Function of striatum beyond inhibition and execution of motor responses
We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that whe...
Saved in:
Published in | Human brain mapping Vol. 25; no. 3; pp. 336 - 344 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2005
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 |
DOI | 10.1002/hbm.20111 |
Cover
Loading…
Abstract | We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses. Hum Brain Mapp, 2005. We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses. We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses.We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses. We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses. Hum Brain Mapp, 2005. © 2005 Wiley‐Liss, Inc. |
Author | van den Heuvel, Martijn Ramsey, Nick F. Boersma, Maria Kahn, René S. Vink, Matthijs Raemaekers, Mathijs |
AuthorAffiliation | 1 Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands |
AuthorAffiliation_xml | – name: 1 Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands |
Author_xml | – sequence: 1 givenname: Matthijs surname: Vink fullname: Vink, Matthijs email: M.Vink@azu.nl organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands – sequence: 2 givenname: René S. surname: Kahn fullname: Kahn, René S. organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands – sequence: 3 givenname: Mathijs surname: Raemaekers fullname: Raemaekers, Mathijs organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands – sequence: 4 givenname: Martijn surname: van den Heuvel fullname: van den Heuvel, Martijn organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands – sequence: 5 givenname: Maria surname: Boersma fullname: Boersma, Maria organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands – sequence: 6 givenname: Nick F. surname: Ramsey fullname: Ramsey, Nick F. organization: Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16907314$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15852388$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB-w4A-gbEBikfY6duJ4g1QKnYJaQALUpeVXGENiD3YCnX-Pp_PgIRALy7663zm6PvcQ7fngLUIPMRxjgOpkrobjCjDGd9ABBs5KwJzsrd5NXXLK8D46TOkzZKQGfA_t47qtK9K2B2h2Pnk9uuCL0BVpjE6O01AouwzeFM7PnXK3XZlLe2P1tGWHMIZYRJsWwSeb7qO7neyTfbC5j9DH85cfzi7Ky7ezV2enl6WuWYvLjilluwaorQCMrrnhLTNUS2WBKqBSdtRgZQjVdWM417JVFIhpOq6YgYocoWdr38WkBmu09WOUvVhEN8i4FEE68XvHu7n4FL6JpmU4n2zwZGMQw9fJplEMLmnb99LbMCXRME45aeC_IGZVTpw3GXz060i7WbYhZ-DxBpBJy76L0muXfnINB0YwzdzJmtMxpBRtJ7Qb5Srw_BPXCwxitW6R1y1u150VT_9Q7Ez_wm7cv7veLv8NiovnV1tFuVa4NNqbnULGLzklwmpx_WYm6vdw_eLqHRWvyQ9uBcnF |
CitedBy_id | crossref_primary_10_1016_j_cortex_2020_09_002 crossref_primary_10_1016_j_nicl_2015_03_008 crossref_primary_10_1093_arclin_acx066 crossref_primary_10_1111_ejn_14308 crossref_primary_10_1523_JNEUROSCI_2853_20_2021 crossref_primary_10_1523_JNEUROSCI_4682_05_2006 crossref_primary_10_1016_j_neubiorev_2007_05_002 crossref_primary_10_1016_j_neuroscience_2017_08_037 crossref_primary_10_1093_schbul_sbu153 crossref_primary_10_1002_syn_21736 crossref_primary_10_14406_acu_2021_023 crossref_primary_10_1016_j_jns_2011_06_006 crossref_primary_10_1111_j_1749_6632_2011_05958_x crossref_primary_10_1016_j_cortex_2012_12_003 crossref_primary_10_1016_j_neuropsychologia_2017_06_025 crossref_primary_10_1002_mpr_327 crossref_primary_10_1016_j_ijpsycho_2012_09_009 crossref_primary_10_1016_j_neuroimage_2015_06_032 crossref_primary_10_6000_2292_2598_2015_03_01_4 crossref_primary_10_1523_JNEUROSCI_4284_11_2012 crossref_primary_10_1016_j_bandc_2017_07_003 crossref_primary_10_1152_jn_00132_2012 crossref_primary_10_1016_j_cortex_2016_12_012 crossref_primary_10_1016_j_neuropsychologia_2014_01_023 crossref_primary_10_3389_fnhum_2016_00127 crossref_primary_10_1002_pchj_639 crossref_primary_10_3389_fnagi_2017_00074 crossref_primary_10_1523_JNEUROSCI_3645_09_2009 crossref_primary_10_1016_j_biopsych_2005_11_026 crossref_primary_10_1093_cercor_bhx045 crossref_primary_10_1101_lm_040501_115 crossref_primary_10_1016_j_jpsychires_2011_09_015 crossref_primary_10_1016_j_dcn_2023_101293 crossref_primary_10_1162_jocn_a_00888 crossref_primary_10_1016_j_ijpsycho_2012_07_185 crossref_primary_10_1038_s41598_017_07786_5 crossref_primary_10_3758_CABN_10_2_279 crossref_primary_10_3758_s13415_011_0083_5 crossref_primary_10_1016_j_dcn_2020_100781 crossref_primary_10_1016_j_neuroimage_2011_11_061 crossref_primary_10_1016_j_psychres_2018_12_049 crossref_primary_10_1016_j_biopsych_2011_07_028 crossref_primary_10_1016_j_dcn_2020_100868 crossref_primary_10_1016_j_neuropsychologia_2013_12_027 crossref_primary_10_1016_j_neuroimage_2017_06_015 crossref_primary_10_1002_brb3_244 crossref_primary_10_1162_jocn_2009_21307 crossref_primary_10_1017_S0033291719000473 crossref_primary_10_1111_psyp_12562 crossref_primary_10_1016_j_neuroimage_2008_04_183 crossref_primary_10_3389_fnsys_2016_00017 crossref_primary_10_1016_j_neuroimage_2011_02_070 crossref_primary_10_1093_psyrad_kkad019 crossref_primary_10_1093_cercor_bht029 crossref_primary_10_1080_17470919_2010_506754 crossref_primary_10_1016_j_bbr_2019_112243 crossref_primary_10_1016_j_biopsych_2014_03_005 crossref_primary_10_1016_j_neuroscience_2016_09_009 crossref_primary_10_1523_JNEUROSCI_0866_24_2024 crossref_primary_10_1016_j_neuroimage_2010_04_276 crossref_primary_10_1007_s00221_013_3457_9 crossref_primary_10_1016_j_neuroimage_2009_08_057 crossref_primary_10_1111_pcn_13650 crossref_primary_10_1002_hbm_21001 crossref_primary_10_1152_jn_00704_2011 crossref_primary_10_1162_jocn_2010_21473 crossref_primary_10_1016_j_neuroimage_2017_05_043 crossref_primary_10_1016_j_pscychresns_2012_02_010 crossref_primary_10_3390_brainsci11050560 crossref_primary_10_1016_j_neubiorev_2014_03_002 crossref_primary_10_1111_j_1460_9568_2009_06776_x crossref_primary_10_1523_ENEURO_0061_17_2017 crossref_primary_10_1162_jocn_2008_20100 crossref_primary_10_1038_s41598_019_47426_8 crossref_primary_10_1016_j_neurobiolaging_2008_04_012 crossref_primary_10_1002_hbm_22047 crossref_primary_10_1556_2006_2021_00010 crossref_primary_10_3389_fneur_2018_01149 crossref_primary_10_1002_hbm_24780 crossref_primary_10_1016_j_biopsycho_2011_12_007 crossref_primary_10_1371_journal_pone_0138238 crossref_primary_10_1016_j_neuroimage_2011_09_049 crossref_primary_10_1016_j_neuroimage_2025_121004 crossref_primary_10_1016_j_yhbeh_2015_08_001 crossref_primary_10_1016_j_actpsy_2016_12_011 crossref_primary_10_7554_eLife_31627 crossref_primary_10_1002_hbm_22483 crossref_primary_10_1371_journal_pone_0029517 crossref_primary_10_1038_s41598_021_87735_5 crossref_primary_10_1002_hbm_22089 crossref_primary_10_1016_j_actpsy_2018_04_016 crossref_primary_10_1371_journal_pone_0013848 crossref_primary_10_1016_j_earlhumdev_2007_12_009 crossref_primary_10_1007_s11055_019_00824_x crossref_primary_10_1097_CM9_0000000000002297 crossref_primary_10_1093_schbul_sbv166 crossref_primary_10_1016_j_neuroscience_2018_07_039 crossref_primary_10_1177_1545968316675429 crossref_primary_10_3945_ajcn_112_042341 crossref_primary_10_1017_S0140525X2000148X crossref_primary_10_1016_j_orcp_2017_04_011 crossref_primary_10_1016_j_pneurobio_2013_06_005 crossref_primary_10_3945_jn_110_131169 crossref_primary_10_1016_j_brainres_2006_02_091 crossref_primary_10_1016_j_neuroscience_2013_07_034 crossref_primary_10_1371_journal_pone_0210880 crossref_primary_10_1016_j_bbr_2018_03_028 crossref_primary_10_1002_cne_24804 crossref_primary_10_1093_cercor_bhs107 crossref_primary_10_1016_j_pscychresns_2012_07_011 crossref_primary_10_1080_08990220_2018_1475351 crossref_primary_10_1111_psyp_12070 crossref_primary_10_1016_j_dcn_2021_101012 crossref_primary_10_1016_j_neuropsychologia_2020_107721 crossref_primary_10_1002_hbm_22347 crossref_primary_10_1089_cap_2009_0004 crossref_primary_10_1002_hbm_22621 crossref_primary_10_3758_s13415_016_0483_7 crossref_primary_10_1016_j_neurobiolaging_2016_06_007 crossref_primary_10_3758_s13415_014_0292_9 crossref_primary_10_1016_j_cortex_2019_01_016 crossref_primary_10_1016_j_biopsych_2010_07_024 crossref_primary_10_1016_j_febslet_2015_05_007 crossref_primary_10_1002_ajp_20898 crossref_primary_10_1162_jocn_2010_21564 crossref_primary_10_1016_j_ridd_2013_06_032 crossref_primary_10_1093_cercor_bhu165 crossref_primary_10_1007_s13365_019_00764_9 crossref_primary_10_1016_j_biopsych_2006_05_041 crossref_primary_10_1162_jocn_2006_18_3_444 crossref_primary_10_1038_nrn4038 crossref_primary_10_1162_jocn_2009_21352 crossref_primary_10_1162_jocn_a_01503 crossref_primary_10_1016_j_euroneuro_2016_12_002 crossref_primary_10_3109_17549507_2010_491870 crossref_primary_10_1002_hbm_20355 crossref_primary_10_1002_hbm_22895 crossref_primary_10_1016_j_tics_2008_07_005 crossref_primary_10_1016_j_neuroimage_2008_04_023 crossref_primary_10_1016_j_neuroimage_2016_02_031 crossref_primary_10_1007_s12264_013_1372_5 crossref_primary_10_1523_JNEUROSCI_3091_17_2017 crossref_primary_10_1016_j_neuroimage_2016_03_077 crossref_primary_10_1111_ejn_12879 crossref_primary_10_1017_S1355617715000971 crossref_primary_10_1016_j_neuropsychologia_2015_01_023 crossref_primary_10_1016_j_brainres_2020_147064 crossref_primary_10_1016_j_neuroimage_2014_09_014 crossref_primary_10_1093_cercor_bhm022 crossref_primary_10_1016_j_neuropsychologia_2024_108799 crossref_primary_10_1038_npp_2013_250 crossref_primary_10_1016_j_neuroimage_2012_08_016 crossref_primary_10_1016_j_neuroimage_2021_118744 crossref_primary_10_1093_cercor_bhs245 crossref_primary_10_1093_cercor_bhp015 crossref_primary_10_1002_wcs_99 crossref_primary_10_1016_j_neubiorev_2016_08_022 crossref_primary_10_1002_hbm_20347 crossref_primary_10_1002_hbm_23338 crossref_primary_10_1016_j_jpsychires_2023_12_023 crossref_primary_10_1162_jocn_a_00309 |
Cites_doi | 10.1016/S0301-0082(96)00042-1 10.1007/BF00230981 10.1093/brain/121.6.1013 10.1146/annurev.ne.09.030186.002041 10.1016/S0301-0511(03)00102-9 10.1109/83.650848 10.1007/BF00229653 10.1093/brain/121.8.1437 10.1016/S0896-6273(02)00627-X 10.1046/j.1460-9568.2000.00068.x 10.2307/1427576 10.1093/brain/awg067 10.1006/nimg.1995.1018 10.1016/0006-8993(92)90249-9 10.1016/0168-0102(94)90038-8 10.1016/0166-2236(90)90107-L 10.1046/j.1460-9568.2002.02262.x 10.1016/S0165-0173(96)00011-2 10.1152/jn.2002.88.4.1830 10.1016/S0301-0082(98)00041-0 10.1016/S0001-6918(99)00005-0 10.1111/j.1467-9280.1997.tb00545.x 10.1093/brain/115.6.1727 10.1152/jn.1999.82.4.1832 10.1152/jn.1997.77.3.1313 10.1046/j.1460-9568.2002.02212.x 10.1006/nimg.1998.0358 10.1126/science.8091209 10.1097/00001756-199505300-00026 10.3758/BF03210728 10.1037/0033-295X.91.3.295 10.1001/archpsyc.59.4.313 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: 2005 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.20111 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Anticipation of Inhibitory Motor Control |
EISSN | 1097-0193 |
EndPage | 344 |
ExternalDocumentID | PMC6871687 15852388 16907314 10_1002_hbm_20111 HBM20111 ark_67375_WNG_5S0WDMP4_J |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT ACXME IQODW CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 5PM |
ID | FETCH-LOGICAL-c5781-f7bbef604e200dc59d987d4cabe04b04aaf4d1bd34c56d99ca8b403d6f9b7d023 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 14:04:31 EDT 2025 Wed Jul 30 11:20:37 EDT 2025 Fri Jul 11 05:30:41 EDT 2025 Wed Feb 19 01:41:42 EST 2025 Wed May 29 03:57:13 EDT 2024 Tue Jul 01 04:25:52 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:39:12 EST 2025 Wed Oct 30 09:52:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nervous system diseases basal ganglia Radiodiagnosis motor behavior Central nervous system inhibition Corpus striatum Basal ganglion Nuclear magnetic resonance imaging Encephalon fMRI striatum Behavior functional magnetic resonance imaging Functional imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5781-f7bbef604e200dc59d987d4cabe04b04aaf4d1bd34c56d99ca8b403d6f9b7d023 |
Notes | ark:/67375/WNG-5S0WDMP4-J istex:4B4E768475E782BE8D3DC4D2CBF0A8E71BA70D35 ArticleID:HBM20111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6871687 |
PMID | 15852388 |
PQID | 17211196 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871687 proquest_miscellaneous_67949360 proquest_miscellaneous_17211196 pubmed_primary_15852388 pascalfrancis_primary_16907314 crossref_citationtrail_10_1002_hbm_20111 crossref_primary_10_1002_hbm_20111 wiley_primary_10_1002_hbm_20111_HBM20111 istex_primary_ark_67375_WNG_5S0WDMP4_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2005 |
PublicationDateYYYYMMDD | 2005-07-01 |
PublicationDate_xml | – month: 07 year: 2005 text: July 2005 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Alexander GE, DeLong MR, Strick PL (1986): Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381. Aron AR, Schlaghecken F, Fletcher PC, Bullmore ET, Eimer M, Barker R, Sahakian BJ, Robbins TW (2003): Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease. Brain 126: 713-723. Lebedev MA, Nelson RJ (1999): Rhythmically firing neostriatal neurons in monkey: activity patterns during reaction-time hand movements. J Neurophysiol 82: 1832-1842. Osman A, Moore CM, Ulrich R (2003): Temporal organization of covert motor processes during response selection and preparation. Biol Psychol 64: 47-75. Kermadi I, Boussaoud D (1995): Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex. Neuroreport 6: 1177-1181. Mesulam MM (1998): From sensation to cognition. Brain 121: 1013-1052. Ramsey NF, van den Brink JS, van Muiswinkel AM, Folkers PJ, Moonen CT, Jansma JM, Kahn RS (1998): Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure. Neuroimage 8: 240-248. Fuster JM (1997): The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott Williams and Wilkins. 333 p. Jaeger D, Gilman S, Aldridge JW (1993): Primate basal ganglia activity in a precued reaching task: preparation for movement. Exp Brain Res 95: 51-64. Apicella P, Scarnati E, Schultz W (1991): Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84: 672-675. Logan GD, Cowan WB (1984): On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91: 295-327. Dubois B, Defontaines B, Deweer B, Malapani C, Pillon B (1995): Cognitive and behavioral changes in patients with focal lesions of the basal ganglia. Adv Neurol 65: 29-41. Saint-Cyr JA, Taylor AE, Nicholson K (1995): Behavior and the basal ganglia. Adv Neurol 65: 1-28. Rolls ET (1994): Neurophysiology and cognitive functions of the striatum. Rev Neurol (Paris) 150: 648-660. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994): The basal ganglia and adaptive motor control. Science 265: 1826-1831. Raemaekers M, Jansma JM, Cahn W, Van der Geest JN, van der Linden JA, Kahn RS, Ramsey NF (2002): Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3-dimensional event-related functional magnetic resonance imaging. Arch Gen Psychiatry 59: 313-320. Jueptner M, Weiller C (1998): A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121: 1437-1449. Blazquez PM, Fujii N, Kojima J, Graybiel AM (2002): A network representation of response probability in the striatum. Neuron 33: 973-982. Worsley KJ (1994): Local maxima and the expected Euler characteristic of excursion sets of Chi square, F and t fields. Adv Appl Probability 26: 13-42. Thevenaz P, Ruttimann UE, Unser M (1998): A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7: 27-41. Augustine JR (1996): Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22: 229-244. Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997): Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77: 1313-1324. Tanji J (1994): The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251-268. Band GP, van Boxtel GJ (1999): Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol (Amst) 101: 179-211. Kimura M (1992): Behavioral modulation of sensory responses of primate putamen neurons. Brain Res 578: 204-214. Mink JW (1996): The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425. Dreher JC, Grafman J (2002): The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci 16: 1609-1619. Nambu A, Kaneda K, Tokuno H, Takada M (2002): Organization of corticostriatal motor inputs in monkey putamen. J Neurophysiol 88: 1830-1842. Kaji R (2001): Basal ganglia as a sensory gating devise for motor control. J Med Invest 48: 142-146. Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992): Fronto-striatal cognitive deficits at different stages of Parkinson's disease. Brain 115: 1727-1751. Hauber W (1998): Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56: 507-540. Sardo P, Ravel S, Legallet E, Apicella P (2000): Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum. Eur J Neurosci 12: 1801-1816. Alexander GE, Crutcher MD (1990): Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271. Friston KJ, Frith CD, Turner R, Frackowiak RS (1995): Characterizing evoked hemodynamics with fMRI. Neuroimage 2: 157-165. Logan GD, Irwin DE (2000): Don't look! Don't touch! Inhibitory control of eye and hand movements. Psychon Bull Rev 7: 107-112. Apicella P (2002): Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur J Neurosci 16: 2017-2026. Logan GD, Schachar RJ, Tannock R (1997): Impulsivity and inhibitory control. Psychol Sci 8: 60-64. 2002; 16 2002; 59 1990; 13 1994; 150 2002; 33 2000; 7 1996; 50 1997 2001; 48 1994; 26 1999; 101 1995; 2 1999; 82 1995; 6 1997; 8 1994; 265 1984; 91 1993; 95 1997; 77 1994; 19 1986; 9 2000; 12 1991; 84 1995; 65 2002; 88 1992; 115 1992; 578 2003; 126 1998; 7 1998; 121 1998; 56 2003; 64 1996; 22 1998; 8 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 Saint‐Cyr JA (e_1_2_5_34_1) 1995; 65 Rolls ET (e_1_2_5_33_1) 1994; 150 Kaji R (e_1_2_5_19_1) 2001; 48 e_1_2_5_20_1 Dubois B (e_1_2_5_11_1) 1995; 65 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 Fuster JM (e_1_2_5_13_1) 1997 |
References_xml | – reference: Alexander GE, DeLong MR, Strick PL (1986): Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381. – reference: Apicella P (2002): Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur J Neurosci 16: 2017-2026. – reference: Kermadi I, Boussaoud D (1995): Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex. Neuroreport 6: 1177-1181. – reference: Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997): Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol 77: 1313-1324. – reference: Mink JW (1996): The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425. – reference: Kaji R (2001): Basal ganglia as a sensory gating devise for motor control. J Med Invest 48: 142-146. – reference: Kimura M (1992): Behavioral modulation of sensory responses of primate putamen neurons. Brain Res 578: 204-214. – reference: Worsley KJ (1994): Local maxima and the expected Euler characteristic of excursion sets of Chi square, F and t fields. Adv Appl Probability 26: 13-42. – reference: Dubois B, Defontaines B, Deweer B, Malapani C, Pillon B (1995): Cognitive and behavioral changes in patients with focal lesions of the basal ganglia. Adv Neurol 65: 29-41. – reference: Osman A, Moore CM, Ulrich R (2003): Temporal organization of covert motor processes during response selection and preparation. Biol Psychol 64: 47-75. – reference: Ramsey NF, van den Brink JS, van Muiswinkel AM, Folkers PJ, Moonen CT, Jansma JM, Kahn RS (1998): Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure. Neuroimage 8: 240-248. – reference: Raemaekers M, Jansma JM, Cahn W, Van der Geest JN, van der Linden JA, Kahn RS, Ramsey NF (2002): Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3-dimensional event-related functional magnetic resonance imaging. Arch Gen Psychiatry 59: 313-320. – reference: Logan GD, Schachar RJ, Tannock R (1997): Impulsivity and inhibitory control. Psychol Sci 8: 60-64. – reference: Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992): Fronto-striatal cognitive deficits at different stages of Parkinson's disease. Brain 115: 1727-1751. – reference: Jaeger D, Gilman S, Aldridge JW (1993): Primate basal ganglia activity in a precued reaching task: preparation for movement. Exp Brain Res 95: 51-64. – reference: Alexander GE, Crutcher MD (1990): Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266-271. – reference: Saint-Cyr JA, Taylor AE, Nicholson K (1995): Behavior and the basal ganglia. Adv Neurol 65: 1-28. – reference: Hauber W (1998): Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56: 507-540. – reference: Sardo P, Ravel S, Legallet E, Apicella P (2000): Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum. Eur J Neurosci 12: 1801-1816. – reference: Dreher JC, Grafman J (2002): The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci 16: 1609-1619. – reference: Lebedev MA, Nelson RJ (1999): Rhythmically firing neostriatal neurons in monkey: activity patterns during reaction-time hand movements. J Neurophysiol 82: 1832-1842. – reference: Nambu A, Kaneda K, Tokuno H, Takada M (2002): Organization of corticostriatal motor inputs in monkey putamen. J Neurophysiol 88: 1830-1842. – reference: Aron AR, Schlaghecken F, Fletcher PC, Bullmore ET, Eimer M, Barker R, Sahakian BJ, Robbins TW (2003): Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease. Brain 126: 713-723. – reference: Thevenaz P, Ruttimann UE, Unser M (1998): A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7: 27-41. – reference: Logan GD, Irwin DE (2000): Don't look! Don't touch! Inhibitory control of eye and hand movements. Psychon Bull Rev 7: 107-112. – reference: Apicella P, Scarnati E, Schultz W (1991): Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84: 672-675. – reference: Fuster JM (1997): The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott Williams and Wilkins. 333 p. – reference: Augustine JR (1996): Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22: 229-244. – reference: Band GP, van Boxtel GJ (1999): Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol (Amst) 101: 179-211. – reference: Tanji J (1994): The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251-268. – reference: Blazquez PM, Fujii N, Kojima J, Graybiel AM (2002): A network representation of response probability in the striatum. Neuron 33: 973-982. – reference: Friston KJ, Frith CD, Turner R, Frackowiak RS (1995): Characterizing evoked hemodynamics with fMRI. Neuroimage 2: 157-165. – reference: Logan GD, Cowan WB (1984): On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91: 295-327. – reference: Jueptner M, Weiller C (1998): A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121: 1437-1449. – reference: Mesulam MM (1998): From sensation to cognition. Brain 121: 1013-1052. – reference: Rolls ET (1994): Neurophysiology and cognitive functions of the striatum. Rev Neurol (Paris) 150: 648-660. – reference: Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994): The basal ganglia and adaptive motor control. Science 265: 1826-1831. – volume: 121 start-page: 1437 year: 1998 end-page: 1449 article-title: A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies publication-title: Brain – volume: 101 start-page: 179 year: 1999 end-page: 211 article-title: Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms publication-title: Acta Psychol (Amst) – volume: 33 start-page: 973 year: 2002 end-page: 982 article-title: A network representation of response probability in the striatum publication-title: Neuron – volume: 265 start-page: 1826 year: 1994 end-page: 1831 article-title: The basal ganglia and adaptive motor control publication-title: Science – volume: 2 start-page: 157 year: 1995 end-page: 165 article-title: Characterizing evoked hemodynamics with fMRI publication-title: Neuroimage – volume: 121 start-page: 1013 year: 1998 end-page: 1052 article-title: From sensation to cognition publication-title: Brain – volume: 13 start-page: 266 year: 1990 end-page: 271 article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing publication-title: Trends Neurosci – volume: 88 start-page: 1830 year: 2002 end-page: 1842 article-title: Organization of corticostriatal motor inputs in monkey putamen publication-title: J Neurophysiol – volume: 95 start-page: 51 year: 1993 end-page: 64 article-title: Primate basal ganglia activity in a precued reaching task: preparation for movement publication-title: Exp Brain Res – volume: 82 start-page: 1832 year: 1999 end-page: 1842 article-title: Rhythmically firing neostriatal neurons in monkey: activity patterns during reaction‐time hand movements publication-title: J Neurophysiol – volume: 19 start-page: 251 year: 1994 end-page: 268 article-title: The supplementary motor area in the cerebral cortex publication-title: Neurosci Res – volume: 48 start-page: 142 year: 2001 end-page: 146 article-title: Basal ganglia as a sensory gating devise for motor control publication-title: J Med Invest – volume: 16 start-page: 2017 year: 2002 end-page: 2026 article-title: Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events publication-title: Eur J Neurosci – volume: 7 start-page: 27 year: 1998 end-page: 41 article-title: A pyramid approach to subpixel registration based on intensity publication-title: IEEE Trans Image Process – volume: 115 start-page: 1727 year: 1992 end-page: 1751 article-title: Fronto‐striatal cognitive deficits at different stages of Parkinson's disease publication-title: Brain – volume: 578 start-page: 204 year: 1992 end-page: 214 article-title: Behavioral modulation of sensory responses of primate putamen neurons publication-title: Brain Res – volume: 77 start-page: 1313 year: 1997 end-page: 1324 article-title: Anatomy of motor learning. I. Frontal cortex and attention to action publication-title: J Neurophysiol – volume: 12 start-page: 1801 year: 2000 end-page: 1816 article-title: Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum publication-title: Eur J Neurosci – volume: 26 start-page: 13 year: 1994 end-page: 42 article-title: Local maxima and the expected Euler characteristic of excursion sets of Chi square, F and t fields publication-title: Adv Appl Probability – volume: 126 start-page: 713 year: 2003 end-page: 723 article-title: Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease publication-title: Brain – volume: 64 start-page: 47 year: 2003 end-page: 75 article-title: Temporal organization of covert motor processes during response selection and preparation publication-title: Biol Psychol – volume: 65 start-page: 29 year: 1995 end-page: 41 article-title: Cognitive and behavioral changes in patients with focal lesions of the basal ganglia publication-title: Adv Neurol – volume: 84 start-page: 672 year: 1991 end-page: 675 article-title: Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli publication-title: Exp Brain Res – volume: 150 start-page: 648 year: 1994 end-page: 660 article-title: Neurophysiology and cognitive functions of the striatum publication-title: Rev Neurol (Paris) – volume: 56 start-page: 507 year: 1998 end-page: 540 article-title: Involvement of basal ganglia transmitter systems in movement initiation publication-title: Prog Neurobiol – volume: 8 start-page: 60 year: 1997 end-page: 64 article-title: Impulsivity and inhibitory control publication-title: Psychol Sci – volume: 16 start-page: 1609 year: 2002 end-page: 1619 article-title: The roles of the cerebellum and basal ganglia in timing and error prediction publication-title: Eur J Neurosci – volume: 65 start-page: 1 year: 1995 end-page: 28 article-title: Behavior and the basal ganglia publication-title: Adv Neurol – volume: 22 start-page: 229 year: 1996 end-page: 244 article-title: Circuitry and functional aspects of the insular lobe in primates including humans publication-title: Brain Res Brain Res Rev – volume: 8 start-page: 240 year: 1998 end-page: 248 article-title: Phase navigator correction in 3D fMRI improves detection of brain activation: quantitative assessment with a graded motor activation procedure publication-title: Neuroimage – start-page: 333 year: 1997 – volume: 91 start-page: 295 year: 1984 end-page: 327 article-title: On the ability to inhibit thought and action: a theory of an act of control publication-title: Psychol Rev – volume: 59 start-page: 313 year: 2002 end-page: 320 article-title: Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3‐dimensional event‐related functional magnetic resonance imaging publication-title: Arch Gen Psychiatry – volume: 6 start-page: 1177 year: 1995 end-page: 1181 article-title: Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex publication-title: Neuroreport – volume: 50 start-page: 381 year: 1996 end-page: 425 article-title: The basal ganglia: focused selection and inhibition of competing motor programs publication-title: Prog Neurobiol – volume: 9 start-page: 357 year: 1986 end-page: 381 article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex publication-title: Annu Rev Neurosci – volume: 7 start-page: 107 year: 2000 end-page: 112 article-title: Don't look! Don't touch! Inhibitory control of eye and hand movements publication-title: Psychon Bull Rev – ident: e_1_2_5_27_1 doi: 10.1016/S0301-0082(96)00042-1 – ident: e_1_2_5_5_1 doi: 10.1007/BF00230981 – ident: e_1_2_5_26_1 doi: 10.1093/brain/121.6.1013 – volume: 150 start-page: 648 year: 1994 ident: e_1_2_5_33_1 article-title: Neurophysiology and cognitive functions of the striatum publication-title: Rev Neurol (Paris) – ident: e_1_2_5_3_1 doi: 10.1146/annurev.ne.09.030186.002041 – ident: e_1_2_5_29_1 doi: 10.1016/S0301-0511(03)00102-9 – ident: e_1_2_5_37_1 doi: 10.1109/83.650848 – ident: e_1_2_5_16_1 doi: 10.1007/BF00229653 – ident: e_1_2_5_18_1 doi: 10.1093/brain/121.8.1437 – volume: 65 start-page: 29 year: 1995 ident: e_1_2_5_11_1 article-title: Cognitive and behavioral changes in patients with focal lesions of the basal ganglia publication-title: Adv Neurol – ident: e_1_2_5_9_1 doi: 10.1016/S0896-6273(02)00627-X – ident: e_1_2_5_35_1 doi: 10.1046/j.1460-9568.2000.00068.x – ident: e_1_2_5_38_1 doi: 10.2307/1427576 – ident: e_1_2_5_6_1 doi: 10.1093/brain/awg067 – ident: e_1_2_5_12_1 doi: 10.1006/nimg.1995.1018 – ident: e_1_2_5_21_1 doi: 10.1016/0006-8993(92)90249-9 – ident: e_1_2_5_36_1 doi: 10.1016/0168-0102(94)90038-8 – ident: e_1_2_5_2_1 doi: 10.1016/0166-2236(90)90107-L – ident: e_1_2_5_4_1 doi: 10.1046/j.1460-9568.2002.02262.x – ident: e_1_2_5_7_1 doi: 10.1016/S0165-0173(96)00011-2 – ident: e_1_2_5_28_1 doi: 10.1152/jn.2002.88.4.1830 – ident: e_1_2_5_15_1 doi: 10.1016/S0301-0082(98)00041-0 – ident: e_1_2_5_8_1 doi: 10.1016/S0001-6918(99)00005-0 – ident: e_1_2_5_25_1 doi: 10.1111/j.1467-9280.1997.tb00545.x – ident: e_1_2_5_30_1 doi: 10.1093/brain/115.6.1727 – ident: e_1_2_5_22_1 doi: 10.1152/jn.1999.82.4.1832 – ident: e_1_2_5_17_1 doi: 10.1152/jn.1997.77.3.1313 – ident: e_1_2_5_10_1 doi: 10.1046/j.1460-9568.2002.02212.x – volume: 48 start-page: 142 year: 2001 ident: e_1_2_5_19_1 article-title: Basal ganglia as a sensory gating devise for motor control publication-title: J Med Invest – ident: e_1_2_5_32_1 doi: 10.1006/nimg.1998.0358 – ident: e_1_2_5_14_1 doi: 10.1126/science.8091209 – ident: e_1_2_5_20_1 doi: 10.1097/00001756-199505300-00026 – volume: 65 start-page: 1 year: 1995 ident: e_1_2_5_34_1 article-title: Behavior and the basal ganglia publication-title: Adv Neurol – ident: e_1_2_5_24_1 doi: 10.3758/BF03210728 – ident: e_1_2_5_23_1 doi: 10.1037/0033-295X.91.3.295 – start-page: 333 volume-title: The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe year: 1997 ident: e_1_2_5_13_1 – ident: e_1_2_5_31_1 doi: 10.1001/archpsyc.59.4.313 |
SSID | ssj0011501 |
Score | 2.2422373 |
Snippet | We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 336 |
SubjectTerms | Adolescent Adult basal ganglia Biological and medical sciences Brain Mapping Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Cerebrospinal fluid. Spinal cord. Spinal roots. Spinal nerves Cognition. Intelligence Corpus Striatum - anatomy & histology Corpus Striatum - physiology Female fMRI Functional Laterality - physiology functional magnetic resonance imaging Fundamental and applied biological sciences. Psychology Humans inhibition Intellectual and cognitive abilities Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences motor behavior Movement - physiology Nervous system Neural Inhibition - physiology Neural Pathways - anatomy & histology Neural Pathways - physiology Neuropsychological Tests Neurosurgery Photic Stimulation Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychomotor Performance - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry Reaction Time - physiology striatum Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Volition - physiology |
Title | Function of striatum beyond inhibition and execution of motor responses |
URI | https://api.istex.fr/ark:/67375/WNG-5S0WDMP4-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20111 https://www.ncbi.nlm.nih.gov/pubmed/15852388 https://www.proquest.com/docview/17211196 https://www.proquest.com/docview/67949360 https://pubmed.ncbi.nlm.nih.gov/PMC6871687 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1VRUJc-GiBukCxEKq4uN3Y67UtTuUjjSqlQkDVHpBW-2UlKnGqJJYKv57ZcewQaCXELVEmljx-s_tm_fYtwOvSGu_ilUW8zFnEhSqiPHUi0thtWQQNUm5SW5yKwRk_uUgvNuBtuxem8YfoFtx8ZdB47Qtc6fnhyjR0pCfkwOlbH6_V8oToc2cd5YkONVs4xUYFjsCtqxCLD7t_rs1Fd3xar702Us0xPWVzrsVNxPNv_eTvvJYmpv4D-NbeUqNHuTyoF_rA_PzD7fE_7_kh3F8S1vCoQdgj2HDVFmwfVdisT36E-yFJSGltfgvuDpdv6rfhuI8Tpn_o4bQM6WyQRT0JNe2XCcfVaKxJKxYq_OqunanbWITOdBbOGumumz-Gs_7Hr-8H0fLQhshg8feiMtPalYJxh_VnTVrYIs8sN0o7xjXjSpXc9rRNuEmFLQqjcs1ZYkVZ6Mwig3gCm9W0cjt-OzlyrZjbNIsd7ymNzVdcWpcznSRZoeIA3rSPT5qlo7k_WOO7bLyYY4n5kpSvAF51oVeNjcdNQfuEgS5CzS697i1L5fnpsUy_sPMPw09cngSwtwaS1SX9WkPS4wG8bFEjsVz9OxhVuWk9l9Rx46h3e4TAEbJIBAvgaYOy1dWxtUOGlQeQreGvC_BW4eu_VOMRWYYL3xfnGWaM4HV7DuTg3ZA-7P576DO4R4a2JGJ-DpuLWe1eIFVb6D2qyV-pOTpo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrQRceLQ8zKO1EKq4uHXs9a4tcSmPNJQmQtCqvVSrXe9aiUoclMRS4dczO44dAq2EuNny2JLH3-zOrL_9BuBVYXKn4iUCVqRhwLjKgjSxPNBYbRkEDabcxLYY8N4pOzpPztfgTbMXptaHaBfcXGTQeO0C3C1I7y9VQ4d6TBKcWPtsuI7eVFB9acWjXKpD5RZOskGGY3CjKxRG--2tK7PRhnPslWNHqhk6qKg7W1yXev7NoPw9s6WpqXsPLpqXqhkpl3vVXO_lP__Qe_zft74Pdxc5q39Qg-wBrNlyE7YOSqzXxz_8XZ9YpLQ8vwm3-ouf9Vtw2MU50313f1L41B5kXo19TVtm_FE5HGmii_kKT-2VzavGFtEzmfrTmr1rZw_htPvh5F0vWPRtCHKM_05QCK1twUNmMQRNnmQmS4VhudI2ZDpkShXMdLSJWZ5wk2W5SjULY8OLTAuDScQjWC8npX3idpRjuhUxk4jIso7SWH9FhbFpqONYZCry4HXz_WS-EDV3vTW-yVqOOZLoL0n-8uBla_q9VvK4zmiXQNBaqOmlo76JRJ4NDmXyNTx73__M5JEH2ysoWT7SLTfEHebBTgMbiRHrfsOo0k6qmaSiGwe-my04DpJZzEMPHtcwWz4dqztMslIPxAoAWwOnFr56pRwNSTWcu9I4FegxwtfNPpC9t306ePrvpjtwu3fSP5bHHwefnsEd0rclTvNzWJ9PK_sCM7e53qYA_QUg0z6D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFL1CIKG9jA32Edggmia0l4CbOE6iPbF1pWNrhbYheJhk2bGtVtAUtY3E-PVcO026biBNe2vV20i5Odc-1zk-BnhrVG5dvJKAmpQElIksSGPNAondlkLQIOV2aos-657Rk4v4YgXe13thKn-IZsHNVoYbr22BXytzuDANHciRc-DE1meNMpJaSLe_Nd5Rlum4bgvn2CDDIbi2FSLhYfPXpclozeb1xoojxRTzY6qDLe5jnn8LKH8ntm5m6mzAz_qeKkHK5UE5kwf57R92j_9500_g8Zyx-kcVxJ7Cii42YeuowG599Mvf952G1C3Ob8J6b_6qfguOOzhj2qfuj43vDgeZlSNfug0z_rAYDKUTi_kCv-obnZd1LGJnPPEnlXZXT5_BWefTj4_dYH5qQ5Bj9bcCk0ipDSNUYwGqPM5UliaK5kJqQiWhQhiqWlJFNI-ZyrJcpJKSSDGTyUQhhXgOq8W40C_tfnIkWyFVcRJq2hISu6_QKJ0SGUVJJkIP3tWPj-dzS3N7ssYVr8yYQ4754i5fHrxpQq8rH4_7gvYdBpoIMbm0wrck5uf9Yx5_J-ft3inlJx7sLoFkcUm72BC1qAd7NWo41qt9CSMKPS6n3LXcOOw9HMFwiMwiRjx4UaFscXXs7ZBipR4kS_hrAqxX-PIvxXDgPMOZbYzTBDPm4PVwDnj3Q8992P730D1YP213-NfP_S878MiZ2zpB8ytYnU1K_Rpp20zuuvK8A16JPTs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Function+of+striatum+beyond+inhibition+and+execution+of+motor+responses&rft.jtitle=Human+brain+mapping&rft.au=Vink%2C+Matthijs&rft.au=Kahn%2C+Ren%C3%A9+S&rft.au=Raemaekers%2C+Mathijs&rft.au=van+den+Heuvel%2C+Martijn&rft.date=2005-07-01&rft.issn=1065-9471&rft.volume=25&rft.issue=3&rft.spage=336&rft_id=info:doi/10.1002%2Fhbm.20111&rft_id=info%3Apmid%2F15852388&rft.externalDocID=15852388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |