Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes

The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 102; no. 5; pp. 1163 - 1170
Main Authors Cong, Wen‐Feng, Ruijven, Jasper, Mommer, Liesje, De Deyn, Gerlinde B, Berendse, Frank, Hoffland, Ellis, Lavorel, Sandra
Format Journal Article
LanguageEnglish
Published Oxford Cambridge University Press 01.09.2014
John Wiley & Sons Ltd
Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation. Indeed, the results of these experiments suggest that N₂ fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
AbstractList The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation. Indeed, the results of these experiments suggest that N₂ fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
Summary The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N2‐fixation. Indeed, the results of these experiments suggest that N2 fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. Using an 11‐year grassland biodiversity experiment without legumes, we demonstrated that plant species richness promotes soil carbon and nitrogen stocks via increased plant productivity also in the absence of legumes. Enhanced soil C and N stocks probably fed back positively to plant productivity via enhanced N mineralization, which can further accelerate soil C and N storage in the future.
1.The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N2-fixation. Indeed, the results of these experiments suggest that N2 fixation by legumes is a major driver of soil C and N storage. 2.We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11-year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above-ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. 3.We found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. 4.Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N 2 ‐fixation. Indeed, the results of these experiments suggest that N 2 fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis . We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N...-fixation. Indeed, the results of these experiments suggest that N... fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11-year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above-ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity-productivity relationship observed in the last years of the experiment. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. (ProQuest: ... denotes formulae/symbols omitted.)
Author Lavorel, Sandra
De Deyn, Gerlinde B
Cong, Wen‐Feng
Mommer, Liesje
Berendse, Frank
Ruijven, Jasper
Hoffland, Ellis
Author_xml – sequence: 1
  fullname: Cong, Wen‐Feng
– sequence: 2
  fullname: Ruijven, Jasper
– sequence: 3
  fullname: Mommer, Liesje
– sequence: 4
  fullname: De Deyn, Gerlinde B
– sequence: 5
  fullname: Berendse, Frank
– sequence: 6
  fullname: Hoffland, Ellis
– sequence: 7
  fullname: Lavorel, Sandra
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28700757$$DView record in Pascal Francis
BookMark eNqFkU1vEzEQhi1UJNLAmRPCEupxW397lxuKSguqBBL0iCzb8aYOGzt4dhX13-MlKRzxwSON5338zsw5Oks5BYReU3JJ67miXMmGaSEvKWMteYYWfzNnaEEIYw0RWr9A5wBbQojSkizQj6-DTSOGffAxAC7RP6QAgPcl7_JYM5DjgL0tLids0xqnOJa8CQnDmP1PwDHhTbEAFbMGfIjjQ55GPITNtAvwEj3v7QDh1Sku0f3H6--r2-buy82n1Ye7xkvdksZx7h3tW60dZV3bSaVqR8x613Gv3No61aqW8kCDE9Z3gines8CFU1z1XPAlen_kHmy1FlO9TLLFRzDZRjNEV2x5NIepmDTMYT85MEKKtiVV_O4orj3_mgKMZpunkqpfQ6WUhFHRdbXq6ljlSwYooTf7EnczlRIzL8DM4zbzuM2fBVTFxYlrwduhLzbNhp5krNWEaKlrnTyZj0N4_B_WfL5ePfHfHHXbuoryj1vboqpOaIneHt97m43dlPr3_TdGqCCESq4q4TdkCqqq
CODEN JECOAB
CitedBy_id crossref_primary_10_15302_J_FASE_2021418
crossref_primary_10_1016_j_ecolind_2022_109002
crossref_primary_10_1007_s10661_023_10964_w
crossref_primary_10_3389_fsufs_2020_00032
crossref_primary_10_1016_j_baae_2017_06_002
crossref_primary_10_1016_j_jenvman_2020_111441
crossref_primary_10_1093_jpe_rtab090
crossref_primary_10_1016_j_soilbio_2022_108930
crossref_primary_10_1080_15324982_2017_1376004
crossref_primary_10_1016_j_geoderma_2016_12_013
crossref_primary_10_2135_cropsci2017_05_0317
crossref_primary_10_1016_j_scitotenv_2024_172767
crossref_primary_10_1016_j_pedobi_2017_01_006
crossref_primary_10_1002_ldr_3173
crossref_primary_10_1016_j_ecolmodel_2019_03_001
crossref_primary_10_1002_ldr_4819
crossref_primary_10_5194_bg_14_2685_2017
crossref_primary_10_1111_nph_14185
crossref_primary_10_1111_nph_17572
crossref_primary_10_1017_exp_2020_47
crossref_primary_10_1111_nph_15036
crossref_primary_10_1007_s11368_016_1620_1
crossref_primary_10_1016_j_ecoleng_2016_06_057
crossref_primary_10_1016_j_geoderma_2022_116241
crossref_primary_10_1016_j_scitotenv_2023_164978
crossref_primary_10_3390_rs12091375
crossref_primary_10_1093_jpe_rtx052
crossref_primary_10_5194_soil_6_467_2020
crossref_primary_10_3390_plants12071481
crossref_primary_10_1371_journal_pone_0247893
crossref_primary_10_1016_j_fcr_2022_108803
crossref_primary_10_15835_nbha49312435
crossref_primary_10_1007_s00442_021_04992_x
crossref_primary_10_2135_cropsci2015_11_0711
crossref_primary_10_1002_ecy_3784
crossref_primary_10_1016_j_ecoleng_2016_05_030
crossref_primary_10_1098_rstb_2015_0277
crossref_primary_10_1111_1365_2435_12466
crossref_primary_10_1016_j_eja_2023_126886
crossref_primary_10_1111_gfs_12512
crossref_primary_10_1111_1365_2745_12706
crossref_primary_10_1111_gcb_14777
crossref_primary_10_1016_j_jenvman_2024_120739
crossref_primary_10_1007_s11368_016_1491_5
crossref_primary_10_1002_ldr_4598
crossref_primary_10_1007_s11104_022_05487_1
crossref_primary_10_1111_1365_2745_13592
crossref_primary_10_1016_j_catena_2023_107247
crossref_primary_10_1111_gcb_14844
crossref_primary_10_1007_s11104_017_3328_4
crossref_primary_10_1111_gcb_13757
crossref_primary_10_1111_ejss_13134
crossref_primary_10_1016_j_fcr_2015_09_010
crossref_primary_10_1111_1365_2745_13388
crossref_primary_10_1016_j_ecoleng_2020_105963
crossref_primary_10_1093_jpe_rtz026
crossref_primary_10_1186_s13705_015_0065_5
crossref_primary_10_3390_agronomy10071024
crossref_primary_10_1007_s11104_023_06231_z
crossref_primary_10_12677_HJSS_2019_72019
crossref_primary_10_1016_j_soilbio_2014_10_017
crossref_primary_10_1111_1365_2745_13017
crossref_primary_10_1111_oik_04907
crossref_primary_10_1038_s41559_017_0334_0
crossref_primary_10_3389_fpls_2022_1009109
crossref_primary_10_1002_2688_8319_12191
crossref_primary_10_3390_su15010683
crossref_primary_10_1007_s11104_014_2373_5
crossref_primary_10_1111_1365_2664_13166
crossref_primary_10_3389_fcimb_2021_695087
crossref_primary_10_1007_s13157_019_01176_5
crossref_primary_10_1111_gfs_12605
crossref_primary_10_2139_ssrn_4108655
crossref_primary_10_1111_1365_2745_12877
crossref_primary_10_1016_j_scitotenv_2019_01_211
crossref_primary_10_1007_s10705_021_10188_9
crossref_primary_10_1007_s44246_022_00027_z
crossref_primary_10_1007_s11356_022_23699_x
crossref_primary_10_1016_j_scitotenv_2020_138042
crossref_primary_10_1016_j_foreco_2021_119535
crossref_primary_10_1111_1365_2745_13046
crossref_primary_10_1111_nph_14653
crossref_primary_10_1016_j_aquabot_2018_11_006
crossref_primary_10_1007_s42729_020_00227_9
crossref_primary_10_1007_s11104_020_04651_9
crossref_primary_10_1002_ldr_3349
crossref_primary_10_1088_1748_9326_abaf88
crossref_primary_10_3389_fpls_2023_1239190
crossref_primary_10_1371_journal_pone_0197363
crossref_primary_10_1016_j_foreco_2020_117991
crossref_primary_10_1016_j_agee_2022_107935
crossref_primary_10_1038_s41893_021_00767_7
crossref_primary_10_1007_s12040_023_02252_5
crossref_primary_10_1111_gcbb_12321
crossref_primary_10_33202_comuagri_687901
crossref_primary_10_3390_land13040452
crossref_primary_10_1007_s13593_022_00825_0
crossref_primary_10_1111_brv_12554
crossref_primary_10_3390_f14071341
crossref_primary_10_1002_ecy_3193
crossref_primary_10_1016_j_catena_2021_105983
crossref_primary_10_1016_j_geoderma_2018_07_026
crossref_primary_10_1073_pnas_2111321118
crossref_primary_10_1134_S1064229322602682
crossref_primary_10_1016_j_geoderma_2023_116598
crossref_primary_10_1016_j_agee_2019_106627
crossref_primary_10_1016_j_ecolind_2019_05_038
crossref_primary_10_1016_j_ecolind_2021_108037
crossref_primary_10_1002_ecy_2755
crossref_primary_10_1007_s11104_019_04321_5
crossref_primary_10_1016_j_indic_2023_100291
crossref_primary_10_1016_j_tplants_2022_05_007
crossref_primary_10_1111_1365_2745_12650
crossref_primary_10_1038_s41467_023_42340_0
crossref_primary_10_7717_peerj_7703
crossref_primary_10_1038_s41467_022_35189_2
crossref_primary_10_1016_j_catena_2022_106720
crossref_primary_10_1038_s41893_020_00641_y
crossref_primary_10_1016_j_eja_2023_126943
crossref_primary_10_1016_j_agee_2020_107161
crossref_primary_10_1111_nph_13132
crossref_primary_10_3390_su13137021
crossref_primary_10_1111_ele_12393
crossref_primary_10_1111_gcb_12738
crossref_primary_10_1016_j_agee_2019_03_019
crossref_primary_10_1038_srep44641
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_1093_aob_mcv182
crossref_primary_10_1007_s42965_020_00070_0
crossref_primary_10_1016_j_apsoil_2019_04_019
crossref_primary_10_15406_bij_2018_02_00053
crossref_primary_10_1007_s11104_023_06246_6
crossref_primary_10_1016_j_agee_2021_107434
crossref_primary_10_1002_ldr_3438
crossref_primary_10_3390_d13110545
crossref_primary_10_1007_s11629_020_6472_x
crossref_primary_10_1111_1365_2664_12929
crossref_primary_10_2323_jgam_61_67
crossref_primary_10_1016_j_fcr_2023_108854
crossref_primary_10_3390_su10124805
crossref_primary_10_2135_cropsci2018_09_0594
crossref_primary_10_3389_fsufs_2020_543587
crossref_primary_10_1016_j_still_2023_105857
crossref_primary_10_1590_0103_8478cr20210242
crossref_primary_10_5194_soil_1_257_2015
crossref_primary_10_1016_j_jclepro_2024_142439
crossref_primary_10_3390_su13105689
crossref_primary_10_1111_1365_2745_12789
crossref_primary_10_1002_ldr_2570
crossref_primary_10_1016_j_catena_2023_107520
crossref_primary_10_1016_j_geoderma_2020_114445
crossref_primary_10_1016_j_soilbio_2023_109211
crossref_primary_10_1016_j_geoderma_2018_10_033
crossref_primary_10_1007_s11104_020_04454_y
crossref_primary_10_1016_j_actao_2021_103744
crossref_primary_10_1016_j_envc_2021_100072
crossref_primary_10_3390_agriculture12122076
crossref_primary_10_1002_ecs2_2805
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_1007_s11104_016_2853_x
crossref_primary_10_1016_j_soilbio_2021_108297
crossref_primary_10_1371_journal_pone_0230089
crossref_primary_10_3389_fmars_2022_993181
crossref_primary_10_3390_ijerph14101117
crossref_primary_10_1016_j_agee_2015_12_026
crossref_primary_10_2139_ssrn_4169752
crossref_primary_10_1016_j_agee_2019_04_015
crossref_primary_10_5194_bg_21_949_2024
crossref_primary_10_1088_1748_9326_ac302f
crossref_primary_10_1016_j_ecoleng_2017_10_003
crossref_primary_10_1016_j_tree_2018_10_013
crossref_primary_10_1073_pnas_2016965118
crossref_primary_10_1016_j_catena_2019_104332
crossref_primary_10_1016_j_rse_2019_111217
crossref_primary_10_1111_gfs_12540
crossref_primary_10_1016_j_jclepro_2022_132586
crossref_primary_10_1007_s10113_023_02158_4
crossref_primary_10_1016_j_scitotenv_2022_153512
crossref_primary_10_1016_j_scitotenv_2024_174211
crossref_primary_10_1080_00288233_2020_1848880
crossref_primary_10_1016_j_foreco_2021_119145
crossref_primary_10_1016_j_apsoil_2023_104977
crossref_primary_10_1016_j_agee_2017_01_039
crossref_primary_10_1016_j_fcr_2021_108217
crossref_primary_10_1371_journal_pone_0180422
crossref_primary_10_1007_s13593_024_00968_2
crossref_primary_10_1016_j_soilbio_2020_107936
crossref_primary_10_1016_j_agee_2022_108075
crossref_primary_10_1007_s00442_019_04476_z
crossref_primary_10_3390_f13071083
crossref_primary_10_1016_j_soilbio_2018_03_008
crossref_primary_10_5194_soil_2_49_2016
crossref_primary_10_1002_ldr_2536
crossref_primary_10_1007_s11104_015_2433_5
crossref_primary_10_1007_s11104_016_3040_9
crossref_primary_10_1016_j_soilbio_2022_108828
crossref_primary_10_3390_agronomy12081893
crossref_primary_10_1016_j_tplants_2017_01_005
crossref_primary_10_1111_1365_2745_13556
crossref_primary_10_1016_j_scitotenv_2022_158185
crossref_primary_10_1007_s11104_021_05144_z
crossref_primary_10_1007_s10658_018_1573_x
crossref_primary_10_1016_j_catena_2022_106735
crossref_primary_10_3390_d15121176
crossref_primary_10_1016_j_ecolmodel_2023_110596
Cites_doi 10.1111/j.1600-0706.2008.17119.x
10.1073/pnas.1104015108
10.1111/j.1365-2745.2007.01345.x
10.3732/ajb.1000364
10.1111/j.1461-0248.2010.01547.x
10.1038/35083573
10.1111/j.1469-8137.2004.01201.x
10.1046/j.1461-0248.2003.00427.x
10.1890/04-0922
10.1111/gcb.12323
10.1073/pnas.0805600105
10.1890/08-0325.1
10.1111/j.1365-2745.2010.01702.x
10.1007/s004420050180
10.1073/pnas.0407524102
10.2307/1937380
10.1111/j.1365-2486.2008.01697.x
10.1029/1999GB900014
10.1890/10-0773.1
10.1007/s11104-004-3848-6
10.1029/2010GB003869
10.1111/j.1461-0248.2004.00623.x
10.1046/j.1365-2745.2000.00510.x
10.1007/s00442-008-1123-x
10.1890/06-0733
10.1016/j.soilbio.2010.05.005
10.1073/pnas.0709069104
10.5061/dryad.p83h7
10.1111/j.1365-2656.2009.01634.x
10.1007/s10021-004-0274-9
10.1890/09-0069.1
10.1111/j.1365-2745.2011.01906.x
10.1111/gcb.12096
10.1111/j.1365-2745.2009.01536.x
10.1111/j.1365-2745.2008.01453.x
10.2136/sssaj2006.0205
10.1007/BF00003034
10.1016/S0038-0717(03)00123-8
10.1371/journal.pone.0045926
10.1038/nature11148
10.1126/science.1217909
ContentType Journal Article
Copyright 2014 British Ecological Society
2014 The Authors. Journal of Ecology © 2014 British Ecological Society
2015 INIST-CNRS
Copyright Blackwell Publishing Ltd. Sep 2014
Wageningen University & Research
Copyright_xml – notice: 2014 British Ecological Society
– notice: 2014 The Authors. Journal of Ecology © 2014 British Ecological Society
– notice: 2015 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Sep 2014
– notice: Wageningen University & Research
DBID FBQ
IQODW
AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
QVL
DOI 10.1111/1365-2745.12280
DatabaseName AGRIS
Pascal-Francis
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
NARCIS:Publications
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitleList



CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
Editor Lavorel, Sandra
Editor_xml – sequence: 1
  givenname: Sandra
  surname: Lavorel
  fullname: Lavorel, Sandra
EndPage 1170
ExternalDocumentID oai_library_wur_nl_wurpubs_454880
3409037991
10_1111_1365_2745_12280
28700757
JEC12280
24541626
US201400153680
Genre article
Feature
GrantInformation_xml – fundername: VENI
– fundername: NWO‐ALW VIDI
– fundername: Dutch Organization for Scientific research (NWO)
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ABYAD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFDAS
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFXHP
AFZJQ
AGJLS
AGUYK
AIAGR
AIHXQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CUYZI
CWIXF
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EAU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FVMVE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
Y6R
YF5
YQT
YXE
YZZ
ZCA
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
ABXSQ
AHBTC
AQVQM
AAHBH
ADACV
AITYG
HGLYW
IPSME
OIG
08R
8W4
ADMHG
B4K
IPNFZ
IQODW
PQEST
UMP
AAMNL
AAYXX
ABPQH
AHXOZ
AILXY
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
02
0R
31
3N
ABHAC
ABUFD
ADACO
AS
F20
GA
HZ
IA
KM
NEJ
NF
P4A
QVL
RIG
UNR
WT
X
XHC
Y3
ID FETCH-LOGICAL-c5780-b33cb1f877b129895661112acb93c6bdab686813e1eb4ac94263f2e34b636f343
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Fri Feb 05 18:08:03 EST 2021
Tue Nov 19 07:03:03 EST 2024
Fri Dec 06 01:24:52 EST 2024
Fri Nov 25 01:09:11 EST 2022
Sat Aug 24 00:50:39 EDT 2024
Fri Feb 02 08:05:27 EST 2024
Wed Dec 27 19:16:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Grassland
Organic matter
Biomass
Biodiversity
plant-soil (below-ground) interactions
Mineralization
Dicotyledones
Angiospermae
Soil interaction
root biomass
Species richness
Productivity
Root
Nitrogen
Carbon
Carbon sequestration
soil C sequestration
Soils
Leguminosae
Vegetation
Spermatophyta
Ecosystem functioning
Stock
soil N mineralization
soil organic matter decomposition
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5780-b33cb1f877b129895661112acb93c6bdab686813e1eb4ac94263f2e34b636f343
Notes http://dx.doi.org/10.1111/1365-2745.12280
PQID 1555021499
PQPubID 37508
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_454880
proquest_journals_1555021499
crossref_primary_10_1111_1365_2745_12280
pascalfrancis_primary_28700757
wiley_primary_10_1111_1365_2745_12280_JEC12280
jstor_primary_24541626
fao_agris_US201400153680
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2014
Publisher Cambridge University Press
John Wiley & Sons Ltd
Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Cambridge University Press
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Blackwell Publishing Ltd
References 2007; 104
2010; 98
2004; 164
2012; 100
2005; 272
2012; 486
2010; 79
2004; 7
1997; 110
2000; 88
2003; 35
2008; 14
2011; 98
2008; 105
2007; 71
2008; 96
2011; 14
2009; 118
2013; 19
2010; 42
2011; 108
2009; 97
2005; 102
1988; 6
2003; 6
2011; 92
2009; 90
1999; 13
2005; 75
2014
2008; 158
2011; 25
2012; 7
2007; 88
2012; 336
2001; 412
1990; 71
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 6
  start-page: 119
  year: 1988
  end-page: 159
  article-title: Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis
  publication-title: Biogeochemistry
– volume: 164
  start-page: 423
  year: 2004
  end-page: 439
  article-title: Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO
  publication-title: New Phytologist
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
  publication-title: Ecological Monographs
– volume: 6
  start-page: 170
  year: 2003
  end-page: 175
  article-title: Positive effects of plant species diversity on productivity in the absence of legumes
  publication-title: Ecology Letters
– volume: 71
  start-page: 1126
  year: 1990
  end-page: 1132
  article-title: Spatiotemporal differences in N uptake and the organization of an old‐field plant community
  publication-title: Ecology
– volume: 105
  start-page: 19780
  year: 2008
  end-page: 19785
  article-title: Links between plant litter chemistry, species diversity, and below‐ground ecosystem function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 97
  start-page: 864
  year: 2009
  end-page: 875
  article-title: Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility
  publication-title: Journal of Ecology
– volume: 42
  start-page: 1447
  year: 2010
  end-page: 1454
  article-title: Chemical composition and diversity influence non‐additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss
  publication-title: Soil Biology & Biochemistry
– volume: 88
  start-page: 988
  year: 2000
  end-page: 998
  article-title: Plant diversity affects culturable soil bacteria in experimental grassland communities
  publication-title: Journal of Ecology
– volume: 35
  start-page: 837
  year: 2003
  end-page: 843
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biology & Biochemistry
– volume: 14
  start-page: 36
  year: 2011
  end-page: 41
  article-title: Soil fungal pathogens and the relationship between plant diversity and productivity
  publication-title: Ecology Letters
– volume: 13
  start-page: 623
  year: 1999
  end-page: 645
  article-title: Global patterns of terrestrial biological nitrogen (N ) fixation in natural ecosystems
  publication-title: Global Biogeochemical Cycles
– volume: 118
  start-page: 101
  year: 2009
  end-page: 106
  article-title: Long‐term persistence of a positive plant diversity‐productivity relationship in the absence of legumes
  publication-title: Oikos
– volume: 90
  start-page: 3290
  year: 2009
  end-page: 3302
  article-title: Plant species richness and functional composition drive overyielding in a six‐year grassland experiment
  publication-title: Ecology
– year: 2014
  article-title: Data from: plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes
  publication-title: Dryad Digital Repository
– volume: 102
  start-page: 695
  year: 2005
  end-page: 700
  article-title: Diversity‐productivity relationships: initial effects, long‐term patterns, and underlying mechanisms
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 412
  start-page: 72
  year: 2001
  end-page: 76
  article-title: Partitioning selection and complementarity in biodiversity experiments
  publication-title: Nature
– volume: 25
  start-page: GB2014
  year: 2011
  article-title: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment
  publication-title: Global Biogeochemical Cycles
– volume: 92
  start-page: 296
  year: 2011
  end-page: 303
  article-title: Soil microbes drive the classic plant diversity‐productivity pattern
  publication-title: Ecology
– volume: 98
  start-page: 572
  year: 2011
  end-page: 592
  article-title: The functional role of producer diversity in ecosystems
  publication-title: American Journal of Botany
– volume: 7
  start-page: 793
  year: 2004
  end-page: 804
  article-title: How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs
  publication-title: Ecosystems
– volume: 14
  start-page: 2937
  year: 2008
  end-page: 2949
  article-title: Plant diversity positively affects short‐term soil carbon storage in experimental grasslands
  publication-title: Global Change Biology
– volume: 96
  start-page: 314
  year: 2008
  end-page: 322
  article-title: Plant functional composition influences rates of soil carbon and nitrogen accumulation
  publication-title: Journal of Ecology
– volume: 272
  start-page: 41
  year: 2005
  end-page: 52
  article-title: Divergent effects of elevated CO , N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment
  publication-title: Plant and Soil
– volume: 104
  start-page: 18123
  year: 2007
  end-page: 18128
  article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 336
  start-page: 589
  year: 2012
  end-page: 592
  article-title: Impacts of biodiversity loss escalate through time as redundancy fades
  publication-title: Science
– volume: 79
  start-page: 308
  year: 2010
  end-page: 316
  article-title: Analysis of variance with unbalanced data: an update for ecology & evolution
  publication-title: Journal of Animal Ecology
– volume: 7
  start-page: e45926
  year: 2012
  article-title: Increased plant carbon translocation linked to overyielding in grassland species mixtures
  publication-title: PLoS ONE
– volume: 19
  start-page: 1249
  year: 2013
  end-page: 1261
  article-title: Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long‐term experiment
  publication-title: Global Change Biology
– volume: 108
  start-page: 17034
  year: 2011
  end-page: 17039
  article-title: More diverse plant communities have higher functioning over time due to turnover in complementary dominant species
  publication-title: Proceedings of the National Academy of Sciences
– volume: 97
  start-page: 48
  year: 2009
  end-page: 56
  article-title: Linkages between plant functional composition, fine root processes and potential soil N mineralization rates
  publication-title: Journal of Ecology
– volume: 98
  start-page: 1117
  year: 2010
  end-page: 1127
  article-title: Unveiling below‐ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species
  publication-title: Journal of Ecology
– volume: 486
  start-page: 59
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 158
  start-page: 85
  year: 2008
  end-page: 93
  article-title: Soil fertility increases with plant species diversity in a long‐term biodiversity experiment
  publication-title: Oecologia
– volume: 110
  start-page: 449
  year: 1997
  end-page: 460
  article-title: Hidden treatments in ecological experiments: re‐evaluating the ecosystem function of biodiversity
  publication-title: Oecologia
– volume: 7
  start-page: 661
  year: 2004
  end-page: 668
  article-title: Mechanisms responsible for the positive diversity‐productivity relationship in Minnesota grasslands
  publication-title: Ecology Letters
– volume: 100
  start-page: 6
  year: 2012
  end-page: 15
  article-title: Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity
  publication-title: Journal of Ecology
– volume: 90
  start-page: 408
  year: 2009
  end-page: 418
  article-title: Ecological mechanisms associated with the positive diversity‐productivity relationship in an N‐limited grassland
  publication-title: Ecology
– volume: 19
  start-page: 3848
  year: 2013
  end-page: 3857
  article-title: Multi‐nutrient vs. nitrogen‐only effects on carbon sequestration in grassland soils
  publication-title: Global Change Biology
– volume: 71
  start-page: 720
  year: 2007
  end-page: 729
  article-title: Soil and plant nitrogen pools as related to plant diversity in an experimental grassland
  publication-title: Soil Science Society of America Journal
– volume: 88
  start-page: 490
  year: 2007
  end-page: 500
  article-title: Plant diversity, CO , and N influence inorganic and organic N leaching in grasslands
  publication-title: Ecology
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1600-0706.2008.17119.x
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1104015108
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-2745.2007.01345.x
– ident: e_1_2_7_5_1
  doi: 10.3732/ajb.1000364
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1461-0248.2010.01547.x
– ident: e_1_2_7_26_1
  doi: 10.1038/35083573
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.2004.01201.x
– ident: e_1_2_7_40_1
  doi: 10.1046/j.1461-0248.2003.00427.x
– ident: e_1_2_7_22_1
  doi: 10.1890/04-0922
– ident: e_1_2_7_16_1
  doi: 10.1111/gcb.12323
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.0805600105
– ident: e_1_2_7_18_1
  doi: 10.1890/08-0325.1
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2745.2010.01702.x
– ident: e_1_2_7_23_1
  doi: 10.1007/s004420050180
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0407524102
– ident: e_1_2_7_29_1
  doi: 10.2307/1937380
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-2486.2008.01697.x
– ident: e_1_2_7_7_1
  doi: 10.1029/1999GB900014
– ident: e_1_2_7_37_1
  doi: 10.1890/10-0773.1
– ident: e_1_2_7_12_1
  doi: 10.1007/s11104-004-3848-6
– ident: e_1_2_7_35_1
  doi: 10.1029/2010GB003869
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1461-0248.2004.00623.x
– ident: e_1_2_7_39_1
  doi: 10.1046/j.1365-2745.2000.00510.x
– ident: e_1_2_7_14_1
  doi: 10.1007/s00442-008-1123-x
– ident: e_1_2_7_13_1
  doi: 10.1890/06-0733
– ident: e_1_2_7_31_1
  doi: 10.1016/j.soilbio.2010.05.005
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.0709069104
– ident: e_1_2_7_8_1
  doi: 10.5061/dryad.p83h7
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2656.2009.01634.x
– ident: e_1_2_7_25_1
  doi: 10.1007/s10021-004-0274-9
– ident: e_1_2_7_28_1
  doi: 10.1890/09-0069.1
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-2745.2011.01906.x
– ident: e_1_2_7_33_1
  doi: 10.1111/gcb.12096
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2745.2009.01536.x
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2745.2008.01453.x
– ident: e_1_2_7_34_1
  doi: 10.2136/sssaj2006.0205
– ident: e_1_2_7_3_1
  doi: 10.1007/BF00003034
– ident: e_1_2_7_15_1
  doi: 10.1016/S0038-0717(03)00123-8
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pone.0045926
– ident: e_1_2_7_6_1
  doi: 10.1038/nature11148
– ident: e_1_2_7_36_1
  doi: 10.1126/science.1217909
SSID ssj0006750
Score 2.594263
Snippet The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant...
1. The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of...
Summary The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of...
1.The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant...
SourceID wageningen
proquest
crossref
pascalfrancis
wiley
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1163
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
biodiversity experiment
Biological and medical sciences
Biomass
carbon
Carbon sequestration
communities
complementarity
diversity-productivity relationship
ecosystem function
ecosystem functioning
ecosystems
elevated co2
functional composition
Fundamental and applied biological sciences. Psychology
General aspects
Grassland soils
Grasslands
impacts
Legumes
mineralization
Nitrogen
Organic soils
Plant ecology
Plants
Plant–soil (below-ground) interactions
Primary productivity
productivity
Root biomass
sequestration
soil
soil C sequestration
Soil depth
Soil ecology
soil N mineralization
soil organic matter
soil organic matter decomposition
Soil plant interactions
Species diversity
Synecology
Terrestrial ecosystems
time
Title Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes
URI https://www.jstor.org/stable/24541626
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12280
https://www.proquest.com/docview/1555021499
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F454880
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgolIvfBSqBkrlAwcuWcWx4yRHqLaqKsEBWIkLsmyvvVRdOVWSVVV-PTNO0mV7QYhTouwmuzOZeXmOZt4Q8q7Szlei9mlRZSIVlTep5oylHrLDZb5gS4-9w58-y4uFuPxeTNWE2Asz6EPcv3DDzIh4jQmuTfdHko_dVKKYMZR0ARRmkCxIi75sBaSADmeTXngmynIU98Fangfn7zyXHnvdTAWKWC2pO3CYHyZd7FDRg1vI-hDboHbZbXw8nT8jZjJsqEq5nm16M7O_Hmg-_pflz8nTkbzSD0O0vSCPXDgk-8M4y7tD8uRjA1QTdvbnUQv77iX5gUOReor9nLAkpwC6PxFb6U2sAoQjXXO1pla3pglUhyUFhGkbsJOCU-x1R68CXbVA8GNLMsW3xs2mp2u3AkztXpHF-fzb2UU6TnRILSBDlhrOrWG-KkvDUPoduCSYlGtram6lWWojK1kx7pgzQtsa1eR97rgwkkvPBT8ie6EJ7phQrcsst4BALlsKYXjtNJcuytVkBRxJyPvpfqqbQbhDTQsedKBCB6rowIQcw_1WegWwqhZfc1x0AkviEj86ikFwf4lcFEBhc5mQ052o2H4BABBoWJmQkylM1AgLnQLyVqBIXV0nhG9DRwWcG9UplPoeA0DdbloV1riBvOwU_GyFf2cIjL9ZpC7nZ3Hn9b-e8IYcoP1DFd0J2evbjXsLtKs3pzGzfgNMOx57
link.rule.ids 230,315,781,785,886,1376,27929,27930,46299,46723
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0VWlQu_aBFuKV0Dz304sj2rr-OLQpKKXBoicSlWu06uwER2ch2hOiv78zaJoRLVfUUy0mczHjm-e1q5g3Ap0wZm4nc-nEWCF9kVvuKh6FvMTtMYONwZql3-PQsmUzF8UV88aAXptOHuN9wo8xweE0JThvSD7K8b6cS8SgkTZcNeIpJ3y2rfqwkpJAQB4NieCDStJf3oWqeRxdYezJtWFUNJYpUL6kadJntZl2skdHtW8z70jVCrfNb94A6egnFYFpXl3I9WrZ6VPx-pPr4f7a_ghc9f2VfuoB7DU9MuQNb3UTLux149rVCtokHW2Mnh333Bn7RXKSWUUsnrsoZ4u4lwSu7cYWAeKaprhasULWuSqbKGUOQqSs0lKFXiuuGXZVsXiPHd13JjDaOq2XLFmaOsNq8henR-Pxw4vdDHfwCwSHwNeeFDm2Wpjok9Xekk2hSpAqd8yLRM6WTLMlCbkKjhSpyEpS3keFCJzyxXPBd2Cyr0uwBUyoNogJByAQzITTPjeKJcYo1QYxnPPg83FB502l3yGHNQw6U5EDpHOjBHt5wqeaIrHL6M6J1JxIlntBbuy4K7i8RiRhZbJR4cLAWFqsPIAYiE0s92B_iRPbI0EjkbzHp1OW5B3wVO7Kk0VGNJLXvPgLk7bKW5YJeMDUbiT-b0d_pIuNvFsnj8aE7ePevX_gIzyfnpyfy5NvZ9_ewTb7oiur2YbOtl-YDsrBWH7g0-wM38iKX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RQlEvfBSqGkrZAwcujmzv-utYSqJSoEJAJC5otWvvhqqRHdmJqvLrO7O2G9ILQpxsObGTGc88v7Vm3gC8yZSxmcitH2eB8EVmta94GPoWs8MENg5LS73Dn8-T06k4-xEP1YTUC9PpQ9y-cKPMcHhNCb4o7R9J3ndTiXgUkqTLFtwXCWIr8aKvawUp5MPBIBgeiDTt1X2omOfOBTYeTFtW1UOFIpVLqhY9ZrtRFxtcdPcK075yfVCb9NY9nyaPQQ-WdWUpl6PVUo-K33dEH__L9CfwqGev7LgLt6dwz1R7sNPNs7zegwfvauSauLMzdmLY18_gJ01FWjJq6MQ1OUPU_UXgyhauDBCPtPXFnBWq0XXFVFUyhJimRjsZOqW4bNlFxWYNMnzXk8zotXG9WrK5mSGots9hOhl_Pzn1-5EOfoHQEPia80KHNktTHZL2O5JJNClShc55kehS6SRLspCb0Gihipzk5G1kuNAJTywXfB-2q7oyB8CUSoOoQAgyQSmE5rlRPDFOryaI8YgHb4f7KRedcoccVjzkQEkOlM6BHhzg_ZZqhrgqp98iWnUiTeIJfbTvguD2EpGIkcNGiQdHG1Gx_gIiIPKw1IPDIUxkjwutRPYWk0pdnnvA16EjKxoc1UrS-u4DQF6tGlnNaYOJ2Ur82Yz-ThcYf7NIno1P3M6Lfz3hNTz88n4iP304__gSdskVXUXdIWwvm5V5hRRsqY9ckt0Aw5khTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+species+richness+promotes+soil+carbon+and+nitrogen+stocks+in+grasslands+without+legumes&rft.jtitle=The+Journal+of+ecology&rft.au=Cong%2C+Wen%E2%80%90Feng&rft.au=Ruijven%2C+Jasper&rft.au=Mommer%2C+Liesje&rft.au=De+Deyn%2C+Gerlinde+B&rft.date=2014-09-01&rft.pub=Cambridge+University+Press&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=102&rft.issue=5&rft.spage=1163&rft.epage=1170&rft_id=info:doi/10.1111%2F1365-2745.12280&rft.externalDocID=US201400153680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon