Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties

Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transit...

Full description

Saved in:
Bibliographic Details
Published inSeminars in cancer biology Vol. 17; no. 5; pp. 370 - 376
Main Authors Hadi, S.M., Bhat, Showket H., Azmi, Asfar S., Hanif, Sarmad, Shamim, Uzma, Ullah, M.F.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol–Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.
AbstractList Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.
Abstract Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol–Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.
Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. We have shown that several of these compounds are able to bind both DNA and Cu(II) forming a ternary complex. A redox reaction of the polyphenols and Cu(II) in the ternary complex may occur leading to the reduction of Cu(II) to Cu(I), whose reoxidation generates a variety of reactive oxygen species (ROS). We have further confirmed that the polyphenol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. We have also shown that polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Neocuproine (a Cu(I) sequestering agent) inhibits such DNA degradation. It also inhibits the oxidative stress generated in lymphocytes indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and polyphenols to generate ROS. Thus, our results are in support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper possibly chromatin bound copper and the consequent prooxidant action.
Author Hanif, Sarmad
Shamim, Uzma
Bhat, Showket H.
Hadi, S.M.
Ullah, M.F.
Azmi, Asfar S.
Author_xml – sequence: 1
  givenname: S.M.
  surname: Hadi
  fullname: Hadi, S.M.
  email: smhadi@vsnl.com
– sequence: 2
  givenname: Showket H.
  surname: Bhat
  fullname: Bhat, Showket H.
– sequence: 3
  givenname: Asfar S.
  surname: Azmi
  fullname: Azmi, Asfar S.
– sequence: 4
  givenname: Sarmad
  surname: Hanif
  fullname: Hanif, Sarmad
– sequence: 5
  givenname: Uzma
  surname: Shamim
  fullname: Shamim, Uzma
– sequence: 6
  givenname: M.F.
  surname: Ullah
  fullname: Ullah, M.F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17572102$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v1DAQjFAR_YC_AH7iLWHj2OcLEqBTaQGpog-AxJvlOJvWV8dO7aTi_j0OKSBVQtyTLe_M7Hpmj7MD5x1m2YsSihLK1attEbHXymkMBQUQBbACgD7KjkqoV3m14nAw3xnLuai_H2bHMW4BoGYle5IdloILWgI9yq4uf5hWjeYOSRNQ3agrJL4jGq2drArk_ecNaXZksMqNZPB2N1yj8za-JhsyTOPC7FFfK2diTzofSEKaZTQyBD9gGA3Gp9njTtmIz-7Pk-zb-dnX04_5xeWHT6ebi1xzIca841RR3q21Xq2pFgp5RREq5JRWtKl5ekAKmjMBTDW0aWsNrWZt1SJrkxHVSfZy0U2tbyeMo-xNnH-jHPopyiS7qtZA_wukUKaWbFZ8fg-cmh5bOQTTq7CTvz1MALEAdPAxBuz-QkDOacmt_JOWnNOSwCT8Yr55wNRmttS7MShj9-BvFj4mR-9MqkZtMMFaE1CPsvVmD423DzS0NS4FaG9wh3Hrp-BSYLKUkUqQX-admlcKRFonyusk8O7fAnuN8BNXN-GY
CitedBy_id crossref_primary_10_1016_j_jinorgbio_2022_111888
crossref_primary_10_1002_elps_201600014
crossref_primary_10_1002_mnfr_200800547
crossref_primary_10_1134_S1990747814040023
crossref_primary_10_3109_10715762_2011_555479
crossref_primary_10_3390_foods9101486
crossref_primary_10_1016_j_biotechadv_2014_03_006
crossref_primary_10_1016_j_ijbiomac_2023_126525
crossref_primary_10_7717_peerj_13217
crossref_primary_10_3390_antiox10121962
crossref_primary_10_1371_journal_pone_0139765
crossref_primary_10_1039_c2fo30252g
crossref_primary_10_1007_s10008_012_1673_z
crossref_primary_10_1007_s13277_014_3004_8
crossref_primary_10_3390_molecules28072925
crossref_primary_10_1016_j_ejps_2012_04_014
crossref_primary_10_1016_j_molstruc_2021_131606
crossref_primary_10_1016_j_tiv_2009_03_009
crossref_primary_10_1007_s10555_013_9457_1
crossref_primary_10_1016_j_atherosclerosis_2009_06_031
crossref_primary_10_1089_fpd_2012_1155
crossref_primary_10_3390_biomedicines10030664
crossref_primary_10_1016_S1995_7645_14_60253_4
crossref_primary_10_1016_j_tiv_2009_07_022
crossref_primary_10_1007_s10008_011_1352_5
crossref_primary_10_3390_antiox10010018
crossref_primary_10_1111_jpn_13758
crossref_primary_10_1016_j_fitote_2010_06_021
crossref_primary_10_1016_j_freeradbiomed_2020_06_033
crossref_primary_10_1021_acsami_1c13744
crossref_primary_10_1016_j_tiv_2017_01_020
crossref_primary_10_1007_s13277_015_3649_y
crossref_primary_10_1016_j_cbi_2015_03_005
crossref_primary_10_1016_j_biotechadv_2018_01_009
crossref_primary_10_1016_j_foodchem_2009_11_058
crossref_primary_10_1002_jcb_25760
crossref_primary_10_1016_j_cbi_2011_03_017
crossref_primary_10_1002_bdrc_21051
crossref_primary_10_1016_j_mrgentox_2023_503687
crossref_primary_10_1371_journal_pone_0144290
crossref_primary_10_1007_s13277_014_2770_7
crossref_primary_10_1080_07391102_2013_879837
crossref_primary_10_1002_chem_201201545
crossref_primary_10_3390_molecules181215448
crossref_primary_10_1016_j_tiv_2009_01_012
crossref_primary_10_3390_nu6126020
crossref_primary_10_1016_j_foodchem_2008_10_082
crossref_primary_10_1016_j_scienta_2011_05_042
crossref_primary_10_3390_ijms12053288
crossref_primary_10_1016_j_fct_2012_06_012
crossref_primary_10_1111_head_12725
crossref_primary_10_3389_fonc_2022_911615
crossref_primary_10_1007_s11095_010_0055_4
crossref_primary_10_1007_s13277_014_2743_x
crossref_primary_10_1016_j_chroma_2015_09_050
crossref_primary_10_1016_j_jff_2018_03_045
crossref_primary_10_1021_mp900013d
crossref_primary_10_52711_0974_360X_2023_00675
crossref_primary_10_1016_j_foodchem_2018_01_069
crossref_primary_10_1016_j_foodchem_2011_01_100
crossref_primary_10_2174_1573394718666220603103458
crossref_primary_10_1016_j_molliq_2020_114455
crossref_primary_10_1016_j_fct_2010_06_045
crossref_primary_10_3390_toxins8020037
crossref_primary_10_1016_j_fct_2016_11_034
crossref_primary_10_1016_j_abb_2017_11_001
crossref_primary_10_3390_metabo13040481
crossref_primary_10_1016_j_biocel_2009_08_005
crossref_primary_10_1039_C5RA01911G
crossref_primary_10_1016_j_ijbiomac_2017_08_049
crossref_primary_10_1007_s10495_016_1261_2
crossref_primary_10_5466_ijoms_11_101
crossref_primary_10_1021_jm8015415
crossref_primary_10_3390_molecules27217410
crossref_primary_10_1016_j_sajb_2022_02_036
crossref_primary_10_1016_j_fct_2012_10_004
crossref_primary_10_1007_s12032_024_02386_6
crossref_primary_10_1248_bpb_b22_00199
crossref_primary_10_1158_1078_0432_CCR_14_0424
crossref_primary_10_1016_j_biomaterials_2017_11_001
crossref_primary_10_1016_j_cbi_2013_08_007
crossref_primary_10_1007_s12161_011_9213_5
crossref_primary_10_1016_j_jnutbio_2016_03_003
crossref_primary_10_1097_CAD_0000000000000119
crossref_primary_10_1016_j_mehy_2020_110278
crossref_primary_10_1038_srep45231
crossref_primary_10_1002_jcp_22865
crossref_primary_10_1093_toxsci_kfr107
crossref_primary_10_1016_j_taap_2015_09_018
crossref_primary_10_3389_fonc_2022_998346
crossref_primary_10_1007_s12013_011_9303_4
crossref_primary_10_1016_j_talanta_2013_06_006
crossref_primary_10_3390_cells8080903
crossref_primary_10_1007_s11694_022_01681_y
crossref_primary_10_1016_j_fct_2010_12_020
crossref_primary_10_3390_biomedicines11072078
crossref_primary_10_3390_life14050611
crossref_primary_10_3390_nu11112786
crossref_primary_10_1007_s10565_011_9196_4
crossref_primary_10_1016_j_fct_2015_12_029
crossref_primary_10_3390_agronomy12061371
crossref_primary_10_1111_j_1749_6632_2012_06510_x
crossref_primary_10_1186_1472_6882_12_142
crossref_primary_10_4236_ns_2016_88041
crossref_primary_10_1111_jpn_12070
crossref_primary_10_12688_f1000research_2_135_v1
crossref_primary_10_1021_jf2044263
crossref_primary_10_1021_tx200418k
crossref_primary_10_1007_s10616_009_9206_z
crossref_primary_10_1021_acsomega_7b01200
crossref_primary_10_1111_j_1468_2494_2008_00483_x
crossref_primary_10_1089_jmf_2009_0058
crossref_primary_10_3390_molecules28052151
crossref_primary_10_1016_j_abb_2015_06_019
crossref_primary_10_1111_jfbc_12178
crossref_primary_10_1002_mnfr_201300417
crossref_primary_10_1039_D3FO04753A
crossref_primary_10_1007_s10534_016_9916_6
crossref_primary_10_1080_10715760802302251
crossref_primary_10_1124_jpet_109_151654
crossref_primary_10_1007_s10534_011_9475_9
crossref_primary_10_1111_cbdd_14606
crossref_primary_10_1016_j_freeradbiomed_2016_12_050
crossref_primary_10_1016_j_freeradbiomed_2017_09_027
crossref_primary_10_1002_jsfa_4328
crossref_primary_10_1021_jf300999e
crossref_primary_10_1021_jf204748a
crossref_primary_10_1093_mutage_gep064
crossref_primary_10_3390_antiox12010080
crossref_primary_10_1021_acs_chemrestox_5b00121
crossref_primary_10_1002_macp_202000022
crossref_primary_10_3390_ijms231810713
crossref_primary_10_1002_chem_200901627
crossref_primary_10_3390_ijms21062102
crossref_primary_10_1016_j_fct_2009_03_032
crossref_primary_10_1016_j_abb_2008_01_028
crossref_primary_10_1016_j_semcancer_2017_05_005
crossref_primary_10_1007_s00232_018_0017_z
crossref_primary_10_2174_1573394717666210805115802
crossref_primary_10_4161_psb_3_8_6359
crossref_primary_10_1080_16546628_2017_1353356
crossref_primary_10_1016_j_mrfmmm_2014_05_006
crossref_primary_10_14336_AD_2017_0410
crossref_primary_10_3390_antiox10040579
crossref_primary_10_1002_bkcs_10253
crossref_primary_10_3390_ph15111431
crossref_primary_10_1007_s00204_016_1821_9
crossref_primary_10_1038_cddis_2013_172
crossref_primary_10_1111_eea_12032
crossref_primary_10_1016_j_ijpx_2023_100214
crossref_primary_10_1016_j_fct_2014_02_004
crossref_primary_10_1016_j_tox_2008_03_024
crossref_primary_10_1007_s10895_019_02410_3
crossref_primary_10_1016_j_canlet_2015_02_030
crossref_primary_10_1016_j_jphotochem_2025_116373
crossref_primary_10_1016_j_fct_2009_01_015
crossref_primary_10_1016_j_cbi_2013_07_006
crossref_primary_10_1021_acs_jpcb_8b03500
crossref_primary_10_1155_2012_926329
crossref_primary_10_3390_ijms24065964
crossref_primary_10_1002_mnfr_201000329
crossref_primary_10_1016_j_fct_2009_01_016
crossref_primary_10_1021_acs_jafc_1c04379
crossref_primary_10_1124_jpet_118_248278
crossref_primary_10_1371_journal_pone_0294297
crossref_primary_10_3923_pjbs_2013_22_30
crossref_primary_10_1016_j_bcp_2012_07_021
crossref_primary_10_1002_qua_25527
crossref_primary_10_1016_j_foodchem_2009_01_050
crossref_primary_10_1016_j_bcp_2015_07_017
crossref_primary_10_1177_1934578X1801300726
crossref_primary_10_3390_bios7040057
crossref_primary_10_3892_etm_2010_163
crossref_primary_10_3390_antiox6040088
crossref_primary_10_1016_j_foodchem_2013_04_022
crossref_primary_10_1111_jpn_13455
crossref_primary_10_3923_jbs_2013_436_451
crossref_primary_10_1371_journal_pone_0076191
crossref_primary_10_3390_foods12010161
crossref_primary_10_1016_j_bioorg_2019_03_031
crossref_primary_10_1155_2011_467305
crossref_primary_10_1016_j_foodchem_2016_02_134
crossref_primary_10_3389_fphar_2022_929853
crossref_primary_10_1002_jsfa_14062
crossref_primary_10_1002_lsm_23469
crossref_primary_10_2144_btn_2018_0084
crossref_primary_10_1016_j_jinorgbio_2008_04_008
crossref_primary_10_1016_j_bioelechem_2011_06_005
crossref_primary_10_3390_molecules28062536
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
7X8
DOI 10.1016/j.semcancer.2007.04.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-3650
EndPage 376
ExternalDocumentID 17572102
10_1016_j_semcancer_2007_04_002
S1044579X07000259
1_s2_0_S1044579X07000259
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IH2
IHE
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UDS
UNMZH
XPP
Z5R
ZMT
ZU3
~G-
0SF
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c577t-f52a25f8cc682c7ae532e03e52232b95ae5e20c54704ab2bd9c0dc4d3de4d2003
IEDL.DBID AIKHN
ISSN 1044-579X
IngestDate Fri Jul 11 08:01:52 EDT 2025
Fri Jul 11 02:52:11 EDT 2025
Wed Feb 19 02:12:14 EST 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 00:25:32 EDT 2025
Fri Feb 23 02:17:49 EST 2024
Sun Feb 23 10:18:42 EST 2025
Tue Aug 26 20:02:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Prooxidant
Anticancer
Plant polyphenols
Endogenous copper
Reactive oxygen species (ROS)
Apoptosis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-f52a25f8cc682c7ae532e03e52232b95ae5e20c54704ab2bd9c0dc4d3de4d2003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 17572102
PQID 20123240
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_68263802
proquest_miscellaneous_20123240
pubmed_primary_17572102
crossref_primary_10_1016_j_semcancer_2007_04_002
crossref_citationtrail_10_1016_j_semcancer_2007_04_002
elsevier_sciencedirect_doi_10_1016_j_semcancer_2007_04_002
elsevier_clinicalkeyesjournals_1_s2_0_S1044579X07000259
elsevier_clinicalkey_doi_10_1016_j_semcancer_2007_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Seminars in cancer biology
PublicationTitleAlternate Semin Cancer Biol
PublicationYear 2007
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Halliwell, Gutteridge (bib30) 1984; 219
Ebadi, Swanson (bib32) 1988; 259
Smets (bib7) 1994; 5
Rahman, Shahabuddin, Hadi, Parish, Ainley (bib17) 1989; 10
Burkitt, Milne, Nicotera, Orrenius (bib31) 1996; 313
Singh (bib58) 1997; 375
Zheng, Wei, Cai, Fang, Zhou, Yang (bib13) 2006; 41
Bhat, Azmi, Sarmad, Hadi (bib57) 2006; 38
Sakagami, Satoh, Hakeda, Kumegawa (bib41) 2000; 46
Hanasaki, Ogawa, Fukui (bib1) 1994; 16
Ahmad, Feyes, Nieminen, Agarwal, Mukhtar (bib4) 1997; 89
Ahmad, Fazal, Rahman, Hadi, Parish (bib8) 1992; 13
Ahmad, Asad, Singh, Hadi (bib12) 2000; 154
Lu, Ho, Ghai, Chen (bib56) 2000; 60
Rahman, Shahabuddin, Hadi, Parish (bib16) 1990; 11
Long, Clement, Halliwell (bib49) 2000; 273
Ehrenfeld, Shipley, Heimbrook, Sugiyama, Long, van Boom (bib25) 1987; 26
Mukhtar, Das, Khan, Wang, Bik, Bickers (bib2) 1988; 48
Tsang, Chau, Kong, Fung, Kwok (bib24) 2003; 73
Khan, Hadi (bib9) 1998; 13
Kuo, Huang, Lin (bib5) 1996; 1317
Swain, Gutteridge (bib28) 1995; 368
Halliwell (bib50) 2003; 540
Clement, Hirpara, Chawdhury, Pervaiz (bib6) 1998; 92
Yoshida, Ikeda, Nakazawa (bib34) 1993; 16
Smith, Halliwell, Arouma (bib47) 1992; 30
Bryan (bib15) 1979
Asensi, Medina, Ortega, Corretero, Bano, Obrador (bib52) 2002; 33
Chevion (bib54) 1988; 5
Sakagami, Satoh (bib42) 1997; 17
Ahsan, Hadi (bib10) 1998; 124
Radin (bib22) 2003; 11
Margalioth, Udassin, Cohen, Maor, Anteby, Schenker (bib33) 1987; 157
Gali, Perchellet, Klish, Johnson, Perchellet (bib18) 1992; 51
Held, Sylvester, Hopcia, Biaglow (bib27) 1996; 145
Malik, Azam, Hadi, Hadi (bib11) 2003; 17
Inoue, Suzuki, Koide, Sakaguchi, Ogihara, Yabu (bib3) 1994; 204
Azmi, Bhat, Hanif, Hadi (bib44) 2006; 580
Azmi, Bhat, Hadi (bib20) 2005; 579
Kagawa, Geierstanger, Wang, Ho (bib14) 1994; 266
Ebara, Fukuda, Hatano, Saisho, Nagato, Suzuki (bib35) 2000; 33
Kaufmann (bib21) 1989; 49
Yoshino, Haneda, Naruse, Htay, Tsuboushi, Qiao (bib43) 2004; 18
Hadi, Asad, Singh, Ahmad (bib19) 2000; 50
Sellins, Cohen (bib23) 1987; 139
Pryor (bib53) 1988; 4
Wolfe, Ross, Cohen (bib26) 1994; 352
Satoh, Kodofuku, Sakagami (bib29) 1997; 17
Piwocka, Zablocki, Wieckowski, Skierski, Feiga, Szopa (bib38) 1999; 249
Wang, Ness (bib40) 1989; 17
Chen, Schell, Ho, Chen (bib55) 1998; 129
Pizzolo, Savarin, Molino, Ambrosette, Todeschini, Vettore (bib36) 1978; 64
Leist, Jaattela (bib39) 2001; 2
Quinlan, Gutteridge (bib46) 1987; 36
Kane, Sarafian, Anton, Hahn, Gralla, Selverstone (bib37) 1993; 262
Barbouti, Doulias, Zhu, Feri, Galaris (bib45) 2001; 31
Bhat, Azmi, Hadi (bib48) 2007; 218
Clement, Long, Ramalingam, Halliwell (bib51) 2002; 81
References_xml – volume: 30
  start-page: 483
  year: 1992
  end-page: 489
  ident: bib47
  article-title: Protection by albumin against prooxidant action of phenolic dietary components
  publication-title: Food Chem Toxicol
– volume: 13
  start-page: 271
  year: 1998
  end-page: 274
  ident: bib9
  article-title: Structural features of tannic acid important for DNA degradation in the presence of Cu(II)
  publication-title: Mutagenesis
– volume: 33
  start-page: 415
  year: 2000
  end-page: 422
  ident: bib35
  article-title: Relationship between copper, zinc and metalothionein in hepatocellular carcinoma and its surrounding liver parenchyma
  publication-title: J Hepatol
– volume: 5
  start-page: 27
  year: 1988
  end-page: 37
  ident: bib54
  article-title: Site-specific mechanism for free radical induced biological damage. The essential role of redox-active transition metals
  publication-title: Free Radic Biol Med
– volume: 92
  start-page: 996
  year: 1998
  end-page: 1002
  ident: bib6
  article-title: Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signalling-dependent apoptosis in human tumor cells
  publication-title: Blood
– volume: 157
  start-page: 93
  year: 1987
  end-page: 96
  ident: bib33
  article-title: Serum copper level in gynecologic malignancies
  publication-title: Am J Obstet Gynecol
– volume: 352
  start-page: 59
  year: 1994
  end-page: 62
  ident: bib26
  article-title: A role for metals and free radicals in the induction of apoptosis in thymocytes
  publication-title: FEBS Lett
– volume: 4
  start-page: 219
  year: 1988
  end-page: 233
  ident: bib53
  article-title: Why is hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has rare combination of high electrophilicity, thermochemical reactivity and a mode of production near DNA
  publication-title: Free Radic Biol Med
– volume: 38
  start-page: 2074
  year: 2006
  end-page: 2081
  ident: bib57
  article-title: Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties
  publication-title: Int J Biochem Cell Biol
– volume: 129
  start-page: 173
  year: 1998
  end-page: 179
  ident: bib55
  article-title: Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts
  publication-title: Cancer Lett
– volume: 31
  start-page: 490
  year: 2001
  end-page: 498
  ident: bib45
  article-title: Intracellular iron, but not copper plays a critical role in hydrogen peroxide-induced DNA damage
  publication-title: Free Radic Biol Med
– volume: 60
  start-page: 6465
  year: 2000
  end-page: 6471
  ident: bib56
  article-title: Differential effects of theaflavin monogallates on cell growth, apoptosis, and
  publication-title: Cancer Res
– volume: 2
  start-page: 589
  year: 2001
  end-page: 598
  ident: bib39
  article-title: Four deaths and a funeral: from caspases to alternative mechanisms
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 109
  year: 1993
  end-page: 115
  ident: bib34
  article-title: Quantitative analysis of copper, zinc and copper/zinc ratio in selective human brain tumors
  publication-title: J Neurooncol
– volume: 11
  start-page: 2001
  year: 1990
  end-page: 2003
  ident: bib16
  article-title: Complexes involving quercetin, DNA and Cu(II)
  publication-title: Carcinogenesis
– volume: 17
  start-page: 6915
  year: 1989
  end-page: 6926
  ident: bib40
  article-title: Site specific cleavage of supercoiled DNA by ascorbate/Cu(II)
  publication-title: Nucleic Acids Res
– volume: 46
  start-page: 129
  year: 2000
  end-page: 143
  ident: bib41
  article-title: Apoptosis-inducing activity of vitamin C and vitamin K
  publication-title: Cell Mol Biol
– volume: 219
  start-page: 1
  year: 1984
  end-page: 14
  ident: bib30
  article-title: Oxygen toxicity, oxygen radicals, transition metals and disease
  publication-title: Biochem J
– volume: 50
  start-page: 1
  year: 2000
  end-page: 5
  ident: bib19
  article-title: Putative mechanism for anticancer and apoptosis inducing properties of plant-derived polyphenolic compounds
  publication-title: IUBMB Life
– volume: 11
  start-page: 2123
  year: 2003
  end-page: 2142
  ident: bib22
  article-title: Designing anticancer drugs via the achilles heel: ceramide, allylic ketones, and mitochondria
  publication-title: Bioorg Med Chem
– volume: 41
  start-page: 1807
  year: 2006
  end-page: 1816
  ident: bib13
  article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu(II) ions: mechanism and structure-activity relationship
  publication-title: Free Radic Biol Med
– volume: 266
  start-page: 20175
  year: 1994
  end-page: 20184
  ident: bib14
  article-title: Covalent modification of guanine bases in double-stranded DNA: the 1:2-AZ-DNA structure of d(CGCGCG) in the presence of CuCl
  publication-title: J Biol Chem
– volume: 17
  start-page: 3513
  year: 1997
  end-page: 3520
  ident: bib42
  article-title: Modulating factors of radical intensity and cytotoxic action of ascorbate
  publication-title: Anticancer Res
– volume: 579
  start-page: 3131
  year: 2005
  end-page: 3135
  ident: bib20
  article-title: Resveratrol–Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties
  publication-title: FEBS Lett
– volume: 313
  start-page: 163
  year: 1996
  end-page: 169
  ident: bib31
  article-title: 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat liver nuclei by promoting redox activity of endogenous copper ions
  publication-title: Biochem J
– volume: 64
  start-page: 55
  year: 1978
  end-page: 61
  ident: bib36
  article-title: The diagnostic value of serum copper levels and other hematochemical parameters in malignancies
  publication-title: Tumorigenesis
– volume: 13
  start-page: 605
  year: 1992
  end-page: 608
  ident: bib8
  article-title: Activities of flavonoids for the cleavage of DNA in the presence of Cu(II): correlation with the generation of active oxygen species
  publication-title: Carcinogenesis
– volume: 17
  start-page: 358
  year: 2003
  end-page: 363
  ident: bib11
  article-title: DNA degradation by water extract of green tea in the presence of copper ions: implications for anticancer properties
  publication-title: Phytother Res
– volume: 17
  start-page: 2487
  year: 1997
  end-page: 2490
  ident: bib29
  article-title: Copper, but not iron, enhances apoptosis inducing activity of antioxidants
  publication-title: Anticancer Res
– volume: 73
  start-page: 2047
  year: 2003
  end-page: 2058
  ident: bib24
  article-title: Reactive oxygen species mediated doxorubicin induced p53-independent apoptosis
  publication-title: Life Sci
– volume: 49
  start-page: 5870
  year: 1989
  end-page: 5878
  ident: bib21
  article-title: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note
  publication-title: Cancer Res
– volume: 139
  start-page: 3199
  year: 1987
  end-page: 3206
  ident: bib23
  article-title: Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes
  publication-title: J Immunol
– volume: 48
  start-page: 2361
  year: 1988
  end-page: 2365
  ident: bib2
  article-title: Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7,12-dimethyl benz(
  publication-title: Cancer Res
– volume: 18
  start-page: 783
  year: 2004
  end-page: 789
  ident: bib43
  article-title: Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death
  publication-title: Toxicol In Vitro
– volume: 51
  start-page: 425
  year: 1992
  end-page: 432
  ident: bib18
  article-title: Hydrolyzable tannins: potent inhibitors of hydroperoxide production and tumor promotion in mouse skin treated with 12-O-tetradecanoyl phorbol-13-acetate in vivo
  publication-title: Int J Cancer
– volume: 368
  start-page: 513
  year: 1995
  end-page: 515
  ident: bib28
  article-title: Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material
  publication-title: FEBS Lett
– volume: 33
  start-page: 387
  year: 2002
  end-page: 398
  ident: bib52
  article-title: Inhibition of cancer growth by resveratrol is related to its low bioavailability
  publication-title: Free Radic Biol Med
– volume: 580
  start-page: 533
  year: 2006
  end-page: 538
  ident: bib44
  article-title: Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties
  publication-title: FEBS Lett
– volume: 10
  start-page: 1833
  year: 1989
  end-page: 1839
  ident: bib17
  article-title: Strand scission in DNA induced by quercetin and Cu(II): role of Cu(I) and oxygen free radicals
  publication-title: Carcinogenesis
– volume: 26
  start-page: 931
  year: 1987
  end-page: 942
  ident: bib25
  article-title: Copper dependent cleavage of DNA by bleomycin
  publication-title: Biochemistry
– volume: 89
  start-page: 1881
  year: 1997
  end-page: 1886
  ident: bib4
  article-title: Green tea constituent epigallocatechin-3-gallate, and induction of cell cycle arrest in human carcinoma cells
  publication-title: J Natl Cancer Inst
– volume: 540
  start-page: 3
  year: 2003
  end-page: 6
  ident: bib50
  article-title: Oxidative stress in cell culture: an under-appreciated problem?
  publication-title: FEBS Lett
– volume: 154
  start-page: 29
  year: 2000
  end-page: 37
  ident: bib12
  article-title: DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation
  publication-title: Cancer Lett
– volume: 259
  start-page: 161
  year: 1988
  end-page: 175
  ident: bib32
  article-title: The status of zinc, copper and metallothionein in cancer patients
  publication-title: Prog Clin Biol Res
– volume: 262
  start-page: 1274
  year: 1993
  end-page: 1277
  ident: bib37
  article-title: Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species
  publication-title: Science
– volume: 204
  start-page: 898
  year: 1994
  end-page: 904
  ident: bib3
  article-title: Antioxidant, gallic acid, induces apoptosis in HL60RG cells
  publication-title: Biochem Biophys Res Commun
– volume: 124
  start-page: 23
  year: 1998
  end-page: 30
  ident: bib10
  article-title: Strand scission in DNA induced by curcumin in the presence of Cu(II)
  publication-title: Cancer Lett
– volume: 218
  start-page: 249
  year: 2007
  end-page: 255
  ident: bib48
  article-title: Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties
  publication-title: Toxicol Appl Pharmacol
– volume: 5
  start-page: 3
  year: 1994
  end-page: 9
  ident: bib7
  article-title: Programmed cell death (apoptosis) and response to anticancer drugs
  publication-title: Anticancer Drugs
– volume: 145
  start-page: 542
  year: 1996
  end-page: 553
  ident: bib27
  article-title: Role of Fenton chemistry thiol-induced toxicity and apoptosis
  publication-title: Radiat Res
– volume: 273
  start-page: 50
  year: 2000
  end-page: 53
  ident: bib49
  article-title: Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin and quercetin to commonly used cell culture media
  publication-title: Biochem Biophys Res Commun
– volume: 16
  start-page: 845
  year: 1994
  end-page: 850
  ident: bib1
  article-title: The correlation between active oxygen scavenging and antioxidative effects of flavonoids
  publication-title: Free Radic Biol Med
– volume: 1317
  start-page: 95
  year: 1996
  end-page: 100
  ident: bib5
  article-title: Curcumin, an antioxidant and antitumor promoter, induces apoptosis in human leukemia cells
  publication-title: Biochem Biophys Acta
– volume: 81
  start-page: 414
  year: 2002
  end-page: 421
  ident: bib51
  article-title: The cytotoxicity of dopamine may be an artifact of cell culture
  publication-title: J Neurochem
– volume: 36
  start-page: 3629
  year: 1987
  end-page: 3633
  ident: bib46
  article-title: Oxygen radical damage to DNA by rifamycin SV and copper ions
  publication-title: Biochem Pharmacol
– volume: 249
  start-page: 299
  year: 1999
  end-page: 307
  ident: bib38
  article-title: A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells
  publication-title: Exp Cell Res
– year: 1979
  ident: bib15
  article-title: Metal ions in biological systems
– volume: 375
  start-page: 195
  year: 1997
  end-page: 203
  ident: bib58
  article-title: Sodium ascorbate induces DNA single strand-breaks in human cells in vitro
  publication-title: Mutat Res
SSID ssj0009414
Score 2.360279
SecondaryResourceType review_article
Snippet Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against...
Abstract Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Anticancer
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
Apoptosis
Copper - chemistry
Copper - metabolism
Copper - pharmacology
DNA - drug effects
DNA Breaks
DNA Cleavage
Endogenous copper
Flavonoids - metabolism
Flavonoids - pharmacology
Hematology, Oncology and Palliative Medicine
Humans
Lymphocytes - drug effects
Oxidative Stress
Phenols - metabolism
Phenols - pharmacology
Plant polyphenols
Plants - chemistry
Polyphenols
Prooxidant
Reactive oxygen species (ROS)
Title Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1044579X07000259
https://www.clinicalkey.es/playcontent/1-s2.0-S1044579X07000259
https://dx.doi.org/10.1016/j.semcancer.2007.04.002
https://www.ncbi.nlm.nih.gov/pubmed/17572102
https://www.proquest.com/docview/20123240
https://www.proquest.com/docview/68263802
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0OpDQlwQtDyWR_EBcQvrOnYc9xYVqgXU5QCV9mYljoMCu0m02ZW6l347M4mzVUWrInGNZhJnZjwvz4wJeedCkerIRoHjWRQI5VwQ5ywLRMgzzSNZSIf9zufTaHIhvszkbIecDr0wWFbpdX-v0ztt7Z-MPTXHTVmOv0MgIaTSMxBatNx6l-zzUEcg2vvJ56-T6fXsXdGN-Eb4ABFulHm1bmGRvks_zlBsUyy3GKm7nNDOGJ09Jo-8F0mTfqFPyI6rDshhUkEEvdjQ97Sr6-wS5gfkwbk_Pj8kP79dlnk36ZtCJJz-Bl1C64Ji8h6rUenHaUKzDW3mQG7a1PMNFoDV8_aEJrRZr3rMhcNm4bJdUPB3KUCW_Z_RBvP6SxzQ-pRcnH36cToJ_E0LgZVKrYJC8pTLIrY2irlVqZMhdyx04JwhzyQ8cJxZKRQTacazXFuWW5GHuRM5lrc9I3tVXbkXhGoX6yKNstBpPJNjOiskWDzNU1FIWeQjEg2kNdaPIcfbMOZmqDf7ZbY8wUsylWHCAE9GhG0Rm34Sx_0o8cA7MzSagmo0YC3uR1W3obrWb_HWHJuWG2b-EsMROdli3pDkf_vs20HEDOxz5H9auXrdAlDn_LK7IYB1oEzxHc972bwmk5IKQ_uX_7O0V-Rhl9fuChlfk73Vcu3egEO2yo7I7oer4yO_7f4Aa8c29w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfGkGAXBBuw8jUfELdQz7HjeLdqMBVYy4FN6s1KHAcF2iRqWole-Nt5z0k6TWwaEtfovXy8b7_8_EzIWxeKREc2ChxPo0Ao54I4Y2kgQp5qHslcOtzvPJlG40vxeSZnO-S03wuDsMou9rcx3Ufr7sqwk-awLorhN1hICKn0DIwWM7e-R-4LcF_0zve_r3AeWvgB30gdIPk1kFfjFhalu-yGGYptg-WGFHVbCepT0dlj8qirIemofc0nZMeV--RgVML6ebGh76hHdfp2-T55MOl-nh-Q719_FZmf801hHZz8hEhCq5xi6x6xqPTDdETTDa3nIGxaV_MNwr-qeXNCR7Rer1rOhcOtwkWzoFDtUqAs2i-jNXb1lzie9Sm5PPt4cToOunMWAiuVWgW55AmXeWxtFHOrEidD7ljooDRDjUm44DizUigmkpSnmbYssyILMycyBLc9I7tlVbpDQrWLdZ5Eaeg0_pFjOs0l5DvNE5FLmWcDEvWiNbYbQo5nYcxNjzb7YbY6wSMylWHCgE4GhG0Z63YOx90sca87028zhcBoIFfczapuYnVN5-CNOTYNN8z8ZYQDcrLlvGbH__bYo97EDHg56j8pXbVugMiXvux2ClAdhFK8x_PWNq_EpKTChf2L_3m1I_JwfDE5N-efpl9ekj3f4faQxldkd7Vcu9dQmq3SN971_gAAMze7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+breakage+of+cellular+DNA+by+plant+polyphenols%3A+A+putative+mechanism+for+anticancer+properties&rft.jtitle=Seminars+in+cancer+biology&rft.au=Hadi%2C+S.M.&rft.au=Bhat%2C+Showket+H.&rft.au=Azmi%2C+Asfar+S.&rft.au=Hanif%2C+Sarmad&rft.date=2007-10-01&rft.pub=Elsevier+Ltd&rft.issn=1044-579X&rft.volume=17&rft.issue=5&rft.spage=370&rft.epage=376&rft_id=info:doi/10.1016%2Fj.semcancer.2007.04.002&rft.externalDocID=S1044579X07000259
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F1044579X%2FS1044579X07X00671%2Fcov150h.gif