Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO
A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscop...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 10691 - 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.07.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K
MB
= 0.01153 min
−1
and K
RhB
= 0.00916 min
−1
). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. |
---|---|
AbstractList | A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K
MB
= 0.01153 min
−1
and K
RhB
= 0.00916 min
−1
). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K = 0.01153 min and K = 0.00916 min ). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min−1 and KRhB = 0.00916 min−1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. Abstract A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min−1 and KRhB = 0.00916 min−1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min-1 and KRhB = 0.00916 min-1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min-1 and KRhB = 0.00916 min-1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed. |
ArticleNumber | 10691 |
Author | Kumar, Pravin Lu, Dingze Zhao, Xing-Zhong Pelenovich, Vasiliy O. Fu, Dejun Bin, Han Dwivedi, R. K. Kondamareddy, Kiran Kumar Gao, Wei D., Neena |
Author_xml | – sequence: 1 givenname: Neena surname: D. fullname: D., Neena email: neena@whu.edu.cn organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Department of Chemical & Materials Engineering, University of Auckland – sequence: 2 givenname: Kiran Kumar surname: Kondamareddy fullname: Kondamareddy, Kiran Kumar organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Department of physics, Veltech Rangarajan Dr. Sagunthala R&D Institute of science and technology, Avadi – sequence: 3 givenname: Han surname: Bin fullname: Bin, Han organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University – sequence: 4 givenname: Dingze surname: Lu fullname: Lu, Dingze organization: Inter Department of Physics, Xi’an Polytechnic University – sequence: 5 givenname: Pravin surname: Kumar fullname: Kumar, Pravin organization: Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg – sequence: 6 givenname: R. K. surname: Dwivedi fullname: Dwivedi, R. K. organization: Department of Physics, Christ Church College – sequence: 7 givenname: Vasiliy O. surname: Pelenovich fullname: Pelenovich, Vasiliy O. organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University – sequence: 8 givenname: Xing-Zhong surname: Zhao fullname: Zhao, Xing-Zhong organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University – sequence: 9 givenname: Wei surname: Gao fullname: Gao, Wei organization: Department of Chemical & Materials Engineering, University of Auckland – sequence: 10 givenname: Dejun surname: Fu fullname: Fu, Dejun email: djfu@whu.edu.cn organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30013042$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURMvQP8ACWWLTTajfSTZIdNSXVFQJwYaNdWM7GY8y9mAnIxXx4_HMlNJ2UW9s2d89vj4-b4sDH7wtivcEfyKY1aeJE9HUJSZ1SRtMRUleFUcUc1FSRunBo_VhcZzSEuchaMNJ86Y4ZBgThjk9Kv6c-wV4bQ3auOTawaLB9YsRrRdhDMb2EQyMLngEenQbN96h0KFvi7PTr2eoi2GF4Ndkw5RQCsO0A6fkfI88-JDc76zrw8YO6MKWc4N0KFfBuM7l_Z_-9l3xuoMh2eP7eVb8uDj_Pr8qb24vr-dfbkotqmosbSs08KpmUhvNDQFZS4w7wyVpGGuloKYFYQyxtK0qaGgnJTBeWaCNlq1ks-J6r2sCLNU6uhXEOxXAqd1GiL2CODo9WEWYtFRIqFsGXHLRaGqrzlpoABvbVFnr815rPbUra7T1Y4ThiejTE-8Wqg8bJTGviaBZ4OReIIbsXRrVyiVthwH81khFcUWE5KwWGf34DF2GKfps1ZbCVYNrvqU-PO7ooZV_n5wBugd0DClF2z0gBKttmNQ-TCqHSe3ClG2YFfWzIu3GXRTyq9zwcinbl6Z8j-9t_N_2C1V_AZoL3wU |
CitedBy_id | crossref_primary_10_1016_j_physe_2019_113792 crossref_primary_10_1016_j_ijbiomac_2023_125677 crossref_primary_10_1021_acsomega_2c07460 crossref_primary_10_1007_s11051_019_4710_3 crossref_primary_10_1016_j_materresbull_2022_111849 crossref_primary_10_9767_bcrec_16_4_11797_881_887 crossref_primary_10_1016_j_envres_2023_117540 crossref_primary_10_1021_acsomega_2c01763 crossref_primary_10_3390_chemosensors10060205 crossref_primary_10_1007_s11998_021_00533_6 crossref_primary_10_1016_j_heliyon_2024_e33354 crossref_primary_10_1016_j_diamond_2023_110592 crossref_primary_10_1002_adsu_202200443 crossref_primary_10_3390_catal10070774 crossref_primary_10_1016_j_molstruc_2024_140152 crossref_primary_10_1016_j_apt_2020_04_028 crossref_primary_10_1088_1361_6463_ac021c crossref_primary_10_1016_j_jece_2021_106587 crossref_primary_10_1016_j_jece_2023_109337 crossref_primary_10_1016_j_chemosphere_2022_134623 crossref_primary_10_1002_crat_202100125 crossref_primary_10_2166_wpt_2023_115 crossref_primary_10_3934_mbe_2021215 crossref_primary_10_1007_s42452_019_0642_x crossref_primary_10_1088_1402_4896_ace745 crossref_primary_10_1016_j_ceramint_2022_04_277 crossref_primary_10_1016_j_inoche_2021_108606 crossref_primary_10_1149_2162_8777_ac4216 crossref_primary_10_1016_j_ceramint_2018_11_171 crossref_primary_10_1021_acs_inorgchem_4c04790 crossref_primary_10_1007_s11356_022_22550_7 crossref_primary_10_14233_ajchem_2022_23506 crossref_primary_10_1016_j_inoche_2022_109210 crossref_primary_10_1016_j_matchemphys_2020_122672 crossref_primary_10_1007_s11356_022_20397_6 crossref_primary_10_1016_j_jphotochem_2019_111986 crossref_primary_10_1021_acs_iecr_9b01561 crossref_primary_10_1016_j_matchemphys_2021_125040 crossref_primary_10_1021_acsanm_2c04160 crossref_primary_10_1016_j_synthmet_2019_116228 crossref_primary_10_1021_acsomega_3c03883 crossref_primary_10_1038_s41598_019_43917_w crossref_primary_10_1007_s11164_020_04237_1 crossref_primary_10_1039_D0CE01684E crossref_primary_10_1016_j_inoche_2023_111097 crossref_primary_10_1007_s11356_020_10982_y crossref_primary_10_1016_j_mssp_2020_105152 crossref_primary_10_1007_s41779_022_00765_8 crossref_primary_10_1021_acs_inorgchem_0c03327 crossref_primary_10_1007_s11356_024_34843_0 crossref_primary_10_1016_j_jece_2020_104282 crossref_primary_10_3390_nano10081476 crossref_primary_10_1007_s10854_021_06959_3 crossref_primary_10_1016_j_colcom_2020_100330 crossref_primary_10_1007_s10904_023_02618_8 crossref_primary_10_1016_j_mtcomm_2023_107250 crossref_primary_10_1039_C9DT02582K crossref_primary_10_3390_catal9060498 crossref_primary_10_3390_ijms232415459 crossref_primary_10_1007_s12034_023_02971_x crossref_primary_10_3390_magnetochemistry8100120 crossref_primary_10_1080_03067319_2023_2203822 crossref_primary_10_1557_s43580_022_00283_6 crossref_primary_10_1016_j_ceramint_2019_10_278 crossref_primary_10_1016_j_jenvman_2020_111125 crossref_primary_10_1016_j_poly_2020_114879 crossref_primary_10_1016_j_apsusc_2021_150649 crossref_primary_10_1016_j_mseb_2023_116688 crossref_primary_10_1016_j_seppur_2020_117042 crossref_primary_10_1038_s41598_024_66844_x crossref_primary_10_1021_acsami_9b13278 crossref_primary_10_1007_s10854_019_01466_y crossref_primary_10_1016_j_optmat_2020_109803 crossref_primary_10_1039_D0NA00694G crossref_primary_10_1016_j_cplett_2024_141860 crossref_primary_10_3390_ma17143487 crossref_primary_10_1016_j_apsusc_2019_05_302 crossref_primary_10_1007_s10971_024_06471_0 crossref_primary_10_1007_s13738_025_03189_w crossref_primary_10_1016_j_jallcom_2021_162444 crossref_primary_10_3390_catal13101367 crossref_primary_10_1142_S0217984921410074 crossref_primary_10_1016_j_ceramint_2019_09_084 crossref_primary_10_1016_j_jphotochem_2021_113260 crossref_primary_10_1007_s10854_019_02839_z crossref_primary_10_1007_s10854_022_09053_4 crossref_primary_10_1016_j_jece_2021_105185 crossref_primary_10_1016_j_envres_2021_111700 crossref_primary_10_1021_acs_inorgchem_4c04751 crossref_primary_10_1007_s11356_022_21253_3 crossref_primary_10_1016_j_matchar_2024_114504 crossref_primary_10_1007_s13399_024_05406_7 crossref_primary_10_1021_acsami_9b15578 crossref_primary_10_1016_j_jece_2021_106831 crossref_primary_10_3390_compounds4030032 crossref_primary_10_1088_2631_6331_ad2868 crossref_primary_10_1016_j_chemosphere_2020_128575 crossref_primary_10_1016_j_wri_2021_100163 crossref_primary_10_1016_j_solidstatesciences_2022_106881 crossref_primary_10_1016_j_jpcs_2020_109900 crossref_primary_10_1016_j_matpr_2024_03_042 crossref_primary_10_1016_j_physe_2020_114308 crossref_primary_10_1016_j_jallcom_2022_166095 crossref_primary_10_1016_j_chemosphere_2022_134249 crossref_primary_10_3390_ma12142233 crossref_primary_10_1016_j_cattod_2024_115181 crossref_primary_10_1021_acsestwater_3c00267 crossref_primary_10_1007_s11356_023_31036_z crossref_primary_10_1016_j_ceramint_2021_03_130 crossref_primary_10_3390_catal12101263 |
Cites_doi | 10.1016/j.matchemphys.2010.09.030 10.1016/S0045-6535(99)00487-7 10.1021/ie401973r 10.1016/j.msec.2012.08.011 10.1016/j.cej.2011.02.018 10.1016/j.solidstatesciences.2010.05.010 10.1038/nnano.2007.451 10.1016/j.jhazmat.2012.10.018 10.1103/PhysRev.155.826 10.1016/j.apcatb.2012.07.012 10.1016/j.solidstatesciences.2012.11.012 10.1021/jp501933k 10.1016/j.apcatb.2015.12.007 10.1021/ic8018138 10.1016/j.jhazmat.2009.05.039 10.1016/j.matchemphys.2005.03.007 10.1016/j.surfcoat.2012.12.001 10.1021/la200570n 10.1140/epjd/e2016-50540-5 10.1103/PhysRevB.15.2493 10.1016/j.jhazmat.2006.10.089 10.1021/acs.jpcc.6b00743 10.1007/s10853-011-6016-4 10.1016/j.jlumin.2012.02.031 10.1039/C5CP01408E 10.1016/j.chemosphere.2012.12.055 10.1002/adfm.201300255 10.1016/j.apcatb.2013.09.001 10.1016/j.apsusc.2016.09.022 10.1016/j.jhazmat.2007.04.046 10.1016/S1010-6030(01)00423-3 10.1063/1.1790570 10.1016/j.physb.2011.06.053 10.1021/jp410063p 10.1016/j.solidstatesciences.2016.11.009 10.1016/j.jhazmat.2009.12.102 10.1016/j.spmi.2014.06.013 10.1016/j.cej.2009.07.036 10.12693/APhysPolA.122.1034 10.1016/S1387-1811(03)00339-1 10.1021/jp5108312 10.1039/c3ce40798e 10.1039/c3nr03969b 10.1016/j.powtec.2014.08.043 10.1021/jp076870l 10.1016/j.jallcom.2012.08.070 10.1039/c3nr02658b 10.1016/j.jallcom.2012.10.105 10.1039/C5RA02557E 10.1016/j.msec.2013.01.046 10.1016/j.micromeso.2010.05.026 10.1016/j.apcatb.2003.11.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-018-29025-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_136e256a8b3a46459c2e7feea9a0de97 PMC6048152 30013042 10_1038_s41598_018_29025_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: International Cooperation Program of the Ministry of Science and Technology of China 2015DFR00720 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c577t-eb5ca47836cdc4d1a68600fd461933b652dba5dd1e2b77a92f66a347ea29c6b63 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Thu Aug 21 14:31:23 EDT 2025 Thu Jul 10 17:38:25 EDT 2025 Wed Aug 13 06:12:38 EDT 2025 Thu Jan 02 23:05:27 EST 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 00:57:52 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-eb5ca47836cdc4d1a68600fd461933b652dba5dd1e2b77a92f66a347ea29c6b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-29025-1 |
PMID | 30013042 |
PQID | 2070790845 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_136e256a8b3a46459c2e7feea9a0de97 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048152 proquest_miscellaneous_2071564385 proquest_journals_2070790845 pubmed_primary_30013042 crossref_primary_10_1038_s41598_018_29025_1 crossref_citationtrail_10_1038_s41598_018_29025_1 springer_journals_10_1038_s41598_018_29025_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-16 |
PublicationDateYYYYMMDD | 2018-07-16 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Moussa, H. et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B185(11) (2016). Jiang, J. et al. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. J. Alloy. Compd. 547(59) (2013). Bian, S., Mudunkotuwa, I. A., Rupasinghe, T. & Grassian, V. H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size and Adsorption of Humic Acid. Langmuir 27(6059) (2011). Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(101) (2008). Korbahti, B. K., Artut, K., Gecgel, C. & Ozer, A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 173(677) (2011). Saravanan, R. et al. ZnO/Ag/Mn2O3nanocomposite for visible light induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity RSC Adv5(34645) (2015). Bie, X. et al. Room-Temperature Ferromagnetism in Pure ZnO Nanoflowers. Solid State Sci. 12(1364) (2010). Zhu, C. et al. Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution. Chemosphere41(303) (2000). Joo, J. B. et al. Controllable Synthesis of Mesoporous TiO2 Hollow Shells: Toward an Efficient Photocatalyst. Adv. Funct. Mater. 23(4246) (2013). Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J. & Cho, M. H. Biogenic synthesis, photocatalytic, and photo-electrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C117(27023) (2013). Mahnoodi, M., Armani, M., Lymaee, N. Y. & Gharanjig, K. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J. Hazard. Mater. 145(65) (2007). Neena, D. et al. Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol-gel derived ZnO nanoparticles, Eur. Phys. J. D2016 (70) 53. Hou, D., Goei, R., Wang, X., Wanga, P. & Lim, T.-T. Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Appl. Catal. B126(121) (2012). Kant, S., Pathania, D., Singh, P., Dhiman, P. & Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl. Catal. B147(340) (2014). Kim, K. J. & Park, Y. R. Optical investigation of Zn1− xFexO films grown on Al2O3 (0001) by radio-frequency sputtering. J. Appl. Phys. 96(4150) (2004). Barick, K. C., Singh, S., Aslam, M. & Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor. Mesopor. Mat. 134(195) (2010). Sajjad, A. K. L., Shmaila, S., Tian, B. Z., Chen, F. & Zhang, J. L. Comparative studies of operational parameters of degradation of Azo dyes in visible light by highly efficient WO x/TiO2 photocatalyst. J. Hazard. Mater. 177(781) (2010). Shtepliuk, I., Khyzhun, O., Lashkarev, G., Khomyak, V. & Lazorenko, V. XPS and Raman characterizations of Zn1−xCdxO films grown at the different growth conditions. Acta Phys. Pol. A122(1034) (2012). Moulder, J. & Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Phys. Electronics (1995). Priyanka & Srivastava, V. C. Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind. Eng. Chem. Res. 52(17790) (2013). Yousef, A. et al. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J. Lumin. 132(1668) (2012). Zhang, Y. & Li, Q. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 16(16) (2013). Jantawasu, P., Sreethawong, T. & Chavadej, S. Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155(223) (2009). Adler, D. & Brooks, H. Theory of semiconductor-to-metal transitions. Phys. Rev. 155(826) (1967). Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S. & Sopian, K. Visible light photocatalytic activity of Fe3+doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere91(1604) (2013). Beltran, J. J., Barrero, C. A. & Punnoose, A. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C118(13203) (2014). Gupta, V. K., Pathania, D., Agarwal, S. & Singh, P. Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. J. Hazard. Mater. 243(179) (2012). Arques, A., Amat, A. M., Garcia-Ripoll, A. & Vicente, R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J. Hazard. Mater. 146(447) (2007). Wang, Y., Wang, F. & He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale5(11291) (2013). Zhang, D. & Zeng, F. Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci. 47(2155) (2012). Peng, Y., Qin, S., Wang, W.-S. & Xu, A.-W. Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. Cryst. Eng. Comm. 15(6518) (2013). Saravanan, R. et al. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light Materials Science and Engineering C 33(2235) (2013). Lu, D. et al. Two- dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatysis. Appl. Sur. Sci. 396(185) (2017). Saravanan, R., Shankar, H., Prakash, T., Narayanan, V. & Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125(277) (2011). Zhou, M. H., Yu, J. G., Cheng, B. & Yu, H. G. Photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(159) (2005). Dong, S., Xu, K., Liu, J. & Cui, H. Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Physica B406(3609) (2011). Chen, Z. P., Fang, W. Q., Zhang, B. & Yang, H. G.High-Yield Synthesis and Magnetic Properties of ZnFe2O4 Single Crystal Nanocubes in Aqueous Solution. J. Alloys Compd. 550(348) (2013). Le, T. H., Bui, A. T. & Le, T. K. The effect of Fe doping on the suppression of photocatalytic activity of ZnO nanopowder for the application in sunscreens. Powder Techn. 268(173) (2014). Bian, X. et al. Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J. Phys. Chem. C119(1700) (2015). Zhang, Y., Ram, M. K., Stefanalkos, E. K. & Goswami, D. Y. Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination, Surf. Coat. Technol. 217(119) (2013). Yu, T.-H., Cheng, W.-Y., Chao, K.-J. & Lu, S.-Y. ZnFe2O4 Decorated CdS Nanorods as a Highly Efficient, Visible Light Responsive, Photochemically Stable, Magnetically Recyclable Photocatalyst for Hydrogen Generation. Nanoscale5(7356) (2013). Groen, J. C., Peffer, L.A. & Perez-Rremirez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1) (2003). Khodja, A., Sehili, T., Pilichowski, J. & Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A141(231) (2001). Saleh, R. & Djaja, N. F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattice Microst. 74(217) (2014). Cao, B. & Cai, W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C112(680) (2008). Beltran, J. J., Barrero, C. A. & Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17(15284) (2015). Zhao, X. et al. Synergistic effect of Fe2O3/Ho2O3 co-modified 2D-titanate heterojunctions on enhanced photocatalytic degradation. Solid State Sci. 63(42) (2017). Wang, C., Shao, C., Liu, Y. & Li, X. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem. 48(1105) (2009). Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B, 49(1) (2004). Sar.avanan, R. et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C33(91) (2013). Beltran, J. J., Barrero, C. A. & Punnoose, A. Combination of defects plus mixed valence of transition metals: A strong strategy for ferromagnetic enhancement in ZnO nanoparticles. J. Phys. Chem. C120(8969) (2016). Koidl, P. Optical absorption of CO2+ in ZnO. Phys. Rev. B15(2493) (1977). Akpan, U.G. & Hameed, B. H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(520) (2009). 29025_CR30 29025_CR20 29025_CR21 29025_CR22 29025_CR23 29025_CR24 29025_CR25 29025_CR26 29025_CR27 29025_CR28 29025_CR29 29025_CR7 29025_CR6 29025_CR9 29025_CR8 29025_CR3 29025_CR2 29025_CR5 29025_CR4 29025_CR40 29025_CR41 29025_CR31 29025_CR32 29025_CR33 29025_CR34 29025_CR35 29025_CR36 29025_CR37 29025_CR38 29025_CR39 29025_CR1 29025_CR50 29025_CR51 29025_CR52 29025_CR42 29025_CR43 29025_CR44 29025_CR45 29025_CR46 29025_CR47 29025_CR48 29025_CR49 29025_CR53 29025_CR10 29025_CR11 29025_CR12 29025_CR13 29025_CR14 29025_CR15 29025_CR16 29025_CR17 29025_CR18 29025_CR19 |
References_xml | – reference: Moulder, J. & Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Phys. Electronics (1995). – reference: Neena, D. et al. Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol-gel derived ZnO nanoparticles, Eur. Phys. J. D2016 (70) 53. – reference: Priyanka & Srivastava, V. C. Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind. Eng. Chem. Res. 52(17790) (2013). – reference: Saravanan, R. et al. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light Materials Science and Engineering C 33(2235) (2013). – reference: Zhou, M. H., Yu, J. G., Cheng, B. & Yu, H. G. Photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(159) (2005). – reference: Groen, J. C., Peffer, L.A. & Perez-Rremirez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1) (2003). – reference: Chen, Z. P., Fang, W. Q., Zhang, B. & Yang, H. G.High-Yield Synthesis and Magnetic Properties of ZnFe2O4 Single Crystal Nanocubes in Aqueous Solution. J. Alloys Compd. 550(348) (2013). – reference: Korbahti, B. K., Artut, K., Gecgel, C. & Ozer, A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 173(677) (2011). – reference: Saleh, R. & Djaja, N. F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattice Microst. 74(217) (2014). – reference: Cao, B. & Cai, W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C112(680) (2008). – reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C118(13203) (2014). – reference: Yousef, A. et al. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J. Lumin. 132(1668) (2012). – reference: Khodja, A., Sehili, T., Pilichowski, J. & Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A141(231) (2001). – reference: Zhang, Y. & Li, Q. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 16(16) (2013). – reference: Akpan, U.G. & Hameed, B. H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(520) (2009). – reference: Bian, S., Mudunkotuwa, I. A., Rupasinghe, T. & Grassian, V. H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size and Adsorption of Humic Acid. Langmuir 27(6059) (2011). – reference: Lu, D. et al. Two- dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatysis. Appl. Sur. Sci. 396(185) (2017). – reference: Sar.avanan, R. et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C33(91) (2013). – reference: Zhu, C. et al. Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution. Chemosphere41(303) (2000). – reference: Joo, J. B. et al. Controllable Synthesis of Mesoporous TiO2 Hollow Shells: Toward an Efficient Photocatalyst. Adv. Funct. Mater. 23(4246) (2013). – reference: Wang, Y., Wang, F. & He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale5(11291) (2013). – reference: Yu, T.-H., Cheng, W.-Y., Chao, K.-J. & Lu, S.-Y. ZnFe2O4 Decorated CdS Nanorods as a Highly Efficient, Visible Light Responsive, Photochemically Stable, Magnetically Recyclable Photocatalyst for Hydrogen Generation. Nanoscale5(7356) (2013). – reference: Sajjad, A. K. L., Shmaila, S., Tian, B. Z., Chen, F. & Zhang, J. L. Comparative studies of operational parameters of degradation of Azo dyes in visible light by highly efficient WO x/TiO2 photocatalyst. J. Hazard. Mater. 177(781) (2010). – reference: Kant, S., Pathania, D., Singh, P., Dhiman, P. & Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl. Catal. B147(340) (2014). – reference: Zhao, X. et al. Synergistic effect of Fe2O3/Ho2O3 co-modified 2D-titanate heterojunctions on enhanced photocatalytic degradation. Solid State Sci. 63(42) (2017). – reference: Hou, D., Goei, R., Wang, X., Wanga, P. & Lim, T.-T. Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Appl. Catal. B126(121) (2012). – reference: Jiang, J. et al. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. J. Alloy. Compd. 547(59) (2013). – reference: Koidl, P. Optical absorption of CO2+ in ZnO. Phys. Rev. B15(2493) (1977). – reference: Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(101) (2008). – reference: Le, T. H., Bui, A. T. & Le, T. K. The effect of Fe doping on the suppression of photocatalytic activity of ZnO nanopowder for the application in sunscreens. Powder Techn. 268(173) (2014). – reference: Dong, S., Xu, K., Liu, J. & Cui, H. Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Physica B406(3609) (2011). – reference: Wang, C., Shao, C., Liu, Y. & Li, X. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem. 48(1105) (2009). – reference: Saravanan, R. et al. ZnO/Ag/Mn2O3nanocomposite for visible light induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity RSC Adv5(34645) (2015). – reference: Peng, Y., Qin, S., Wang, W.-S. & Xu, A.-W. Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. Cryst. Eng. Comm. 15(6518) (2013). – reference: Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J. & Cho, M. H. Biogenic synthesis, photocatalytic, and photo-electrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C117(27023) (2013). – reference: Zhang, Y., Ram, M. K., Stefanalkos, E. K. & Goswami, D. Y. Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination, Surf. Coat. Technol. 217(119) (2013). – reference: Barick, K. C., Singh, S., Aslam, M. & Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor. Mesopor. Mat. 134(195) (2010). – reference: Jantawasu, P., Sreethawong, T. & Chavadej, S. Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155(223) (2009). – reference: Mahnoodi, M., Armani, M., Lymaee, N. Y. & Gharanjig, K. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J. Hazard. Mater. 145(65) (2007). – reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Combination of defects plus mixed valence of transition metals: A strong strategy for ferromagnetic enhancement in ZnO nanoparticles. J. Phys. Chem. C120(8969) (2016). – reference: Bian, X. et al. Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J. Phys. Chem. C119(1700) (2015). – reference: Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B, 49(1) (2004). – reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17(15284) (2015). – reference: Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S. & Sopian, K. Visible light photocatalytic activity of Fe3+doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere91(1604) (2013). – reference: Adler, D. & Brooks, H. Theory of semiconductor-to-metal transitions. Phys. Rev. 155(826) (1967). – reference: Moussa, H. et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B185(11) (2016). – reference: Zhang, D. & Zeng, F. Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci. 47(2155) (2012). – reference: Saravanan, R., Shankar, H., Prakash, T., Narayanan, V. & Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125(277) (2011). – reference: Gupta, V. K., Pathania, D., Agarwal, S. & Singh, P. Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. J. Hazard. Mater. 243(179) (2012). – reference: Bie, X. et al. Room-Temperature Ferromagnetism in Pure ZnO Nanoflowers. Solid State Sci. 12(1364) (2010). – reference: Arques, A., Amat, A. M., Garcia-Ripoll, A. & Vicente, R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J. Hazard. Mater. 146(447) (2007). – reference: Kim, K. J. & Park, Y. R. Optical investigation of Zn1− xFexO films grown on Al2O3 (0001) by radio-frequency sputtering. J. Appl. Phys. 96(4150) (2004). – reference: Shtepliuk, I., Khyzhun, O., Lashkarev, G., Khomyak, V. & Lazorenko, V. XPS and Raman characterizations of Zn1−xCdxO films grown at the different growth conditions. Acta Phys. Pol. A122(1034) (2012). – ident: 29025_CR20 doi: 10.1016/j.matchemphys.2010.09.030 – ident: 29025_CR46 doi: 10.1016/S0045-6535(99)00487-7 – ident: 29025_CR40 doi: 10.1021/ie401973r – ident: 29025_CR18 doi: 10.1016/j.msec.2012.08.011 – ident: 29025_CR4 doi: 10.1016/j.cej.2011.02.018 – ident: 29025_CR34 doi: 10.1016/j.solidstatesciences.2010.05.010 – ident: 29025_CR16 doi: 10.1038/nnano.2007.451 – ident: 29025_CR3 doi: 10.1016/j.jhazmat.2012.10.018 – ident: 29025_CR28 doi: 10.1103/PhysRev.155.826 – ident: 29025_CR47 doi: 10.1016/j.apcatb.2012.07.012 – ident: 29025_CR48 doi: 10.1016/j.solidstatesciences.2012.11.012 – ident: 29025_CR23 doi: 10.1021/jp501933k – ident: 29025_CR51 doi: 10.1016/j.apcatb.2015.12.007 – ident: 29025_CR8 doi: 10.1021/ic8018138 – ident: 29025_CR44 doi: 10.1016/j.jhazmat.2009.05.039 – ident: 29025_CR53 doi: 10.1016/j.matchemphys.2005.03.007 – ident: 29025_CR21 doi: 10.1016/j.surfcoat.2012.12.001 – ident: 29025_CR33 doi: 10.1021/la200570n – ident: 29025_CR11 doi: 10.1140/epjd/e2016-50540-5 – ident: 29025_CR31 doi: 10.1103/PhysRevB.15.2493 – ident: 29025_CR32 – ident: 29025_CR1 doi: 10.1016/j.jhazmat.2006.10.089 – ident: 29025_CR38 doi: 10.1021/acs.jpcc.6b00743 – ident: 29025_CR19 doi: 10.1007/s10853-011-6016-4 – ident: 29025_CR41 doi: 10.1016/j.jlumin.2012.02.031 – ident: 29025_CR24 doi: 10.1039/C5CP01408E – ident: 29025_CR52 doi: 10.1016/j.chemosphere.2012.12.055 – ident: 29025_CR5 doi: 10.1002/adfm.201300255 – ident: 29025_CR17 doi: 10.1016/j.apcatb.2013.09.001 – ident: 29025_CR29 doi: 10.1016/j.apsusc.2016.09.022 – ident: 29025_CR2 doi: 10.1016/j.jhazmat.2007.04.046 – ident: 29025_CR12 doi: 10.1016/S1010-6030(01)00423-3 – ident: 29025_CR27 doi: 10.1063/1.1790570 – ident: 29025_CR22 doi: 10.1016/j.physb.2011.06.053 – ident: 29025_CR50 doi: 10.1021/jp410063p – ident: 29025_CR39 doi: 10.1016/j.solidstatesciences.2016.11.009 – ident: 29025_CR10 doi: 10.1016/j.jhazmat.2009.12.102 – ident: 29025_CR45 doi: 10.1016/j.spmi.2014.06.013 – ident: 29025_CR43 doi: 10.1016/j.cej.2009.07.036 – ident: 29025_CR36 doi: 10.12693/APhysPolA.122.1034 – ident: 29025_CR25 doi: 10.1016/S1387-1811(03)00339-1 – ident: 29025_CR7 doi: 10.1021/jp5108312 – ident: 29025_CR30 doi: 10.1039/c3ce40798e – ident: 29025_CR49 doi: 10.1039/c3nr03969b – ident: 29025_CR42 doi: 10.1016/j.powtec.2014.08.043 – ident: 29025_CR13 doi: 10.1021/jp076870l – ident: 29025_CR35 doi: 10.1016/j.jallcom.2012.08.070 – ident: 29025_CR6 doi: 10.1039/c3nr02658b – ident: 29025_CR37 doi: 10.1016/j.jallcom.2012.10.105 – ident: 29025_CR14 doi: 10.1039/C5RA02557E – ident: 29025_CR15 doi: 10.1016/j.msec.2013.01.046 – ident: 29025_CR26 doi: 10.1016/j.micromeso.2010.05.026 – ident: 29025_CR9 doi: 10.1016/j.apcatb.2003.11.010 |
SSID | ssj0000529419 |
Score | 2.592551 |
Snippet | A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron... Abstract A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10691 |
SubjectTerms | 140/146 639/301/299/890 704/172/169/896 Electrons Humanities and Social Sciences Investigations Irradiation Methylene blue Microscopy multidisciplinary Nanoparticles Photodegradation Photoelectron spectroscopy Recombination Rhodamine Scanning electron microscopy Science Science (multidisciplinary) Spectrum analysis Transmission electron microscopy Ultraviolet spectroscopy X-ray diffraction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tEsE3XW43yebj0Ss9ilAFsVB8CZNN1ju4Zot3LVT8481k986eny--JpNlmA9mspP5DSEvDWMVbzSURrFQCg2ydFypsnE1OK6Vgxb_dxy_k0cn4u1pc3pt1Be-CRvggQfBTWouQwrLoB0HrMKZlgXVhQAGKh9M7iNPMe_aZWpA9WZG1Gbskqm4nqxSpMJushqbDnCGa70TiTJg_--yzF8fS_5UMc2BaHaH3B4zSPpm4PwuuRHiPXJzmCl5dZ98O4zzXNWn2DbuloEu8f5Nz-f9uvcIDTFMUaLY0YCDI2jf0Q_z6eR4SrHXhELirL9Y0Y1RUnwa_5lGiP1q8TV9N_aXYUlnoTzwtO3Ls94vupTI0k_x_QNyMjv8eHBUjiMWyrZRal0G17QgsJOj9a3wNUidMqDOi3Sv4tzJhnkHjfd1YE4pMKyTErhQAZhppZP8IdmLfQyPCQWuEa0uLaeIJ7RxjfLGVxK1BA5EQeqNuG074o_jGIylzXVwru2gIptUZLOKbF2QV9sz5wP6xl-pp6jFLSUiZ-eFZE92tCf7L3sqyP7GBuzozivLMpBgpUVTkBfb7eSIWF2BiFpBGgTe4TrRPBpMZssJzwViwQqidoxph9XdnbiYZ7BvmQF90snXG7P7wdafRfHkf4jiKbnF0F8QRlTuk731l4vwLKVga_c8e9t3GBgszg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEA9aEfwivl2tEsFvGrqbZPP4JF7pUYQqiIXDL0uyyfYOrpuzexUU_3gz2Uc5H_2axzKbmUkmM5nfIPRaU5qzUhmiJfWEKyOIZVKS0hbGMiWtqcHfcfJRHJ_yD4tyMTjcuuFZ5bgnpo3ahRp85OAJyaXOFS_fbb4RqBoF0dWhhMZNdAugy-BJl1zIyccCUSxe6CFXJmfqoIvnFeSUFZB6AJVci53zKMH2_8vW_PvJ5B9x03Qcze-hu4Mdid_3jL-Pbvj2AbrdV5b88RD9OmqXKbaPIXncrj1ewy0cb5ZhGxwARPS1lDDkNUD5CBwa_Hk5OziZYcg4wSZSFi47PIomhgfyZ7g1behWP-N32_Ddr_Hck0OH60DOg1s10ZzFX9tPj9Dp_OjL4TEZCi2QupRyS7wta8Mhn6N2NXeFESraQY3j8XbFmBUlddaUzhWeWimNpo0QhnHpDdW1sII9RnttaP1ThA1TgFkXm-O5x5W2pXTa5SJ3XhtreIaKcbmrekAhh2IY6ypFw5mqehZVkUVVYlFVZOjNNGfTY3BcO3oGXJxGAn52aggXZ9WgjlXBhI_GnlGWGYjt6pp62XhvtAFKZYb2RxmoBqXuqisRzNCrqTuqI8RYTAtcgTEAv8NUHPOkF5mJEpbCxJxmSO4I0w6puz3tapkgv0WC9Ykz345id0XW_5fi2fV_8RzdoaAJABMq9tHe9uLSv4gm1ta-THr0G814I8U priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgifrtaJYJvunQ3yebj0Tt6FKEKYqH4EpJNtndwTUrvKij-8WayH3JaBV-TyTJkZjaTzMxvEHqtCKloI02pBPElk4aXlgpRNrY2lkphTQvvHScf-PEpe3_WnO0hMtbC5KT9DGmZf9NjdtjhJh00UAxWQ80AtGBNN55bAN0OWj3n8-ldBSJXrFZDfUxF5Q1Ld86gDNV_k3_5Z5rkb7HSfAQt7qG7g--I3_Xc3kd7PjxAt_tukt8eoh9HYZnj-RgKxu3a4zXcvPHlMm6jA1CIvn8ShloGaBmBY4c_LWeHJzMMVSbYJM7i9QaP6oghKf4cBxPiZvU9fTfEr36NF76cO9zG8iK6VZdcWPwlfHyEThdHn-fH5dBcoWwbIbalt01rGNRwtK5lrjZcJt-ncyzdqCi1vCHOmsa52hMrhFGk49xQJrwhquWW08doP8TgnyJsqAScujSczjomlW2EU67ilfPKWMMKVI_brdsBeRwaYKx1joBTqXsR6SQinUWk6wK9mdZc9rgb_6SegRQnSsDMzgPx6lwPOqRryn1y8Iy01EA8V7XEi857owxwKgp0MOqAHgx5o0mGEKwkawr0appOJghxFRNAKkADkDtUJponvcpMnNAcGmakQGJHmXZY3Z0Jq2WG-eYZyietfDuq3S-2_r4Vz_6P_Dm6Q8AyACqUH6D97dW1f5HcrK19me3qJwQpIZM priority: 102 providerName: Springer Nature |
Title | Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO |
URI | https://link.springer.com/article/10.1038/s41598-018-29025-1 https://www.ncbi.nlm.nih.gov/pubmed/30013042 https://www.proquest.com/docview/2070790845 https://www.proquest.com/docview/2071564385 https://pubmed.ncbi.nlm.nih.gov/PMC6048152 https://doaj.org/article/136e256a8b3a46459c2e7feea9a0de97 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJtBeJr7pGJWReIOwxnb88YBQW7WaKnWgQaWKl8iOnbVSSUbbIYb44_E5SVGh8MBTJOecnHx3urPP9zuEXihCOjSROlKCuIhJzSNDhYgSE2tDpTA6g_OO8Tk_m7DRNJnuoabdUb2Aq51bO-gnNVkuXn_7cvPWG_ybqmRcnq68E4JCsRjqCaA9q98NHXjPJMBQx3W4X2F9E8ViVdfO7J56iO7QkM5jZMtVBUT_XWHon7cpf0upBk81vIuO6hATdyuduIf2XHEf3a6aTt48QD8GxSyk_THUlZuFwwvYoOOrWbkuLWBHVG2WMJQ8QGcJXOb4YtY7HfcwFKNg7Tkrr1e40VoMd-cvcaGLcjX_7r9blF_dAg9d1Lc4K6PPpZ3nPtLFn4p3D9FkOPjYP4vqHgxRlgixjpxJMs2g1COzGbOx5tKHSLllfuNFqeEJsUYn1saOGCG0IjnnmjLhNFEZN5w-QvtFWbgnCGsqAc7OD3uXyKQyibDKdnjHOqWNZi0UN8udZjVAOfTJWKQhUU5lWkkr9dJKg7TSuIVebuZcVfAc_6TugRQ3lACtHQbK5WVaW2oaU-58HKiloRrSviojTuTOaaWBU9FCJ40OpI26piQgDXYkS1ro-ea1t1RIv-gCpAI0gMxDpad5XKnMhpNG5VpIbCnTFqvbb4r5LKCB84D442e-atTuF1t_X4rj__7RU3RIwF4AXJSfoP318to984HZ2rTRLTEVbXTQ7Y4-jPyzNzh_f-FH-7zfDocd7WCPPwFrpDoK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ8ReEN8UBhgJniBaYjt2_IAQHa06thY0bdLEi7Fjd63UxWXtQEP8TfyN-PLRqXzsba-JE11y57uzz_f7IfRCEhLTNNORFMRFLNM8MlSIKDWJNjQTRuew3zEY8v4h-3CUHq2hX00vDByrbHxi6aitz2GPHHZCYiHjjKVvZ18jYI2C6mpDoVGZxa47_x6WbPM3O--Dfl8S0usebPejmlUgylMhFpEzaa4ZNC_kNmc20TwLQX9kWVhKUGp4SqzRqbWJI0YILcmIc02ZcJrInBtOw3uvoXVGw1KmhdY73eGn_eWuDtTNWCLr7pyYZlvzECGhiy2BZgfgjk1WImBJFPCv7PbvQ5p_VGrLANi7hW7WmSt-V5nabbTmijvoesVleX4X_ewW4_I0AYZ2dTN1eArrfjwb-4W3AElRsTdh6KQAwgrsR3h_3NkadDD0uGAdJPNnc9xMBgxH8o9xoQs_n_wI7y38NzfFPRdtW5z76MTbySgk0Phz8fEeOrwSJdxHrcIX7iHCmmaAkhcuh0jLMmlSYaWNeWyd1EazNkqa363yGvcc6Demqqy_00xVKlJBRapUkUra6NXymVmF-nHp6A5ocTkSELvLC_70WNUOQCWUu5Be6sxQDdVkmRMnRs5pqUFS0UabjQ2o2o3M1YXRt9Hz5e3gAKCqowvQCowBwB-ahTEPKpNZSkLLwjQjbSRWjGlF1NU7xWRcgozzEkgoPPm6MbsLsf7_Kx5d_hXP0I3-wWBP7e0Mdx-jDQKzAkBK-SZqLU7P3JOQ4C3M03pWYfTlqifybxyAYpI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYmeggJHgBNEktuPlgBDTdtRSWhCiUtWLsWOnM9IQD50pqIhfxq_DL8tUw9Jbr4kTvfgtfnnL9xB6pghJaS5NogTxCZOGJ5YKkeQ2M5ZKYU0B8Y7dPb61z94e5Acr6FfXCwNllZ1NrA21CwXEyCESkgqVSpb3y7Ys4sPG8PX0awITpCDT2o3TaERkx59-j79vs1fbG5HXzwkZbn5a30raCQNJkQsxT7zNC8OgkaFwBXOZ4TI6AKVj8beCUstz4qzJncs8sUIYRUrODWXCG6IKbjmN772ELguaZ6Bj4kAs4juQQWOZavt0Uir7s3hWQj9bBm0PMEU2WzoL65EB__Jz_y7X_CNnWx-FwxvoeuvD4jeN0N1EK766ha40Uy1Pb6Ofm9WorivA0LhuJx5PIAKAp6MwDw7AKZo5Thh6KmB0BQ4l_jga9HcHGLpdsImUhZMZ7tQCQ3H-Ea5MFWbjH_G9VfjmJ3jok3WHi5B8CW5cRlcaH1bv76D9C2HBXbRahcrfR9hQCXh58XI8c5lUNhdOuZSnzitjDeuhrNtuXbQI6DCIY6LrTDyVumGRjizSNYt01kMvFs9MG_yPc1cPgIuLlYDdXV8Ix0e6NQU6o9xHR9NISw3klVVBvCi9N8oApaKH1joZ0K1Bmekz8e-hp4vb0RRAfsdUwBVYA9A_VMY19xqRWVBC6xQ1Iz0kloRpidTlO9V4VMON8xpSKD75shO7M7L-vxUPzv-KJ-hqVF_9bntv5yG6RkApAK2Ur6HV-fGJfxQ9vbl9XKsURp8vWod_A6eSZWI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+visible+light+photodegradation+activity+of+RhB%2FMB+from+aqueous+solution+using+nanosized+novel+Fe-Cd+co-modified+ZnO&rft.jtitle=Scientific+reports&rft.au=D.%2C+Neena&rft.au=Kondamareddy%2C+Kiran+Kumar&rft.au=Bin%2C+Han&rft.au=Lu%2C+Dingze&rft.date=2018-07-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-29025-1&rft_id=info%3Apmid%2F30013042&rft.externalDocID=PMC6048152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |