A second major histocompatibility complex susceptibility locus for multiple sclerosis
Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence sus...
Saved in:
Published in | Annals of neurology Vol. 61; no. 3; pp. 228 - 236 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2007
Willey-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.
Methods
Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects.
Results
Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA‐C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA‐DRB1 locus, but also reflects an independent effect from the HLA‐C gene. Specifically, the HLA‐C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 × 10−5).
Interpretation
Variation in the HLA‐C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA‐DRB1 gene. Ann Neurol 2007 |
---|---|
AbstractList | Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 X 10-5). Interpretation Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene. Ann Neurol 2007. Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA‐DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA‐C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA‐DRB1 locus, but also reflects an independent effect from the HLA‐C gene. Specifically, the HLA‐C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 × 10−5). Interpretation Variation in the HLA‐C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA‐DRB1 gene. Ann Neurol 2007 Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.OBJECTIVEVariation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed.Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects.METHODSUsing a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects.Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)).RESULTSScreening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)).Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene.INTERPRETATIONVariation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene. Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 x 10(-5)). Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene. |
Author | Wolfish, Cara S. Goodman, Reyna S. Traherne, James Horton, Roger Beck, Stephan Sawcer, Stephen Trowsdale, John Caillier, Stacy J. Green, Todd Rioux, John D. Hafler, David A. Gregory, Simon G. Fenoglio, Chiara Walton, Amie Hauser, Stephen L. Yeo, Tai Wai Walsh, Emily Ban, Maria Barcellos, Lisa F. Lander, Eric S. Goris, An Daly, Mark J. Haines, Jonathan L. Compston, Alastair Taylor, Craig J. Pobywajlo, Susan Pericak-Vance, Margaret A. Ivinson, Adrian J. Oksenberg, Jorge R. De Jager, Philip L. |
AuthorAffiliation | 7 Division of Epidemiology, School of Public Health, University of California at Berkeley Berkeley, CA 15 Institute for Human Genetics, School of Medicine, University of California San Francisco San Francisco, CA 6 Department of Neurology, School of Medicine, University of California San Francisco San Francisco 5 Duke University Medical Center, Center for Human Genetics Durham, NC 1 Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom 10 Wellcome Trust Sanger Institute, Genome Campus Hinxton, United Kingdom 4 Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University Cambridge, MA 9 Tissue Typing Laboratory, Addenbrooke's Hospital United Kingdom 13 The Center for Genome Research, Massachusetts General Hospital Boston, MA 16 Montréal Heart Institute and Université de Montréal Montréal, Québec, Canada 8 Department of Neurological Sciences, Dino Ferrari Center, Univers |
AuthorAffiliation_xml | – name: 6 Department of Neurology, School of Medicine, University of California San Francisco San Francisco – name: 1 Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom – name: 4 Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University Cambridge, MA – name: 16 Montréal Heart Institute and Université de Montréal Montréal, Québec, Canada – name: 2 Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital Boston – name: 12 Harvard Center for Neurodegeneration and Repair Boston, MA – name: 8 Department of Neurological Sciences, Dino Ferrari Center, University of Milan, IRCCS Ospedale Maggiore Policlinico Milan, Italy – name: 15 Institute for Human Genetics, School of Medicine, University of California San Francisco San Francisco, CA – name: 3 Harvard Medical School Boston – name: 9 Tissue Typing Laboratory, Addenbrooke's Hospital United Kingdom – name: 7 Division of Epidemiology, School of Public Health, University of California at Berkeley Berkeley, CA – name: 10 Wellcome Trust Sanger Institute, Genome Campus Hinxton, United Kingdom – name: 11 Department of Pathology, Immunology Division, University of Cambridge Cambridge, United Kingdom – name: 13 The Center for Genome Research, Massachusetts General Hospital Boston, MA – name: 5 Duke University Medical Center, Center for Human Genetics Durham, NC – name: 14 Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN |
Author_xml | – sequence: 1 givenname: Tai Wai surname: Yeo fullname: Yeo, Tai Wai organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 2 givenname: Philip L. surname: De Jager fullname: De Jager, Philip L. organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston – sequence: 3 givenname: Simon G. surname: Gregory fullname: Gregory, Simon G. organization: Duke University Medical Center, Center for Human Genetics, Durham, NC – sequence: 4 givenname: Lisa F. surname: Barcellos fullname: Barcellos, Lisa F. organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco – sequence: 5 givenname: Amie surname: Walton fullname: Walton, Amie organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 6 givenname: An surname: Goris fullname: Goris, An organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 7 givenname: Chiara surname: Fenoglio fullname: Fenoglio, Chiara organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 8 givenname: Maria surname: Ban fullname: Ban, Maria organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 9 givenname: Craig J. surname: Taylor fullname: Taylor, Craig J. organization: Tissue Typing Laboratory, Addenbrooke's Hospital, United Kingdom – sequence: 10 givenname: Reyna S. surname: Goodman fullname: Goodman, Reyna S. organization: Tissue Typing Laboratory, Addenbrooke's Hospital, United Kingdom – sequence: 11 givenname: Emily surname: Walsh fullname: Walsh, Emily organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA – sequence: 12 givenname: Cara S. surname: Wolfish fullname: Wolfish, Cara S. organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston – sequence: 13 givenname: Roger surname: Horton fullname: Horton, Roger organization: Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom – sequence: 14 givenname: James surname: Traherne fullname: Traherne, James organization: Department of Pathology, Immunology Division, University of Cambridge, Cambridge, United Kingdom – sequence: 15 givenname: Stephan surname: Beck fullname: Beck, Stephan organization: Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom – sequence: 16 givenname: John surname: Trowsdale fullname: Trowsdale, John organization: Department of Pathology, Immunology Division, University of Cambridge, Cambridge, United Kingdom – sequence: 17 givenname: Stacy J. surname: Caillier fullname: Caillier, Stacy J. organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco – sequence: 18 givenname: Adrian J. surname: Ivinson fullname: Ivinson, Adrian J. organization: Harvard Medical School, Boston – sequence: 19 givenname: Todd surname: Green fullname: Green, Todd organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA – sequence: 20 givenname: Susan surname: Pobywajlo fullname: Pobywajlo, Susan organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston – sequence: 21 givenname: Eric S. surname: Lander fullname: Lander, Eric S. organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA – sequence: 22 givenname: Margaret A. surname: Pericak-Vance fullname: Pericak-Vance, Margaret A. organization: Duke University Medical Center, Center for Human Genetics, Durham, NC – sequence: 23 givenname: Jonathan L. surname: Haines fullname: Haines, Jonathan L. organization: Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN – sequence: 24 givenname: Mark J. surname: Daly fullname: Daly, Mark J. organization: Program in Medical and Population Genetics, The Broad Institute at the Massachusetts Institute of Technology and Harvard University, Cambridge, MA – sequence: 25 givenname: Jorge R. surname: Oksenberg fullname: Oksenberg, Jorge R. organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco – sequence: 26 givenname: Stephen L. surname: Hauser fullname: Hauser, Stephen L. organization: Department of Neurology, School of Medicine, University of California San Francisco, San Francisco – sequence: 27 givenname: Alastair surname: Compston fullname: Compston, Alastair organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom – sequence: 28 givenname: David A. surname: Hafler fullname: Hafler, David A. organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston – sequence: 29 givenname: John D. surname: Rioux fullname: Rioux, John D. organization: Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston – sequence: 30 givenname: Stephen surname: Sawcer fullname: Sawcer, Stephen email: sjs1016@mole.bio.cam.ac.uk organization: Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18638669$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17252545$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS3Uim4LB74AygWkHtLacfwnF6SlKqVSWzhQcbSciU1dnHhrJ9D99njZ7VIQiNPI9u89zbzxPtoZwmAQekHwEcG4OtaDPqoI5vQJmhFGSSmrutlBM0x5XTJC6z20n9ItxrjhBD9Fe0RUrGI1m6HreZEMhKEren0bYnHj0hgg9As9utZ5Ny6L1cmb-yJNCcxie-0DTKmwWdNPfnQZKRJ4E0Ny6Rnatdon83xTD9D1u9NPJ-_Liw9n5yfzixKYkLTkdWc6Sy0WnaDEWGFa1gpGGqslrU3DOpA1tm0HAje5ttBlHBoQAFa3kh6gN2vfxdT2pgMzjFF7tYiu13Gpgnbq95fB3agv4ZuqBBU5imzwemMQw91k0qh6l6f0Xg8mTEkJTCteNeK_IMkMl_UKfPm4pW0vD5Fn4NUG0Am0t1EP4NIvTnIqOW8yd7zmIEeaorEK3Ji3ElaTOK8IVqvlq7x89XP5WXH4h2Jr-hd24_7debP8N6jmV_MHRblW5B9i7rcKHb8qntNk6vPVmfoo3xJ6yaXC9AdFBdBD |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1016_j_nrleng_2015_03_020 crossref_primary_10_1016_j_jneuroim_2016_02_008 crossref_primary_10_1093_hmg_ddm165 crossref_primary_10_1016_j_febslet_2011_05_025 crossref_primary_10_1073_pnas_0909307106 crossref_primary_10_1111_j_1744_3121_2010_00926_x crossref_primary_10_1016_S1474_4422_14_70041_9 crossref_primary_10_4061_2011_932351 crossref_primary_10_1590_0004_282X20160100 crossref_primary_10_1186_1471_2164_11_626 crossref_primary_10_1007_s00251_008_0295_1 crossref_primary_10_2217_pgs_16_2 crossref_primary_10_1016_j_jneuroim_2009_01_012 crossref_primary_10_1371_journal_pone_0036779 crossref_primary_10_1016_j_ajhg_2010_02_027 crossref_primary_10_1111_j_1744_313X_2010_00926_x crossref_primary_10_1212_WNL_0b013e3181ed9c9c crossref_primary_10_1016_S0035_3787_07_90479_8 crossref_primary_10_1016_j_pathog_2016_04_001 crossref_primary_10_1038_gene_2008_26 crossref_primary_10_1371_journal_pone_0036140 crossref_primary_10_1016_j_smim_2009_08_003 crossref_primary_10_1177_1352458510376778 crossref_primary_10_1097_WCO_0b013e3282fd10cc crossref_primary_10_1111_j_1744_313X_2008_00765_x crossref_primary_10_1016_S0213_9626_07_70078_1 crossref_primary_10_1172_JCI37878 crossref_primary_10_1016_j_febslet_2011_03_037 crossref_primary_10_1038_nri2554 crossref_primary_10_1371_journal_pone_0011296 crossref_primary_10_3389_fimmu_2021_644838 crossref_primary_10_1177_1352458509104588 crossref_primary_10_1186_1471_2156_8_25 crossref_primary_10_1016_j_jaut_2011_11_003 crossref_primary_10_1016_j_cca_2009_05_004 crossref_primary_10_1038_ng_401 crossref_primary_10_1042_BSR20171503 crossref_primary_10_1016_S0213_9626_08_70045_3 crossref_primary_10_1038_gene_2008_41 crossref_primary_10_4049_jimmunol_0900784 crossref_primary_10_1093_infdis_jir024 crossref_primary_10_1111_j_1399_0039_2008_01101_x crossref_primary_10_1074_mcp_M900001_MCP200 crossref_primary_10_1016_j_jneuroim_2010_03_019 crossref_primary_10_1093_hmg_ddn388 crossref_primary_10_1002_ana_21695 crossref_primary_10_1007_s00251_007_0262_2 crossref_primary_10_1038_nrneurol_2010_91 crossref_primary_10_1111_j_1468_1331_2007_01825_x crossref_primary_10_1212_01_CON_0000293640_98116_18 crossref_primary_10_1038_gene_2011_3 crossref_primary_10_1016_S0140_6736_08_61620_7 crossref_primary_10_3109_08916930903567492 crossref_primary_10_1016_j_humimm_2007_09_005 crossref_primary_10_1056_NEJMoa073493 crossref_primary_10_1016_j_gde_2010_12_006 crossref_primary_10_1016_j_ncl_2010_12_002 crossref_primary_10_1038_gene_2008_59 crossref_primary_10_1016_j_ajhg_2010_01_017 crossref_primary_10_4045_tidsskr_10_0823 crossref_primary_10_1177_1352458515581439 crossref_primary_10_1111_j_1399_0039_2007_00962_x crossref_primary_10_1371_journal_pone_0013454 crossref_primary_10_1016_j_nrl_2015_03_011 crossref_primary_10_3389_fneur_2023_1326738 crossref_primary_10_1186_gm217 crossref_primary_10_1002_ana_21744 crossref_primary_10_1007_s00281_012_0307_y crossref_primary_10_3389_fimmu_2022_931831 crossref_primary_10_1038_gene_2010_20 crossref_primary_10_1586_14737175_7_9_1175 crossref_primary_10_1371_journal_pone_0006526 crossref_primary_10_1212_WNL_0b013e31826c1b1c crossref_primary_10_1093_brain_awn081 crossref_primary_10_1038_gene_2009_34 crossref_primary_10_1177_1352458511415562 crossref_primary_10_1111_j_1600_065X_2012_01134_x crossref_primary_10_1016_j_jaut_2015_06_010 crossref_primary_10_1212_01_CON_0000389939_15155_eb crossref_primary_10_1073_pnas_0801042105 crossref_primary_10_1111_j_1365_2567_2012_03623_x crossref_primary_10_1016_j_jneuroim_2014_01_009 crossref_primary_10_1038_s41598_017_01345_8 crossref_primary_10_1038_gene_2009_101 crossref_primary_10_1038_sj_gene_6364437 crossref_primary_10_1371_journal_pgen_1000024 crossref_primary_10_1016_j_autrev_2022_103033 crossref_primary_10_1038_nrg2395 crossref_primary_10_1038_s41435_017_0006_8 crossref_primary_10_1111_imm_12869 crossref_primary_10_1038_nri2361 crossref_primary_10_1249_JSR_0000000000000446 crossref_primary_10_1007_s12026_016_8817_7 crossref_primary_10_1177_1352458515624270 crossref_primary_10_1093_brain_aws159 crossref_primary_10_1093_rheumatology_ket252 crossref_primary_10_1212_01_wnl_0000296821_72466_d3 crossref_primary_10_1016_j_jneuroim_2007_09_024 crossref_primary_10_3390_ijms130911718 crossref_primary_10_1093_aje_kwq086 crossref_primary_10_1016_j_legalmed_2024_102419 crossref_primary_10_1177_1352458517733551 crossref_primary_10_1016_j_jneuroim_2010_06_003 crossref_primary_10_1097_WCO_0b013e328352ea8b crossref_primary_10_1038_gene_2008_83 crossref_primary_10_1097_WCO_0b013e32832b5417 crossref_primary_10_1177_1352458507084267 crossref_primary_10_2217_fnl_11_32 crossref_primary_10_1093_brain_awn301 crossref_primary_10_1111_j_1399_0039_2008_01066_x crossref_primary_10_1016_j_jneuroim_2015_01_004 crossref_primary_10_1371_journal_pgen_1003926 |
Cites_doi | 10.1038/nri1031 10.1093/hmg/7.8.1235 10.2337/diabetes.53.5.1360 10.1111/j.1399-0039.1992.tb01940.x 10.1016/S0165-5728(98)00074-5 10.1034/j.1399-0039.2000.560602.x 10.1086/367781 10.1038/ng1433 10.1034/j.1399-0039.2000.550205.x 10.1038/ng0896-469 10.1038/nrg1489 10.1111/j.1399-0039.1991.tb02029.x 10.1093/bioinformatics/bti529 10.1212/WNL.59.4.549 10.1093/hmg/10.25.2907 10.1034/j.1399-0039.2001.057005397.x 10.1093/hmg/ddl223 10.1038/ng1706 10.1002/ana.1032 10.1007/s00251-001-0425-5 10.1086/380997 10.1086/301904 10.1038/ng786 10.1093/bioinformatics/19.1.149 10.1126/science.273.5281.1516 10.1002/ana.410130302 10.1093/hmg/7.8.1229 10.1073/pnas.88.16.7276 10.1086/429393 10.1034/j.1399-0039.1999.540302.x 10.1086/323480 10.1038/ng0896-464 10.1016/j.jneuroim.2003.08.009 10.1111/j.0001-2815.2004.00173.x 10.1371/journal.pgen.0020009 10.1093/hmg/ddi206 10.1084/jem.20050499 10.1086/426948 10.1038/ng1647 10.1101/gr.2188104 10.1046/j.1365-2370.1997.00252.x 10.1086/338007 10.1101/gr.7.5.541 10.1038/ng0896-472 10.1086/339932 10.1111/j.1399-0039.1998.tb02972.x 10.1016/S0140-6736(72)90962-2 10.1002/gepi.10252 10.1046/j.1469-1809.2000.6430207.x 10.1034/j.1399-0039.2000.550601.x 10.1111/j.1399-0039.1987.tb01610.x 10.4049/jimmunol.173.7.4273 10.1016/0198-8859(89)90074-8 10.1086/378101 10.1086/444547 |
ContentType | Journal Article |
Copyright | Copyright © 2007 American Neurological Association 2007 INIST-CNRS Copyright © 2007 Wiley-Liss, Inc., A Wiley Company |
Copyright_xml | – notice: Copyright © 2007 American Neurological Association – notice: 2007 INIST-CNRS – notice: Copyright © 2007 Wiley-Liss, Inc., A Wiley Company |
DBID | BSCLL 24P AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TK 8FD FR3 H94 P64 RC3 7X8 5PM |
DOI | 10.1002/ana.21063 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 236 |
ExternalDocumentID | PMC2737610 17252545 18638669 10_1002_ana_21063 ANA21063 ark_67375_WNG_P8B13M68_0 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: GlaxoSmithKline Clinical Fellowship – fundername: Cancer Research Institute fellowship – fundername: The Penates Foundation – fundername: Wellcome Trust funderid: 048880; 057097 – fundername: European Neurological Society fellowship – fundername: Postdoctoral Fellowship of the Research Foundation–Flanders (FWO–Vlaanderen) – fundername: Wellcome Trust Prize Studentship – fundername: Cambridge Commonwealth Trust and Cambridge Philosophical Society – fundername: William C. Fowler scholarship in Multiple Sclerosis – fundername: Medical Research Council (United Kingdom) funderid: G0000648 – fundername: Wellcome Trust – fundername: Multiple Sclerosis Society grantid: 588 – fundername: NINDS NIH HHS grantid: NS026799 – fundername: NINDS NIH HHS grantid: NS032830 – fundername: NINDS NIH HHS grantid: R01 NS032830 – fundername: NINDS NIH HHS grantid: K08 NS046341 – fundername: Wellcome Trust grantid: 057097 – fundername: NINDS NIH HHS grantid: R01 NS026799 – fundername: Medical Research Council grantid: G0401569 – fundername: NINDS NIH HHS grantid: K08 NS46341 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 24P AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TK 8FD FR3 H94 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5783-64dedf3f07d731ef7eb5b7519fa834e95dc840fbdc7090fbbcddf3c9c7ccfab83 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 |
IngestDate | Thu Aug 21 18:37:09 EDT 2025 Fri Jul 11 09:12:04 EDT 2025 Fri Jul 11 03:32:40 EDT 2025 Fri May 30 10:49:33 EDT 2025 Mon Jul 21 09:15:37 EDT 2025 Tue Jul 01 02:23:55 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 Wed Oct 30 09:57:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multiple sclerosis Nervous system diseases Locus Major histocompatibility system Central nervous system disease Inflammatory disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5783-64dedf3f07d731ef7eb5b7519fa834e95dc840fbdc7090fbbcddf3c9c7ccfab83 |
Notes | European Neurological Society fellowship Wellcome Trust - No. 048880; No. 057097 Cancer Research Institute fellowship Wellcome Trust Prize Studentship National Multiple Sclerosis Society Center Grant - No. AP 3758-A-16 Cambridge Commonwealth Trust and Cambridge Philosophical Society Postdoctoral Fellowship of the Research Foundation-Flanders (FWO-Vlaanderen) ark:/67375/WNG-P8B13M68-0 GlaxoSmithKline Clinical Fellowship istex:FD341487A234405A5B7C443E02FFBED99AD702EC National Institutes of Health - No. K08 NS46341; No. NS049477; No. NS026799; No. NS032830 Medical Research Council (United Kingdom) - No. G0000648 ArticleID:ANA21063 St. Edmund's College William C. Fowler scholarship in Multiple Sclerosis The Penates Foundation T.W.Y. and P.L.D. contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21063 |
PMID | 17252545 |
PQID | 19736847 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737610 proquest_miscellaneous_70326297 proquest_miscellaneous_19736847 pubmed_primary_17252545 pascalfrancis_primary_18638669 crossref_citationtrail_10_1002_ana_21063 crossref_primary_10_1002_ana_21063 wiley_primary_10_1002_ana_21063_ANA21063 istex_primary_ark_67375_WNG_P8B13M68_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2007 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: March 2007 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Willey-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Willey-Liss |
References | Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1-15. Harbo HF, Lie BA, Sawcer S, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237-247. Rubio JP, Bahlo M, Butzkueven H, et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 2002; 70: 1125-1137. Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149-150. Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124-141. Olerup O, Carlsson B, Wallin J, et al. Genomic HLA-typing by RFLP-analysis using DR beta and DQ beta cDNA probes reveals normal DR-DQ linkages in patients with multiple sclerosis. Tissue Antigens 1987; 30: 135-138. Ligers A, Dyment DA, Willer CJ, et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 2001; 69: 900-903. Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004; 36: 1045-1051. Barcellos LF, Sawcer S, Ramsay PP, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813-2824. Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889-899. International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454-467. Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710-716. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227-231. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127. Traherne JA, Horton R, Roberts AN, et al. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet 2006; 2: e9. Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class II region. Tissue Antigens 2000; 56: 492-500. Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173: 4273-4276. Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005; 201: 1025-1029. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 1991; 88: 7276-7280. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97-101. Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445-3447. Vartdal F, Sollid LM, Vandvik B, et al. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences. Hum Immunol 1989; 25: 103-110. Haines JL, Terwedow HA, Burgess K, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 1998; 7: 1229-1234. Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360-1368. Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class III region. Tissue Antigens 2001; 57: 397-404. Schuler GD. Sequence mapping by electronic PCR. Genome Res 1997; 7: 541-550. Sawcer S, Jones HB, Feakes R, et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464-468. Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7: 1235-1237. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-1517. Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet 1972; 1: 1240-1241. Walsh EC, Mather KA, Schaffner SF, et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73: 580-590. Tamiya G, Shiina T, Oka A, et al. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-228. Stewart CA, Horton R, Allcock RJ, et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004; 14: 1176-1187. de Jong BA, Huizinga TW, Zanelli E, et al. Evidence for additional genetic risk indicators of relapse-onset MS within the HLA region. Neurology 2002; 59: 549-555. Foissac A, Salhi M, Cambon-Thomsen A. Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000; 55: 477-509. Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74: 160-167. Ebers GC, Kukay K, Bulman DE, et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472-476. Fogdell-Hahn A, Ligers A, Gronning M, et al. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140-148. Marrosu MG, Murru R, Murru MR, et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet 2001; 10: 2907-2916. GAMES and the Transatlantic Multiple Sclerosis Genetics Consortium. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143: 39-46. Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225-235. Rajalingam R, Krausa P, Shilling HG, et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics 2002; 53: 1009-1019. Coraddu F, Reyes-Yanez MP, Parra A, et al. HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998; 87: 130-135. Compston A, Confavreux C, Lassmann H, et al. McAlpine's multiple sclerosis. 4th ed. London: Churchill Livingstone, 2006. Koeleman BP, Dudbridge F, Cordell HJ, Todd JA. Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test. Ann Hum Genet 2000; 64: 207-213. Lincoln MR, Montpetit A, Cader MZ, et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108-1112. Stewart GJ, Teutsch SM, Castle M, et al. HLA-DR, -DQA1 and -DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet 1997; 24: 81-92. Tamiya G, Ota M, Katsuyama Y, et al. Twenty-six new polymorphic microsatellite markers around the HLA-B, -C and -E loci in the human MHC class I region. Tissue Antigens 1998; 51: 337-346. Orru S, Giuressi E, Carcassi C, et al. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). Am J Hum Genet 2005; 76: 164-171. Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634-646. Dyment DA, Herrera BM, Cader MZ, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet 2005; 14: 2019-2026. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209-213. Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13: 469-471. Rogner UC, Avner P. Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 2003; 3: 243-252. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115-121. O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259-266. 2004; 63 2002; 59 2001; 50 1987; 30 2002; 53 2006; 38 2004; 5 2005; 21 2003; 19 1998; 87 1983; 13 1936 1997; 7 2004; 74 2000; 56 1991; 88 2004; 36 2000; 55 2004; 173 2003; 3 2005; 76 1999; 54 2005; 37 1998; 51 2001; 57 2005; 77 2001; 10 1991; 38 2002; 30 1997; 24 2000; 64 2006; 15 1992; 39 2006 2006; 2 1998; 63 2003; 72 1996; 13 2003; 73 1989; 25 2001; 69 1972; 1 2004; 53 2005; 201 2004; 14 2003; 25 2002; 70 1996; 273 1998; 7 2003; 143 2005; 14 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 Compston A (e_1_2_6_11_2) 2006 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Vartdal F, Sollid LM, Vandvik B, et al. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences. Hum Immunol 1989; 25: 103-110. – reference: Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115-121. – reference: Tamiya G, Shiina T, Oka A, et al. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-228. – reference: Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209-213. – reference: Rogner UC, Avner P. Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 2003; 3: 243-252. – reference: Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53: 1360-1368. – reference: Rajalingam R, Krausa P, Shilling HG, et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics 2002; 53: 1009-1019. – reference: Stewart CA, Horton R, Allcock RJ, et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004; 14: 1176-1187. – reference: Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889-899. – reference: Olerup O, Carlsson B, Wallin J, et al. Genomic HLA-typing by RFLP-analysis using DR beta and DQ beta cDNA probes reveals normal DR-DQ linkages in patients with multiple sclerosis. Tissue Antigens 1987; 30: 135-138. – reference: Ebers GC, Kukay K, Bulman DE, et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472-476. – reference: Fogdell-Hahn A, Ligers A, Gronning M, et al. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140-148. – reference: Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74: 160-167. – reference: Sawcer S, Jones HB, Feakes R, et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996; 13: 464-468. – reference: Barcellos LF, Sawcer S, Ramsay PP, et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813-2824. – reference: Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 2005; 201: 1025-1029. – reference: de Jong BA, Huizinga TW, Zanelli E, et al. Evidence for additional genetic risk indicators of relapse-onset MS within the HLA region. Neurology 2002; 59: 549-555. – reference: Rubio JP, Bahlo M, Butzkueven H, et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 2002; 70: 1125-1137. – reference: Coraddu F, Reyes-Yanez MP, Parra A, et al. HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998; 87: 130-135. – reference: GAMES and the Transatlantic Multiple Sclerosis Genetics Consortium. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143: 39-46. – reference: Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13: 469-471. – reference: McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127. – reference: Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 1991; 88: 7276-7280. – reference: Stewart GJ, Teutsch SM, Castle M, et al. HLA-DR, -DQA1 and -DQB1 associations in Australian multiple sclerosis patients. Eur J Immunogenet 1997; 24: 81-92. – reference: Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124-141. – reference: Harbo HF, Lie BA, Sawcer S, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237-247. – reference: Schuler GD. Sequence mapping by electronic PCR. Genome Res 1997; 7: 541-550. – reference: Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72: 710-716. – reference: Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97-101. – reference: Orru S, Giuressi E, Carcassi C, et al. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). Am J Hum Genet 2005; 76: 164-171. – reference: Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149-150. – reference: Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634-646. – reference: Tamiya G, Ota M, Katsuyama Y, et al. Twenty-six new polymorphic microsatellite markers around the HLA-B, -C and -E loci in the human MHC class I region. Tissue Antigens 1998; 51: 337-346. – reference: Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class II region. Tissue Antigens 2000; 56: 492-500. – reference: Koeleman BP, Dudbridge F, Cordell HJ, Todd JA. Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test. Ann Hum Genet 2000; 64: 207-213. – reference: Dyment DA, Herrera BM, Cader MZ, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet 2005; 14: 2019-2026. – reference: Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227-231. – reference: Walsh EC, Mather KA, Schaffner SF, et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73: 580-590. – reference: Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225-235. – reference: Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7: 1235-1237. – reference: Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445-3447. – reference: Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet 2004; 36: 1045-1051. – reference: Traherne JA, Horton R, Roberts AN, et al. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet 2006; 2: e9. – reference: Lincoln MR, Montpetit A, Cader MZ, et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108-1112. – reference: Ligers A, Dyment DA, Willer CJ, et al. Evidence of linkage with HLA-DR in DRB1*15-negative families with multiple sclerosis. Am J Hum Genet 2001; 69: 900-903. – reference: O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259-266. – reference: Marrosu MG, Murru R, Murru MR, et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet 2001; 10: 2907-2916. – reference: Nelson GW, Martin MP, Gladman D, et al. Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 2004; 173: 4273-4276. – reference: Foissac A, Salhi M, Cambon-Thomsen A. Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000; 55: 477-509. – reference: Haines JL, Terwedow HA, Burgess K, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 1998; 7: 1229-1234. – reference: Jersild C, Svejgaard A, Fog T. HL-A antigens and multiple sclerosis. Lancet 1972; 1: 1240-1241. – reference: Compston A, Confavreux C, Lassmann H, et al. McAlpine's multiple sclerosis. 4th ed. London: Churchill Livingstone, 2006. – reference: International Multiple Sclerosis Genetics Consortium. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454-467. – reference: Matsuzaka Y, Makino S, Nakajima K, et al. New polymorphic microsatellite markers in the human MHC class III region. Tissue Antigens 2001; 57: 397-404. – reference: Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-1517. – reference: Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1-15. – volume: 55 start-page: 140 year: 2000 end-page: 148 article-title: Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease publication-title: Tissue Antigens – volume: 3 start-page: 243 year: 2003 end-page: 252 article-title: Congenic mice: cutting tools for complex immune disorders publication-title: Nat Rev Immunol – volume: 25 start-page: 115 year: 2003 end-page: 121 article-title: Pedigree disequilibrium tests for multilocus haplotypes publication-title: Genet Epidemiol – volume: 74 start-page: 160 year: 2004 end-page: 167 article-title: Mapping multiple sclerosis susceptibility to the HLA‐DR locus in African Americans publication-title: Am J Hum Genet – volume: 1 start-page: 1240 year: 1972 end-page: 1241 article-title: HL‐A antigens and multiple sclerosis publication-title: Lancet – volume: 36 start-page: 1045 year: 2004 end-page: 1051 article-title: The use of pedigree, sib‐pair and association studies of common diseases for genetic mapping and epidemiology publication-title: Nat Genet – start-page: 3 year: 1936 end-page: 62 – volume: 54 start-page: 221 year: 1999 end-page: 228 article-title: New polymorphic microsatellite markers in the human MHC class I region publication-title: Tissue Antigens – volume: 24 start-page: 81 year: 1997 end-page: 92 article-title: HLA‐DR, ‐DQA1 and ‐DQB1 associations in Australian multiple sclerosis patients publication-title: Eur J Immunogenet – volume: 39 start-page: 225 year: 1992 end-page: 235 article-title: HLA‐DR typing by PCR amplification with sequence‐specific primers (PCR‐SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor‐recipient matching in cadaveric transplantation publication-title: Tissue Antigens – volume: 63 start-page: 259 year: 1998 end-page: 266 article-title: PedCheck: a program for identification of genotype incompatibilities in linkage analysis publication-title: Am J Hum Genet – volume: 273 start-page: 1516 year: 1996 end-page: 1517 article-title: The future of genetic studies of complex human diseases publication-title: Science – volume: 2 start-page: e9 year: 2006 article-title: Genetic analysis of completely sequenced disease‐associated MHC haplotypes identifies shuffling of segments in recent human history publication-title: PLoS Genet – volume: 38 start-page: 1 year: 1991 end-page: 15 article-title: HLA class II‐associated genetic susceptibility in multiple sclerosis: a critical evaluation publication-title: Tissue Antigens – volume: 76 start-page: 634 year: 2005 end-page: 646 article-title: A high‐resolution linkage‐disequilibrium map of the human major histocompatibility complex and first generation of tag single‐nucleotide polymorphisms publication-title: Am J Hum Genet – volume: 76 start-page: 164 year: 2005 end-page: 171 article-title: Mapping of the major psoriasis‐susceptibility locus (PSORS1) in a 70‐Kb interval around the corneodesmosin gene (CDSN) publication-title: Am J Hum Genet – volume: 50 start-page: 121 year: 2001 end-page: 127 article-title: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis publication-title: Ann Neurol – volume: 55 start-page: 477 year: 2000 end-page: 509 article-title: Microsatellites in the HLA region: 1999 update publication-title: Tissue Antigens – volume: 63 start-page: 237 year: 2004 end-page: 247 article-title: Genes in the HLA class I region may contribute to the HLA class II‐associated genetic susceptibility to multiple sclerosis publication-title: Tissue Antigens – volume: 19 start-page: 149 year: 2003 end-page: 150 article-title: Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits publication-title: Bioinformatics – volume: 53 start-page: 1360 year: 2004 end-page: 1368 article-title: Haplotype structure and genotype‐phenotype correlations of the sulfonylurea receptor and the islet ATP‐sensitive potassium channel gene region publication-title: Diabetes – volume: 13 start-page: 227 year: 1983 end-page: 231 article-title: New diagnostic criteria for multiple sclerosis: guidelines for research protocols publication-title: Ann Neurol – volume: 77 start-page: 454 year: 2005 end-page: 467 article-title: A high‐density screen for linkage in multiple sclerosis publication-title: Am J Hum Genet – volume: 69 start-page: 900 year: 2001 end-page: 903 article-title: Evidence of linkage with HLA‐DR in DRB1*15‐negative families with multiple sclerosis publication-title: Am J Hum Genet – volume: 38 start-page: 209 year: 2006 end-page: 213 article-title: Joint analysis is more efficient than replication‐based analysis for two‐stage genome‐wide association studies publication-title: Nat Genet – volume: 14 start-page: 1176 year: 2004 end-page: 1187 article-title: Complete MHC haplotype sequencing for common disease gene mapping publication-title: Genome Res – volume: 64 start-page: 207 year: 2000 end-page: 213 article-title: Adaptation of the extended transmission/disequilibrium test to distinguish disease associations of multiple loci: the Conditional Extended Transmission/Disequilibrium Test publication-title: Ann Hum Genet – volume: 7 start-page: 1229 year: 1998 end-page: 1234 article-title: Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity publication-title: Hum Mol Genet – volume: 73 start-page: 580 year: 2003 end-page: 590 article-title: An integrated haplotype map of the human major histocompatibility complex publication-title: Am J Hum Genet – volume: 7 start-page: 1235 year: 1998 end-page: 1237 article-title: DRB1‐DQA1‐DQB1 loci and multiple sclerosis predisposition in the Sardinian population publication-title: Hum Mol Genet – volume: 51 start-page: 337 year: 1998 end-page: 346 article-title: Twenty‐six new polymorphic microsatellite markers around the HLA‐B, ‐C and ‐E loci in the human MHC class I region publication-title: Tissue Antigens – volume: 13 start-page: 464 year: 1996 end-page: 468 article-title: A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22 publication-title: Nat Genet – volume: 13 start-page: 469 year: 1996 end-page: 471 article-title: A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex publication-title: Nat Genet – volume: 25 start-page: 103 year: 1989 end-page: 110 article-title: Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences publication-title: Hum Immunol – volume: 72 start-page: 710 year: 2003 end-page: 716 article-title: HLA‐DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course publication-title: Am J Hum Genet – volume: 70 start-page: 1125 year: 2002 end-page: 1137 article-title: Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis publication-title: Am J Hum Genet – volume: 5 start-page: 889 year: 2004 end-page: 899 article-title: Gene map of the extended human MHC publication-title: Nat Rev Genet – volume: 173 start-page: 4273 year: 2004 end-page: 4276 article-title: Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig‐like receptor combinations in psoriatic arthritis publication-title: J Immunol – volume: 10 start-page: 2907 year: 2001 end-page: 2916 article-title: Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia publication-title: Hum Mol Genet – volume: 59 start-page: 549 year: 2002 end-page: 555 article-title: Evidence for additional genetic risk indicators of relapse‐onset MS within the HLA region publication-title: Neurology – volume: 87 start-page: 130 year: 1998 end-page: 135 article-title: HLA associations with multiple sclerosis in the Canary Islands publication-title: J Neuroimmunol – volume: 7 start-page: 541 year: 1997 end-page: 550 article-title: Sequence mapping by electronic PCR publication-title: Genome Res – volume: 30 start-page: 97 year: 2002 end-page: 101 article-title: Merlin—rapid analysis of dense genetic maps using sparse gene flow trees publication-title: Nat Genet – volume: 30 start-page: 135 year: 1987 end-page: 138 article-title: Genomic HLA‐typing by RFLP‐analysis using DR beta and DQ beta cDNA probes reveals normal DR‐DQ linkages in patients with multiple sclerosis publication-title: Tissue Antigens – volume: 37 start-page: 1108 year: 2005 end-page: 1112 article-title: A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis publication-title: Nat Genet – volume: 21 start-page: 3445 year: 2005 end-page: 3447 article-title: PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data publication-title: Bioinformatics – year: 2006 – volume: 88 start-page: 7276 year: 1991 end-page: 7280 article-title: Detection of specific polymerase chain reaction product by utilizing the 5′‐3′ exonuclease activity of Thermus aquaticus DNA polymerase publication-title: Proc Natl Acad Sci U S A – volume: 56 start-page: 492 year: 2000 end-page: 500 article-title: New polymorphic microsatellite markers in the human MHC class II region publication-title: Tissue Antigens – volume: 70 start-page: 124 year: 2002 end-page: 141 article-title: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes publication-title: Am J Hum Genet – volume: 14 start-page: 2019 year: 2005 end-page: 2026 article-title: Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance publication-title: Hum Mol Genet – volume: 53 start-page: 1009 year: 2002 end-page: 1019 article-title: Distinctive KIR and HLA diversity in a panel of north Indian Hindus publication-title: Immunogenetics – volume: 15 start-page: 2813 year: 2006 end-page: 2824 article-title: Heterogeneity at the HLA‐DRB1 locus and risk for multiple sclerosis publication-title: Hum Mol Genet – volume: 13 start-page: 472 year: 1996 end-page: 476 article-title: A full genome search in multiple sclerosis publication-title: Nat Genet – volume: 57 start-page: 397 year: 2001 end-page: 404 article-title: New polymorphic microsatellite markers in the human MHC class III region publication-title: Tissue Antigens – volume: 201 start-page: 1025 year: 2005 end-page: 1029 article-title: Understanding how combinations of HLA and KIR genes influence disease publication-title: J Exp Med – volume: 143 start-page: 39 year: 2003 end-page: 46 article-title: A meta‐analysis of whole genome linkage screens in multiple sclerosis publication-title: J Neuroimmunol – ident: e_1_2_6_22_2 doi: 10.1038/nri1031 – ident: e_1_2_6_5_2 doi: 10.1093/hmg/7.8.1235 – ident: e_1_2_6_36_2 doi: 10.2337/diabetes.53.5.1360 – ident: e_1_2_6_45_2 doi: 10.1111/j.1399-0039.1992.tb01940.x – ident: e_1_2_6_46_2 doi: 10.1016/S0165-5728(98)00074-5 – ident: e_1_2_6_41_2 doi: 10.1034/j.1399-0039.2000.560602.x – ident: e_1_2_6_6_2 doi: 10.1086/367781 – volume-title: McAlpine's multiple sclerosis year: 2006 ident: e_1_2_6_11_2 – ident: e_1_2_6_53_2 doi: 10.1038/ng1433 – ident: e_1_2_6_14_2 doi: 10.1034/j.1399-0039.2000.550205.x – ident: e_1_2_6_27_2 doi: 10.1038/ng0896-469 – ident: e_1_2_6_10_2 doi: 10.1038/nrg1489 – ident: e_1_2_6_3_2 doi: 10.1111/j.1399-0039.1991.tb02029.x – ident: e_1_2_6_49_2 doi: 10.1093/bioinformatics/bti529 – ident: e_1_2_6_16_2 doi: 10.1212/WNL.59.4.549 – ident: e_1_2_6_12_2 doi: 10.1093/hmg/10.25.2907 – ident: e_1_2_6_42_2 doi: 10.1034/j.1399-0039.2001.057005397.x – ident: e_1_2_6_21_2 doi: 10.1093/hmg/ddl223 – ident: e_1_2_6_51_2 doi: 10.1038/ng1706 – ident: e_1_2_6_32_2 doi: 10.1002/ana.1032 – ident: e_1_2_6_44_2 doi: 10.1007/s00251-001-0425-5 – ident: e_1_2_6_19_2 doi: 10.1086/380997 – ident: e_1_2_6_48_2 doi: 10.1086/301904 – ident: e_1_2_6_50_2 doi: 10.1038/ng786 – ident: e_1_2_6_58_2 doi: 10.1093/bioinformatics/19.1.149 – ident: e_1_2_6_29_2 doi: 10.1126/science.273.5281.1516 – ident: e_1_2_6_31_2 doi: 10.1002/ana.410130302 – ident: e_1_2_6_23_2 doi: 10.1093/hmg/7.8.1229 – ident: e_1_2_6_37_2 doi: 10.1073/pnas.88.16.7276 – ident: e_1_2_6_13_2 doi: 10.1086/429393 – ident: e_1_2_6_39_2 doi: 10.1034/j.1399-0039.1999.540302.x – ident: e_1_2_6_24_2 doi: 10.1086/323480 – ident: e_1_2_6_26_2 doi: 10.1038/ng0896-464 – ident: e_1_2_6_30_2 doi: 10.1016/j.jneuroim.2003.08.009 – ident: e_1_2_6_54_2 – ident: e_1_2_6_17_2 doi: 10.1111/j.0001-2815.2004.00173.x – ident: e_1_2_6_34_2 doi: 10.1371/journal.pgen.0020009 – ident: e_1_2_6_7_2 doi: 10.1093/hmg/ddi206 – ident: e_1_2_6_55_2 doi: 10.1084/jem.20050499 – ident: e_1_2_6_56_2 doi: 10.1086/426948 – ident: e_1_2_6_18_2 doi: 10.1038/ng1647 – ident: e_1_2_6_33_2 doi: 10.1101/gr.2188104 – ident: e_1_2_6_4_2 doi: 10.1046/j.1365-2370.1997.00252.x – ident: e_1_2_6_52_2 doi: 10.1086/338007 – ident: e_1_2_6_43_2 doi: 10.1101/gr.7.5.541 – ident: e_1_2_6_28_2 doi: 10.1038/ng0896-472 – ident: e_1_2_6_15_2 doi: 10.1086/339932 – ident: e_1_2_6_38_2 doi: 10.1111/j.1399-0039.1998.tb02972.x – ident: e_1_2_6_2_2 doi: 10.1016/S0140-6736(72)90962-2 – ident: e_1_2_6_47_2 doi: 10.1002/gepi.10252 – ident: e_1_2_6_20_2 doi: 10.1046/j.1469-1809.2000.6430207.x – ident: e_1_2_6_40_2 doi: 10.1034/j.1399-0039.2000.550601.x – ident: e_1_2_6_8_2 doi: 10.1111/j.1399-0039.1987.tb01610.x – ident: e_1_2_6_57_2 doi: 10.4049/jimmunol.173.7.4273 – ident: e_1_2_6_9_2 doi: 10.1016/0198-8859(89)90074-8 – ident: e_1_2_6_35_2 doi: 10.1086/378101 – ident: e_1_2_6_25_2 doi: 10.1086/444547 |
SSID | ssj0009610 |
Score | 2.2933507 |
Snippet | Objective
Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the... Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect... Objective Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 228 |
SubjectTerms | Adult Biological and medical sciences Female Genetic Predisposition to Disease HLA-D Antigens - genetics Humans Immunomodulators Major Histocompatibility Complex - genetics Male Medical sciences Microsatellite Repeats Middle Aged Multiple Sclerosis - genetics Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis Neurology Original Pharmacology. Drug treatments Polymorphism, Single Nucleotide |
Title | A second major histocompatibility complex susceptibility locus for multiple sclerosis |
URI | https://api.istex.fr/ark:/67375/WNG-P8B13M68-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.21063 https://www.ncbi.nlm.nih.gov/pubmed/17252545 https://www.proquest.com/docview/19736847 https://www.proquest.com/docview/70326297 https://pubmed.ncbi.nlm.nih.gov/PMC2737610 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rCuLLetfxMgYR8aWzbZM0LT6N4roIMyzi4D4IIVdcd-3IdAqrv96TpO04ugviU0t72tLTc5LvJF-_IPQ8Z1IDTLAJz0ubUMlYoohlkHiKcz-ZSI0fh5zNi8MFfX_MjnfQq_5fmKgPMQy4-cwI7bVPcKma_Y1oqKzlBOqVwit9eq6WB0QfNtJRVRGUCPw0W8IyQntVoTTfH67c6ouuereee26kbMA9Lq5rcRHw_Js_-TuuDR3TwQ30uX-lyEc5nbRrNdE__1B7_M93von2OsCKpzHCbqEdW99G12bdlPwdtJjixhfVBn-TX5crHASMA7N9HYm3P3Cgrdtz3LRNINF0h6EbbRsMoBn3rEbcwCPAVSfNXbQ4ePvxzWHSrdWQaMh5khTUWOOIS7nhJLOOW8UUB3joZEmorZjRUEo6ZTRPK9gqbcBcV5pr7aQqyT20Wy9r-wDhkhBHpYJG2FgqvcKgS1NjMwXFnbV5OkIv-68mdCdk7tfTOBNRgjkX4CYR3DRCzwbT71G94yKjF-HTDxZyderpbpyJT_N34qh8nZFZUQp48HgrNja3LKEVK4pqhJ72wSIgS_3Ui6ztsm1EVnFSABC43AJa3rzIK7C4H4Nrc3eeMyjj2QjxrbAbDLxC-PaZ-uRLUAoHbMohD8BjIaou94GYzqdh5-G_mz5C1-NAtyfkPUa761VrnwBCW6sxupLTo3FIyF83gTqf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVgIuvB_h0a4QIC5O7V2v1z5wCJSS0iZCqBG9LfuyKAUHxbFo-U38Ff4Ts-tHCLQSlx44xUpGa2dnZndm9vM3CD0mTGoIE2zASWqDWDIWKGoZOJ7i3B0mxsbVIUfjZDiJ3xywgxX0o30XpuaH6ApuzjP8eu0c3BWkNxesobKQfUhYkrZ19a49-QYJW_l8Zwu0-4SQ7Vf7L4dB01Mg0GCbNEhiY01O85AbTiObc6uY4hDG5DKlsc2Y0ZDy5MpoHmbwqbQBcZ1prnUuVUph3AtozXUQd0z9W-8WZFVZ4rkP3MFewCIatzxGIdnsHnVp91tzijx2aExZgkLyupPGaaHu34jN3yNpvxVuX0U_20msETBH_Wqu-vr7H_yS_8ssX0NXmpgcD2onuo5WbHEDXRw1qIObaDLApasbGPxFfprOsOdo9uD9eY0tPsEemW-PcVmVHifUfA2RQlViyAtwC9zEJdwCdHNY3kKTc_lTt9FqMS3sXYRTSvNYKthnjI2lI1HMw9DYSEH-ai0Je-hZayZCN1ztrmXIZ1GzTBMBahFeLT30qBP9WhOUnCb01NtaJyFnRw7Rx5l4P34t3qYvIjpKUgE3Xl8yxsWQKSzUSZL10EZrnQIWIne6JAs7rUoRZZwmEOucLQGbC0lIBhJ3amtejM4JIxDL9xBfsvNOwJGgL_9SHH70ZOgQfnNwPJgxb8Znz4EYjAf-4t6_i26gS8P90Z7Y2xnv3keX67q-wx8-QKvzWWUfQkA6V-t-HcDow3m7xC_Tb5zz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1VcEG-WR2shQFxCEzuOkwOHbcvSUna1B1b0ZvwU5ZGtNrtq-5v6Jxk7j2VFK3HpKVEychLPjD3j-fIZoVeESQ1hgo04yW2USsYiRS0Dx1Oc-2Jiavw65HCUHUzST8fseA1dtv_C1PwQ3YKb94wwXnsHPzVuZ0kaKkv5DvKVrN25-shenEG-Vr0_3AflviZk8OHL3kHUbCkQaTBNGmWpscZRF3PDaWIdt4opDlGMkzlNbcGMhozHKaN5XMBRaQPiutBcaydVTqHdW2jDFxc9foyk4yXDbxaoD3xdL2IJTVsao5jsdK-6MvlteD2eezCmrEAfrt5I46pI91_A5t-BdJgJB3fRnSaExf3a5u6hNVveR5vDpkj_AE36uPJptsG_5Y_pDAdK44B1n9dQ3AscgOz2HFeLKsBqmsswsS4qDGE0bnGOuIJHwLecVA_R5Ea6-hFaL6elfYJwTqlLpYJh2dhUes5BF8fGJgrSPWtJ3ENv224VuqE29zts_BI1KTMRoAERNNBDLzvR05rP4yqhN0E3nYSc_fQAOM7E19FHMc53EzrMcgEP3lpR3rLJHMa1LCt6aLvVpgC_9cUYWdrpohJJwWkGocH1EjAWk4wUIPG41v6ydU4YJPash_iKXXQCnjN89U558j1wh0O0ysFQoceCBV3fB6I_6oeTp_8vuo02x_sD8flwdPQM3a5XwT1a7zlan88W9gWEb3O1FdwGo2837ad_ABPYWcI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+second+major+histocompatibility+complex+susceptibility+locus+for+multiple+sclerosis&rft.jtitle=Annals+of+neurology&rft.au=Yeo%2C+Tai+Wai&rft.au=De+Jager%2C+Philip+L&rft.au=Gregory%2C+Simon+G&rft.au=Barcellos%2C+Lisa+F&rft.date=2007-03-01&rft.issn=0364-5134&rft.volume=61&rft.issue=3&rft.spage=228&rft.epage=236&rft_id=info:doi/10.1002%2Fana.21063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |