVuZ0kaKkv5DvKVrN25-shenEG-Vr0_3AflviZk8OHL3kHUbCkQaTBNGmWpscZRF3PDaWIdt4opDlGMkzlNbcGMhozHKaN5XMBRaQPiutBcaydVTqHdW2jDFxc9foyk4yXDbxaoD3xdL2IJTVsao5jsdK-6MvlteD2eezCmrEAfrt5I46pI91_A5t-BdJgJB3fRnSaExf3a5u6hNVveR5vDpkj_AE36uPJptsG_5Y_pDAdK44B1n9dQ3AscgOz2HFeLKsBqmsswsS4qDGE0bnGOuIJHwLecVA_R5Ea6-hFaL6elfYJwTqlLpYJh2dhUes5BF8fGJgrSPWtJ3ENv224VuqE29zts_BI1KTMRoAERNNBDLzvR05rP4yqhN0E3nYSc_fQAOM7E19FHMc53EzrMcgEP3lpR3rLJHMa1LCt6aLvVpgC_9cUYWdrpohJJwWkGocH1EjAWk4wUIPG41v6ydU4YJPash_iKXXQCnjN89U558j1wh0O0ysFQoceCBV3fB6I_6oeTp_8vuo02x_sD8flwdPQM3a5XwT1a7zlan88W9gWEb3O1FdwGo2837ad_ABPYWcI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+second+major+histocompatibility+complex+susceptibility+locus+for+multiple+sclerosis&rft.jtitle=Annals+of+neurology&rft.au=Yeo%2C+Tai+Wai&rft.au=De+Jager%2C+Philip+L&rft.au=Gregory%2C+Simon+G&rft.au=Barcellos%2C+Lisa+F&rft.date=2007-03-01&rft.issn=0364-5134&rft.volume=61&rft.issue=3&rft.spage=228&rft.epage=236&rft_id=info:doi/10.1002%2Fana.21063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon