Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO

A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscop...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 10691 - 12
Main Authors D., Neena, Kondamareddy, Kiran Kumar, Bin, Han, Lu, Dingze, Kumar, Pravin, Dwivedi, R. K., Pelenovich, Vasiliy O., Zhao, Xing-Zhong, Gao, Wei, Fu, Dejun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.07.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K MB  = 0.01153 min −1 and K RhB  = 0.00916 min −1 ). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
AbstractList A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K MB  = 0.01153 min −1 and K RhB  = 0.00916 min −1 ). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as K  = 0.01153 min and K  = 0.00916 min ). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min−1 and KRhB = 0.00916 min−1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
Abstract A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min−1 and KRhB = 0.00916 min−1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min-1 and KRhB = 0.00916 min-1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron microscopy (SEM), energy dispersive X-ray emission (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activity of ZnO nanoparticles doped with various atomic weight fraction of Fe and Cd has been investigated under visible light irradiation using the Methylene Blue and Rhodamine B dye in aqueous solution. The FeCd (2%):ZnO (ZFC-1) exhibit the highest photocatalytic activity in terms of rate constant as KMB = 0.01153 min-1 and KRhB = 0.00916 min-1). Further, the re-usability of the ZFC-1 photocatalyst is studied which confirms that it can be reused up to five times with nearly negligible loss of the photocatalytic efficiency. Moreover, the role of photoactive species investigated using a radical scavenger technique. The present investigations show that the doping concentration plays significant role in photocatalytic performance. The visible light absorption shown by Fe-Cd co-doped ZnO nanoparticles is much higher than that of undoped body probably due to co-doping, and the charge carrier recombination is decreased effectively which yields a higher photocatalytic performance. The mechanism for the enhancement of photocatalytic activity under visible light irradiation is also proposed.
ArticleNumber 10691
Author Kumar, Pravin
Lu, Dingze
Zhao, Xing-Zhong
Pelenovich, Vasiliy O.
Fu, Dejun
Bin, Han
Dwivedi, R. K.
Kondamareddy, Kiran Kumar
Gao, Wei
D., Neena
Author_xml – sequence: 1
  givenname: Neena
  surname: D.
  fullname: D., Neena
  email: neena@whu.edu.cn
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Department of Chemical & Materials Engineering, University of Auckland
– sequence: 2
  givenname: Kiran Kumar
  surname: Kondamareddy
  fullname: Kondamareddy, Kiran Kumar
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Department of physics, Veltech Rangarajan Dr. Sagunthala R&D Institute of science and technology, Avadi
– sequence: 3
  givenname: Han
  surname: Bin
  fullname: Bin, Han
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University
– sequence: 4
  givenname: Dingze
  surname: Lu
  fullname: Lu, Dingze
  organization: Inter Department of Physics, Xi’an Polytechnic University
– sequence: 5
  givenname: Pravin
  surname: Kumar
  fullname: Kumar, Pravin
  organization: Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg
– sequence: 6
  givenname: R. K.
  surname: Dwivedi
  fullname: Dwivedi, R. K.
  organization: Department of Physics, Christ Church College
– sequence: 7
  givenname: Vasiliy O.
  surname: Pelenovich
  fullname: Pelenovich, Vasiliy O.
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University
– sequence: 8
  givenname: Xing-Zhong
  surname: Zhao
  fullname: Zhao, Xing-Zhong
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University
– sequence: 9
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: Department of Chemical & Materials Engineering, University of Auckland
– sequence: 10
  givenname: Dejun
  surname: Fu
  fullname: Fu, Dejun
  email: djfu@whu.edu.cn
  organization: Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30013042$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURMvQP8ACWWLTTajfSTZIdNSXVFQJwYaNdWM7GY8y9mAnIxXx4_HMlNJ2UW9s2d89vj4-b4sDH7wtivcEfyKY1aeJE9HUJSZ1SRtMRUleFUcUc1FSRunBo_VhcZzSEuchaMNJ86Y4ZBgThjk9Kv6c-wV4bQ3auOTawaLB9YsRrRdhDMb2EQyMLngEenQbN96h0KFvi7PTr2eoi2GF4Ndkw5RQCsO0A6fkfI88-JDc76zrw8YO6MKWc4N0KFfBuM7l_Z_-9l3xuoMh2eP7eVb8uDj_Pr8qb24vr-dfbkotqmosbSs08KpmUhvNDQFZS4w7wyVpGGuloKYFYQyxtK0qaGgnJTBeWaCNlq1ks-J6r2sCLNU6uhXEOxXAqd1GiL2CODo9WEWYtFRIqFsGXHLRaGqrzlpoABvbVFnr815rPbUra7T1Y4ThiejTE-8Wqg8bJTGviaBZ4OReIIbsXRrVyiVthwH81khFcUWE5KwWGf34DF2GKfps1ZbCVYNrvqU-PO7ooZV_n5wBugd0DClF2z0gBKttmNQ-TCqHSe3ClG2YFfWzIu3GXRTyq9zwcinbl6Z8j-9t_N_2C1V_AZoL3wU
CitedBy_id crossref_primary_10_1016_j_physe_2019_113792
crossref_primary_10_1016_j_ijbiomac_2023_125677
crossref_primary_10_1021_acsomega_2c07460
crossref_primary_10_1007_s11051_019_4710_3
crossref_primary_10_1016_j_materresbull_2022_111849
crossref_primary_10_9767_bcrec_16_4_11797_881_887
crossref_primary_10_1016_j_envres_2023_117540
crossref_primary_10_1021_acsomega_2c01763
crossref_primary_10_3390_chemosensors10060205
crossref_primary_10_1007_s11998_021_00533_6
crossref_primary_10_1016_j_heliyon_2024_e33354
crossref_primary_10_1016_j_diamond_2023_110592
crossref_primary_10_1002_adsu_202200443
crossref_primary_10_3390_catal10070774
crossref_primary_10_1016_j_molstruc_2024_140152
crossref_primary_10_1016_j_apt_2020_04_028
crossref_primary_10_1088_1361_6463_ac021c
crossref_primary_10_1016_j_jece_2021_106587
crossref_primary_10_1016_j_jece_2023_109337
crossref_primary_10_1016_j_chemosphere_2022_134623
crossref_primary_10_1002_crat_202100125
crossref_primary_10_2166_wpt_2023_115
crossref_primary_10_3934_mbe_2021215
crossref_primary_10_1007_s42452_019_0642_x
crossref_primary_10_1088_1402_4896_ace745
crossref_primary_10_1016_j_ceramint_2022_04_277
crossref_primary_10_1016_j_inoche_2021_108606
crossref_primary_10_1149_2162_8777_ac4216
crossref_primary_10_1016_j_ceramint_2018_11_171
crossref_primary_10_1021_acs_inorgchem_4c04790
crossref_primary_10_1007_s11356_022_22550_7
crossref_primary_10_14233_ajchem_2022_23506
crossref_primary_10_1016_j_inoche_2022_109210
crossref_primary_10_1016_j_matchemphys_2020_122672
crossref_primary_10_1007_s11356_022_20397_6
crossref_primary_10_1016_j_jphotochem_2019_111986
crossref_primary_10_1021_acs_iecr_9b01561
crossref_primary_10_1016_j_matchemphys_2021_125040
crossref_primary_10_1021_acsanm_2c04160
crossref_primary_10_1016_j_synthmet_2019_116228
crossref_primary_10_1021_acsomega_3c03883
crossref_primary_10_1038_s41598_019_43917_w
crossref_primary_10_1007_s11164_020_04237_1
crossref_primary_10_1039_D0CE01684E
crossref_primary_10_1016_j_inoche_2023_111097
crossref_primary_10_1007_s11356_020_10982_y
crossref_primary_10_1016_j_mssp_2020_105152
crossref_primary_10_1007_s41779_022_00765_8
crossref_primary_10_1021_acs_inorgchem_0c03327
crossref_primary_10_1007_s11356_024_34843_0
crossref_primary_10_1016_j_jece_2020_104282
crossref_primary_10_3390_nano10081476
crossref_primary_10_1007_s10854_021_06959_3
crossref_primary_10_1016_j_colcom_2020_100330
crossref_primary_10_1007_s10904_023_02618_8
crossref_primary_10_1016_j_mtcomm_2023_107250
crossref_primary_10_1039_C9DT02582K
crossref_primary_10_3390_catal9060498
crossref_primary_10_3390_ijms232415459
crossref_primary_10_1007_s12034_023_02971_x
crossref_primary_10_3390_magnetochemistry8100120
crossref_primary_10_1080_03067319_2023_2203822
crossref_primary_10_1557_s43580_022_00283_6
crossref_primary_10_1016_j_ceramint_2019_10_278
crossref_primary_10_1016_j_jenvman_2020_111125
crossref_primary_10_1016_j_poly_2020_114879
crossref_primary_10_1016_j_apsusc_2021_150649
crossref_primary_10_1016_j_mseb_2023_116688
crossref_primary_10_1016_j_seppur_2020_117042
crossref_primary_10_1038_s41598_024_66844_x
crossref_primary_10_1021_acsami_9b13278
crossref_primary_10_1007_s10854_019_01466_y
crossref_primary_10_1016_j_optmat_2020_109803
crossref_primary_10_1039_D0NA00694G
crossref_primary_10_1016_j_cplett_2024_141860
crossref_primary_10_3390_ma17143487
crossref_primary_10_1016_j_apsusc_2019_05_302
crossref_primary_10_1007_s10971_024_06471_0
crossref_primary_10_1007_s13738_025_03189_w
crossref_primary_10_1016_j_jallcom_2021_162444
crossref_primary_10_3390_catal13101367
crossref_primary_10_1142_S0217984921410074
crossref_primary_10_1016_j_ceramint_2019_09_084
crossref_primary_10_1016_j_jphotochem_2021_113260
crossref_primary_10_1007_s10854_019_02839_z
crossref_primary_10_1007_s10854_022_09053_4
crossref_primary_10_1016_j_jece_2021_105185
crossref_primary_10_1016_j_envres_2021_111700
crossref_primary_10_1021_acs_inorgchem_4c04751
crossref_primary_10_1007_s11356_022_21253_3
crossref_primary_10_1016_j_matchar_2024_114504
crossref_primary_10_1007_s13399_024_05406_7
crossref_primary_10_1021_acsami_9b15578
crossref_primary_10_1016_j_jece_2021_106831
crossref_primary_10_3390_compounds4030032
crossref_primary_10_1088_2631_6331_ad2868
crossref_primary_10_1016_j_chemosphere_2020_128575
crossref_primary_10_1016_j_wri_2021_100163
crossref_primary_10_1016_j_solidstatesciences_2022_106881
crossref_primary_10_1016_j_jpcs_2020_109900
crossref_primary_10_1016_j_matpr_2024_03_042
crossref_primary_10_1016_j_physe_2020_114308
crossref_primary_10_1016_j_jallcom_2022_166095
crossref_primary_10_1016_j_chemosphere_2022_134249
crossref_primary_10_3390_ma12142233
crossref_primary_10_1016_j_cattod_2024_115181
crossref_primary_10_1021_acsestwater_3c00267
crossref_primary_10_1007_s11356_023_31036_z
crossref_primary_10_1016_j_ceramint_2021_03_130
crossref_primary_10_3390_catal12101263
Cites_doi 10.1016/j.matchemphys.2010.09.030
10.1016/S0045-6535(99)00487-7
10.1021/ie401973r
10.1016/j.msec.2012.08.011
10.1016/j.cej.2011.02.018
10.1016/j.solidstatesciences.2010.05.010
10.1038/nnano.2007.451
10.1016/j.jhazmat.2012.10.018
10.1103/PhysRev.155.826
10.1016/j.apcatb.2012.07.012
10.1016/j.solidstatesciences.2012.11.012
10.1021/jp501933k
10.1016/j.apcatb.2015.12.007
10.1021/ic8018138
10.1016/j.jhazmat.2009.05.039
10.1016/j.matchemphys.2005.03.007
10.1016/j.surfcoat.2012.12.001
10.1021/la200570n
10.1140/epjd/e2016-50540-5
10.1103/PhysRevB.15.2493
10.1016/j.jhazmat.2006.10.089
10.1021/acs.jpcc.6b00743
10.1007/s10853-011-6016-4
10.1016/j.jlumin.2012.02.031
10.1039/C5CP01408E
10.1016/j.chemosphere.2012.12.055
10.1002/adfm.201300255
10.1016/j.apcatb.2013.09.001
10.1016/j.apsusc.2016.09.022
10.1016/j.jhazmat.2007.04.046
10.1016/S1010-6030(01)00423-3
10.1063/1.1790570
10.1016/j.physb.2011.06.053
10.1021/jp410063p
10.1016/j.solidstatesciences.2016.11.009
10.1016/j.jhazmat.2009.12.102
10.1016/j.spmi.2014.06.013
10.1016/j.cej.2009.07.036
10.12693/APhysPolA.122.1034
10.1016/S1387-1811(03)00339-1
10.1021/jp5108312
10.1039/c3ce40798e
10.1039/c3nr03969b
10.1016/j.powtec.2014.08.043
10.1021/jp076870l
10.1016/j.jallcom.2012.08.070
10.1039/c3nr02658b
10.1016/j.jallcom.2012.10.105
10.1039/C5RA02557E
10.1016/j.msec.2013.01.046
10.1016/j.micromeso.2010.05.026
10.1016/j.apcatb.2003.11.010
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-018-29025-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_136e256a8b3a46459c2e7feea9a0de97
PMC6048152
30013042
10_1038_s41598_018_29025_1
Genre Journal Article
GrantInformation_xml – fundername: International Cooperation Program of the Ministry of Science and Technology of China 2015DFR00720
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c577t-eb5ca47836cdc4d1a68600fd461933b652dba5dd1e2b77a92f66a347ea29c6b63
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Aug 21 14:31:23 EDT 2025
Thu Jul 10 17:38:25 EDT 2025
Wed Aug 13 06:12:38 EDT 2025
Thu Jan 02 23:05:27 EST 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 00:57:52 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-eb5ca47836cdc4d1a68600fd461933b652dba5dd1e2b77a92f66a347ea29c6b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-29025-1
PMID 30013042
PQID 2070790845
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_136e256a8b3a46459c2e7feea9a0de97
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048152
proquest_miscellaneous_2071564385
proquest_journals_2070790845
pubmed_primary_30013042
crossref_primary_10_1038_s41598_018_29025_1
crossref_citationtrail_10_1038_s41598_018_29025_1
springer_journals_10_1038_s41598_018_29025_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-16
PublicationDateYYYYMMDD 2018-07-16
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Moussa, H. et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B185(11) (2016).
Jiang, J. et al. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. J. Alloy. Compd. 547(59) (2013).
Bian, S., Mudunkotuwa, I. A., Rupasinghe, T. & Grassian, V. H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size and Adsorption of Humic Acid. Langmuir 27(6059) (2011).
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(101) (2008).
Korbahti, B. K., Artut, K., Gecgel, C. & Ozer, A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 173(677) (2011).
Saravanan, R. et al. ZnO/Ag/Mn2O3nanocomposite for visible light induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity RSC Adv5(34645) (2015).
Bie, X. et al. Room-Temperature Ferromagnetism in Pure ZnO Nanoflowers. Solid State Sci. 12(1364) (2010).
Zhu, C. et al. Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution. Chemosphere41(303) (2000).
Joo, J. B. et al. Controllable Synthesis of Mesoporous TiO2 Hollow Shells: Toward an Efficient Photocatalyst. Adv. Funct. Mater. 23(4246) (2013).
Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J. & Cho, M. H. Biogenic synthesis, photocatalytic, and photo-electrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C117(27023) (2013).
Mahnoodi, M., Armani, M., Lymaee, N. Y. & Gharanjig, K. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J. Hazard. Mater. 145(65) (2007).
Neena, D. et al. Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol-gel derived ZnO nanoparticles, Eur. Phys. J. D2016 (70) 53.
Hou, D., Goei, R., Wang, X., Wanga, P. & Lim, T.-T. Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Appl. Catal. B126(121) (2012).
Kant, S., Pathania, D., Singh, P., Dhiman, P. & Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl. Catal. B147(340) (2014).
Kim, K. J. & Park, Y. R. Optical investigation of Zn1− xFexO films grown on Al2O3 (0001) by radio-frequency sputtering. J. Appl. Phys. 96(4150) (2004).
Barick, K. C., Singh, S., Aslam, M. & Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor. Mesopor. Mat. 134(195) (2010).
Sajjad, A. K. L., Shmaila, S., Tian, B. Z., Chen, F. & Zhang, J. L. Comparative studies of operational parameters of degradation of Azo dyes in visible light by highly efficient WO x/TiO2 photocatalyst. J. Hazard. Mater. 177(781) (2010).
Shtepliuk, I., Khyzhun, O., Lashkarev, G., Khomyak, V. & Lazorenko, V. XPS and Raman characterizations of Zn1−xCdxO films grown at the different growth conditions. Acta Phys. Pol. A122(1034) (2012).
Moulder, J. & Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Phys. Electronics (1995).
Priyanka & Srivastava, V. C. Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind. Eng. Chem. Res. 52(17790) (2013).
Yousef, A. et al. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J. Lumin. 132(1668) (2012).
Zhang, Y. & Li, Q. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 16(16) (2013).
Jantawasu, P., Sreethawong, T. & Chavadej, S. Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155(223) (2009).
Adler, D. & Brooks, H. Theory of semiconductor-to-metal transitions. Phys. Rev. 155(826) (1967).
Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S. & Sopian, K. Visible light photocatalytic activity of Fe3+doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere91(1604) (2013).
Beltran, J. J., Barrero, C. A. & Punnoose, A. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C118(13203) (2014).
Gupta, V. K., Pathania, D., Agarwal, S. & Singh, P. Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. J. Hazard. Mater. 243(179) (2012).
Arques, A., Amat, A. M., Garcia-Ripoll, A. & Vicente, R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J. Hazard. Mater. 146(447) (2007).
Wang, Y., Wang, F. & He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale5(11291) (2013).
Zhang, D. & Zeng, F. Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci. 47(2155) (2012).
Peng, Y., Qin, S., Wang, W.-S. & Xu, A.-W. Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. Cryst. Eng. Comm. 15(6518) (2013).
Saravanan, R. et al. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light Materials Science and Engineering C 33(2235) (2013).
Lu, D. et al. Two- dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatysis. Appl. Sur. Sci. 396(185) (2017).
Saravanan, R., Shankar, H., Prakash, T., Narayanan, V. & Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125(277) (2011).
Zhou, M. H., Yu, J. G., Cheng, B. & Yu, H. G. Photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(159) (2005).
Dong, S., Xu, K., Liu, J. & Cui, H. Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Physica B406(3609) (2011).
Chen, Z. P., Fang, W. Q., Zhang, B. & Yang, H. G.High-Yield Synthesis and Magnetic Properties of ZnFe2O4 Single Crystal Nanocubes in Aqueous Solution. J. Alloys Compd. 550(348) (2013).
Le, T. H., Bui, A. T. & Le, T. K. The effect of Fe doping on the suppression of photocatalytic activity of ZnO nanopowder for the application in sunscreens. Powder Techn. 268(173) (2014).
Bian, X. et al. Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J. Phys. Chem. C119(1700) (2015).
Zhang, Y., Ram, M. K., Stefanalkos, E. K. & Goswami, D. Y. Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination, Surf. Coat. Technol. 217(119) (2013).
Yu, T.-H., Cheng, W.-Y., Chao, K.-J. & Lu, S.-Y. ZnFe2O4 Decorated CdS Nanorods as a Highly Efficient, Visible Light Responsive, Photochemically Stable, Magnetically Recyclable Photocatalyst for Hydrogen Generation. Nanoscale5(7356) (2013).
Groen, J. C., Peffer, L.A. & Perez-Rremirez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1) (2003).
Khodja, A., Sehili, T., Pilichowski, J. & Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A141(231) (2001).
Saleh, R. & Djaja, N. F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattice Microst. 74(217) (2014).
Cao, B. & Cai, W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C112(680) (2008).
Beltran, J. J., Barrero, C. A. & Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17(15284) (2015).
Zhao, X. et al. Synergistic effect of Fe2O3/Ho2O3 co-modified 2D-titanate heterojunctions on enhanced photocatalytic degradation. Solid State Sci. 63(42) (2017).
Wang, C., Shao, C., Liu, Y. & Li, X. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem. 48(1105) (2009).
Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B, 49(1) (2004).
Sar.avanan, R. et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C33(91) (2013).
Beltran, J. J., Barrero, C. A. & Punnoose, A. Combination of defects plus mixed valence of transition metals: A strong strategy for ferromagnetic enhancement in ZnO nanoparticles. J. Phys. Chem. C120(8969) (2016).
Koidl, P. Optical absorption of CO2+ in ZnO. Phys. Rev. B15(2493) (1977).
Akpan, U.G. & Hameed, B. H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(520) (2009).
29025_CR30
29025_CR20
29025_CR21
29025_CR22
29025_CR23
29025_CR24
29025_CR25
29025_CR26
29025_CR27
29025_CR28
29025_CR29
29025_CR7
29025_CR6
29025_CR9
29025_CR8
29025_CR3
29025_CR2
29025_CR5
29025_CR4
29025_CR40
29025_CR41
29025_CR31
29025_CR32
29025_CR33
29025_CR34
29025_CR35
29025_CR36
29025_CR37
29025_CR38
29025_CR39
29025_CR1
29025_CR50
29025_CR51
29025_CR52
29025_CR42
29025_CR43
29025_CR44
29025_CR45
29025_CR46
29025_CR47
29025_CR48
29025_CR49
29025_CR53
29025_CR10
29025_CR11
29025_CR12
29025_CR13
29025_CR14
29025_CR15
29025_CR16
29025_CR17
29025_CR18
29025_CR19
References_xml – reference: Moulder, J. & Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Phys. Electronics (1995).
– reference: Neena, D. et al. Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol-gel derived ZnO nanoparticles, Eur. Phys. J. D2016 (70) 53.
– reference: Priyanka & Srivastava, V. C. Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind. Eng. Chem. Res. 52(17790) (2013).
– reference: Saravanan, R. et al. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light Materials Science and Engineering C 33(2235) (2013).
– reference: Zhou, M. H., Yu, J. G., Cheng, B. & Yu, H. G. Photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(159) (2005).
– reference: Groen, J. C., Peffer, L.A. & Perez-Rremirez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 60(1) (2003).
– reference: Chen, Z. P., Fang, W. Q., Zhang, B. & Yang, H. G.High-Yield Synthesis and Magnetic Properties of ZnFe2O4 Single Crystal Nanocubes in Aqueous Solution. J. Alloys Compd. 550(348) (2013).
– reference: Korbahti, B. K., Artut, K., Gecgel, C. & Ozer, A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chem. Eng. J. 173(677) (2011).
– reference: Saleh, R. & Djaja, N. F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattice Microst. 74(217) (2014).
– reference: Cao, B. & Cai, W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C112(680) (2008).
– reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C118(13203) (2014).
– reference: Yousef, A. et al. Influence of CdO-doping on the photoluminescence properties of ZnO nanofibers: effective visible light photocatalyst for waste water treatment. J. Lumin. 132(1668) (2012).
– reference: Khodja, A., Sehili, T., Pilichowski, J. & Boule, P. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A141(231) (2001).
– reference: Zhang, Y. & Li, Q. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 16(16) (2013).
– reference: Akpan, U.G. & Hameed, B. H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(520) (2009).
– reference: Bian, S., Mudunkotuwa, I. A., Rupasinghe, T. & Grassian, V. H. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size and Adsorption of Humic Acid. Langmuir 27(6059) (2011).
– reference: Lu, D. et al. Two- dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatysis. Appl. Sur. Sci. 396(185) (2017).
– reference: Sar.avanan, R. et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering C33(91) (2013).
– reference: Zhu, C. et al. Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution. Chemosphere41(303) (2000).
– reference: Joo, J. B. et al. Controllable Synthesis of Mesoporous TiO2 Hollow Shells: Toward an Efficient Photocatalyst. Adv. Funct. Mater. 23(4246) (2013).
– reference: Wang, Y., Wang, F. & He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale5(11291) (2013).
– reference: Yu, T.-H., Cheng, W.-Y., Chao, K.-J. & Lu, S.-Y. ZnFe2O4 Decorated CdS Nanorods as a Highly Efficient, Visible Light Responsive, Photochemically Stable, Magnetically Recyclable Photocatalyst for Hydrogen Generation. Nanoscale5(7356) (2013).
– reference: Sajjad, A. K. L., Shmaila, S., Tian, B. Z., Chen, F. & Zhang, J. L. Comparative studies of operational parameters of degradation of Azo dyes in visible light by highly efficient WO x/TiO2 photocatalyst. J. Hazard. Mater. 177(781) (2010).
– reference: Kant, S., Pathania, D., Singh, P., Dhiman, P. & Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl. Catal. B147(340) (2014).
– reference: Zhao, X. et al. Synergistic effect of Fe2O3/Ho2O3 co-modified 2D-titanate heterojunctions on enhanced photocatalytic degradation. Solid State Sci. 63(42) (2017).
– reference: Hou, D., Goei, R., Wang, X., Wanga, P. & Lim, T.-T. Preparation of carbon-sensitized and Fe–Er co-doped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Appl. Catal. B126(121) (2012).
– reference: Jiang, J. et al. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. J. Alloy. Compd. 547(59) (2013).
– reference: Koidl, P. Optical absorption of CO2+ in ZnO. Phys. Rev. B15(2493) (1977).
– reference: Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(101) (2008).
– reference: Le, T. H., Bui, A. T. & Le, T. K. The effect of Fe doping on the suppression of photocatalytic activity of ZnO nanopowder for the application in sunscreens. Powder Techn. 268(173) (2014).
– reference: Dong, S., Xu, K., Liu, J. & Cui, H. Photocatalytic performance of ZnO: Fe array films under sunlight irradiation. Physica B406(3609) (2011).
– reference: Wang, C., Shao, C., Liu, Y. & Li, X. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg. Chem. 48(1105) (2009).
– reference: Saravanan, R. et al. ZnO/Ag/Mn2O3nanocomposite for visible light induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity RSC Adv5(34645) (2015).
– reference: Peng, Y., Qin, S., Wang, W.-S. & Xu, A.-W. Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. Cryst. Eng. Comm. 15(6518) (2013).
– reference: Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J. & Cho, M. H. Biogenic synthesis, photocatalytic, and photo-electrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C117(27023) (2013).
– reference: Zhang, Y., Ram, M. K., Stefanalkos, E. K. & Goswami, D. Y. Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination, Surf. Coat. Technol. 217(119) (2013).
– reference: Barick, K. C., Singh, S., Aslam, M. & Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor. Mesopor. Mat. 134(195) (2010).
– reference: Jantawasu, P., Sreethawong, T. & Chavadej, S. Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155(223) (2009).
– reference: Mahnoodi, M., Armani, M., Lymaee, N. Y. & Gharanjig, K. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J. Hazard. Mater. 145(65) (2007).
– reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Combination of defects plus mixed valence of transition metals: A strong strategy for ferromagnetic enhancement in ZnO nanoparticles. J. Phys. Chem. C120(8969) (2016).
– reference: Bian, X. et al. Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J. Phys. Chem. C119(1700) (2015).
– reference: Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B, 49(1) (2004).
– reference: Beltran, J. J., Barrero, C. A. & Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17(15284) (2015).
– reference: Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S. & Sopian, K. Visible light photocatalytic activity of Fe3+doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere91(1604) (2013).
– reference: Adler, D. & Brooks, H. Theory of semiconductor-to-metal transitions. Phys. Rev. 155(826) (1967).
– reference: Moussa, H. et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B185(11) (2016).
– reference: Zhang, D. & Zeng, F. Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci. 47(2155) (2012).
– reference: Saravanan, R., Shankar, H., Prakash, T., Narayanan, V. & Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125(277) (2011).
– reference: Gupta, V. K., Pathania, D., Agarwal, S. & Singh, P. Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. J. Hazard. Mater. 243(179) (2012).
– reference: Bie, X. et al. Room-Temperature Ferromagnetism in Pure ZnO Nanoflowers. Solid State Sci. 12(1364) (2010).
– reference: Arques, A., Amat, A. M., Garcia-Ripoll, A. & Vicente, R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J. Hazard. Mater. 146(447) (2007).
– reference: Kim, K. J. & Park, Y. R. Optical investigation of Zn1− xFexO films grown on Al2O3 (0001) by radio-frequency sputtering. J. Appl. Phys. 96(4150) (2004).
– reference: Shtepliuk, I., Khyzhun, O., Lashkarev, G., Khomyak, V. & Lazorenko, V. XPS and Raman characterizations of Zn1−xCdxO films grown at the different growth conditions. Acta Phys. Pol. A122(1034) (2012).
– ident: 29025_CR20
  doi: 10.1016/j.matchemphys.2010.09.030
– ident: 29025_CR46
  doi: 10.1016/S0045-6535(99)00487-7
– ident: 29025_CR40
  doi: 10.1021/ie401973r
– ident: 29025_CR18
  doi: 10.1016/j.msec.2012.08.011
– ident: 29025_CR4
  doi: 10.1016/j.cej.2011.02.018
– ident: 29025_CR34
  doi: 10.1016/j.solidstatesciences.2010.05.010
– ident: 29025_CR16
  doi: 10.1038/nnano.2007.451
– ident: 29025_CR3
  doi: 10.1016/j.jhazmat.2012.10.018
– ident: 29025_CR28
  doi: 10.1103/PhysRev.155.826
– ident: 29025_CR47
  doi: 10.1016/j.apcatb.2012.07.012
– ident: 29025_CR48
  doi: 10.1016/j.solidstatesciences.2012.11.012
– ident: 29025_CR23
  doi: 10.1021/jp501933k
– ident: 29025_CR51
  doi: 10.1016/j.apcatb.2015.12.007
– ident: 29025_CR8
  doi: 10.1021/ic8018138
– ident: 29025_CR44
  doi: 10.1016/j.jhazmat.2009.05.039
– ident: 29025_CR53
  doi: 10.1016/j.matchemphys.2005.03.007
– ident: 29025_CR21
  doi: 10.1016/j.surfcoat.2012.12.001
– ident: 29025_CR33
  doi: 10.1021/la200570n
– ident: 29025_CR11
  doi: 10.1140/epjd/e2016-50540-5
– ident: 29025_CR31
  doi: 10.1103/PhysRevB.15.2493
– ident: 29025_CR32
– ident: 29025_CR1
  doi: 10.1016/j.jhazmat.2006.10.089
– ident: 29025_CR38
  doi: 10.1021/acs.jpcc.6b00743
– ident: 29025_CR19
  doi: 10.1007/s10853-011-6016-4
– ident: 29025_CR41
  doi: 10.1016/j.jlumin.2012.02.031
– ident: 29025_CR24
  doi: 10.1039/C5CP01408E
– ident: 29025_CR52
  doi: 10.1016/j.chemosphere.2012.12.055
– ident: 29025_CR5
  doi: 10.1002/adfm.201300255
– ident: 29025_CR17
  doi: 10.1016/j.apcatb.2013.09.001
– ident: 29025_CR29
  doi: 10.1016/j.apsusc.2016.09.022
– ident: 29025_CR2
  doi: 10.1016/j.jhazmat.2007.04.046
– ident: 29025_CR12
  doi: 10.1016/S1010-6030(01)00423-3
– ident: 29025_CR27
  doi: 10.1063/1.1790570
– ident: 29025_CR22
  doi: 10.1016/j.physb.2011.06.053
– ident: 29025_CR50
  doi: 10.1021/jp410063p
– ident: 29025_CR39
  doi: 10.1016/j.solidstatesciences.2016.11.009
– ident: 29025_CR10
  doi: 10.1016/j.jhazmat.2009.12.102
– ident: 29025_CR45
  doi: 10.1016/j.spmi.2014.06.013
– ident: 29025_CR43
  doi: 10.1016/j.cej.2009.07.036
– ident: 29025_CR36
  doi: 10.12693/APhysPolA.122.1034
– ident: 29025_CR25
  doi: 10.1016/S1387-1811(03)00339-1
– ident: 29025_CR7
  doi: 10.1021/jp5108312
– ident: 29025_CR30
  doi: 10.1039/c3ce40798e
– ident: 29025_CR49
  doi: 10.1039/c3nr03969b
– ident: 29025_CR42
  doi: 10.1016/j.powtec.2014.08.043
– ident: 29025_CR13
  doi: 10.1021/jp076870l
– ident: 29025_CR35
  doi: 10.1016/j.jallcom.2012.08.070
– ident: 29025_CR6
  doi: 10.1039/c3nr02658b
– ident: 29025_CR37
  doi: 10.1016/j.jallcom.2012.10.105
– ident: 29025_CR14
  doi: 10.1039/C5RA02557E
– ident: 29025_CR15
  doi: 10.1016/j.msec.2013.01.046
– ident: 29025_CR26
  doi: 10.1016/j.micromeso.2010.05.026
– ident: 29025_CR9
  doi: 10.1016/j.apcatb.2003.11.010
SSID ssj0000529419
Score 2.592551
Snippet A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning electron...
Abstract A series of novel Fe-Cd co-doped ZnO nanoparticle based photocatalysts are successfully synthesized by sol-gel route and characterized using scanning...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10691
SubjectTerms 140/146
639/301/299/890
704/172/169/896
Electrons
Humanities and Social Sciences
Investigations
Irradiation
Methylene blue
Microscopy
multidisciplinary
Nanoparticles
Photodegradation
Photoelectron spectroscopy
Recombination
Rhodamine
Scanning electron microscopy
Science
Science (multidisciplinary)
Spectrum analysis
Transmission electron microscopy
Ultraviolet spectroscopy
X-ray diffraction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tEsE3XW43yebj0Ss9ilAFsVB8CZNN1ju4Zot3LVT8481k986eny--JpNlmA9mspP5DSEvDWMVbzSURrFQCg2ydFypsnE1OK6Vgxb_dxy_k0cn4u1pc3pt1Be-CRvggQfBTWouQwrLoB0HrMKZlgXVhQAGKh9M7iNPMe_aZWpA9WZG1Gbskqm4nqxSpMJushqbDnCGa70TiTJg_--yzF8fS_5UMc2BaHaH3B4zSPpm4PwuuRHiPXJzmCl5dZ98O4zzXNWn2DbuloEu8f5Nz-f9uvcIDTFMUaLY0YCDI2jf0Q_z6eR4SrHXhELirL9Y0Y1RUnwa_5lGiP1q8TV9N_aXYUlnoTzwtO3Ls94vupTI0k_x_QNyMjv8eHBUjiMWyrZRal0G17QgsJOj9a3wNUidMqDOi3Sv4tzJhnkHjfd1YE4pMKyTErhQAZhppZP8IdmLfQyPCQWuEa0uLaeIJ7RxjfLGVxK1BA5EQeqNuG074o_jGIylzXVwru2gIptUZLOKbF2QV9sz5wP6xl-pp6jFLSUiZ-eFZE92tCf7L3sqyP7GBuzozivLMpBgpUVTkBfb7eSIWF2BiFpBGgTe4TrRPBpMZssJzwViwQqidoxph9XdnbiYZ7BvmQF90snXG7P7wdafRfHkf4jiKbnF0F8QRlTuk731l4vwLKVga_c8e9t3GBgszg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEA9aEfwivl2tEsFvGrqbZPP4JF7pUYQqiIXDL0uyyfYOrpuzexUU_3gz2Uc5H_2axzKbmUkmM5nfIPRaU5qzUhmiJfWEKyOIZVKS0hbGMiWtqcHfcfJRHJ_yD4tyMTjcuuFZ5bgnpo3ahRp85OAJyaXOFS_fbb4RqBoF0dWhhMZNdAugy-BJl1zIyccCUSxe6CFXJmfqoIvnFeSUFZB6AJVci53zKMH2_8vW_PvJ5B9x03Qcze-hu4Mdid_3jL-Pbvj2AbrdV5b88RD9OmqXKbaPIXncrj1ewy0cb5ZhGxwARPS1lDDkNUD5CBwa_Hk5OziZYcg4wSZSFi47PIomhgfyZ7g1behWP-N32_Ddr_Hck0OH60DOg1s10ZzFX9tPj9Dp_OjL4TEZCi2QupRyS7wta8Mhn6N2NXeFESraQY3j8XbFmBUlddaUzhWeWimNpo0QhnHpDdW1sII9RnttaP1ThA1TgFkXm-O5x5W2pXTa5SJ3XhtreIaKcbmrekAhh2IY6ypFw5mqehZVkUVVYlFVZOjNNGfTY3BcO3oGXJxGAn52aggXZ9WgjlXBhI_GnlGWGYjt6pp62XhvtAFKZYb2RxmoBqXuqisRzNCrqTuqI8RYTAtcgTEAv8NUHPOkF5mJEpbCxJxmSO4I0w6puz3tapkgv0WC9Ykz345id0XW_5fi2fV_8RzdoaAJABMq9tHe9uLSv4gm1ta-THr0G814I8U
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgifrtaJYJvunQ3yebj0Tt6FKEKYqH4EpJNtndwTUrvKij-8WayH3JaBV-TyTJkZjaTzMxvEHqtCKloI02pBPElk4aXlgpRNrY2lkphTQvvHScf-PEpe3_WnO0hMtbC5KT9DGmZf9NjdtjhJh00UAxWQ80AtGBNN55bAN0OWj3n8-ldBSJXrFZDfUxF5Q1Ld86gDNV_k3_5Z5rkb7HSfAQt7qG7g--I3_Xc3kd7PjxAt_tukt8eoh9HYZnj-RgKxu3a4zXcvPHlMm6jA1CIvn8ShloGaBmBY4c_LWeHJzMMVSbYJM7i9QaP6oghKf4cBxPiZvU9fTfEr36NF76cO9zG8iK6VZdcWPwlfHyEThdHn-fH5dBcoWwbIbalt01rGNRwtK5lrjZcJt-ncyzdqCi1vCHOmsa52hMrhFGk49xQJrwhquWW08doP8TgnyJsqAScujSczjomlW2EU67ilfPKWMMKVI_brdsBeRwaYKx1joBTqXsR6SQinUWk6wK9mdZc9rgb_6SegRQnSsDMzgPx6lwPOqRryn1y8Iy01EA8V7XEi857owxwKgp0MOqAHgx5o0mGEKwkawr0appOJghxFRNAKkADkDtUJponvcpMnNAcGmakQGJHmXZY3Z0Jq2WG-eYZyietfDuq3S-2_r4Vz_6P_Dm6Q8AyACqUH6D97dW1f5HcrK19me3qJwQpIZM
  priority: 102
  providerName: Springer Nature
Title Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO
URI https://link.springer.com/article/10.1038/s41598-018-29025-1
https://www.ncbi.nlm.nih.gov/pubmed/30013042
https://www.proquest.com/docview/2070790845
https://www.proquest.com/docview/2071564385
https://pubmed.ncbi.nlm.nih.gov/PMC6048152
https://doaj.org/article/136e256a8b3a46459c2e7feea9a0de97
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJtBeJr7pGJWReIOwxnb88YBQW7WaKnWgQaWKl8iOnbVSSUbbIYb44_E5SVGh8MBTJOecnHx3urPP9zuEXihCOjSROlKCuIhJzSNDhYgSE2tDpTA6g_OO8Tk_m7DRNJnuoabdUb2Aq51bO-gnNVkuXn_7cvPWG_ybqmRcnq68E4JCsRjqCaA9q98NHXjPJMBQx3W4X2F9E8ViVdfO7J56iO7QkM5jZMtVBUT_XWHon7cpf0upBk81vIuO6hATdyuduIf2XHEf3a6aTt48QD8GxSyk_THUlZuFwwvYoOOrWbkuLWBHVG2WMJQ8QGcJXOb4YtY7HfcwFKNg7Tkrr1e40VoMd-cvcaGLcjX_7r9blF_dAg9d1Lc4K6PPpZ3nPtLFn4p3D9FkOPjYP4vqHgxRlgixjpxJMs2g1COzGbOx5tKHSLllfuNFqeEJsUYn1saOGCG0IjnnmjLhNFEZN5w-QvtFWbgnCGsqAc7OD3uXyKQyibDKdnjHOqWNZi0UN8udZjVAOfTJWKQhUU5lWkkr9dJKg7TSuIVebuZcVfAc_6TugRQ3lACtHQbK5WVaW2oaU-58HKiloRrSviojTuTOaaWBU9FCJ40OpI26piQgDXYkS1ro-ea1t1RIv-gCpAI0gMxDpad5XKnMhpNG5VpIbCnTFqvbb4r5LKCB84D442e-atTuF1t_X4rj__7RU3RIwF4AXJSfoP318to984HZ2rTRLTEVbXTQ7Y4-jPyzNzh_f-FH-7zfDocd7WCPPwFrpDoK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ8ReEN8UBhgJniBaYjt2_IAQHa06thY0bdLEi7Fjd63UxWXtQEP8TfyN-PLRqXzsba-JE11y57uzz_f7IfRCEhLTNNORFMRFLNM8MlSIKDWJNjQTRuew3zEY8v4h-3CUHq2hX00vDByrbHxi6aitz2GPHHZCYiHjjKVvZ18jYI2C6mpDoVGZxa47_x6WbPM3O--Dfl8S0usebPejmlUgylMhFpEzaa4ZNC_kNmc20TwLQX9kWVhKUGp4SqzRqbWJI0YILcmIc02ZcJrInBtOw3uvoXVGw1KmhdY73eGn_eWuDtTNWCLr7pyYZlvzECGhiy2BZgfgjk1WImBJFPCv7PbvQ5p_VGrLANi7hW7WmSt-V5nabbTmijvoesVleX4X_ewW4_I0AYZ2dTN1eArrfjwb-4W3AElRsTdh6KQAwgrsR3h_3NkadDD0uGAdJPNnc9xMBgxH8o9xoQs_n_wI7y38NzfFPRdtW5z76MTbySgk0Phz8fEeOrwSJdxHrcIX7iHCmmaAkhcuh0jLMmlSYaWNeWyd1EazNkqa363yGvcc6Demqqy_00xVKlJBRapUkUra6NXymVmF-nHp6A5ocTkSELvLC_70WNUOQCWUu5Be6sxQDdVkmRMnRs5pqUFS0UabjQ2o2o3M1YXRt9Hz5e3gAKCqowvQCowBwB-ahTEPKpNZSkLLwjQjbSRWjGlF1NU7xWRcgozzEkgoPPm6MbsLsf7_Kx5d_hXP0I3-wWBP7e0Mdx-jDQKzAkBK-SZqLU7P3JOQ4C3M03pWYfTlqifybxyAYpI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYmeggJHgBNEktuPlgBDTdtRSWhCiUtWLsWOnM9IQD50pqIhfxq_DL8tUw9Jbr4kTvfgtfnnL9xB6pghJaS5NogTxCZOGJ5YKkeQ2M5ZKYU0B8Y7dPb61z94e5Acr6FfXCwNllZ1NrA21CwXEyCESkgqVSpb3y7Ys4sPG8PX0awITpCDT2o3TaERkx59-j79vs1fbG5HXzwkZbn5a30raCQNJkQsxT7zNC8OgkaFwBXOZ4TI6AKVj8beCUstz4qzJncs8sUIYRUrODWXCG6IKbjmN772ELguaZ6Bj4kAs4juQQWOZavt0Uir7s3hWQj9bBm0PMEU2WzoL65EB__Jz_y7X_CNnWx-FwxvoeuvD4jeN0N1EK766ha40Uy1Pb6Ofm9WorivA0LhuJx5PIAKAp6MwDw7AKZo5Thh6KmB0BQ4l_jga9HcHGLpdsImUhZMZ7tQCQ3H-Ea5MFWbjH_G9VfjmJ3jok3WHi5B8CW5cRlcaH1bv76D9C2HBXbRahcrfR9hQCXh58XI8c5lUNhdOuZSnzitjDeuhrNtuXbQI6DCIY6LrTDyVumGRjizSNYt01kMvFs9MG_yPc1cPgIuLlYDdXV8Ix0e6NQU6o9xHR9NISw3klVVBvCi9N8oApaKH1joZ0K1Bmekz8e-hp4vb0RRAfsdUwBVYA9A_VMY19xqRWVBC6xQ1Iz0kloRpidTlO9V4VMON8xpSKD75shO7M7L-vxUPzv-KJ-hqVF_9bntv5yG6RkApAK2Ur6HV-fGJfxQ9vbl9XKsURp8vWod_A6eSZWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+visible+light+photodegradation+activity+of+RhB%2FMB+from+aqueous+solution+using+nanosized+novel+Fe-Cd+co-modified+ZnO&rft.jtitle=Scientific+reports&rft.au=D.%2C+Neena&rft.au=Kondamareddy%2C+Kiran+Kumar&rft.au=Bin%2C+Han&rft.au=Lu%2C+Dingze&rft.date=2018-07-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-29025-1&rft_id=info%3Apmid%2F30013042&rft.externalDocID=PMC6048152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon