Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes
The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation....
Saved in:
Published in | The Journal of ecology Vol. 102; no. 5; pp. 1163 - 1170 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Cambridge University Press
01.09.2014
John Wiley & Sons Ltd Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation. Indeed, the results of these experiments suggest that N₂ fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. |
---|---|
AbstractList | The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N₂‐fixation. Indeed, the results of these experiments suggest that N₂ fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. Summary The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N2‐fixation. Indeed, the results of these experiments suggest that N2 fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. Using an 11‐year grassland biodiversity experiment without legumes, we demonstrated that plant species richness promotes soil carbon and nitrogen stocks via increased plant productivity also in the absence of legumes. Enhanced soil C and N stocks probably fed back positively to plant productivity via enhanced N mineralization, which can further accelerate soil C and N storage in the future. 1.The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N2-fixation. Indeed, the results of these experiments suggest that N2 fixation by legumes is a major driver of soil C and N storage. 2.We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11-year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above-ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. 3.We found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. 4.Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N 2 ‐fixation. Indeed, the results of these experiments suggest that N 2 fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis . We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N...-fixation. Indeed, the results of these experiments suggest that N... fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11-year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above-ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity-productivity relationship observed in the last years of the experiment. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Lavorel, Sandra De Deyn, Gerlinde B Cong, Wen‐Feng Mommer, Liesje Berendse, Frank Ruijven, Jasper Hoffland, Ellis |
Author_xml | – sequence: 1 fullname: Cong, Wen‐Feng – sequence: 2 fullname: Ruijven, Jasper – sequence: 3 fullname: Mommer, Liesje – sequence: 4 fullname: De Deyn, Gerlinde B – sequence: 5 fullname: Berendse, Frank – sequence: 6 fullname: Hoffland, Ellis – sequence: 7 fullname: Lavorel, Sandra |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28700757$$DView record in Pascal Francis |
BookMark | eNqFkU1vEzEQhi1UJNLAmRPCEupxW397lxuKSguqBBL0iCzb8aYOGzt4dhX13-MlKRzxwSON5338zsw5Oks5BYReU3JJ67miXMmGaSEvKWMteYYWfzNnaEEIYw0RWr9A5wBbQojSkizQj6-DTSOGffAxAC7RP6QAgPcl7_JYM5DjgL0tLids0xqnOJa8CQnDmP1PwDHhTbEAFbMGfIjjQ55GPITNtAvwEj3v7QDh1Sku0f3H6--r2-buy82n1Ye7xkvdksZx7h3tW60dZV3bSaVqR8x613Gv3No61aqW8kCDE9Z3gines8CFU1z1XPAlen_kHmy1FlO9TLLFRzDZRjNEV2x5NIepmDTMYT85MEKKtiVV_O4orj3_mgKMZpunkqpfQ6WUhFHRdbXq6ljlSwYooTf7EnczlRIzL8DM4zbzuM2fBVTFxYlrwduhLzbNhp5krNWEaKlrnTyZj0N4_B_WfL5ePfHfHHXbuoryj1vboqpOaIneHt97m43dlPr3_TdGqCCESq4q4TdkCqqq |
CODEN | JECOAB |
CitedBy_id | crossref_primary_10_15302_J_FASE_2021418 crossref_primary_10_1016_j_ecolind_2022_109002 crossref_primary_10_1007_s10661_023_10964_w crossref_primary_10_3389_fsufs_2020_00032 crossref_primary_10_1016_j_baae_2017_06_002 crossref_primary_10_1016_j_jenvman_2020_111441 crossref_primary_10_1093_jpe_rtab090 crossref_primary_10_1016_j_soilbio_2022_108930 crossref_primary_10_1080_15324982_2017_1376004 crossref_primary_10_1016_j_geoderma_2016_12_013 crossref_primary_10_2135_cropsci2017_05_0317 crossref_primary_10_1016_j_scitotenv_2024_172767 crossref_primary_10_1016_j_pedobi_2017_01_006 crossref_primary_10_1002_ldr_3173 crossref_primary_10_1016_j_ecolmodel_2019_03_001 crossref_primary_10_1002_ldr_4819 crossref_primary_10_5194_bg_14_2685_2017 crossref_primary_10_1111_nph_14185 crossref_primary_10_1111_nph_17572 crossref_primary_10_1017_exp_2020_47 crossref_primary_10_1111_nph_15036 crossref_primary_10_1007_s11368_016_1620_1 crossref_primary_10_1016_j_ecoleng_2016_06_057 crossref_primary_10_1016_j_geoderma_2022_116241 crossref_primary_10_1016_j_scitotenv_2023_164978 crossref_primary_10_3390_rs12091375 crossref_primary_10_1093_jpe_rtx052 crossref_primary_10_5194_soil_6_467_2020 crossref_primary_10_3390_plants12071481 crossref_primary_10_1371_journal_pone_0247893 crossref_primary_10_1016_j_fcr_2022_108803 crossref_primary_10_15835_nbha49312435 crossref_primary_10_1007_s00442_021_04992_x crossref_primary_10_2135_cropsci2015_11_0711 crossref_primary_10_1002_ecy_3784 crossref_primary_10_1016_j_ecoleng_2016_05_030 crossref_primary_10_1098_rstb_2015_0277 crossref_primary_10_1111_1365_2435_12466 crossref_primary_10_1016_j_eja_2023_126886 crossref_primary_10_1111_gfs_12512 crossref_primary_10_1111_1365_2745_12706 crossref_primary_10_1111_gcb_14777 crossref_primary_10_1016_j_jenvman_2024_120739 crossref_primary_10_1007_s11368_016_1491_5 crossref_primary_10_1002_ldr_4598 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_1111_1365_2745_13592 crossref_primary_10_1016_j_catena_2023_107247 crossref_primary_10_1111_gcb_14844 crossref_primary_10_1007_s11104_017_3328_4 crossref_primary_10_1111_gcb_13757 crossref_primary_10_1111_ejss_13134 crossref_primary_10_1016_j_fcr_2015_09_010 crossref_primary_10_1111_1365_2745_13388 crossref_primary_10_1016_j_ecoleng_2020_105963 crossref_primary_10_1093_jpe_rtz026 crossref_primary_10_1186_s13705_015_0065_5 crossref_primary_10_3390_agronomy10071024 crossref_primary_10_1007_s11104_023_06231_z crossref_primary_10_12677_HJSS_2019_72019 crossref_primary_10_1016_j_soilbio_2014_10_017 crossref_primary_10_1111_1365_2745_13017 crossref_primary_10_1111_oik_04907 crossref_primary_10_1038_s41559_017_0334_0 crossref_primary_10_3389_fpls_2022_1009109 crossref_primary_10_1002_2688_8319_12191 crossref_primary_10_3390_su15010683 crossref_primary_10_1007_s11104_014_2373_5 crossref_primary_10_1111_1365_2664_13166 crossref_primary_10_3389_fcimb_2021_695087 crossref_primary_10_1007_s13157_019_01176_5 crossref_primary_10_1111_gfs_12605 crossref_primary_10_2139_ssrn_4108655 crossref_primary_10_1111_1365_2745_12877 crossref_primary_10_1016_j_scitotenv_2019_01_211 crossref_primary_10_1007_s10705_021_10188_9 crossref_primary_10_1007_s44246_022_00027_z crossref_primary_10_1007_s11356_022_23699_x crossref_primary_10_1016_j_scitotenv_2020_138042 crossref_primary_10_1016_j_foreco_2021_119535 crossref_primary_10_1111_1365_2745_13046 crossref_primary_10_1111_nph_14653 crossref_primary_10_1016_j_aquabot_2018_11_006 crossref_primary_10_1007_s42729_020_00227_9 crossref_primary_10_1007_s11104_020_04651_9 crossref_primary_10_1002_ldr_3349 crossref_primary_10_1088_1748_9326_abaf88 crossref_primary_10_3389_fpls_2023_1239190 crossref_primary_10_1371_journal_pone_0197363 crossref_primary_10_1016_j_foreco_2020_117991 crossref_primary_10_1016_j_agee_2022_107935 crossref_primary_10_1038_s41893_021_00767_7 crossref_primary_10_1007_s12040_023_02252_5 crossref_primary_10_1111_gcbb_12321 crossref_primary_10_33202_comuagri_687901 crossref_primary_10_3390_land13040452 crossref_primary_10_1007_s13593_022_00825_0 crossref_primary_10_1111_brv_12554 crossref_primary_10_3390_f14071341 crossref_primary_10_1002_ecy_3193 crossref_primary_10_1016_j_catena_2021_105983 crossref_primary_10_1016_j_geoderma_2018_07_026 crossref_primary_10_1073_pnas_2111321118 crossref_primary_10_1134_S1064229322602682 crossref_primary_10_1016_j_geoderma_2023_116598 crossref_primary_10_1016_j_agee_2019_106627 crossref_primary_10_1016_j_ecolind_2019_05_038 crossref_primary_10_1016_j_ecolind_2021_108037 crossref_primary_10_1002_ecy_2755 crossref_primary_10_1007_s11104_019_04321_5 crossref_primary_10_1016_j_indic_2023_100291 crossref_primary_10_1016_j_tplants_2022_05_007 crossref_primary_10_1111_1365_2745_12650 crossref_primary_10_1038_s41467_023_42340_0 crossref_primary_10_7717_peerj_7703 crossref_primary_10_1038_s41467_022_35189_2 crossref_primary_10_1016_j_catena_2022_106720 crossref_primary_10_1038_s41893_020_00641_y crossref_primary_10_1016_j_eja_2023_126943 crossref_primary_10_1016_j_agee_2020_107161 crossref_primary_10_1111_nph_13132 crossref_primary_10_3390_su13137021 crossref_primary_10_1111_ele_12393 crossref_primary_10_1111_gcb_12738 crossref_primary_10_1016_j_agee_2019_03_019 crossref_primary_10_1038_srep44641 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_1093_aob_mcv182 crossref_primary_10_1007_s42965_020_00070_0 crossref_primary_10_1016_j_apsoil_2019_04_019 crossref_primary_10_15406_bij_2018_02_00053 crossref_primary_10_1007_s11104_023_06246_6 crossref_primary_10_1016_j_agee_2021_107434 crossref_primary_10_1002_ldr_3438 crossref_primary_10_3390_d13110545 crossref_primary_10_1007_s11629_020_6472_x crossref_primary_10_1111_1365_2664_12929 crossref_primary_10_2323_jgam_61_67 crossref_primary_10_1016_j_fcr_2023_108854 crossref_primary_10_3390_su10124805 crossref_primary_10_2135_cropsci2018_09_0594 crossref_primary_10_3389_fsufs_2020_543587 crossref_primary_10_1016_j_still_2023_105857 crossref_primary_10_1590_0103_8478cr20210242 crossref_primary_10_5194_soil_1_257_2015 crossref_primary_10_1016_j_jclepro_2024_142439 crossref_primary_10_3390_su13105689 crossref_primary_10_1111_1365_2745_12789 crossref_primary_10_1002_ldr_2570 crossref_primary_10_1016_j_catena_2023_107520 crossref_primary_10_1016_j_geoderma_2020_114445 crossref_primary_10_1016_j_soilbio_2023_109211 crossref_primary_10_1016_j_geoderma_2018_10_033 crossref_primary_10_1007_s11104_020_04454_y crossref_primary_10_1016_j_actao_2021_103744 crossref_primary_10_1016_j_envc_2021_100072 crossref_primary_10_3390_agriculture12122076 crossref_primary_10_1002_ecs2_2805 crossref_primary_10_1016_j_apsoil_2024_105449 crossref_primary_10_1007_s11104_016_2853_x crossref_primary_10_1016_j_soilbio_2021_108297 crossref_primary_10_1371_journal_pone_0230089 crossref_primary_10_3389_fmars_2022_993181 crossref_primary_10_3390_ijerph14101117 crossref_primary_10_1016_j_agee_2015_12_026 crossref_primary_10_2139_ssrn_4169752 crossref_primary_10_1016_j_agee_2019_04_015 crossref_primary_10_5194_bg_21_949_2024 crossref_primary_10_1088_1748_9326_ac302f crossref_primary_10_1016_j_ecoleng_2017_10_003 crossref_primary_10_1016_j_tree_2018_10_013 crossref_primary_10_1073_pnas_2016965118 crossref_primary_10_1016_j_catena_2019_104332 crossref_primary_10_1016_j_rse_2019_111217 crossref_primary_10_1111_gfs_12540 crossref_primary_10_1016_j_jclepro_2022_132586 crossref_primary_10_1007_s10113_023_02158_4 crossref_primary_10_1016_j_scitotenv_2022_153512 crossref_primary_10_1016_j_scitotenv_2024_174211 crossref_primary_10_1080_00288233_2020_1848880 crossref_primary_10_1016_j_foreco_2021_119145 crossref_primary_10_1016_j_apsoil_2023_104977 crossref_primary_10_1016_j_agee_2017_01_039 crossref_primary_10_1016_j_fcr_2021_108217 crossref_primary_10_1371_journal_pone_0180422 crossref_primary_10_1007_s13593_024_00968_2 crossref_primary_10_1016_j_soilbio_2020_107936 crossref_primary_10_1016_j_agee_2022_108075 crossref_primary_10_1007_s00442_019_04476_z crossref_primary_10_3390_f13071083 crossref_primary_10_1016_j_soilbio_2018_03_008 crossref_primary_10_5194_soil_2_49_2016 crossref_primary_10_1002_ldr_2536 crossref_primary_10_1007_s11104_015_2433_5 crossref_primary_10_1007_s11104_016_3040_9 crossref_primary_10_1016_j_soilbio_2022_108828 crossref_primary_10_3390_agronomy12081893 crossref_primary_10_1016_j_tplants_2017_01_005 crossref_primary_10_1111_1365_2745_13556 crossref_primary_10_1016_j_scitotenv_2022_158185 crossref_primary_10_1007_s11104_021_05144_z crossref_primary_10_1007_s10658_018_1573_x crossref_primary_10_1016_j_catena_2022_106735 crossref_primary_10_3390_d15121176 crossref_primary_10_1016_j_ecolmodel_2023_110596 |
Cites_doi | 10.1111/j.1600-0706.2008.17119.x 10.1073/pnas.1104015108 10.1111/j.1365-2745.2007.01345.x 10.3732/ajb.1000364 10.1111/j.1461-0248.2010.01547.x 10.1038/35083573 10.1111/j.1469-8137.2004.01201.x 10.1046/j.1461-0248.2003.00427.x 10.1890/04-0922 10.1111/gcb.12323 10.1073/pnas.0805600105 10.1890/08-0325.1 10.1111/j.1365-2745.2010.01702.x 10.1007/s004420050180 10.1073/pnas.0407524102 10.2307/1937380 10.1111/j.1365-2486.2008.01697.x 10.1029/1999GB900014 10.1890/10-0773.1 10.1007/s11104-004-3848-6 10.1029/2010GB003869 10.1111/j.1461-0248.2004.00623.x 10.1046/j.1365-2745.2000.00510.x 10.1007/s00442-008-1123-x 10.1890/06-0733 10.1016/j.soilbio.2010.05.005 10.1073/pnas.0709069104 10.5061/dryad.p83h7 10.1111/j.1365-2656.2009.01634.x 10.1007/s10021-004-0274-9 10.1890/09-0069.1 10.1111/j.1365-2745.2011.01906.x 10.1111/gcb.12096 10.1111/j.1365-2745.2009.01536.x 10.1111/j.1365-2745.2008.01453.x 10.2136/sssaj2006.0205 10.1007/BF00003034 10.1016/S0038-0717(03)00123-8 10.1371/journal.pone.0045926 10.1038/nature11148 10.1126/science.1217909 |
ContentType | Journal Article |
Copyright | 2014 British Ecological Society 2014 The Authors. Journal of Ecology © 2014 British Ecological Society 2015 INIST-CNRS Copyright Blackwell Publishing Ltd. Sep 2014 Wageningen University & Research |
Copyright_xml | – notice: 2014 British Ecological Society – notice: 2014 The Authors. Journal of Ecology © 2014 British Ecological Society – notice: 2015 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Sep 2014 – notice: Wageningen University & Research |
DBID | FBQ IQODW AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI QVL |
DOI | 10.1111/1365-2745.12280 |
DatabaseName | AGRIS Pascal-Francis CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts NARCIS:Publications |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
Editor | Lavorel, Sandra |
Editor_xml | – sequence: 1 givenname: Sandra surname: Lavorel fullname: Lavorel, Sandra |
EndPage | 1170 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_454880 3409037991 10_1111_1365_2745_12280 28700757 JEC12280 24541626 US201400153680 |
Genre | article Feature |
GrantInformation_xml | – fundername: VENI – fundername: NWO‐ALW VIDI – fundername: Dutch Organization for Scientific research (NWO) |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPFR ABPLY ABPPZ ABPTK ABPVW ABTAH ABTLG ABWRO ABYAD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACSTJ ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFDAS AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFXHP AFZJQ AGJLS AGUYK AIAGR AIHXQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CUYZI CWIXF D-E D-F D-I DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EAU EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FVMVE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH Y6R YF5 YQT YXE YZZ ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT ABXSQ AHBTC AQVQM AAHBH ADACV AITYG HGLYW IPSME OIG 08R 8W4 ADMHG B4K IPNFZ IQODW PQEST UMP AAMNL AAYXX ABPQH AHXOZ AILXY CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 02 0R 31 3N ABHAC ABUFD ADACO AS F20 GA HZ IA KM NEJ NF P4A QVL RIG UNR WT X XHC Y3 |
ID | FETCH-LOGICAL-c5780-b33cb1f877b129895661112acb93c6bdab686813e1eb4ac94263f2e34b636f343 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Fri Feb 05 18:08:03 EST 2021 Tue Nov 19 07:03:03 EST 2024 Fri Dec 06 01:24:52 EST 2024 Fri Nov 25 01:09:11 EST 2022 Sat Aug 24 00:50:39 EDT 2024 Fri Feb 02 08:05:27 EST 2024 Wed Dec 27 19:16:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Grassland Organic matter Biomass Biodiversity plant-soil (below-ground) interactions Mineralization Dicotyledones Angiospermae Soil interaction root biomass Species richness Productivity Root Nitrogen Carbon Carbon sequestration soil C sequestration Soils Leguminosae Vegetation Spermatophyta Ecosystem functioning Stock soil N mineralization soil organic matter decomposition |
Language | English |
License | CC BY 4.0 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5780-b33cb1f877b129895661112acb93c6bdab686813e1eb4ac94263f2e34b636f343 |
Notes | http://dx.doi.org/10.1111/1365-2745.12280 |
PQID | 1555021499 |
PQPubID | 37508 |
PageCount | 8 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_454880 proquest_journals_1555021499 crossref_primary_10_1111_1365_2745_12280 pascalfrancis_primary_28700757 wiley_primary_10_1111_1365_2745_12280_JEC12280 jstor_primary_24541626 fao_agris_US201400153680 |
ProviderPackageCode | QVL |
PublicationCentury | 2000 |
PublicationDate | September 2014 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: September 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2014 |
Publisher | Cambridge University Press John Wiley & Sons Ltd Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Cambridge University Press – name: John Wiley & Sons Ltd – name: Blackwell – name: Blackwell Publishing Ltd |
References | 2007; 104 2010; 98 2004; 164 2012; 100 2005; 272 2012; 486 2010; 79 2004; 7 1997; 110 2000; 88 2003; 35 2008; 14 2011; 98 2008; 105 2007; 71 2008; 96 2011; 14 2009; 118 2013; 19 2010; 42 2011; 108 2009; 97 2005; 102 1988; 6 2003; 6 2011; 92 2009; 90 1999; 13 2005; 75 2014 2008; 158 2011; 25 2012; 7 2007; 88 2012; 336 2001; 412 1990; 71 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 6 start-page: 119 year: 1988 end-page: 159 article-title: Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis publication-title: Biogeochemistry – volume: 164 start-page: 423 year: 2004 end-page: 439 article-title: Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO publication-title: New Phytologist – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecological Monographs – volume: 6 start-page: 170 year: 2003 end-page: 175 article-title: Positive effects of plant species diversity on productivity in the absence of legumes publication-title: Ecology Letters – volume: 71 start-page: 1126 year: 1990 end-page: 1132 article-title: Spatiotemporal differences in N uptake and the organization of an old‐field plant community publication-title: Ecology – volume: 105 start-page: 19780 year: 2008 end-page: 19785 article-title: Links between plant litter chemistry, species diversity, and below‐ground ecosystem function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 97 start-page: 864 year: 2009 end-page: 875 article-title: Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility publication-title: Journal of Ecology – volume: 42 start-page: 1447 year: 2010 end-page: 1454 article-title: Chemical composition and diversity influence non‐additive effects of litter mixtures on soil carbon and nitrogen cycling: implications for plant species loss publication-title: Soil Biology & Biochemistry – volume: 88 start-page: 988 year: 2000 end-page: 998 article-title: Plant diversity affects culturable soil bacteria in experimental grassland communities publication-title: Journal of Ecology – volume: 35 start-page: 837 year: 2003 end-page: 843 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 36 year: 2011 end-page: 41 article-title: Soil fungal pathogens and the relationship between plant diversity and productivity publication-title: Ecology Letters – volume: 13 start-page: 623 year: 1999 end-page: 645 article-title: Global patterns of terrestrial biological nitrogen (N ) fixation in natural ecosystems publication-title: Global Biogeochemical Cycles – volume: 118 start-page: 101 year: 2009 end-page: 106 article-title: Long‐term persistence of a positive plant diversity‐productivity relationship in the absence of legumes publication-title: Oikos – volume: 90 start-page: 3290 year: 2009 end-page: 3302 article-title: Plant species richness and functional composition drive overyielding in a six‐year grassland experiment publication-title: Ecology – year: 2014 article-title: Data from: plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes publication-title: Dryad Digital Repository – volume: 102 start-page: 695 year: 2005 end-page: 700 article-title: Diversity‐productivity relationships: initial effects, long‐term patterns, and underlying mechanisms publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 412 start-page: 72 year: 2001 end-page: 76 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature – volume: 25 start-page: GB2014 year: 2011 article-title: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment publication-title: Global Biogeochemical Cycles – volume: 92 start-page: 296 year: 2011 end-page: 303 article-title: Soil microbes drive the classic plant diversity‐productivity pattern publication-title: Ecology – volume: 98 start-page: 572 year: 2011 end-page: 592 article-title: The functional role of producer diversity in ecosystems publication-title: American Journal of Botany – volume: 7 start-page: 793 year: 2004 end-page: 804 article-title: How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs publication-title: Ecosystems – volume: 14 start-page: 2937 year: 2008 end-page: 2949 article-title: Plant diversity positively affects short‐term soil carbon storage in experimental grasslands publication-title: Global Change Biology – volume: 96 start-page: 314 year: 2008 end-page: 322 article-title: Plant functional composition influences rates of soil carbon and nitrogen accumulation publication-title: Journal of Ecology – volume: 272 start-page: 41 year: 2005 end-page: 52 article-title: Divergent effects of elevated CO , N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment publication-title: Plant and Soil – volume: 104 start-page: 18123 year: 2007 end-page: 18128 article-title: Impacts of plant diversity on biomass production increase through time because of species complementarity publication-title: Proceedings of the National Academy of Sciences – volume: 336 start-page: 589 year: 2012 end-page: 592 article-title: Impacts of biodiversity loss escalate through time as redundancy fades publication-title: Science – volume: 79 start-page: 308 year: 2010 end-page: 316 article-title: Analysis of variance with unbalanced data: an update for ecology & evolution publication-title: Journal of Animal Ecology – volume: 7 start-page: e45926 year: 2012 article-title: Increased plant carbon translocation linked to overyielding in grassland species mixtures publication-title: PLoS ONE – volume: 19 start-page: 1249 year: 2013 end-page: 1261 article-title: Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long‐term experiment publication-title: Global Change Biology – volume: 108 start-page: 17034 year: 2011 end-page: 17039 article-title: More diverse plant communities have higher functioning over time due to turnover in complementary dominant species publication-title: Proceedings of the National Academy of Sciences – volume: 97 start-page: 48 year: 2009 end-page: 56 article-title: Linkages between plant functional composition, fine root processes and potential soil N mineralization rates publication-title: Journal of Ecology – volume: 98 start-page: 1117 year: 2010 end-page: 1127 article-title: Unveiling below‐ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species publication-title: Journal of Ecology – volume: 486 start-page: 59 year: 2012 end-page: 67 article-title: Biodiversity loss and its impact on humanity publication-title: Nature – volume: 158 start-page: 85 year: 2008 end-page: 93 article-title: Soil fertility increases with plant species diversity in a long‐term biodiversity experiment publication-title: Oecologia – volume: 110 start-page: 449 year: 1997 end-page: 460 article-title: Hidden treatments in ecological experiments: re‐evaluating the ecosystem function of biodiversity publication-title: Oecologia – volume: 7 start-page: 661 year: 2004 end-page: 668 article-title: Mechanisms responsible for the positive diversity‐productivity relationship in Minnesota grasslands publication-title: Ecology Letters – volume: 100 start-page: 6 year: 2012 end-page: 15 article-title: Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity publication-title: Journal of Ecology – volume: 90 start-page: 408 year: 2009 end-page: 418 article-title: Ecological mechanisms associated with the positive diversity‐productivity relationship in an N‐limited grassland publication-title: Ecology – volume: 19 start-page: 3848 year: 2013 end-page: 3857 article-title: Multi‐nutrient vs. nitrogen‐only effects on carbon sequestration in grassland soils publication-title: Global Change Biology – volume: 71 start-page: 720 year: 2007 end-page: 729 article-title: Soil and plant nitrogen pools as related to plant diversity in an experimental grassland publication-title: Soil Science Society of America Journal – volume: 88 start-page: 490 year: 2007 end-page: 500 article-title: Plant diversity, CO , and N influence inorganic and organic N leaching in grasslands publication-title: Ecology – ident: e_1_2_7_42_1 doi: 10.1111/j.1600-0706.2008.17119.x – ident: e_1_2_7_2_1 doi: 10.1073/pnas.1104015108 – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-2745.2007.01345.x – ident: e_1_2_7_5_1 doi: 10.3732/ajb.1000364 – ident: e_1_2_7_27_1 doi: 10.1111/j.1461-0248.2010.01547.x – ident: e_1_2_7_26_1 doi: 10.1038/35083573 – ident: e_1_2_7_24_1 doi: 10.1111/j.1469-8137.2004.01201.x – ident: e_1_2_7_40_1 doi: 10.1046/j.1461-0248.2003.00427.x – ident: e_1_2_7_22_1 doi: 10.1890/04-0922 – ident: e_1_2_7_16_1 doi: 10.1111/gcb.12323 – ident: e_1_2_7_30_1 doi: 10.1073/pnas.0805600105 – ident: e_1_2_7_18_1 doi: 10.1890/08-0325.1 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2745.2010.01702.x – ident: e_1_2_7_23_1 doi: 10.1007/s004420050180 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0407524102 – ident: e_1_2_7_29_1 doi: 10.2307/1937380 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-2486.2008.01697.x – ident: e_1_2_7_7_1 doi: 10.1029/1999GB900014 – ident: e_1_2_7_37_1 doi: 10.1890/10-0773.1 – ident: e_1_2_7_12_1 doi: 10.1007/s11104-004-3848-6 – ident: e_1_2_7_35_1 doi: 10.1029/2010GB003869 – ident: e_1_2_7_21_1 doi: 10.1111/j.1461-0248.2004.00623.x – ident: e_1_2_7_39_1 doi: 10.1046/j.1365-2745.2000.00510.x – ident: e_1_2_7_14_1 doi: 10.1007/s00442-008-1123-x – ident: e_1_2_7_13_1 doi: 10.1890/06-0733 – ident: e_1_2_7_31_1 doi: 10.1016/j.soilbio.2010.05.005 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.0709069104 – ident: e_1_2_7_8_1 doi: 10.5061/dryad.p83h7 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2656.2009.01634.x – ident: e_1_2_7_25_1 doi: 10.1007/s10021-004-0274-9 – ident: e_1_2_7_28_1 doi: 10.1890/09-0069.1 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-2745.2011.01906.x – ident: e_1_2_7_33_1 doi: 10.1111/gcb.12096 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2745.2009.01536.x – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2745.2008.01453.x – ident: e_1_2_7_34_1 doi: 10.2136/sssaj2006.0205 – ident: e_1_2_7_3_1 doi: 10.1007/BF00003034 – ident: e_1_2_7_15_1 doi: 10.1016/S0038-0717(03)00123-8 – ident: e_1_2_7_10_1 doi: 10.1371/journal.pone.0045926 – ident: e_1_2_7_6_1 doi: 10.1038/nature11148 – ident: e_1_2_7_36_1 doi: 10.1126/science.1217909 |
SSID | ssj0006750 |
Score | 2.594263 |
Snippet | The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant... 1. The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of... Summary The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of... 1.The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant... |
SourceID | wageningen proquest crossref pascalfrancis wiley jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1163 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biodiversity biodiversity experiment Biological and medical sciences Biomass carbon Carbon sequestration communities complementarity diversity-productivity relationship ecosystem function ecosystem functioning ecosystems elevated co2 functional composition Fundamental and applied biological sciences. Psychology General aspects Grassland soils Grasslands impacts Legumes mineralization Nitrogen Organic soils Plant ecology Plants Plant–soil (below-ground) interactions Primary productivity productivity Root biomass sequestration soil soil C sequestration Soil depth Soil ecology soil N mineralization soil organic matter soil organic matter decomposition Soil plant interactions Species diversity Synecology Terrestrial ecosystems time |
Title | Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes |
URI | https://www.jstor.org/stable/24541626 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12280 https://www.proquest.com/docview/1555021499 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F454880 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgolIvfBSqBkrlAwcuWcWx4yRHqLaqKsEBWIkLsmyvvVRdOVWSVVV-PTNO0mV7QYhTouwmuzOZeXmOZt4Q8q7Szlei9mlRZSIVlTep5oylHrLDZb5gS4-9w58-y4uFuPxeTNWE2Asz6EPcv3DDzIh4jQmuTfdHko_dVKKYMZR0ARRmkCxIi75sBaSADmeTXngmynIU98Fangfn7zyXHnvdTAWKWC2pO3CYHyZd7FDRg1vI-hDboHbZbXw8nT8jZjJsqEq5nm16M7O_Hmg-_pflz8nTkbzSD0O0vSCPXDgk-8M4y7tD8uRjA1QTdvbnUQv77iX5gUOReor9nLAkpwC6PxFb6U2sAoQjXXO1pla3pglUhyUFhGkbsJOCU-x1R68CXbVA8GNLMsW3xs2mp2u3AkztXpHF-fzb2UU6TnRILSBDlhrOrWG-KkvDUPoduCSYlGtram6lWWojK1kx7pgzQtsa1eR97rgwkkvPBT8ie6EJ7phQrcsst4BALlsKYXjtNJcuytVkBRxJyPvpfqqbQbhDTQsedKBCB6rowIQcw_1WegWwqhZfc1x0AkviEj86ikFwf4lcFEBhc5mQ052o2H4BABBoWJmQkylM1AgLnQLyVqBIXV0nhG9DRwWcG9UplPoeA0DdbloV1riBvOwU_GyFf2cIjL9ZpC7nZ3Hn9b-e8IYcoP1DFd0J2evbjXsLtKs3pzGzfgNMOx57 |
link.rule.ids | 230,315,781,785,886,1376,27929,27930,46299,46723 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0VWlQu_aBFuKV0Dz304sj2rr-OLQpKKXBoicSlWu06uwER2ch2hOiv78zaJoRLVfUUy0mczHjm-e1q5g3Ap0wZm4nc-nEWCF9kVvuKh6FvMTtMYONwZql3-PQsmUzF8UV88aAXptOHuN9wo8xweE0JThvSD7K8b6cS8SgkTZcNeIpJ3y2rfqwkpJAQB4NieCDStJf3oWqeRxdYezJtWFUNJYpUL6kadJntZl2skdHtW8z70jVCrfNb94A6egnFYFpXl3I9WrZ6VPx-pPr4f7a_ghc9f2VfuoB7DU9MuQNb3UTLux149rVCtokHW2Mnh333Bn7RXKSWUUsnrsoZ4u4lwSu7cYWAeKaprhasULWuSqbKGUOQqSs0lKFXiuuGXZVsXiPHd13JjDaOq2XLFmaOsNq8henR-Pxw4vdDHfwCwSHwNeeFDm2Wpjok9Xekk2hSpAqd8yLRM6WTLMlCbkKjhSpyEpS3keFCJzyxXPBd2Cyr0uwBUyoNogJByAQzITTPjeKJcYo1QYxnPPg83FB502l3yGHNQw6U5EDpHOjBHt5wqeaIrHL6M6J1JxIlntBbuy4K7i8RiRhZbJR4cLAWFqsPIAYiE0s92B_iRPbI0EjkbzHp1OW5B3wVO7Kk0VGNJLXvPgLk7bKW5YJeMDUbiT-b0d_pIuNvFsnj8aE7ePevX_gIzyfnpyfy5NvZ9_ewTb7oiur2YbOtl-YDsrBWH7g0-wM38iKX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RQlEvfBSqGkrZAwcujmzv-utYSqJSoEJAJC5otWvvhqqRHdmJqvLrO7O2G9ILQpxsObGTGc88v7Vm3gC8yZSxmcitH2eB8EVmta94GPoWs8MENg5LS73Dn8-T06k4-xEP1YTUC9PpQ9y-cKPMcHhNCb4o7R9J3ndTiXgUkqTLFtwXCWIr8aKvawUp5MPBIBgeiDTt1X2omOfOBTYeTFtW1UOFIpVLqhY9ZrtRFxtcdPcK075yfVCb9NY9nyaPQQ-WdWUpl6PVUo-K33dEH__L9CfwqGev7LgLt6dwz1R7sNPNs7zegwfvauSauLMzdmLY18_gJ01FWjJq6MQ1OUPU_UXgyhauDBCPtPXFnBWq0XXFVFUyhJimRjsZOqW4bNlFxWYNMnzXk8zotXG9WrK5mSGots9hOhl_Pzn1-5EOfoHQEPia80KHNktTHZL2O5JJNClShc55kehS6SRLspCb0Gihipzk5G1kuNAJTywXfB-2q7oyB8CUSoOoQAgyQSmE5rlRPDFOryaI8YgHb4f7KRedcoccVjzkQEkOlM6BHhzg_ZZqhrgqp98iWnUiTeIJfbTvguD2EpGIkcNGiQdHG1Gx_gIiIPKw1IPDIUxkjwutRPYWk0pdnnvA16EjKxoc1UrS-u4DQF6tGlnNaYOJ2Ur82Yz-ThcYf7NIno1P3M6Lfz3hNTz88n4iP304__gSdskVXUXdIWwvm5V5hRRsqY9ckt0Aw5khTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+species+richness+promotes+soil+carbon+and+nitrogen+stocks+in+grasslands+without+legumes&rft.jtitle=The+Journal+of+ecology&rft.au=Cong%2C+Wen%E2%80%90Feng&rft.au=Ruijven%2C+Jasper&rft.au=Mommer%2C+Liesje&rft.au=De+Deyn%2C+Gerlinde+B&rft.date=2014-09-01&rft.pub=Cambridge+University+Press&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=102&rft.issue=5&rft.spage=1163&rft.epage=1170&rft_id=info:doi/10.1111%2F1365-2745.12280&rft.externalDocID=US201400153680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |