Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties
Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transit...
Saved in:
Published in | Seminars in cancer biology Vol. 17; no. 5; pp. 370 - 376 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol–Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action. |
---|---|
AbstractList | Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action. Abstract Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol–Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action. Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action. |
Author | Hanif, Sarmad Shamim, Uzma Bhat, Showket H. Hadi, S.M. Ullah, M.F. Azmi, Asfar S. |
Author_xml | – sequence: 1 givenname: S.M. surname: Hadi fullname: Hadi, S.M. email: smhadi@vsnl.com – sequence: 2 givenname: Showket H. surname: Bhat fullname: Bhat, Showket H. – sequence: 3 givenname: Asfar S. surname: Azmi fullname: Azmi, Asfar S. – sequence: 4 givenname: Sarmad surname: Hanif fullname: Hanif, Sarmad – sequence: 5 givenname: Uzma surname: Shamim fullname: Shamim, Uzma – sequence: 6 givenname: M.F. surname: Ullah fullname: Ullah, M.F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17572102$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl1v1DAQjFAR_YC_AH7iLWHj2OcLEqBTaQGpog-AxJvlOJvWV8dO7aTi_j0OKSBVQtyTLe_M7Hpmj7MD5x1m2YsSihLK1attEbHXymkMBQUQBbACgD7KjkqoV3m14nAw3xnLuai_H2bHMW4BoGYle5IdloILWgI9yq4uf5hWjeYOSRNQ3agrJL4jGq2drArk_ecNaXZksMqNZPB2N1yj8za-JhsyTOPC7FFfK2diTzofSEKaZTQyBD9gGA3Gp9njTtmIz-7Pk-zb-dnX04_5xeWHT6ebi1xzIca841RR3q21Xq2pFgp5RREq5JRWtKl5ekAKmjMBTDW0aWsNrWZt1SJrkxHVSfZy0U2tbyeMo-xNnH-jHPopyiS7qtZA_wukUKaWbFZ8fg-cmh5bOQTTq7CTvz1MALEAdPAxBuz-QkDOacmt_JOWnNOSwCT8Yr55wNRmttS7MShj9-BvFj4mR-9MqkZtMMFaE1CPsvVmD423DzS0NS4FaG9wh3Hrp-BSYLKUkUqQX-admlcKRFonyusk8O7fAnuN8BNXN-GY |
CitedBy_id | crossref_primary_10_1016_j_jinorgbio_2022_111888 crossref_primary_10_1002_elps_201600014 crossref_primary_10_1002_mnfr_200800547 crossref_primary_10_1134_S1990747814040023 crossref_primary_10_3109_10715762_2011_555479 crossref_primary_10_3390_foods9101486 crossref_primary_10_1016_j_biotechadv_2014_03_006 crossref_primary_10_1016_j_ijbiomac_2023_126525 crossref_primary_10_7717_peerj_13217 crossref_primary_10_3390_antiox10121962 crossref_primary_10_1371_journal_pone_0139765 crossref_primary_10_1039_c2fo30252g crossref_primary_10_1007_s10008_012_1673_z crossref_primary_10_1007_s13277_014_3004_8 crossref_primary_10_3390_molecules28072925 crossref_primary_10_1016_j_ejps_2012_04_014 crossref_primary_10_1016_j_molstruc_2021_131606 crossref_primary_10_1016_j_tiv_2009_03_009 crossref_primary_10_1007_s10555_013_9457_1 crossref_primary_10_1016_j_atherosclerosis_2009_06_031 crossref_primary_10_1089_fpd_2012_1155 crossref_primary_10_3390_biomedicines10030664 crossref_primary_10_1016_S1995_7645_14_60253_4 crossref_primary_10_1016_j_tiv_2009_07_022 crossref_primary_10_1007_s10008_011_1352_5 crossref_primary_10_3390_antiox10010018 crossref_primary_10_1111_jpn_13758 crossref_primary_10_1016_j_fitote_2010_06_021 crossref_primary_10_1016_j_freeradbiomed_2020_06_033 crossref_primary_10_1021_acsami_1c13744 crossref_primary_10_1016_j_tiv_2017_01_020 crossref_primary_10_1007_s13277_015_3649_y crossref_primary_10_1016_j_cbi_2015_03_005 crossref_primary_10_1016_j_biotechadv_2018_01_009 crossref_primary_10_1016_j_foodchem_2009_11_058 crossref_primary_10_1002_jcb_25760 crossref_primary_10_1016_j_cbi_2011_03_017 crossref_primary_10_1002_bdrc_21051 crossref_primary_10_1016_j_mrgentox_2023_503687 crossref_primary_10_1371_journal_pone_0144290 crossref_primary_10_1007_s13277_014_2770_7 crossref_primary_10_1080_07391102_2013_879837 crossref_primary_10_1002_chem_201201545 crossref_primary_10_3390_molecules181215448 crossref_primary_10_1016_j_tiv_2009_01_012 crossref_primary_10_3390_nu6126020 crossref_primary_10_1016_j_foodchem_2008_10_082 crossref_primary_10_1016_j_scienta_2011_05_042 crossref_primary_10_3390_ijms12053288 crossref_primary_10_1016_j_fct_2012_06_012 crossref_primary_10_1111_head_12725 crossref_primary_10_3389_fonc_2022_911615 crossref_primary_10_1007_s11095_010_0055_4 crossref_primary_10_1007_s13277_014_2743_x crossref_primary_10_1016_j_chroma_2015_09_050 crossref_primary_10_1016_j_jff_2018_03_045 crossref_primary_10_1021_mp900013d crossref_primary_10_52711_0974_360X_2023_00675 crossref_primary_10_1016_j_foodchem_2018_01_069 crossref_primary_10_1016_j_foodchem_2011_01_100 crossref_primary_10_2174_1573394718666220603103458 crossref_primary_10_1016_j_molliq_2020_114455 crossref_primary_10_1016_j_fct_2010_06_045 crossref_primary_10_3390_toxins8020037 crossref_primary_10_1016_j_fct_2016_11_034 crossref_primary_10_1016_j_abb_2017_11_001 crossref_primary_10_3390_metabo13040481 crossref_primary_10_1016_j_biocel_2009_08_005 crossref_primary_10_1039_C5RA01911G crossref_primary_10_1016_j_ijbiomac_2017_08_049 crossref_primary_10_1007_s10495_016_1261_2 crossref_primary_10_5466_ijoms_11_101 crossref_primary_10_1021_jm8015415 crossref_primary_10_3390_molecules27217410 crossref_primary_10_1016_j_sajb_2022_02_036 crossref_primary_10_1016_j_fct_2012_10_004 crossref_primary_10_1007_s12032_024_02386_6 crossref_primary_10_1248_bpb_b22_00199 crossref_primary_10_1158_1078_0432_CCR_14_0424 crossref_primary_10_1016_j_biomaterials_2017_11_001 crossref_primary_10_1016_j_cbi_2013_08_007 crossref_primary_10_1007_s12161_011_9213_5 crossref_primary_10_1016_j_jnutbio_2016_03_003 crossref_primary_10_1097_CAD_0000000000000119 crossref_primary_10_1016_j_mehy_2020_110278 crossref_primary_10_1038_srep45231 crossref_primary_10_1002_jcp_22865 crossref_primary_10_1093_toxsci_kfr107 crossref_primary_10_1016_j_taap_2015_09_018 crossref_primary_10_3389_fonc_2022_998346 crossref_primary_10_1007_s12013_011_9303_4 crossref_primary_10_1016_j_talanta_2013_06_006 crossref_primary_10_3390_cells8080903 crossref_primary_10_1007_s11694_022_01681_y crossref_primary_10_1016_j_fct_2010_12_020 crossref_primary_10_3390_biomedicines11072078 crossref_primary_10_3390_life14050611 crossref_primary_10_3390_nu11112786 crossref_primary_10_1007_s10565_011_9196_4 crossref_primary_10_1016_j_fct_2015_12_029 crossref_primary_10_3390_agronomy12061371 crossref_primary_10_1111_j_1749_6632_2012_06510_x crossref_primary_10_1186_1472_6882_12_142 crossref_primary_10_4236_ns_2016_88041 crossref_primary_10_1111_jpn_12070 crossref_primary_10_12688_f1000research_2_135_v1 crossref_primary_10_1021_jf2044263 crossref_primary_10_1021_tx200418k crossref_primary_10_1007_s10616_009_9206_z crossref_primary_10_1021_acsomega_7b01200 crossref_primary_10_1111_j_1468_2494_2008_00483_x crossref_primary_10_1089_jmf_2009_0058 crossref_primary_10_3390_molecules28052151 crossref_primary_10_1016_j_abb_2015_06_019 crossref_primary_10_1111_jfbc_12178 crossref_primary_10_1002_mnfr_201300417 crossref_primary_10_1039_D3FO04753A crossref_primary_10_1007_s10534_016_9916_6 crossref_primary_10_1080_10715760802302251 crossref_primary_10_1124_jpet_109_151654 crossref_primary_10_1007_s10534_011_9475_9 crossref_primary_10_1111_cbdd_14606 crossref_primary_10_1016_j_freeradbiomed_2016_12_050 crossref_primary_10_1016_j_freeradbiomed_2017_09_027 crossref_primary_10_1002_jsfa_4328 crossref_primary_10_1021_jf300999e crossref_primary_10_1021_jf204748a crossref_primary_10_1093_mutage_gep064 crossref_primary_10_3390_antiox12010080 crossref_primary_10_1021_acs_chemrestox_5b00121 crossref_primary_10_1002_macp_202000022 crossref_primary_10_3390_ijms231810713 crossref_primary_10_1002_chem_200901627 crossref_primary_10_3390_ijms21062102 crossref_primary_10_1016_j_fct_2009_03_032 crossref_primary_10_1016_j_abb_2008_01_028 crossref_primary_10_1016_j_semcancer_2017_05_005 crossref_primary_10_1007_s00232_018_0017_z crossref_primary_10_2174_1573394717666210805115802 crossref_primary_10_4161_psb_3_8_6359 crossref_primary_10_1080_16546628_2017_1353356 crossref_primary_10_1016_j_mrfmmm_2014_05_006 crossref_primary_10_14336_AD_2017_0410 crossref_primary_10_3390_antiox10040579 crossref_primary_10_1002_bkcs_10253 crossref_primary_10_3390_ph15111431 crossref_primary_10_1007_s00204_016_1821_9 crossref_primary_10_1038_cddis_2013_172 crossref_primary_10_1111_eea_12032 crossref_primary_10_1016_j_ijpx_2023_100214 crossref_primary_10_1016_j_fct_2014_02_004 crossref_primary_10_1016_j_tox_2008_03_024 crossref_primary_10_1007_s10895_019_02410_3 crossref_primary_10_1016_j_canlet_2015_02_030 crossref_primary_10_1016_j_jphotochem_2025_116373 crossref_primary_10_1016_j_fct_2009_01_015 crossref_primary_10_1016_j_cbi_2013_07_006 crossref_primary_10_1021_acs_jpcb_8b03500 crossref_primary_10_1155_2012_926329 crossref_primary_10_3390_ijms24065964 crossref_primary_10_1002_mnfr_201000329 crossref_primary_10_1016_j_fct_2009_01_016 crossref_primary_10_1021_acs_jafc_1c04379 crossref_primary_10_1124_jpet_118_248278 crossref_primary_10_1371_journal_pone_0294297 crossref_primary_10_3923_pjbs_2013_22_30 crossref_primary_10_1016_j_bcp_2012_07_021 crossref_primary_10_1002_qua_25527 crossref_primary_10_1016_j_foodchem_2009_01_050 crossref_primary_10_1016_j_bcp_2015_07_017 crossref_primary_10_1177_1934578X1801300726 crossref_primary_10_3390_bios7040057 crossref_primary_10_3892_etm_2010_163 crossref_primary_10_3390_antiox6040088 crossref_primary_10_1016_j_foodchem_2013_04_022 crossref_primary_10_1111_jpn_13455 crossref_primary_10_3923_jbs_2013_436_451 crossref_primary_10_1371_journal_pone_0076191 crossref_primary_10_3390_foods12010161 crossref_primary_10_1016_j_bioorg_2019_03_031 crossref_primary_10_1155_2011_467305 crossref_primary_10_1016_j_foodchem_2016_02_134 crossref_primary_10_3389_fphar_2022_929853 crossref_primary_10_1002_jsfa_14062 crossref_primary_10_1002_lsm_23469 crossref_primary_10_2144_btn_2018_0084 crossref_primary_10_1016_j_jinorgbio_2008_04_008 crossref_primary_10_1016_j_bioelechem_2011_06_005 crossref_primary_10_3390_molecules28062536 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd Elsevier Ltd |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 7X8 |
DOI | 10.1016/j.semcancer.2007.04.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1096-3650 |
EndPage | 376 |
ExternalDocumentID | 17572102 10_1016_j_semcancer_2007_04_002 S1044579X07000259 1_s2_0_S1044579X07000259 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IH2 IHE J1W KOM LG5 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UDS UNMZH XPP Z5R ZMT ZU3 ~G- 0SF AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c577t-f52a25f8cc682c7ae532e03e52232b95ae5e20c54704ab2bd9c0dc4d3de4d2003 |
IEDL.DBID | AIKHN |
ISSN | 1044-579X |
IngestDate | Fri Jul 11 08:01:52 EDT 2025 Fri Jul 11 02:52:11 EDT 2025 Wed Feb 19 02:12:14 EST 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 00:25:32 EDT 2025 Fri Feb 23 02:17:49 EST 2024 Sun Feb 23 10:18:42 EST 2025 Tue Aug 26 20:02:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Prooxidant Anticancer Plant polyphenols Endogenous copper Reactive oxygen species (ROS) Apoptosis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-f52a25f8cc682c7ae532e03e52232b95ae5e20c54704ab2bd9c0dc4d3de4d2003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 17572102 |
PQID | 20123240 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_68263802 proquest_miscellaneous_20123240 pubmed_primary_17572102 crossref_primary_10_1016_j_semcancer_2007_04_002 crossref_citationtrail_10_1016_j_semcancer_2007_04_002 elsevier_sciencedirect_doi_10_1016_j_semcancer_2007_04_002 elsevier_clinicalkeyesjournals_1_s2_0_S1044579X07000259 elsevier_clinicalkey_doi_10_1016_j_semcancer_2007_04_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Seminars in cancer biology |
PublicationTitleAlternate | Semin Cancer Biol |
PublicationYear | 2007 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Halliwell, Gutteridge (bib30) 1984; 219 Ebadi, Swanson (bib32) 1988; 259 Smets (bib7) 1994; 5 Rahman, Shahabuddin, Hadi, Parish, Ainley (bib17) 1989; 10 Burkitt, Milne, Nicotera, Orrenius (bib31) 1996; 313 Singh (bib58) 1997; 375 Zheng, Wei, Cai, Fang, Zhou, Yang (bib13) 2006; 41 Bhat, Azmi, Sarmad, Hadi (bib57) 2006; 38 Sakagami, Satoh, Hakeda, Kumegawa (bib41) 2000; 46 Hanasaki, Ogawa, Fukui (bib1) 1994; 16 Ahmad, Feyes, Nieminen, Agarwal, Mukhtar (bib4) 1997; 89 Ahmad, Fazal, Rahman, Hadi, Parish (bib8) 1992; 13 Ahmad, Asad, Singh, Hadi (bib12) 2000; 154 Lu, Ho, Ghai, Chen (bib56) 2000; 60 Rahman, Shahabuddin, Hadi, Parish (bib16) 1990; 11 Long, Clement, Halliwell (bib49) 2000; 273 Ehrenfeld, Shipley, Heimbrook, Sugiyama, Long, van Boom (bib25) 1987; 26 Mukhtar, Das, Khan, Wang, Bik, Bickers (bib2) 1988; 48 Tsang, Chau, Kong, Fung, Kwok (bib24) 2003; 73 Khan, Hadi (bib9) 1998; 13 Kuo, Huang, Lin (bib5) 1996; 1317 Swain, Gutteridge (bib28) 1995; 368 Halliwell (bib50) 2003; 540 Clement, Hirpara, Chawdhury, Pervaiz (bib6) 1998; 92 Yoshida, Ikeda, Nakazawa (bib34) 1993; 16 Smith, Halliwell, Arouma (bib47) 1992; 30 Bryan (bib15) 1979 Asensi, Medina, Ortega, Corretero, Bano, Obrador (bib52) 2002; 33 Chevion (bib54) 1988; 5 Sakagami, Satoh (bib42) 1997; 17 Ahsan, Hadi (bib10) 1998; 124 Radin (bib22) 2003; 11 Margalioth, Udassin, Cohen, Maor, Anteby, Schenker (bib33) 1987; 157 Gali, Perchellet, Klish, Johnson, Perchellet (bib18) 1992; 51 Held, Sylvester, Hopcia, Biaglow (bib27) 1996; 145 Malik, Azam, Hadi, Hadi (bib11) 2003; 17 Inoue, Suzuki, Koide, Sakaguchi, Ogihara, Yabu (bib3) 1994; 204 Azmi, Bhat, Hanif, Hadi (bib44) 2006; 580 Azmi, Bhat, Hadi (bib20) 2005; 579 Kagawa, Geierstanger, Wang, Ho (bib14) 1994; 266 Ebara, Fukuda, Hatano, Saisho, Nagato, Suzuki (bib35) 2000; 33 Kaufmann (bib21) 1989; 49 Yoshino, Haneda, Naruse, Htay, Tsuboushi, Qiao (bib43) 2004; 18 Hadi, Asad, Singh, Ahmad (bib19) 2000; 50 Sellins, Cohen (bib23) 1987; 139 Pryor (bib53) 1988; 4 Wolfe, Ross, Cohen (bib26) 1994; 352 Satoh, Kodofuku, Sakagami (bib29) 1997; 17 Piwocka, Zablocki, Wieckowski, Skierski, Feiga, Szopa (bib38) 1999; 249 Wang, Ness (bib40) 1989; 17 Chen, Schell, Ho, Chen (bib55) 1998; 129 Pizzolo, Savarin, Molino, Ambrosette, Todeschini, Vettore (bib36) 1978; 64 Leist, Jaattela (bib39) 2001; 2 Quinlan, Gutteridge (bib46) 1987; 36 Kane, Sarafian, Anton, Hahn, Gralla, Selverstone (bib37) 1993; 262 Barbouti, Doulias, Zhu, Feri, Galaris (bib45) 2001; 31 Bhat, Azmi, Hadi (bib48) 2007; 218 Clement, Long, Ramalingam, Halliwell (bib51) 2002; 81 |
References_xml | – volume: 30 start-page: 483 year: 1992 end-page: 489 ident: bib47 article-title: Protection by albumin against prooxidant action of phenolic dietary components publication-title: Food Chem Toxicol – volume: 13 start-page: 271 year: 1998 end-page: 274 ident: bib9 article-title: Structural features of tannic acid important for DNA degradation in the presence of Cu(II) publication-title: Mutagenesis – volume: 33 start-page: 415 year: 2000 end-page: 422 ident: bib35 article-title: Relationship between copper, zinc and metalothionein in hepatocellular carcinoma and its surrounding liver parenchyma publication-title: J Hepatol – volume: 5 start-page: 27 year: 1988 end-page: 37 ident: bib54 article-title: Site-specific mechanism for free radical induced biological damage. The essential role of redox-active transition metals publication-title: Free Radic Biol Med – volume: 92 start-page: 996 year: 1998 end-page: 1002 ident: bib6 article-title: Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signalling-dependent apoptosis in human tumor cells publication-title: Blood – volume: 157 start-page: 93 year: 1987 end-page: 96 ident: bib33 article-title: Serum copper level in gynecologic malignancies publication-title: Am J Obstet Gynecol – volume: 352 start-page: 59 year: 1994 end-page: 62 ident: bib26 article-title: A role for metals and free radicals in the induction of apoptosis in thymocytes publication-title: FEBS Lett – volume: 4 start-page: 219 year: 1988 end-page: 233 ident: bib53 article-title: Why is hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has rare combination of high electrophilicity, thermochemical reactivity and a mode of production near DNA publication-title: Free Radic Biol Med – volume: 38 start-page: 2074 year: 2006 end-page: 2081 ident: bib57 article-title: Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties publication-title: Int J Biochem Cell Biol – volume: 129 start-page: 173 year: 1998 end-page: 179 ident: bib55 article-title: Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts publication-title: Cancer Lett – volume: 31 start-page: 490 year: 2001 end-page: 498 ident: bib45 article-title: Intracellular iron, but not copper plays a critical role in hydrogen peroxide-induced DNA damage publication-title: Free Radic Biol Med – volume: 60 start-page: 6465 year: 2000 end-page: 6471 ident: bib56 article-title: Differential effects of theaflavin monogallates on cell growth, apoptosis, and publication-title: Cancer Res – volume: 2 start-page: 589 year: 2001 end-page: 598 ident: bib39 article-title: Four deaths and a funeral: from caspases to alternative mechanisms publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 109 year: 1993 end-page: 115 ident: bib34 article-title: Quantitative analysis of copper, zinc and copper/zinc ratio in selective human brain tumors publication-title: J Neurooncol – volume: 11 start-page: 2001 year: 1990 end-page: 2003 ident: bib16 article-title: Complexes involving quercetin, DNA and Cu(II) publication-title: Carcinogenesis – volume: 17 start-page: 6915 year: 1989 end-page: 6926 ident: bib40 article-title: Site specific cleavage of supercoiled DNA by ascorbate/Cu(II) publication-title: Nucleic Acids Res – volume: 46 start-page: 129 year: 2000 end-page: 143 ident: bib41 article-title: Apoptosis-inducing activity of vitamin C and vitamin K publication-title: Cell Mol Biol – volume: 219 start-page: 1 year: 1984 end-page: 14 ident: bib30 article-title: Oxygen toxicity, oxygen radicals, transition metals and disease publication-title: Biochem J – volume: 50 start-page: 1 year: 2000 end-page: 5 ident: bib19 article-title: Putative mechanism for anticancer and apoptosis inducing properties of plant-derived polyphenolic compounds publication-title: IUBMB Life – volume: 11 start-page: 2123 year: 2003 end-page: 2142 ident: bib22 article-title: Designing anticancer drugs via the achilles heel: ceramide, allylic ketones, and mitochondria publication-title: Bioorg Med Chem – volume: 41 start-page: 1807 year: 2006 end-page: 1816 ident: bib13 article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship publication-title: Free Radic Biol Med – volume: 266 start-page: 20175 year: 1994 end-page: 20184 ident: bib14 article-title: Covalent modification of guanine bases in double-stranded DNA: the 1:2-AZ-DNA structure of d(CGCGCG) in the presence of CuCl publication-title: J Biol Chem – volume: 17 start-page: 3513 year: 1997 end-page: 3520 ident: bib42 article-title: Modulating factors of radical intensity and cytotoxic action of ascorbate publication-title: Anticancer Res – volume: 579 start-page: 3131 year: 2005 end-page: 3135 ident: bib20 article-title: Resveratrol–Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties publication-title: FEBS Lett – volume: 313 start-page: 163 year: 1996 end-page: 169 ident: bib31 article-title: 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat liver nuclei by promoting redox activity of endogenous copper ions publication-title: Biochem J – volume: 64 start-page: 55 year: 1978 end-page: 61 ident: bib36 article-title: The diagnostic value of serum copper levels and other hematochemical parameters in malignancies publication-title: Tumorigenesis – volume: 13 start-page: 605 year: 1992 end-page: 608 ident: bib8 article-title: Activities of flavonoids for the cleavage of DNA in the presence of Cu(II): correlation with the generation of active oxygen species publication-title: Carcinogenesis – volume: 17 start-page: 358 year: 2003 end-page: 363 ident: bib11 article-title: DNA degradation by water extract of green tea in the presence of copper ions: implications for anticancer properties publication-title: Phytother Res – volume: 17 start-page: 2487 year: 1997 end-page: 2490 ident: bib29 article-title: Copper, but not iron, enhances apoptosis inducing activity of antioxidants publication-title: Anticancer Res – volume: 73 start-page: 2047 year: 2003 end-page: 2058 ident: bib24 article-title: Reactive oxygen species mediated doxorubicin induced p53-independent apoptosis publication-title: Life Sci – volume: 49 start-page: 5870 year: 1989 end-page: 5878 ident: bib21 article-title: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note publication-title: Cancer Res – volume: 139 start-page: 3199 year: 1987 end-page: 3206 ident: bib23 article-title: Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes publication-title: J Immunol – volume: 48 start-page: 2361 year: 1988 end-page: 2365 ident: bib2 article-title: Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7,12-dimethyl benz( publication-title: Cancer Res – volume: 18 start-page: 783 year: 2004 end-page: 789 ident: bib43 article-title: Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death publication-title: Toxicol In Vitro – volume: 51 start-page: 425 year: 1992 end-page: 432 ident: bib18 article-title: Hydrolyzable tannins: potent inhibitors of hydroperoxide production and tumor promotion in mouse skin treated with 12-O-tetradecanoyl phorbol-13-acetate in vivo publication-title: Int J Cancer – volume: 368 start-page: 513 year: 1995 end-page: 515 ident: bib28 article-title: Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material publication-title: FEBS Lett – volume: 33 start-page: 387 year: 2002 end-page: 398 ident: bib52 article-title: Inhibition of cancer growth by resveratrol is related to its low bioavailability publication-title: Free Radic Biol Med – volume: 580 start-page: 533 year: 2006 end-page: 538 ident: bib44 article-title: Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties publication-title: FEBS Lett – volume: 10 start-page: 1833 year: 1989 end-page: 1839 ident: bib17 article-title: Strand scission in DNA induced by quercetin and Cu(II): role of Cu(I) and oxygen free radicals publication-title: Carcinogenesis – volume: 26 start-page: 931 year: 1987 end-page: 942 ident: bib25 article-title: Copper dependent cleavage of DNA by bleomycin publication-title: Biochemistry – volume: 89 start-page: 1881 year: 1997 end-page: 1886 ident: bib4 article-title: Green tea constituent epigallocatechin-3-gallate, and induction of cell cycle arrest in human carcinoma cells publication-title: J Natl Cancer Inst – volume: 540 start-page: 3 year: 2003 end-page: 6 ident: bib50 article-title: Oxidative stress in cell culture: an under-appreciated problem? publication-title: FEBS Lett – volume: 154 start-page: 29 year: 2000 end-page: 37 ident: bib12 article-title: DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation publication-title: Cancer Lett – volume: 259 start-page: 161 year: 1988 end-page: 175 ident: bib32 article-title: The status of zinc, copper and metallothionein in cancer patients publication-title: Prog Clin Biol Res – volume: 262 start-page: 1274 year: 1993 end-page: 1277 ident: bib37 article-title: Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species publication-title: Science – volume: 204 start-page: 898 year: 1994 end-page: 904 ident: bib3 article-title: Antioxidant, gallic acid, induces apoptosis in HL60RG cells publication-title: Biochem Biophys Res Commun – volume: 124 start-page: 23 year: 1998 end-page: 30 ident: bib10 article-title: Strand scission in DNA induced by curcumin in the presence of Cu(II) publication-title: Cancer Lett – volume: 218 start-page: 249 year: 2007 end-page: 255 ident: bib48 article-title: Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties publication-title: Toxicol Appl Pharmacol – volume: 5 start-page: 3 year: 1994 end-page: 9 ident: bib7 article-title: Programmed cell death (apoptosis) and response to anticancer drugs publication-title: Anticancer Drugs – volume: 145 start-page: 542 year: 1996 end-page: 553 ident: bib27 article-title: Role of Fenton chemistry thiol-induced toxicity and apoptosis publication-title: Radiat Res – volume: 273 start-page: 50 year: 2000 end-page: 53 ident: bib49 article-title: Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin and quercetin to commonly used cell culture media publication-title: Biochem Biophys Res Commun – volume: 16 start-page: 845 year: 1994 end-page: 850 ident: bib1 article-title: The correlation between active oxygen scavenging and antioxidative effects of flavonoids publication-title: Free Radic Biol Med – volume: 1317 start-page: 95 year: 1996 end-page: 100 ident: bib5 article-title: Curcumin, an antioxidant and antitumor promoter, induces apoptosis in human leukemia cells publication-title: Biochem Biophys Acta – volume: 81 start-page: 414 year: 2002 end-page: 421 ident: bib51 article-title: The cytotoxicity of dopamine may be an artifact of cell culture publication-title: J Neurochem – volume: 36 start-page: 3629 year: 1987 end-page: 3633 ident: bib46 article-title: Oxygen radical damage to DNA by rifamycin SV and copper ions publication-title: Biochem Pharmacol – volume: 249 start-page: 299 year: 1999 end-page: 307 ident: bib38 article-title: A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells publication-title: Exp Cell Res – year: 1979 ident: bib15 article-title: Metal ions in biological systems – volume: 375 start-page: 195 year: 1997 end-page: 203 ident: bib58 article-title: Sodium ascorbate induces DNA single strand-breaks in human cells in vitro publication-title: Mutat Res |
SSID | ssj0009414 |
Score | 2.360279 |
SecondaryResourceType | review_article |
Snippet | Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against... Abstract Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 370 |
SubjectTerms | Anticancer Antineoplastic Agents - metabolism Antineoplastic Agents - pharmacology Apoptosis Copper - chemistry Copper - metabolism Copper - pharmacology DNA - drug effects DNA Breaks DNA Cleavage Endogenous copper Flavonoids - metabolism Flavonoids - pharmacology Hematology, Oncology and Palliative Medicine Humans Lymphocytes - drug effects Oxidative Stress Phenols - metabolism Phenols - pharmacology Plant polyphenols Plants - chemistry Polyphenols Prooxidant Reactive oxygen species (ROS) |
Title | Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1044579X07000259 https://www.clinicalkey.es/playcontent/1-s2.0-S1044579X07000259 https://dx.doi.org/10.1016/j.semcancer.2007.04.002 https://www.ncbi.nlm.nih.gov/pubmed/17572102 https://www.proquest.com/docview/20123240 https://www.proquest.com/docview/68263802 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0OpDQlwQtDyWR_EBcQvrOnYc9xYVqgXU5QCV9mYljoMCu0m02ZW6l347M4mzVUWrInGNZhJnZjwvz4wJeedCkerIRoHjWRQI5VwQ5ywLRMgzzSNZSIf9zufTaHIhvszkbIecDr0wWFbpdX-v0ztt7Z-MPTXHTVmOv0MgIaTSMxBatNx6l-zzUEcg2vvJ56-T6fXsXdGN-Eb4ABFulHm1bmGRvks_zlBsUyy3GKm7nNDOGJ09Jo-8F0mTfqFPyI6rDshhUkEEvdjQ97Sr6-wS5gfkwbk_Pj8kP79dlnk36ZtCJJz-Bl1C64Ji8h6rUenHaUKzDW3mQG7a1PMNFoDV8_aEJrRZr3rMhcNm4bJdUPB3KUCW_Z_RBvP6SxzQ-pRcnH36cToJ_E0LgZVKrYJC8pTLIrY2irlVqZMhdyx04JwhzyQ8cJxZKRQTacazXFuWW5GHuRM5lrc9I3tVXbkXhGoX6yKNstBpPJNjOiskWDzNU1FIWeQjEg2kNdaPIcfbMOZmqDf7ZbY8wUsylWHCAE9GhG0Rm34Sx_0o8cA7MzSagmo0YC3uR1W3obrWb_HWHJuWG2b-EsMROdli3pDkf_vs20HEDOxz5H9auXrdAlDn_LK7IYB1oEzxHc972bwmk5IKQ_uX_7O0V-Rhl9fuChlfk73Vcu3egEO2yo7I7oer4yO_7f4Aa8c29w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfGkGAXBBuw8jUfELdQz7HjeLdqMBVYy4FN6s1KHAcF2iRqWole-Nt5z0k6TWwaEtfovXy8b7_8_EzIWxeKREc2ChxPo0Ao54I4Y2kgQp5qHslcOtzvPJlG40vxeSZnO-S03wuDsMou9rcx3Ufr7sqwk-awLorhN1hICKn0DIwWM7e-R-4LcF_0zve_r3AeWvgB30gdIPk1kFfjFhalu-yGGYptg-WGFHVbCepT0dlj8qirIemofc0nZMeV--RgVML6ebGh76hHdfp2-T55MOl-nh-Q719_FZmf801hHZz8hEhCq5xi6x6xqPTDdETTDa3nIGxaV_MNwr-qeXNCR7Rer1rOhcOtwkWzoFDtUqAs2i-jNXb1lzie9Sm5PPt4cToOunMWAiuVWgW55AmXeWxtFHOrEidD7ljooDRDjUm44DizUigmkpSnmbYssyILMycyBLc9I7tlVbpDQrWLdZ5Eaeg0_pFjOs0l5DvNE5FLmWcDEvWiNbYbQo5nYcxNjzb7YbY6wSMylWHCgE4GhG0Z63YOx90sca87028zhcBoIFfczapuYnVN5-CNOTYNN8z8ZYQDcrLlvGbH__bYo97EDHg56j8pXbVugMiXvux2ClAdhFK8x_PWNq_EpKTChf2L_3m1I_JwfDE5N-efpl9ekj3f4faQxldkd7Vcu9dQmq3SN971_gAAMze7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+breakage+of+cellular+DNA+by+plant+polyphenols%3A+A+putative+mechanism+for+anticancer+properties&rft.jtitle=Seminars+in+cancer+biology&rft.au=Hadi%2C+S.M.&rft.au=Bhat%2C+Showket+H.&rft.au=Azmi%2C+Asfar+S.&rft.au=Hanif%2C+Sarmad&rft.date=2007-10-01&rft.pub=Elsevier+Ltd&rft.issn=1044-579X&rft.volume=17&rft.issue=5&rft.spage=370&rft.epage=376&rft_id=info:doi/10.1016%2Fj.semcancer.2007.04.002&rft.externalDocID=S1044579X07000259 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1044579X%2FS1044579X07X00671%2Fcov150h.gif |