Synthesis of paracrystalline diamond
Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crys...
Saved in:
Published in | Nature (London) Vol. 599; no. 7886; pp. 605 - 610 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solids in nature can be generally classified into crystalline and non-crystalline states
1
–
7
, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond
8
–
10
. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells
4
,
5
,
11
–
13
, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C
60
as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C
60
as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong
sp
3
bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family
14
–
16
, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials. |
---|---|
AbstractList | Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation ofthe two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5'11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics ofthe paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond.sup.8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells.sup.4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C.sub.60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C.sub.60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp.sup.3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family.sup.14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. Solids in nature can be generally classified into crystalline and non-crystalline states , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond . The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells , was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family , which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond 8 – 10 . The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells 4 , 5 , 11 – 13 , was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C 60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C 60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp 3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family 14 – 16 , which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials. Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond.sup.8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells.sup.4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C.sub.60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C.sub.60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp.sup.3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family.sup.14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials. |
Audience | Academic |
Author | Zeng, Zhidan Tang, Hu Sheng, Howard Gou, Huiyang Ishii, Takayuki Wang, Ming-Sheng Katsura, Tomoo Cheng, Yong Yuan, Xiaohong Liang, Tao Liu, Fuyang Fei, Hongzhan |
Author_xml | – sequence: 1 givenname: Hu orcidid: 0000-0003-1571-8843 surname: Tang fullname: Tang, Hu organization: Center for High Pressure Science and Technology Advanced Research – sequence: 2 givenname: Xiaohong surname: Yuan fullname: Yuan, Xiaohong organization: Center for High Pressure Science and Technology Advanced Research – sequence: 3 givenname: Yong surname: Cheng fullname: Cheng, Yong organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University – sequence: 4 givenname: Hongzhan orcidid: 0000-0003-3143-7363 surname: Fei fullname: Fei, Hongzhan organization: Bayerisches Geoinstitut, University of Bayreuth – sequence: 5 givenname: Fuyang surname: Liu fullname: Liu, Fuyang organization: Center for High Pressure Science and Technology Advanced Research – sequence: 6 givenname: Tao surname: Liang fullname: Liang, Tao organization: Center for High Pressure Science and Technology Advanced Research – sequence: 7 givenname: Zhidan orcidid: 0000-0003-4283-2393 surname: Zeng fullname: Zeng, Zhidan organization: Center for High Pressure Science and Technology Advanced Research – sequence: 8 givenname: Takayuki orcidid: 0000-0002-1494-2141 surname: Ishii fullname: Ishii, Takayuki organization: Center for High Pressure Science and Technology Advanced Research, Bayerisches Geoinstitut, University of Bayreuth – sequence: 9 givenname: Ming-Sheng orcidid: 0000-0003-3754-2850 surname: Wang fullname: Wang, Ming-Sheng organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University – sequence: 10 givenname: Tomoo orcidid: 0000-0001-7857-5101 surname: Katsura fullname: Katsura, Tomoo organization: Bayerisches Geoinstitut, University of Bayreuth – sequence: 11 givenname: Howard orcidid: 0000-0002-6134-0354 surname: Sheng fullname: Sheng, Howard email: hsheng@gmu.edu organization: Department of Physics and Astronomy, George Mason University – sequence: 12 givenname: Huiyang orcidid: 0000-0002-2612-4314 surname: Gou fullname: Gou, Huiyang email: huiyang.gou@hpstar.ac.cn organization: Center for High Pressure Science and Technology Advanced Research, College of Environmental and Chemical Engineering, Yanshan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34819683$$D View this record in MEDLINE/PubMed |
BookMark | eNp90l1LHDEUBuBQLHW1_QO9KEvtRYvE5msm2ctlsVYQC9XSyxCTM9vITGZNMtj992Zdxa5sJReB8LyHnOTsoZ3QB0DoPSVHlHD1NQlaqRoTRjERlDF8-wqNqJA1FrWSO2hECFOYKF7vor2UrgkhFZXiDdrlQtFJrfgIfbpYhvwHkk_jvhkvTDQ2LlM2besDjJ03XR_cW_S6MW2Cdw_7Pvr17fhy9h2f_Tg5nU3PsK2kzBgUAVlZJiXlV6IyRtFGcDohzla8Zo6CNURycGW3zpWbGiEnQEEq4gxVfB99XtddxP5mgJR155OFtjUB-iFpVhNWi9IVKfTgGb3uhxjK7VaKM1EpyZ7U3LSgfWj6XBpcFdXT0n4RVE6KwlvUHAJE05Ynb3w53vAft3i78Df6X3S0BZXloPN2a9UvG4FiMvzNczOkpE8vfm7aw__b6eXv2fmm_vDwVsNVB04vou9MXOrHKShArYGNfUoRGm19NtmXqtH4VlOiVwOn1wOny8Dp-4HTtyXKnkUfq78Y4utQKjjMIT593gupO_7R4Uw |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118314 crossref_primary_10_1038_s41467_025_57406_4 crossref_primary_10_1016_j_carbon_2024_119802 crossref_primary_10_1021_acsnano_4c12790 crossref_primary_10_1016_j_ceramint_2023_06_144 crossref_primary_10_1021_jacs_3c00689 crossref_primary_10_1021_acsmaterialslett_4c02264 crossref_primary_10_1093_nsr_nwae125 crossref_primary_10_1016_j_jnucmat_2022_153955 crossref_primary_10_1002_adfm_202203894 crossref_primary_10_1016_j_actamat_2024_120218 crossref_primary_10_1016_j_commatsci_2022_111610 crossref_primary_10_1021_acs_nanolett_3c04037 crossref_primary_10_1063_5_0215663 crossref_primary_10_1016_j_scriptamat_2024_116221 crossref_primary_10_1103_PhysRevLett_131_146101 crossref_primary_10_1002_smll_202305512 crossref_primary_10_1039_D4TC04628E crossref_primary_10_1016_j_jeurceramsoc_2025_117246 crossref_primary_10_1016_j_diamond_2022_109180 crossref_primary_10_1021_acs_jpclett_3c03643 crossref_primary_10_20517_microstructures_2023_54 crossref_primary_10_1063_5_0223053 crossref_primary_10_1016_j_diamond_2024_111380 crossref_primary_10_1039_D4CP02781G crossref_primary_10_1038_s41467_023_42195_5 crossref_primary_10_1016_j_cartre_2023_100256 crossref_primary_10_1016_j_diamond_2022_109109 crossref_primary_10_3390_nano14070635 crossref_primary_10_1016_j_carbon_2022_11_007 crossref_primary_10_1021_jacs_4c16312 crossref_primary_10_1039_D3CP01619F crossref_primary_10_1038_s41563_023_01625_x crossref_primary_10_1016_j_actamat_2023_118773 crossref_primary_10_1016_j_fuel_2024_133110 crossref_primary_10_1002_adma_202412850 crossref_primary_10_1021_acs_chemrev_3c00169 crossref_primary_10_1002_anie_202208247 crossref_primary_10_1007_s11467_022_1204_z crossref_primary_10_1002_adfm_202411472 crossref_primary_10_1016_j_jallcom_2023_172579 crossref_primary_10_1038_s41563_023_01655_5 crossref_primary_10_2139_ssrn_4017080 crossref_primary_10_1016_j_colsurfa_2025_136548 crossref_primary_10_1021_acs_jpcc_3c08175 crossref_primary_10_1039_D4CP00149D crossref_primary_10_1088_0256_307X_39_5_056101 crossref_primary_10_1021_accountsmr_3c00243 crossref_primary_10_1007_s00170_022_10463_1 crossref_primary_10_1063_5_0218769 crossref_primary_10_1016_j_infrared_2022_104398 crossref_primary_10_1039_D4CS01182A crossref_primary_10_1016_j_eml_2022_101931 crossref_primary_10_1021_acsnano_4c05966 crossref_primary_10_1088_1674_1056_ad2a6d crossref_primary_10_2139_ssrn_4191307 crossref_primary_10_1016_j_ijmecsci_2023_108728 crossref_primary_10_1021_acs_nanolett_4c01857 crossref_primary_10_1016_j_ensm_2025_104092 crossref_primary_10_1016_j_carbon_2025_120165 crossref_primary_10_1021_jacs_2c01717 crossref_primary_10_31857_S0370274X24100199 crossref_primary_10_1016_j_isci_2022_105563 crossref_primary_10_1016_j_matdes_2023_112577 crossref_primary_10_1038_d41586_021_02957_x crossref_primary_10_1016_j_cis_2025_103422 crossref_primary_10_1039_D3QI00829K crossref_primary_10_3390_ma15248753 crossref_primary_10_1093_nsr_nwae051 crossref_primary_10_1016_j_infrared_2024_105395 crossref_primary_10_1107_S1600576723009913 crossref_primary_10_1063_5_0152485 crossref_primary_10_1080_26941112_2022_2151322 crossref_primary_10_1016_j_mser_2022_100673 crossref_primary_10_1038_s41563_023_01656_4 crossref_primary_10_1039_D4CP02083A crossref_primary_10_1016_j_apsusc_2022_156226 crossref_primary_10_1016_j_isci_2024_110842 crossref_primary_10_1016_j_jobe_2023_108121 crossref_primary_10_1021_jacs_3c06456 crossref_primary_10_1073_pnas_2416835121 crossref_primary_10_1088_1674_1056_ad5aec crossref_primary_10_1016_j_mtcata_2023_100025 crossref_primary_10_1002_ange_202208247 crossref_primary_10_1209_0295_5075_ad27f3 crossref_primary_10_1016_j_gee_2022_11_002 crossref_primary_10_1039_D3TA01699D crossref_primary_10_1016_j_scib_2025_03_003 crossref_primary_10_1080_26941112_2024_2449373 crossref_primary_10_1080_26941112_2022_2163857 crossref_primary_10_1126_sciadv_adg4159 crossref_primary_10_1016_j_ssc_2023_115153 crossref_primary_10_1038_s41467_024_48435_6 crossref_primary_10_1021_acs_nanolett_2c02542 crossref_primary_10_1016_j_jmmm_2024_172250 crossref_primary_10_1007_s12274_022_4215_8 crossref_primary_10_1021_acsnano_3c09593 crossref_primary_10_1016_j_carbon_2022_03_055 crossref_primary_10_1038_s41467_023_36423_1 crossref_primary_10_1038_s41586_022_05532_0 crossref_primary_10_1039_D3MA00555K crossref_primary_10_1134_S0021364024603397 crossref_primary_10_1021_jacs_3c04971 crossref_primary_10_1016_j_diamond_2024_111680 crossref_primary_10_1038_s41467_024_48137_z crossref_primary_10_1016_j_carbon_2023_118763 crossref_primary_10_1016_j_scriptamat_2022_114549 crossref_primary_10_1016_j_physb_2025_416996 crossref_primary_10_1039_D2SC04326B crossref_primary_10_1073_pnas_2316580121 crossref_primary_10_1103_PhysRevB_109_214113 crossref_primary_10_1016_j_jeurceramsoc_2023_02_008 crossref_primary_10_1080_26941112_2023_2193212 crossref_primary_10_1016_j_jmst_2024_11_047 |
Cites_doi | 10.1098/rspa.1970.0189 10.1103/PhysRev.145.637 10.1038/nmat2897 10.1016/j.carbon.2017.12.027 10.1016/j.diamond.2006.11.103 10.1103/PhysRevLett.92.215505 10.1103/PhysRevLett.105.125504 10.1038/nmat1839 10.1016/S0925-9635(01)00513-1 10.1103/PhysRevLett.102.015506 10.1063/1.111811 10.1103/PhysRev.154.170 10.1016/j.carbon.2016.07.004 10.1103/PhysRevLett.96.076602 10.1007/s10955-011-0293-9 10.1021/cr500304f 10.1088/0965-0393/15/3/008 10.1016/j.diamond.2004.06.017 10.1038/srep04648 10.1016/j.apsusc.2009.08.042 10.1038/354445a0 10.1016/S0031-9201(00)00162-X 10.1103/PhysRevLett.102.245501 10.1063/1.4941716 10.1016/j.pepi.2013.09.009 10.1073/pnas.202427399 10.1021/ja01349a006 10.1088/0965-0393/20/4/045021 10.1016/j.matt.2020.05.013 10.1103/PhysRevLett.54.1392 10.1063/1.2977970 10.1016/j.carbon.2009.02.014 10.1016/0927-0256(94)90109-0 10.1557/S0883769400031420 10.1016/j.surfcoat.2014.01.031 10.2138/rmg.2013.75.3 10.1142/6836 10.1080/00268977700101381 10.1557/jmr.2007.0295 10.1016/S0038-1098(01)00082-5 10.1006/jcph.1995.1039 10.1038/s41592-019-0506-8 10.1557/JMR.1992.1564 10.1126/science.1214780 10.1103/PhysRevLett.108.195505 10.1103/PhysRevLett.102.055503 10.1038/s41563-020-0759-8 10.1016/j.cplett.2006.05.062 10.1038/nmat1219 10.1103/PhysRevLett.107.175504 10.1016/j.physrep.2020.12.007 10.1038/ncomms1974 10.1016/S0927-796X(02)00005-0 10.1021/ja063303n 10.1038/nature04421 10.1038/s41467-018-03744-5 10.1002/3527602798 10.1016/j.eng.2019.01.013 10.1103/PhysRevLett.117.116103 10.1080/01418637808225788 10.1063/1.478259 10.1038/nature13381 10.1017/S1431927602020202 10.1016/0375-9601(96)00483-5 10.1098/rsta.2004.1452 10.1016/j.actamat.2005.05.001 10.1103/PhysRevB.28.784 10.1038/421599b 10.1103/PhysRevB.50.17953 10.1063/1.1407319 10.1080/14786430701394041 10.1126/science.264.5165.1570 10.1103/PhysRevB.47.558 10.1016/j.ultramic.2016.06.003 10.1038/s41467-017-00395-w |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Nov 25, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 25, 2021 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-021-04122-w |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 610 |
ExternalDocumentID | A683723179 34819683 10_1038_s41586_021_04122_w |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE M0L MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c577t-e80e75c27713b45aa81f43190dc5362d1eca073edecacdd147a479e1e780da183 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 23:00:58 EDT 2025 Sat Aug 23 13:35:06 EDT 2025 Tue Jun 17 20:57:54 EDT 2025 Thu Jun 12 23:41:55 EDT 2025 Tue Jun 10 15:30:37 EDT 2025 Tue Jun 10 20:24:59 EDT 2025 Fri Jun 27 04:01:25 EDT 2025 Fri Jun 27 04:25:05 EDT 2025 Wed Feb 19 02:24:42 EST 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 02:32:31 EDT 2025 Fri Feb 21 02:36:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7886 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-e80e75c27713b45aa81f43190dc5362d1eca073edecacdd147a479e1e780da183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2612-4314 0000-0002-6134-0354 0000-0003-4283-2393 0000-0003-3143-7363 0000-0003-3754-2850 0000-0002-1494-2141 0000-0001-7857-5101 0000-0003-1571-8843 |
PMID | 34819683 |
PQID | 2603245872 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2602640020 proquest_journals_2603245872 gale_infotracmisc_A683723179 gale_infotracgeneralonefile_A683723179 gale_infotraccpiq_683723179 gale_infotracacademiconefile_A683723179 gale_incontextgauss_ISR_A683723179 gale_incontextgauss_ATWCN_A683723179 pubmed_primary_34819683 crossref_citationtrail_10_1038_s41586_021_04122_w crossref_primary_10_1038_s41586_021_04122_w springer_journals_10_1038_s41586_021_04122_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-25 |
PublicationDateYYYYMMDD | 2021-11-25 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Preprint at https://arxiv.org/abs/2011.14819 (2020). DanielsHBrydsonRRandBBrownAInvestigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM)Philos. Mag.200787407340922007PMag...87.4073D1:CAS:528:DC%2BD2sXptlSqt7c%3D10.1080/14786430701394041 DixonMHutchinsonPA method for the extrapolation of pair distribution functionsMol. Phys.197733166316701977MolPh..33.1663D1:CAS:528:DyaE2sXlvV2ksbk%3D10.1080/00268977700101381 KeatingPNEffect of invariance requirements on the elastic strain energy of crystals with application to the diamond structurePhys. Rev.19661456376451966PhRv..145..637K1:CAS:528:DyaF28XpvVGlug%3D%3D10.1103/PhysRev.145.637 KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 RobertsonJDiamond-like amorphous carbonMater. Sci. Eng. R Rep.20023712928110.1016/S0927-796X(02)00005-0 HuangQNanotwinned diamond with unprecedented hardness and stabilityNature20145102502532014Natur.510..250H1:CAS:528:DC%2BC2cXps1WmurY%3D2491991910.1038/nature13381 KumarRSX-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressureDiam. Relat. Mater.200716125012532007DRM....16.1250K1:CAS:528:DC%2BD2sXkt1amt7o%3D10.1016/j.diamond.2006.11.103 MishinYMehlMJPapaconstantopoulosDAPhase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulationsActa Mater.200553402940412005AcMat..53.4029M1:CAS:528:DC%2BD2MXntlSntrc%3D10.1016/j.actamat.2005.05.001 Colón-RamosDALa RivierePShroffHOldenbourgRPromoting transparency and reproducibility in enhanced molecular simulationsNat. Methods20191667067310.1038/s41592-019-0506-81:CAS:528:DC%2BC1MXhsVOku73L LechnerWDellagoCAccurate determination of crystal structures based on averaged local bond order parametersJ. Chem. Phys.20081291147072008JChPh.129k4707L1904498010.1063/1.29779701:CAS:528:DC%2BD1cXhtFOrtbnN OsswaldSYushinGMochalinVKucheyevSOGogotsiYControl of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in airJ. Am. Chem. Soc.200612811635116421:CAS:528:DC%2BD28Xot1Kgsrw%3D1693928910.1021/ja063303n SolozhenkoVLKurakevychOOAndraultDLe GodecYMezouarMUltimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5Phys. Rev. Lett.20091020155062009PhRvL.102a5506S1925721010.1103/PhysRevLett.102.0155061:CAS:528:DC%2BD1MXkvVSquw%3D%3D IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b BaxterRJMethod of solution of the Percus-Yevick, hypernetted-chain, or similar equationsPhys. Rev.19671541701741967PhRv..154..170B1:CAS:528:DyaF2sXnvFyitg%3D%3D10.1103/PhysRev.154.170 Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117 (2016). PuJ-CWangS-FSungJCHigh-temperature oxidation behaviors of CVD diamond filmsAppl. Surf. Sci.20092566686732009ApSS..256..668P1:CAS:528:DC%2BD1MXhsVWrurjN10.1016/j.apsusc.2009.08.042 IshiiTGeneration of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvilsRev. Sci. Instrum.2016870245012016RScI...87b4501I1:STN:280:DC%2BC28jmtVynuw%3D%3D2693187110.1063/1.4941716 MaraglianoLVanden-EijndenEA temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulationsChem. Phys. Lett.20064261681752006CPL...426..168M1:CAS:528:DC%2BD28XmslGns7c%3D10.1016/j.cplett.2006.05.062 OliverWCPharrGMAn improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experimentsJ. Mater. Res.19927156415831992JMatR...7.1564O1:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564 ChangYYJacobsenSDKimuraMIrifuneTOhnoIElastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methodsPhys. Earth Planet. Inter.201422847552014PEPI..228...47C1:CAS:528:DC%2BC3sXhslSmt7bK10.1016/j.pepi.2013.09.009 FerrariACRobertsonJRaman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamondPhilos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.2004362247725122004RSPTA.362.2477F1:CAS:528:DC%2BD2cXhtFahtbrM10.1098/rsta.2004.1452 TreacyMMJBorisenkoKBThe local structure of amorphous siliconScience20123359509532012Sci...335..950T1:CAS:528:DC%2BC38XisFarsL0%3D2236300310.1126/science.1214780 StukowskiAStructure identification methods for atomistic simulations of crystalline materialsModel. Simul. Mat. Sci. Eng.2012200450212012MSMSE..20d5021S10.1088/0965-0393/20/4/0450211:CAS:528:DC%2BC38XpsFOgtr4%3D ElliottSRMedium-range structural order in covalent amorphous solidsNature19913544454521991Natur.354..445E1:CAS:528:DyaK38Xks1ClsA%3D%3D10.1038/354445a0 HiraiHKondoKYoshizawaNShiraishiMAmorphous diamond from C60 fullereneAppl. Phys. Lett.199464179717991994ApPhL..64.1797H1:CAS:528:DyaK2cXisVylsr0%3D10.1063/1.111811 OganovARHemleyRJHazenRMJonesAPStructure, bonding, and mineralogy of carbon at extreme conditionsRev. Mineral. Geochem.20137547771:CAS:528:DC%2BC3sXmvVylur4%3D10.2138/rmg.2013.75.3 Wang, Q. et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4 (2014). GeorgakilasVPermanJATucekJZborilRBroad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructuresChem. Rev.2015115474448221:CAS:528:DC%2BC2MXptVGls7s%3D2601248810.1021/cr500304f ElliottSRA continuous random network approach to the structure of vitreous boron trioxidePhilos. Mag. B1978374354461978PMagB..37..435E1:CAS:528:DyaE1cXmt1ChtLw%3D10.1080/01418637808225788 LinYAmorphous diamond: a high-pressure superhard carbon allotropePhys. Rev. Lett.20111071755042011PhRvL.107q5504L2210753610.1103/PhysRevLett.107.1755041:CAS:528:DC%2BC3MXhsVWks7vI HirataADirect observation of local atomic order in a metallic glassNat. Mater.20111028332011NatMa..10...28H1:CAS:528:DC%2BC3cXhsFKisrjN2110245410.1038/nmat2897 NémethPComplex nanostructures in diamondNat. Mater.202019112611312020NatMa..19.1126N3277881410.1038/s41563-020-0759-81:CAS:528:DC%2BB3cXhsFOhtrjJ ZhuS-cYanX-zLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013 PanZSunHZhangYChenCHarder than diamond: superior indentation strength of wurtzite BN and lonsdaleitePhys. Rev. Lett.20091020555032009PhRvL.102e5503P1925751910.1103/PhysRevLett.102.0555031:CAS:528:DC%2BD1MXhs1elt7Y%3D LaioAParrinelloMEscaping free-energy minimaProc. Natl Acad. Sci. USA20029912562125662002PNAS...9912562L1:CAS:528:DC%2BD38XnvFGiurc%3D1227113613049910.1073/pnas.202427399 ZachariasenWHThe atomic arrangement in glassJ. Am. Chem. Soc.193254384138511:CAS:528:DyaA38Xls1OnsQ%3D%3D10.1021/ja01349a006 LobatoIvan AertSVerbeeckJProgress and new advances in simulating electron microscopy datasets using MULTEMUltramicroscopy201616817271:CAS:528:DC%2BC28XhtVWktrbK2732335010.1016/j.ultramic.2016.06.003 DubrovinskaiaNDubrovinskyLLangenhorstFJacobsenSLiebskeCNanocrystalline diamond synthesized from C60Diam. Relat. Mater.20051416222005DRM....14...16D1:CAS:528:DC%2BD2cXpslWksLg%3D10.1016/j.diamond.2004.06.017 FinneyJLRandom packings and the structure of simple liquids. I. The geometry of random close packingProc. R. Soc. Lond. A Math. Phys. Sci.19703194794931970RSPSA.319..479F1:CAS:528:DyaE3MXnsFKg WootenFWinerKWeaireDComputer generation of structural models of amorphous Si and GePhys. Rev. Lett.198554139213951985PhRvL..54.1392W1:CAS:528:DyaL2MXit1KgtLw%3D1003102010.1103/PhysRevLett.54.1392 IshiiTLiuZKatsuraTA breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvilsEngineering201954344401:CAS:528:DC%2BC1MXitVOlt77P10.1016/j.eng.2019.01.013 ChenLJStructural evolution in amorphous silicon and germanium thin filmsMicrosc. Microanal.200282682732002MiMic...8..268C1:CAS:528:DC%2BD38XmtVOit7c%3D1253322410.1017/S1431927602020202 BewiloguaKHofmannDHistory of diamond-like carbon films — from first experiments to worldwide applicationsSurf. Coat. Technol.20142422142251:CAS:528:DC%2BC2cXitF2hsLg%3D10.1016/j.surfcoat.2014.01.031 TeterDMComputational alchemy: the search for new superhard materialsMRS Bull.19982322271:CAS:528:DyaK1cXosVCrtg%3D%3D10.1557/S0883769400031420 ChengYQMaEShengHWAtomic level structure in multicomponent bulk metallic glassPhys. Rev. Lett.20091022455012009PhRvL.102x5501C1:STN:280:DC%2BD1MrjvFGgug%3D%3D1965902410.1103/PhysRevLett.102.245501 Lee, L. L. Molecular Thermodynamics of Electrolyte Solutions (World Scientific, 2008). PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.6512010.1006/jcph.1995.1039 MiracleDBA structural model for metallic glassesNat. Mater.200436977022004NatMa...3..697M1:CAS:528:DC%2BD2cXotVSlt7o%3D1537805010.1038/nmat1219 BrommerPGählerFPotfit: effective potentials from ab initio dataModel. Simul. Mat. Sci. Eng.2007152953042007MSMSE..15..295B1:CAS:528:DC%2BD2sXmvVyhu74%3D10.1088/0965-0393/15/3/008 Sarac, B. et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 9 (2018). Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3 (2012). TangHRevealing the formation mechanism of ultrahard nanotwinned diamond from onion carbonCarbon20181291591671:CAS:528:DC%2BC2sXhvFOns7fI10.1016/j.carbon.2017.12.027 SteinhardtPJNelsonDRRonchettiMBond-orientational order in liquids and glassesPhys. Rev. B1983287848051983PhRvB..28..784S1:CAS:528:DyaL3sXkslOgs7w%3D10.1103/PhysRevB.28.784 MarchiMBallonePAdiabati S-c Zhu (4122_CR33) 2020; 3 VD Blank (4122_CR23) 1996; 220 MMJ Treacy (4122_CR11) 2012; 335 PN Keating (4122_CR56) 1966; 145 P Brommer (4122_CR58) 2007; 15 H Daniels (4122_CR28) 2007; 87 Q Huang (4122_CR42) 2014; 510 J-C Pu (4122_CR49) 2009; 256 SR Elliott (4122_CR3) 1978; 37 Y Iwasa (4122_CR22) 1994; 264 N Dubrovinskaia (4122_CR40) 2005; 14 M Marchi (4122_CR34) 1999; 110 PM Voyles (4122_CR19) 2001; 90 HW Sheng (4122_CR5) 2006; 439 WC Oliver (4122_CR52) 1992; 7 L Maragliano (4122_CR61) 2006; 426 A Merlen (4122_CR45) 2009; 47 SR Elliott (4122_CR4) 1991; 354 W Lechner (4122_CR38) 2008; 129 4122_CR30 4122_CR74 S Plimpton (4122_CR32) 1995; 117 DA Colón-Ramos (4122_CR62) 2019; 16 4122_CR75 N Serebryanaya (4122_CR69) 2001; 118 G Kresse (4122_CR53) 1993; 47 WH Zachariasen (4122_CR2) 1932; 54 LJ Chen (4122_CR29) 2002; 8 4122_CR35 H Tang (4122_CR31) 2018; 129 H Hirai (4122_CR8) 1994; 64 AC Ferrari (4122_CR27) 2004; 362 YQ Cheng (4122_CR59) 2009; 102 M Dixon (4122_CR67) 1977; 33 V Georgakilas (4122_CR15) 2015; 115 VL Solozhenko (4122_CR72) 2001; 10 T Ishii (4122_CR50) 2016; 87 B Sundqvist (4122_CR26) 2021; 909 A Laio (4122_CR60) 2002; 99 K Bewilogua (4122_CR47) 2014; 242 A Hirata (4122_CR7) 2011; 10 AR Oganov (4122_CR14) 2013; 75 VL Solozhenko (4122_CR71) 2009; 102 P Németh (4122_CR16) 2020; 19 D Faken (4122_CR37) 1994; 2 S Osswald (4122_CR48) 2006; 128 A Kubo (4122_CR51) 2000; 121 YY Chang (4122_CR76) 2014; 228 F Wooten (4122_CR55) 1985; 54 RJ Baxter (4122_CR66) 1967; 154 4122_CR24 A Stukowski (4122_CR65) 2012; 20 Z Zeng (4122_CR9) 2017; 8 S Yamanaka (4122_CR25) 2006; 96 PJ Steinhardt (4122_CR64) 1983; 28 HW Sheng (4122_CR36) 2007; 6 H Tang (4122_CR43) 2016; 108 Y Mishin (4122_CR57) 2005; 53 J Robertson (4122_CR20) 2002; 37 T Irifune (4122_CR39) 2003; 421 H Sumiya (4122_CR41) 2007; 22 PE Blöchl (4122_CR54) 1994; 50 Y Lin (4122_CR10) 2011; 107 RS Kumar (4122_CR70) 2007; 16 JL Finney (4122_CR63) 1970; 319 4122_CR1 T Ishii (4122_CR21) 2019; 5 W Hujo (4122_CR44) 2011; 145 4122_CR17 4122_CR12 I Lobato (4122_CR68) 2016; 168 Z Pan (4122_CR73) 2009; 102 4122_CR13 DM Teter (4122_CR46) 1998; 23 4122_CR18 DB Miracle (4122_CR6) 2004; 3 34819687 - Nature. 2021 Nov;599(7886):563-564 |
References_xml | – reference: ElliottSRA continuous random network approach to the structure of vitreous boron trioxidePhilos. Mag. B1978374354461978PMagB..37..435E1:CAS:528:DyaE1cXmt1ChtLw%3D10.1080/01418637808225788 – reference: Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117 (2016). – reference: SteinhardtPJNelsonDRRonchettiMBond-orientational order in liquids and glassesPhys. Rev. B1983287848051983PhRvB..28..784S1:CAS:528:DyaL3sXkslOgs7w%3D10.1103/PhysRevB.28.784 – reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953 – reference: BrommerPGählerFPotfit: effective potentials from ab initio dataModel. Simul. Mat. Sci. Eng.2007152953042007MSMSE..15..295B1:CAS:528:DC%2BD2sXmvVyhu74%3D10.1088/0965-0393/15/3/008 – reference: HujoWShadrack JabesBRanaVKChakravartyCMolineroVThe rise and fall of anomalies in tetrahedral liquidsJ. Stat. Phys.20111452933122011JSP...145..293H1:CAS:528:DC%2BC3MXhsVGqu7jE1231.8207410.1007/s10955-011-0293-9 – reference: TeterDMComputational alchemy: the search for new superhard materialsMRS Bull.19982322271:CAS:528:DyaK1cXosVCrtg%3D%3D10.1557/S0883769400031420 – reference: DubrovinskaiaNDubrovinskyLLangenhorstFJacobsenSLiebskeCNanocrystalline diamond synthesized from C60Diam. Relat. Mater.20051416222005DRM....14...16D1:CAS:528:DC%2BD2cXpslWksLg%3D10.1016/j.diamond.2004.06.017 – reference: ShengHWPolyamorphism in a metallic glassNat. Mater.200761921972007JMMM..316..192S1:CAS:528:DC%2BD2sXit1Khsbg%3D1731014010.1038/nmat1839 – reference: LobatoIvan AertSVerbeeckJProgress and new advances in simulating electron microscopy datasets using MULTEMUltramicroscopy201616817271:CAS:528:DC%2BC28XhtVWktrbK2732335010.1016/j.ultramic.2016.06.003 – reference: ChangYYJacobsenSDKimuraMIrifuneTOhnoIElastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methodsPhys. Earth Planet. Inter.201422847552014PEPI..228...47C1:CAS:528:DC%2BC3sXhslSmt7bK10.1016/j.pepi.2013.09.009 – reference: ZachariasenWHThe atomic arrangement in glassJ. Am. Chem. Soc.193254384138511:CAS:528:DyaA38Xls1OnsQ%3D%3D10.1021/ja01349a006 – reference: MiracleDBA structural model for metallic glassesNat. Mater.200436977022004NatMa...3..697M1:CAS:528:DC%2BD2cXotVSlt7o%3D1537805010.1038/nmat1219 – reference: Lee, L. L. Molecular Thermodynamics of Electrolyte Solutions (World Scientific, 2008). – reference: DanielsHBrydsonRRandBBrownAInvestigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM)Philos. Mag.200787407340922007PMag...87.4073D1:CAS:528:DC%2BD2sXptlSqt7c%3D10.1080/14786430701394041 – reference: MaraglianoLVanden-EijndenEA temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulationsChem. Phys. Lett.20064261681752006CPL...426..168M1:CAS:528:DC%2BD28XmslGns7c%3D10.1016/j.cplett.2006.05.062 – reference: OsswaldSYushinGMochalinVKucheyevSOGogotsiYControl of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in airJ. Am. Chem. Soc.200612811635116421:CAS:528:DC%2BD28Xot1Kgsrw%3D1693928910.1021/ja063303n – reference: MishinYMehlMJPapaconstantopoulosDAPhase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulationsActa Mater.200553402940412005AcMat..53.4029M1:CAS:528:DC%2BD2MXntlSntrc%3D10.1016/j.actamat.2005.05.001 – reference: NémethPComplex nanostructures in diamondNat. Mater.202019112611312020NatMa..19.1126N3277881410.1038/s41563-020-0759-81:CAS:528:DC%2BB3cXhsFOhtrjJ – reference: TangHSynthesis of nano-polycrystalline diamond in proximity to industrial conditionsCarbon2016108161:CAS:528:DC%2BC28XhtFens73I10.1016/j.carbon.2016.07.004 – reference: ZhuS-cYanX-zLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013 – reference: OganovARHemleyRJHazenRMJonesAPStructure, bonding, and mineralogy of carbon at extreme conditionsRev. Mineral. Geochem.20137547771:CAS:528:DC%2BC3sXmvVylur4%3D10.2138/rmg.2013.75.3 – reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.6512010.1006/jcph.1995.1039 – reference: Colón-RamosDALa RivierePShroffHOldenbourgRPromoting transparency and reproducibility in enhanced molecular simulationsNat. Methods20191667067310.1038/s41592-019-0506-81:CAS:528:DC%2BC1MXhsVOku73L – reference: HirataADirect observation of local atomic order in a metallic glassNat. Mater.20111028332011NatMa..10...28H1:CAS:528:DC%2BC3cXhsFKisrjN2110245410.1038/nmat2897 – reference: Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3 (2012). – reference: PuJ-CWangS-FSungJCHigh-temperature oxidation behaviors of CVD diamond filmsAppl. Surf. Sci.20092566686732009ApSS..256..668P1:CAS:528:DC%2BD1MXhsVWrurjN10.1016/j.apsusc.2009.08.042 – reference: WootenFWinerKWeaireDComputer generation of structural models of amorphous Si and GePhys. Rev. Lett.198554139213951985PhRvL..54.1392W1:CAS:528:DyaL2MXit1KgtLw%3D1003102010.1103/PhysRevLett.54.1392 – reference: SundqvistBCarbon under pressurePhys. Rep.20219091732021PhR...909....1S1:CAS:528:DC%2BB3MXptlKiuw%3D%3D10.1016/j.physrep.2020.12.007 – reference: RobertsonJDiamond-like amorphous carbonMater. Sci. Eng. R Rep.20023712928110.1016/S0927-796X(02)00005-0 – reference: LaioAParrinelloMEscaping free-energy minimaProc. Natl Acad. Sci. USA20029912562125662002PNAS...9912562L1:CAS:528:DC%2BD38XnvFGiurc%3D1227113613049910.1073/pnas.202427399 – reference: KuboAAkaogiMPost-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskitePhys. Earth Planet. Inter.2000121851022000PEPI..121...85K1:CAS:528:DC%2BD3cXlvVCks74%3D10.1016/S0031-9201(00)00162-X – reference: StukowskiAStructure identification methods for atomistic simulations of crystalline materialsModel. Simul. Mat. Sci. Eng.2012200450212012MSMSE..20d5021S10.1088/0965-0393/20/4/0450211:CAS:528:DC%2BC38XpsFOgtr4%3D – reference: ShengHWLuoWKAlamgirFMBaiJMMaEAtomic packing and short-to-medium-range order in metallic glassesNature20064394194252006Natur.439..419S1:CAS:528:DC%2BD28XntFWltQ%3D%3D1643710510.1038/nature04421 – reference: IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b – reference: ChenLJStructural evolution in amorphous silicon and germanium thin filmsMicrosc. Microanal.200282682732002MiMic...8..268C1:CAS:528:DC%2BD38XmtVOit7c%3D1253322410.1017/S1431927602020202 – reference: SolozhenkoVLKurakevychOOAndraultDLe GodecYMezouarMUltimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5Phys. Rev. Lett.20091020155062009PhRvL.102a5506S1925721010.1103/PhysRevLett.102.0155061:CAS:528:DC%2BD1MXkvVSquw%3D%3D – reference: ZengZSynthesis of quenchable amorphous diamondNat. Commun.201782017NatCo...8..322Z28831044556727210.1038/s41467-017-00395-w1:CAS:528:DC%2BC1cXos1Smurs%3D – reference: LinYAmorphous diamond: a high-pressure superhard carbon allotropePhys. Rev. Lett.20111071755042011PhRvL.107q5504L2210753610.1103/PhysRevLett.107.1755041:CAS:528:DC%2BC3MXhsVWks7vI – reference: SerebryanayaNBlankVIvdenkoVChernozatonskiiLPressure-induced superhard phase of C60Solid State Commun.20011181831872001SSCom.118..183S1:CAS:528:DC%2BD3MXisFGnsLk%3D10.1016/S0038-1098(01)00082-5 – reference: Wang, Q. et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4 (2014). – reference: OliverWCPharrGMAn improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experimentsJ. Mater. Res.19927156415831992JMatR...7.1564O1:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564 – reference: YamanakaSElectron conductive three-dimensional polymer of cuboidal C60Phys. Rev. Lett.2006960766022006PhRvL..96g6602Y1660611710.1103/PhysRevLett.96.0766021:CAS:528:DC%2BD28XhvVartLc%3D – reference: ElliottSRMedium-range structural order in covalent amorphous solidsNature19913544454521991Natur.354..445E1:CAS:528:DyaK38Xks1ClsA%3D%3D10.1038/354445a0 – reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: BlankVDPhase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fulleritesPhys. Lett. A19962201491571996PhLA..220..149B1:CAS:528:DyaK28XltVyjurc%3D10.1016/0375-9601(96)00483-5 – reference: FakenDJónssonHSystematic analysis of local atomic structure combined with 3D computer graphicsComput. Mater. Sci.199422792861:CAS:528:DyaK2cXkvV2js7c%3D10.1016/0927-0256(94)90109-0 – reference: IshiiTGeneration of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvilsRev. Sci. Instrum.2016870245012016RScI...87b4501I1:STN:280:DC%2BC28jmtVynuw%3D%3D2693187110.1063/1.4941716 – reference: VoylesPMStructure and physical properties of paracrystalline atomistic models of amorphous siliconJ. Appl. Phys.200190443744512001JAP....90.4437V1:CAS:528:DC%2BD3MXns1KgsL0%3D10.1063/1.1407319 – reference: GeorgakilasVPermanJATucekJZborilRBroad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructuresChem. Rev.2015115474448221:CAS:528:DC%2BC2MXptVGls7s%3D2601248810.1021/cr500304f – reference: DixonMHutchinsonPA method for the extrapolation of pair distribution functionsMol. Phys.197733166316701977MolPh..33.1663D1:CAS:528:DyaE2sXlvV2ksbk%3D10.1080/00268977700101381 – reference: MerlenAHigh pressure–high temperature synthesis of diamond from single-wall pristine and iodine doped carbon nanotube bundlesCarbon200947164316511:CAS:528:DC%2BD1MXltVGjurg%3D10.1016/j.carbon.2009.02.014 – reference: Zallen, R. The Physics of Amorphous Solids (Wiley, 1983). – reference: PanZSunHZhangYChenCHarder than diamond: superior indentation strength of wurtzite BN and lonsdaleitePhys. Rev. Lett.20091020555032009PhRvL.102e5503P1925751910.1103/PhysRevLett.102.0555031:CAS:528:DC%2BD1MXhs1elt7Y%3D – reference: TreacyMMJBorisenkoKBThe local structure of amorphous siliconScience20123359509532012Sci...335..950T1:CAS:528:DC%2BC38XisFarsL0%3D2236300310.1126/science.1214780 – reference: FinneyJLRandom packings and the structure of simple liquids. I. The geometry of random close packingProc. R. Soc. Lond. A Math. Phys. Sci.19703194794931970RSPSA.319..479F1:CAS:528:DyaE3MXnsFKg – reference: KumarRSX-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressureDiam. Relat. Mater.200716125012532007DRM....16.1250K1:CAS:528:DC%2BD2sXkt1amt7o%3D10.1016/j.diamond.2006.11.103 – reference: TangHRevealing the formation mechanism of ultrahard nanotwinned diamond from onion carbonCarbon20181291591671:CAS:528:DC%2BC2sXhvFOns7fI10.1016/j.carbon.2017.12.027 – reference: Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Preprint at https://arxiv.org/abs/2011.14819 (2020). – reference: Blase, X., Gillet, P., Miguel, A. S. & Mélinon, P. Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92 (2004). – reference: KeatingPNEffect of invariance requirements on the elastic strain energy of crystals with application to the diamond structurePhys. Rev.19661456376451966PhRv..145..637K1:CAS:528:DyaF28XpvVGlug%3D%3D10.1103/PhysRev.145.637 – reference: ChengYQMaEShengHWAtomic level structure in multicomponent bulk metallic glassPhys. Rev. Lett.20091022455012009PhRvL.102x5501C1:STN:280:DC%2BD1MrjvFGgug%3D%3D1965902410.1103/PhysRevLett.102.245501 – reference: Gibson, J. M., Treacy, M. M. J., Sun, T. & Zaluzec, N. J. Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett. 105 (2010). – reference: IwasaYNew phases of C60 synthesized at high pressureScience1994264157015721994Sci...264.1570I1:CAS:528:DyaK2cXksVOisb8%3D1776960010.1126/science.264.5165.1570 – reference: SumiyaHIrifuneTHardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperatureJ. Mater. Res.200722234523512007JMatR..22.2345S1:CAS:528:DC%2BD2sXptVyjsro%3D10.1557/jmr.2007.0295 – reference: Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett. 108 (2012). – reference: HiraiHKondoKYoshizawaNShiraishiMAmorphous diamond from C60 fullereneAppl. Phys. Lett.199464179717991994ApPhL..64.1797H1:CAS:528:DyaK2cXisVylsr0%3D10.1063/1.111811 – reference: MarchiMBallonePAdiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systemsJ. Chem. Phys.1999110369737021999JChPh.110.3697M1:CAS:528:DyaK1MXosVWmtQ%3D%3D10.1063/1.478259 – reference: BaxterRJMethod of solution of the Percus-Yevick, hypernetted-chain, or similar equationsPhys. Rev.19671541701741967PhRv..154..170B1:CAS:528:DyaF2sXnvFyitg%3D%3D10.1103/PhysRev.154.170 – reference: HuangQNanotwinned diamond with unprecedented hardness and stabilityNature20145102502532014Natur.510..250H1:CAS:528:DC%2BC2cXps1WmurY%3D2491991910.1038/nature13381 – reference: IshiiTLiuZKatsuraTA breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvilsEngineering201954344401:CAS:528:DC%2BC1MXitVOlt77P10.1016/j.eng.2019.01.013 – reference: FerrariACRobertsonJRaman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamondPhilos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.2004362247725122004RSPTA.362.2477F1:CAS:528:DC%2BD2cXhtFahtbrM10.1098/rsta.2004.1452 – reference: BewiloguaKHofmannDHistory of diamond-like carbon films — from first experiments to worldwide applicationsSurf. Coat. Technol.20142422142251:CAS:528:DC%2BC2cXitF2hsLg%3D10.1016/j.surfcoat.2014.01.031 – reference: Sarac, B. et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 9 (2018). – reference: LechnerWDellagoCAccurate determination of crystal structures based on averaged local bond order parametersJ. Chem. Phys.20081291147072008JChPh.129k4707L1904498010.1063/1.29779701:CAS:528:DC%2BD1cXhtFOrtbnN – reference: SolozhenkoVLDubSNNovikovNVMechanical properties of cubic BC2N, a new superhard phaseDiam. Relat. Mater.200110222822312001DRM....10.2228S1:CAS:528:DC%2BD3MXot1Kntbs%3D10.1016/S0925-9635(01)00513-1 – volume: 319 start-page: 479 year: 1970 ident: 4122_CR63 publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci. doi: 10.1098/rspa.1970.0189 – volume: 145 start-page: 637 year: 1966 ident: 4122_CR56 publication-title: Phys. Rev. doi: 10.1103/PhysRev.145.637 – volume: 10 start-page: 28 year: 2011 ident: 4122_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat2897 – volume: 129 start-page: 159 year: 2018 ident: 4122_CR31 publication-title: Carbon doi: 10.1016/j.carbon.2017.12.027 – volume: 16 start-page: 1250 year: 2007 ident: 4122_CR70 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2006.11.103 – ident: 4122_CR74 doi: 10.1103/PhysRevLett.92.215505 – ident: 4122_CR13 doi: 10.1103/PhysRevLett.105.125504 – volume: 6 start-page: 192 year: 2007 ident: 4122_CR36 publication-title: Nat. Mater. doi: 10.1038/nmat1839 – volume: 10 start-page: 2228 year: 2001 ident: 4122_CR72 publication-title: Diam. Relat. Mater. doi: 10.1016/S0925-9635(01)00513-1 – ident: 4122_CR24 – volume: 102 start-page: 015506 year: 2009 ident: 4122_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.015506 – volume: 64 start-page: 1797 year: 1994 ident: 4122_CR8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.111811 – volume: 154 start-page: 170 year: 1967 ident: 4122_CR66 publication-title: Phys. Rev. doi: 10.1103/PhysRev.154.170 – volume: 108 start-page: 1 year: 2016 ident: 4122_CR43 publication-title: Carbon doi: 10.1016/j.carbon.2016.07.004 – volume: 96 start-page: 076602 year: 2006 ident: 4122_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.076602 – volume: 145 start-page: 293 year: 2011 ident: 4122_CR44 publication-title: J. Stat. Phys. doi: 10.1007/s10955-011-0293-9 – volume: 115 start-page: 4744 year: 2015 ident: 4122_CR15 publication-title: Chem. Rev. doi: 10.1021/cr500304f – volume: 15 start-page: 295 year: 2007 ident: 4122_CR58 publication-title: Model. Simul. Mat. Sci. Eng. doi: 10.1088/0965-0393/15/3/008 – volume: 14 start-page: 16 year: 2005 ident: 4122_CR40 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2004.06.017 – ident: 4122_CR30 doi: 10.1038/srep04648 – volume: 256 start-page: 668 year: 2009 ident: 4122_CR49 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.08.042 – volume: 354 start-page: 445 year: 1991 ident: 4122_CR4 publication-title: Nature doi: 10.1038/354445a0 – volume: 121 start-page: 85 year: 2000 ident: 4122_CR51 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/S0031-9201(00)00162-X – volume: 102 start-page: 245501 year: 2009 ident: 4122_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 87 start-page: 024501 year: 2016 ident: 4122_CR50 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4941716 – volume: 228 start-page: 47 year: 2014 ident: 4122_CR76 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2013.09.009 – volume: 99 start-page: 12562 year: 2002 ident: 4122_CR60 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.202427399 – volume: 54 start-page: 3841 year: 1932 ident: 4122_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01349a006 – volume: 20 start-page: 045021 year: 2012 ident: 4122_CR65 publication-title: Model. Simul. Mat. Sci. Eng. doi: 10.1088/0965-0393/20/4/045021 – volume: 3 start-page: 864 year: 2020 ident: 4122_CR33 publication-title: Matter doi: 10.1016/j.matt.2020.05.013 – volume: 54 start-page: 1392 year: 1985 ident: 4122_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.1392 – volume: 129 start-page: 114707 year: 2008 ident: 4122_CR38 publication-title: J. Chem. Phys. doi: 10.1063/1.2977970 – volume: 47 start-page: 1643 year: 2009 ident: 4122_CR45 publication-title: Carbon doi: 10.1016/j.carbon.2009.02.014 – volume: 2 start-page: 279 year: 1994 ident: 4122_CR37 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(94)90109-0 – volume: 23 start-page: 22 year: 1998 ident: 4122_CR46 publication-title: MRS Bull. doi: 10.1557/S0883769400031420 – volume: 242 start-page: 214 year: 2014 ident: 4122_CR47 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.01.031 – volume: 75 start-page: 47 year: 2013 ident: 4122_CR14 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.3 – ident: 4122_CR35 doi: 10.1142/6836 – volume: 33 start-page: 1663 year: 1977 ident: 4122_CR67 publication-title: Mol. Phys. doi: 10.1080/00268977700101381 – volume: 22 start-page: 2345 year: 2007 ident: 4122_CR41 publication-title: J. Mater. Res. doi: 10.1557/jmr.2007.0295 – volume: 118 start-page: 183 year: 2001 ident: 4122_CR69 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(01)00082-5 – volume: 117 start-page: 1 year: 1995 ident: 4122_CR32 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 16 start-page: 670 year: 2019 ident: 4122_CR62 publication-title: Nat. Methods doi: 10.1038/s41592-019-0506-8 – volume: 7 start-page: 1564 year: 1992 ident: 4122_CR52 publication-title: J. Mater. Res. doi: 10.1557/JMR.1992.1564 – volume: 335 start-page: 950 year: 2012 ident: 4122_CR11 publication-title: Science doi: 10.1126/science.1214780 – ident: 4122_CR18 doi: 10.1103/PhysRevLett.108.195505 – volume: 102 start-page: 055503 year: 2009 ident: 4122_CR73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.055503 – volume: 19 start-page: 1126 year: 2020 ident: 4122_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0759-8 – volume: 426 start-page: 168 year: 2006 ident: 4122_CR61 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.05.062 – volume: 3 start-page: 697 year: 2004 ident: 4122_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat1219 – volume: 107 start-page: 175504 year: 2011 ident: 4122_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.175504 – volume: 909 start-page: 1 year: 2021 ident: 4122_CR26 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.12.007 – ident: 4122_CR12 doi: 10.1038/ncomms1974 – volume: 37 start-page: 129 year: 2002 ident: 4122_CR20 publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/S0927-796X(02)00005-0 – volume: 128 start-page: 11635 year: 2006 ident: 4122_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063303n – volume: 439 start-page: 419 year: 2006 ident: 4122_CR5 publication-title: Nature doi: 10.1038/nature04421 – ident: 4122_CR17 doi: 10.1038/s41467-018-03744-5 – ident: 4122_CR1 doi: 10.1002/3527602798 – volume: 5 start-page: 434 year: 2019 ident: 4122_CR21 publication-title: Engineering doi: 10.1016/j.eng.2019.01.013 – ident: 4122_CR75 doi: 10.1103/PhysRevLett.117.116103 – volume: 37 start-page: 435 year: 1978 ident: 4122_CR3 publication-title: Philos. Mag. B doi: 10.1080/01418637808225788 – volume: 110 start-page: 3697 year: 1999 ident: 4122_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.478259 – volume: 510 start-page: 250 year: 2014 ident: 4122_CR42 publication-title: Nature doi: 10.1038/nature13381 – volume: 8 start-page: 268 year: 2002 ident: 4122_CR29 publication-title: Microsc. Microanal. doi: 10.1017/S1431927602020202 – volume: 220 start-page: 149 year: 1996 ident: 4122_CR23 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(96)00483-5 – volume: 362 start-page: 2477 year: 2004 ident: 4122_CR27 publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2004.1452 – volume: 53 start-page: 4029 year: 2005 ident: 4122_CR57 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.001 – volume: 28 start-page: 784 year: 1983 ident: 4122_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.784 – volume: 421 start-page: 599 year: 2003 ident: 4122_CR39 publication-title: Nature doi: 10.1038/421599b – volume: 50 start-page: 17953 year: 1994 ident: 4122_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 90 start-page: 4437 year: 2001 ident: 4122_CR19 publication-title: J. Appl. Phys. doi: 10.1063/1.1407319 – volume: 87 start-page: 4073 year: 2007 ident: 4122_CR28 publication-title: Philos. Mag. doi: 10.1080/14786430701394041 – volume: 264 start-page: 1570 year: 1994 ident: 4122_CR22 publication-title: Science doi: 10.1126/science.264.5165.1570 – volume: 47 start-page: 558 year: 1993 ident: 4122_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 168 start-page: 17 year: 2016 ident: 4122_CR68 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.06.003 – volume: 8 year: 2017 ident: 4122_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00395-w – reference: 34819687 - Nature. 2021 Nov;599(7886):563-564 |
SSID | ssj0005174 |
Score | 2.6582139 |
Snippet | Solids in nature can be generally classified into crystalline and non-crystalline states
1
–
7
, depending on whether long-range lattice periodicity is present... Solids in nature can be generally classified into crystalline and non-crystalline states , depending on whether long-range lattice periodicity is present in... Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is... Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 605 |
SubjectTerms | 639/301/1034/1035 639/766/119/1002 Amorphous materials Amorphous structure Bonding strength Buckminsterfullerene Carbon Chemical properties Chemical synthesis Crystal structure Crystallinity Crystals Diamond crystals Diamonds High temperature Humanities and Social Sciences Long range order Methods Microscopy Molecular dynamics multidisciplinary Nucleation Periodicity Physical properties Production processes Science Science (multidisciplinary) Short range order Simulation Temperature X-ray diffraction |
Title | Synthesis of paracrystalline diamond |
URI | https://link.springer.com/article/10.1038/s41586-021-04122-w https://www.ncbi.nlm.nih.gov/pubmed/34819683 https://www.proquest.com/docview/2603245872 https://www.proquest.com/docview/2602640020 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFeRtt9ue2KN8I-2Ewtx7bkp5GFZt1gYfSD5U3IklwKw07rhNL_fne2ktSh64v8oJNsne90v5NOJ4AeU1bYvlJBjsYsiHmhAiVEHCDS12gtWJrntKD_a5wen8c_J8nELbjVLqxyMSc2E7WpNK2RHyLuRtufCB59nV4FdGsU7a66KzQewyalLqOQLj7hqxCPtSzM7tBM2BeHNRouQeG36EzHDB2ym45hWp-e79intQ3Txg6NtuCZA5D-oP3j2_DIljvwpAnk1PUObDtlrf2PLqP0p-fQO70tEejVl7VfFT5l-9bXtwgLKR-39VFCcHDmBZyPjs6Gx4G7HiHQCeezwIrQ8kRHHP3MPE6UEqxAOJCFRidolgyzWqECW4NPbQyLuYp5ZpnlIjQKVfklbJRVaV-DH4aap5lIQ8VNHDF0sK3C5kWBzl4aceUBW_BGapc7nK6w-CubPey-kC0_JfJTNvyUNx58XraZtpkzHqTuEcslpaQoKeblQs3rWg7O_gzHcpCiG41AlGcevLuP7MfpSYfogyMqKvxKHH170gDHSsmuOpR7HUo9vbySd2rfd2ov2t92Xzf7HULUUN2tXsiRdDNELVfy7MHbZTW1pKi30lbzhgbxKiF6D1618rdkJR2gzvAVHnxZCOSq8__zeffhb9mDpxHpBGNBlOzDxux6bt8g6prlB41qYSmGjMrR9wPY_HY0_n3yD0xqJYw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiI2vsAEBFRjaosVpErsHhKrB1LKtB9aJ3ozjONMklHRLq6r_FH8j7-WjXaqx2045-Nlxfn6f8fMzQIspI0xbKSdCY-b4PFGOEsJ30NPXaC1YGEX0Q_9kEPbO_B-jYLQGf-uzMJRWWevEQlHHmaZ_5Pvod6PtDwT3vo4vHbo1inZX6ys0SrY4MvMZhmz5l_43XN8Pnnf4fXjQc6pbBRwdcD5xjHAND7THMTyL_EApwRK0oh031gFq85gZrZDvTYxPHcfM58rnHcMMF26sUAJw3HtwH7u4JFF8xJcpJStVn6tDOm5b7OdoKAWl-2Lw7jMMAGcNQ7hqDq7Zw5UN2sLuHT6Bx5XDandLDtuANZNuwoMicVTnm7BRKYfc3qkqWH9-Cq3TeYqOZX6R21liU3VxfTVHN5TqfxsbORLBjJ_B2Z0A9xzW0yw1L8F2Xc3DjghdxWPfYxjQG4XdkwSDy9DjygJWYyN1Vaucrsz4I4s987aQJZ4S8ZQFnnJmwe6iz7is1HErdYsgl1QCI6Ucm3M1zXPZHf46GMhuiGE7Or68Y8H7m8j6pz8bRJ8qoiTDWeLXlycb8FupuFaDcqtBqccXl_Ja68dG63m5bDcNs90gRI2gm801H8lKI-VyKT8WvFs0U0_KsktNNi1o0D-mCMKCFyX_LaCkA9sdfIUFezVDLgf_P86vbp_LW3jYG54cy-P-4GgLHnkkH4w5XrAN65OrqXmNHt8kelOImQ2_71qu_wFs6l-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviA0YYQMCKjA0osZpErsPCFUb1cqgQmwTfTOO40yTUNItrar-a_x13OWjXaqxtz3lwWfH-fk-4_MZoMWUEaajlBOhMXN8nihHCeE76OlrtBYsjCL6of99GB6e-l9HwWgN_tZnYSitstaJhaKOM03_yNvod6PtDwT32kmVFvHjoP95fOHQDVK001pfp1GyyJGZzzB8yz8NDnCt33pe_8vJ_qFT3TDg6IDziWOEa3igPY6hWuQHSgmWoEXturEOULPHzGiFMmBifOo4Zj5XPu8aZrhwY4XSgOPegbu8EzCSMT7iy_SSlQrQ1YEdtyPaORpNQam_GMj7DIPBWcMorpqGK7ZxZbO2sIH9R_Cwcl7tXsltG7Bm0k24VySR6nwTNipFkdu7VTXrD4-hdTxP0cnMz3M7S2yqNK4v5-iSUi1wYyN3IpjxEzi9FeCewnqapeYZ2K6redgVoat47HsMg3ujsHuSYKAZelxZwGpspK7qltP1GX9ksX_eEbLEUyKessBTzizYW_QZl1U7bqRuEeSSymGkxFhnaprnsnfya38oeyGG8OgE864Fb64jGxz_bBC9r4iSDGeJX1-ecsBvpUJbDcrtBqUen1_IK63vGq1n5bJdN8xOgxC1g24213wkK-2Uy6UsWfB60Uw9KeMuNdm0oEFfmaIJC7ZK_ltASYe3u_gKCz7WDLkc_P84P795Lq_gPkq0_DYYHm3DA4_EgzHHC3ZgfXI5NS_Q-ZtELwsps-H3bYv1P02lY8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+paracrystalline+diamond&rft.jtitle=Nature+%28London%29&rft.au=Tang%2C+Hu&rft.au=Yuan%2C+Xiaohong&rft.au=Cheng%2C+Yong&rft.au=Fei%2C+Hongzhan&rft.date=2021-11-25&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7886&rft.spage=605&rft_id=info:doi/10.1038%2Fs41586-021-04122-w&rft.externalDocID=A683723179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |