Synthesis of paracrystalline diamond

Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crys...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 599; no. 7886; pp. 605 - 610
Main Authors Tang, Hu, Yuan, Xiaohong, Cheng, Yong, Fei, Hongzhan, Liu, Fuyang, Liang, Tao, Zeng, Zhidan, Ishii, Takayuki, Wang, Ming-Sheng, Katsura, Tomoo, Sheng, Howard, Gou, Huiyang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond 8 – 10 . The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells 4 , 5 , 11 – 13 , was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C 60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C 60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp 3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family 14 – 16 , which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials.
AbstractList Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation ofthe two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5'11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics ofthe paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond.sup.8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells.sup.4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C.sub.60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C.sub.60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp.sup.3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family.sup.14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
Solids in nature can be generally classified into crystalline and non-crystalline states , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond . The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells , was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family , which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond 8 – 10 . The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells 4 , 5 , 11 – 13 , was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C 60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C 60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp 3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family 14 – 16 , which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials.
Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials.
Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is present in the material. The differentiation of the two states, however, could face fundamental challenges if the degree of long-range order in crystals is significantly reduced. Here we report a paracrystalline state of diamond that is distinct from either crystalline or amorphous diamond.sup.8-10. The paracrystalline diamond reported in this work, consisting of sub-nanometre-sized paracrystallites that possess a well-defined crystalline medium-range order up to a few atomic shells.sup.4,5,11-13, was synthesized in high-pressure high-temperature conditions (for example, 30 GPa and 1,600 K) employing face-centred cubic C.sub.60 as a precursor. The structural characteristics of the paracrystalline diamond were identified through a combination of X-ray diffraction, high-resolution transmission microscopy and advanced molecular dynamics simulation. The formation of paracrystalline diamond is a result of densely distributed nucleation sites developed in compressed C.sub.60 as well as pronounced second-nearest-neighbour short-range order in amorphous diamond due to strong sp.sup.3 bonding. The discovery of paracrystalline diamond adds an unusual diamond form to the enriched carbon family.sup.14-16, which exhibits distinguishing physical properties and can be furthered exploited to develop new materials. Furthermore, this work reveals the missing link in the length scale between amorphous and crystalline states across the structural landscape, having profound implications for recognizing complex structures arising from amorphous materials. A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials.
Audience Academic
Author Zeng, Zhidan
Tang, Hu
Sheng, Howard
Gou, Huiyang
Ishii, Takayuki
Wang, Ming-Sheng
Katsura, Tomoo
Cheng, Yong
Yuan, Xiaohong
Liang, Tao
Liu, Fuyang
Fei, Hongzhan
Author_xml – sequence: 1
  givenname: Hu
  orcidid: 0000-0003-1571-8843
  surname: Tang
  fullname: Tang, Hu
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 2
  givenname: Xiaohong
  surname: Yuan
  fullname: Yuan, Xiaohong
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 3
  givenname: Yong
  surname: Cheng
  fullname: Cheng, Yong
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University
– sequence: 4
  givenname: Hongzhan
  orcidid: 0000-0003-3143-7363
  surname: Fei
  fullname: Fei, Hongzhan
  organization: Bayerisches Geoinstitut, University of Bayreuth
– sequence: 5
  givenname: Fuyang
  surname: Liu
  fullname: Liu, Fuyang
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 6
  givenname: Tao
  surname: Liang
  fullname: Liang, Tao
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 7
  givenname: Zhidan
  orcidid: 0000-0003-4283-2393
  surname: Zeng
  fullname: Zeng, Zhidan
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 8
  givenname: Takayuki
  orcidid: 0000-0002-1494-2141
  surname: Ishii
  fullname: Ishii, Takayuki
  organization: Center for High Pressure Science and Technology Advanced Research, Bayerisches Geoinstitut, University of Bayreuth
– sequence: 9
  givenname: Ming-Sheng
  orcidid: 0000-0003-3754-2850
  surname: Wang
  fullname: Wang, Ming-Sheng
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University
– sequence: 10
  givenname: Tomoo
  orcidid: 0000-0001-7857-5101
  surname: Katsura
  fullname: Katsura, Tomoo
  organization: Bayerisches Geoinstitut, University of Bayreuth
– sequence: 11
  givenname: Howard
  orcidid: 0000-0002-6134-0354
  surname: Sheng
  fullname: Sheng, Howard
  email: hsheng@gmu.edu
  organization: Department of Physics and Astronomy, George Mason University
– sequence: 12
  givenname: Huiyang
  orcidid: 0000-0002-2612-4314
  surname: Gou
  fullname: Gou, Huiyang
  email: huiyang.gou@hpstar.ac.cn
  organization: Center for High Pressure Science and Technology Advanced Research, College of Environmental and Chemical Engineering, Yanshan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34819683$$D View this record in MEDLINE/PubMed
BookMark eNp90l1LHDEUBuBQLHW1_QO9KEvtRYvE5msm2ctlsVYQC9XSyxCTM9vITGZNMtj992Zdxa5sJReB8LyHnOTsoZ3QB0DoPSVHlHD1NQlaqRoTRjERlDF8-wqNqJA1FrWSO2hECFOYKF7vor2UrgkhFZXiDdrlQtFJrfgIfbpYhvwHkk_jvhkvTDQ2LlM2besDjJ03XR_cW_S6MW2Cdw_7Pvr17fhy9h2f_Tg5nU3PsK2kzBgUAVlZJiXlV6IyRtFGcDohzla8Zo6CNURycGW3zpWbGiEnQEEq4gxVfB99XtddxP5mgJR155OFtjUB-iFpVhNWi9IVKfTgGb3uhxjK7VaKM1EpyZ7U3LSgfWj6XBpcFdXT0n4RVE6KwlvUHAJE05Ynb3w53vAft3i78Df6X3S0BZXloPN2a9UvG4FiMvzNczOkpE8vfm7aw__b6eXv2fmm_vDwVsNVB04vou9MXOrHKShArYGNfUoRGm19NtmXqtH4VlOiVwOn1wOny8Dp-4HTtyXKnkUfq78Y4utQKjjMIT593gupO_7R4Uw
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118314
crossref_primary_10_1038_s41467_025_57406_4
crossref_primary_10_1016_j_carbon_2024_119802
crossref_primary_10_1021_acsnano_4c12790
crossref_primary_10_1016_j_ceramint_2023_06_144
crossref_primary_10_1021_jacs_3c00689
crossref_primary_10_1021_acsmaterialslett_4c02264
crossref_primary_10_1093_nsr_nwae125
crossref_primary_10_1016_j_jnucmat_2022_153955
crossref_primary_10_1002_adfm_202203894
crossref_primary_10_1016_j_actamat_2024_120218
crossref_primary_10_1016_j_commatsci_2022_111610
crossref_primary_10_1021_acs_nanolett_3c04037
crossref_primary_10_1063_5_0215663
crossref_primary_10_1016_j_scriptamat_2024_116221
crossref_primary_10_1103_PhysRevLett_131_146101
crossref_primary_10_1002_smll_202305512
crossref_primary_10_1039_D4TC04628E
crossref_primary_10_1016_j_jeurceramsoc_2025_117246
crossref_primary_10_1016_j_diamond_2022_109180
crossref_primary_10_1021_acs_jpclett_3c03643
crossref_primary_10_20517_microstructures_2023_54
crossref_primary_10_1063_5_0223053
crossref_primary_10_1016_j_diamond_2024_111380
crossref_primary_10_1039_D4CP02781G
crossref_primary_10_1038_s41467_023_42195_5
crossref_primary_10_1016_j_cartre_2023_100256
crossref_primary_10_1016_j_diamond_2022_109109
crossref_primary_10_3390_nano14070635
crossref_primary_10_1016_j_carbon_2022_11_007
crossref_primary_10_1021_jacs_4c16312
crossref_primary_10_1039_D3CP01619F
crossref_primary_10_1038_s41563_023_01625_x
crossref_primary_10_1016_j_actamat_2023_118773
crossref_primary_10_1016_j_fuel_2024_133110
crossref_primary_10_1002_adma_202412850
crossref_primary_10_1021_acs_chemrev_3c00169
crossref_primary_10_1002_anie_202208247
crossref_primary_10_1007_s11467_022_1204_z
crossref_primary_10_1002_adfm_202411472
crossref_primary_10_1016_j_jallcom_2023_172579
crossref_primary_10_1038_s41563_023_01655_5
crossref_primary_10_2139_ssrn_4017080
crossref_primary_10_1016_j_colsurfa_2025_136548
crossref_primary_10_1021_acs_jpcc_3c08175
crossref_primary_10_1039_D4CP00149D
crossref_primary_10_1088_0256_307X_39_5_056101
crossref_primary_10_1021_accountsmr_3c00243
crossref_primary_10_1007_s00170_022_10463_1
crossref_primary_10_1063_5_0218769
crossref_primary_10_1016_j_infrared_2022_104398
crossref_primary_10_1039_D4CS01182A
crossref_primary_10_1016_j_eml_2022_101931
crossref_primary_10_1021_acsnano_4c05966
crossref_primary_10_1088_1674_1056_ad2a6d
crossref_primary_10_2139_ssrn_4191307
crossref_primary_10_1016_j_ijmecsci_2023_108728
crossref_primary_10_1021_acs_nanolett_4c01857
crossref_primary_10_1016_j_ensm_2025_104092
crossref_primary_10_1016_j_carbon_2025_120165
crossref_primary_10_1021_jacs_2c01717
crossref_primary_10_31857_S0370274X24100199
crossref_primary_10_1016_j_isci_2022_105563
crossref_primary_10_1016_j_matdes_2023_112577
crossref_primary_10_1038_d41586_021_02957_x
crossref_primary_10_1016_j_cis_2025_103422
crossref_primary_10_1039_D3QI00829K
crossref_primary_10_3390_ma15248753
crossref_primary_10_1093_nsr_nwae051
crossref_primary_10_1016_j_infrared_2024_105395
crossref_primary_10_1107_S1600576723009913
crossref_primary_10_1063_5_0152485
crossref_primary_10_1080_26941112_2022_2151322
crossref_primary_10_1016_j_mser_2022_100673
crossref_primary_10_1038_s41563_023_01656_4
crossref_primary_10_1039_D4CP02083A
crossref_primary_10_1016_j_apsusc_2022_156226
crossref_primary_10_1016_j_isci_2024_110842
crossref_primary_10_1016_j_jobe_2023_108121
crossref_primary_10_1021_jacs_3c06456
crossref_primary_10_1073_pnas_2416835121
crossref_primary_10_1088_1674_1056_ad5aec
crossref_primary_10_1016_j_mtcata_2023_100025
crossref_primary_10_1002_ange_202208247
crossref_primary_10_1209_0295_5075_ad27f3
crossref_primary_10_1016_j_gee_2022_11_002
crossref_primary_10_1039_D3TA01699D
crossref_primary_10_1016_j_scib_2025_03_003
crossref_primary_10_1080_26941112_2024_2449373
crossref_primary_10_1080_26941112_2022_2163857
crossref_primary_10_1126_sciadv_adg4159
crossref_primary_10_1016_j_ssc_2023_115153
crossref_primary_10_1038_s41467_024_48435_6
crossref_primary_10_1021_acs_nanolett_2c02542
crossref_primary_10_1016_j_jmmm_2024_172250
crossref_primary_10_1007_s12274_022_4215_8
crossref_primary_10_1021_acsnano_3c09593
crossref_primary_10_1016_j_carbon_2022_03_055
crossref_primary_10_1038_s41467_023_36423_1
crossref_primary_10_1038_s41586_022_05532_0
crossref_primary_10_1039_D3MA00555K
crossref_primary_10_1134_S0021364024603397
crossref_primary_10_1021_jacs_3c04971
crossref_primary_10_1016_j_diamond_2024_111680
crossref_primary_10_1038_s41467_024_48137_z
crossref_primary_10_1016_j_carbon_2023_118763
crossref_primary_10_1016_j_scriptamat_2022_114549
crossref_primary_10_1016_j_physb_2025_416996
crossref_primary_10_1039_D2SC04326B
crossref_primary_10_1073_pnas_2316580121
crossref_primary_10_1103_PhysRevB_109_214113
crossref_primary_10_1016_j_jeurceramsoc_2023_02_008
crossref_primary_10_1080_26941112_2023_2193212
crossref_primary_10_1016_j_jmst_2024_11_047
Cites_doi 10.1098/rspa.1970.0189
10.1103/PhysRev.145.637
10.1038/nmat2897
10.1016/j.carbon.2017.12.027
10.1016/j.diamond.2006.11.103
10.1103/PhysRevLett.92.215505
10.1103/PhysRevLett.105.125504
10.1038/nmat1839
10.1016/S0925-9635(01)00513-1
10.1103/PhysRevLett.102.015506
10.1063/1.111811
10.1103/PhysRev.154.170
10.1016/j.carbon.2016.07.004
10.1103/PhysRevLett.96.076602
10.1007/s10955-011-0293-9
10.1021/cr500304f
10.1088/0965-0393/15/3/008
10.1016/j.diamond.2004.06.017
10.1038/srep04648
10.1016/j.apsusc.2009.08.042
10.1038/354445a0
10.1016/S0031-9201(00)00162-X
10.1103/PhysRevLett.102.245501
10.1063/1.4941716
10.1016/j.pepi.2013.09.009
10.1073/pnas.202427399
10.1021/ja01349a006
10.1088/0965-0393/20/4/045021
10.1016/j.matt.2020.05.013
10.1103/PhysRevLett.54.1392
10.1063/1.2977970
10.1016/j.carbon.2009.02.014
10.1016/0927-0256(94)90109-0
10.1557/S0883769400031420
10.1016/j.surfcoat.2014.01.031
10.2138/rmg.2013.75.3
10.1142/6836
10.1080/00268977700101381
10.1557/jmr.2007.0295
10.1016/S0038-1098(01)00082-5
10.1006/jcph.1995.1039
10.1038/s41592-019-0506-8
10.1557/JMR.1992.1564
10.1126/science.1214780
10.1103/PhysRevLett.108.195505
10.1103/PhysRevLett.102.055503
10.1038/s41563-020-0759-8
10.1016/j.cplett.2006.05.062
10.1038/nmat1219
10.1103/PhysRevLett.107.175504
10.1016/j.physrep.2020.12.007
10.1038/ncomms1974
10.1016/S0927-796X(02)00005-0
10.1021/ja063303n
10.1038/nature04421
10.1038/s41467-018-03744-5
10.1002/3527602798
10.1016/j.eng.2019.01.013
10.1103/PhysRevLett.117.116103
10.1080/01418637808225788
10.1063/1.478259
10.1038/nature13381
10.1017/S1431927602020202
10.1016/0375-9601(96)00483-5
10.1098/rsta.2004.1452
10.1016/j.actamat.2005.05.001
10.1103/PhysRevB.28.784
10.1038/421599b
10.1103/PhysRevB.50.17953
10.1063/1.1407319
10.1080/14786430701394041
10.1126/science.264.5165.1570
10.1103/PhysRevB.47.558
10.1016/j.ultramic.2016.06.003
10.1038/s41467-017-00395-w
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Nov 25, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 25, 2021
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-021-04122-w
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

PubMed



MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 610
ExternalDocumentID A683723179
34819683
10_1038_s41586_021_04122_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c577t-e80e75c27713b45aa81f43190dc5362d1eca073edecacdd147a479e1e780da183
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 23:00:58 EDT 2025
Sat Aug 23 13:35:06 EDT 2025
Tue Jun 17 20:57:54 EDT 2025
Thu Jun 12 23:41:55 EDT 2025
Tue Jun 10 15:30:37 EDT 2025
Tue Jun 10 20:24:59 EDT 2025
Fri Jun 27 04:01:25 EDT 2025
Fri Jun 27 04:25:05 EDT 2025
Wed Feb 19 02:24:42 EST 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 02:32:31 EDT 2025
Fri Feb 21 02:36:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7886
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-e80e75c27713b45aa81f43190dc5362d1eca073edecacdd147a479e1e780da183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2612-4314
0000-0002-6134-0354
0000-0003-4283-2393
0000-0003-3143-7363
0000-0003-3754-2850
0000-0002-1494-2141
0000-0001-7857-5101
0000-0003-1571-8843
PMID 34819683
PQID 2603245872
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2602640020
proquest_journals_2603245872
gale_infotracmisc_A683723179
gale_infotracgeneralonefile_A683723179
gale_infotraccpiq_683723179
gale_infotracacademiconefile_A683723179
gale_incontextgauss_ISR_A683723179
gale_incontextgauss_ATWCN_A683723179
pubmed_primary_34819683
crossref_citationtrail_10_1038_s41586_021_04122_w
crossref_primary_10_1038_s41586_021_04122_w
springer_journals_10_1038_s41586_021_04122_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-25
PublicationDateYYYYMMDD 2021-11-25
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Preprint at https://arxiv.org/abs/2011.14819 (2020).
DanielsHBrydsonRRandBBrownAInvestigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM)Philos. Mag.200787407340922007PMag...87.4073D1:CAS:528:DC%2BD2sXptlSqt7c%3D10.1080/14786430701394041
DixonMHutchinsonPA method for the extrapolation of pair distribution functionsMol. Phys.197733166316701977MolPh..33.1663D1:CAS:528:DyaE2sXlvV2ksbk%3D10.1080/00268977700101381
KeatingPNEffect of invariance requirements on the elastic strain energy of crystals with application to the diamond structurePhys. Rev.19661456376451966PhRv..145..637K1:CAS:528:DyaF28XpvVGlug%3D%3D10.1103/PhysRev.145.637
KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
RobertsonJDiamond-like amorphous carbonMater. Sci. Eng. R Rep.20023712928110.1016/S0927-796X(02)00005-0
HuangQNanotwinned diamond with unprecedented hardness and stabilityNature20145102502532014Natur.510..250H1:CAS:528:DC%2BC2cXps1WmurY%3D2491991910.1038/nature13381
KumarRSX-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressureDiam. Relat. Mater.200716125012532007DRM....16.1250K1:CAS:528:DC%2BD2sXkt1amt7o%3D10.1016/j.diamond.2006.11.103
MishinYMehlMJPapaconstantopoulosDAPhase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulationsActa Mater.200553402940412005AcMat..53.4029M1:CAS:528:DC%2BD2MXntlSntrc%3D10.1016/j.actamat.2005.05.001
Colón-RamosDALa RivierePShroffHOldenbourgRPromoting transparency and reproducibility in enhanced molecular simulationsNat. Methods20191667067310.1038/s41592-019-0506-81:CAS:528:DC%2BC1MXhsVOku73L
LechnerWDellagoCAccurate determination of crystal structures based on averaged local bond order parametersJ. Chem. Phys.20081291147072008JChPh.129k4707L1904498010.1063/1.29779701:CAS:528:DC%2BD1cXhtFOrtbnN
OsswaldSYushinGMochalinVKucheyevSOGogotsiYControl of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in airJ. Am. Chem. Soc.200612811635116421:CAS:528:DC%2BD28Xot1Kgsrw%3D1693928910.1021/ja063303n
SolozhenkoVLKurakevychOOAndraultDLe GodecYMezouarMUltimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5Phys. Rev. Lett.20091020155062009PhRvL.102a5506S1925721010.1103/PhysRevLett.102.0155061:CAS:528:DC%2BD1MXkvVSquw%3D%3D
IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b
BaxterRJMethod of solution of the Percus-Yevick, hypernetted-chain, or similar equationsPhys. Rev.19671541701741967PhRv..154..170B1:CAS:528:DyaF2sXnvFyitg%3D%3D10.1103/PhysRev.154.170
Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117 (2016).
PuJ-CWangS-FSungJCHigh-temperature oxidation behaviors of CVD diamond filmsAppl. Surf. Sci.20092566686732009ApSS..256..668P1:CAS:528:DC%2BD1MXhsVWrurjN10.1016/j.apsusc.2009.08.042
IshiiTGeneration of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvilsRev. Sci. Instrum.2016870245012016RScI...87b4501I1:STN:280:DC%2BC28jmtVynuw%3D%3D2693187110.1063/1.4941716
MaraglianoLVanden-EijndenEA temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulationsChem. Phys. Lett.20064261681752006CPL...426..168M1:CAS:528:DC%2BD28XmslGns7c%3D10.1016/j.cplett.2006.05.062
OliverWCPharrGMAn improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experimentsJ. Mater. Res.19927156415831992JMatR...7.1564O1:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564
ChangYYJacobsenSDKimuraMIrifuneTOhnoIElastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methodsPhys. Earth Planet. Inter.201422847552014PEPI..228...47C1:CAS:528:DC%2BC3sXhslSmt7bK10.1016/j.pepi.2013.09.009
FerrariACRobertsonJRaman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamondPhilos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.2004362247725122004RSPTA.362.2477F1:CAS:528:DC%2BD2cXhtFahtbrM10.1098/rsta.2004.1452
TreacyMMJBorisenkoKBThe local structure of amorphous siliconScience20123359509532012Sci...335..950T1:CAS:528:DC%2BC38XisFarsL0%3D2236300310.1126/science.1214780
StukowskiAStructure identification methods for atomistic simulations of crystalline materialsModel. Simul. Mat. Sci. Eng.2012200450212012MSMSE..20d5021S10.1088/0965-0393/20/4/0450211:CAS:528:DC%2BC38XpsFOgtr4%3D
ElliottSRMedium-range structural order in covalent amorphous solidsNature19913544454521991Natur.354..445E1:CAS:528:DyaK38Xks1ClsA%3D%3D10.1038/354445a0
HiraiHKondoKYoshizawaNShiraishiMAmorphous diamond from C60 fullereneAppl. Phys. Lett.199464179717991994ApPhL..64.1797H1:CAS:528:DyaK2cXisVylsr0%3D10.1063/1.111811
OganovARHemleyRJHazenRMJonesAPStructure, bonding, and mineralogy of carbon at extreme conditionsRev. Mineral. Geochem.20137547771:CAS:528:DC%2BC3sXmvVylur4%3D10.2138/rmg.2013.75.3
Wang, Q. et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4 (2014).
GeorgakilasVPermanJATucekJZborilRBroad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructuresChem. Rev.2015115474448221:CAS:528:DC%2BC2MXptVGls7s%3D2601248810.1021/cr500304f
ElliottSRA continuous random network approach to the structure of vitreous boron trioxidePhilos. Mag. B1978374354461978PMagB..37..435E1:CAS:528:DyaE1cXmt1ChtLw%3D10.1080/01418637808225788
LinYAmorphous diamond: a high-pressure superhard carbon allotropePhys. Rev. Lett.20111071755042011PhRvL.107q5504L2210753610.1103/PhysRevLett.107.1755041:CAS:528:DC%2BC3MXhsVWks7vI
HirataADirect observation of local atomic order in a metallic glassNat. Mater.20111028332011NatMa..10...28H1:CAS:528:DC%2BC3cXhsFKisrjN2110245410.1038/nmat2897
NémethPComplex nanostructures in diamondNat. Mater.202019112611312020NatMa..19.1126N3277881410.1038/s41563-020-0759-81:CAS:528:DC%2BB3cXhsFOhtrjJ
ZhuS-cYanX-zLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013
PanZSunHZhangYChenCHarder than diamond: superior indentation strength of wurtzite BN and lonsdaleitePhys. Rev. Lett.20091020555032009PhRvL.102e5503P1925751910.1103/PhysRevLett.102.0555031:CAS:528:DC%2BD1MXhs1elt7Y%3D
LaioAParrinelloMEscaping free-energy minimaProc. Natl Acad. Sci. USA20029912562125662002PNAS...9912562L1:CAS:528:DC%2BD38XnvFGiurc%3D1227113613049910.1073/pnas.202427399
ZachariasenWHThe atomic arrangement in glassJ. Am. Chem. Soc.193254384138511:CAS:528:DyaA38Xls1OnsQ%3D%3D10.1021/ja01349a006
LobatoIvan AertSVerbeeckJProgress and new advances in simulating electron microscopy datasets using MULTEMUltramicroscopy201616817271:CAS:528:DC%2BC28XhtVWktrbK2732335010.1016/j.ultramic.2016.06.003
DubrovinskaiaNDubrovinskyLLangenhorstFJacobsenSLiebskeCNanocrystalline diamond synthesized from C60Diam. Relat. Mater.20051416222005DRM....14...16D1:CAS:528:DC%2BD2cXpslWksLg%3D10.1016/j.diamond.2004.06.017
FinneyJLRandom packings and the structure of simple liquids. I. The geometry of random close packingProc. R. Soc. Lond. A Math. Phys. Sci.19703194794931970RSPSA.319..479F1:CAS:528:DyaE3MXnsFKg
WootenFWinerKWeaireDComputer generation of structural models of amorphous Si and GePhys. Rev. Lett.198554139213951985PhRvL..54.1392W1:CAS:528:DyaL2MXit1KgtLw%3D1003102010.1103/PhysRevLett.54.1392
IshiiTLiuZKatsuraTA breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvilsEngineering201954344401:CAS:528:DC%2BC1MXitVOlt77P10.1016/j.eng.2019.01.013
ChenLJStructural evolution in amorphous silicon and germanium thin filmsMicrosc. Microanal.200282682732002MiMic...8..268C1:CAS:528:DC%2BD38XmtVOit7c%3D1253322410.1017/S1431927602020202
BewiloguaKHofmannDHistory of diamond-like carbon films — from first experiments to worldwide applicationsSurf. Coat. Technol.20142422142251:CAS:528:DC%2BC2cXitF2hsLg%3D10.1016/j.surfcoat.2014.01.031
TeterDMComputational alchemy: the search for new superhard materialsMRS Bull.19982322271:CAS:528:DyaK1cXosVCrtg%3D%3D10.1557/S0883769400031420
ChengYQMaEShengHWAtomic level structure in multicomponent bulk metallic glassPhys. Rev. Lett.20091022455012009PhRvL.102x5501C1:STN:280:DC%2BD1MrjvFGgug%3D%3D1965902410.1103/PhysRevLett.102.245501
Lee, L. L. Molecular Thermodynamics of Electrolyte Solutions (World Scientific, 2008).
PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.6512010.1006/jcph.1995.1039
MiracleDBA structural model for metallic glassesNat. Mater.200436977022004NatMa...3..697M1:CAS:528:DC%2BD2cXotVSlt7o%3D1537805010.1038/nmat1219
BrommerPGählerFPotfit: effective potentials from ab initio dataModel. Simul. Mat. Sci. Eng.2007152953042007MSMSE..15..295B1:CAS:528:DC%2BD2sXmvVyhu74%3D10.1088/0965-0393/15/3/008
Sarac, B. et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 9 (2018).
Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3 (2012).
TangHRevealing the formation mechanism of ultrahard nanotwinned diamond from onion carbonCarbon20181291591671:CAS:528:DC%2BC2sXhvFOns7fI10.1016/j.carbon.2017.12.027
SteinhardtPJNelsonDRRonchettiMBond-orientational order in liquids and glassesPhys. Rev. B1983287848051983PhRvB..28..784S1:CAS:528:DyaL3sXkslOgs7w%3D10.1103/PhysRevB.28.784
MarchiMBallonePAdiabati
S-c Zhu (4122_CR33) 2020; 3
VD Blank (4122_CR23) 1996; 220
MMJ Treacy (4122_CR11) 2012; 335
PN Keating (4122_CR56) 1966; 145
P Brommer (4122_CR58) 2007; 15
H Daniels (4122_CR28) 2007; 87
Q Huang (4122_CR42) 2014; 510
J-C Pu (4122_CR49) 2009; 256
SR Elliott (4122_CR3) 1978; 37
Y Iwasa (4122_CR22) 1994; 264
N Dubrovinskaia (4122_CR40) 2005; 14
M Marchi (4122_CR34) 1999; 110
PM Voyles (4122_CR19) 2001; 90
HW Sheng (4122_CR5) 2006; 439
WC Oliver (4122_CR52) 1992; 7
L Maragliano (4122_CR61) 2006; 426
A Merlen (4122_CR45) 2009; 47
SR Elliott (4122_CR4) 1991; 354
W Lechner (4122_CR38) 2008; 129
4122_CR30
4122_CR74
S Plimpton (4122_CR32) 1995; 117
DA Colón-Ramos (4122_CR62) 2019; 16
4122_CR75
N Serebryanaya (4122_CR69) 2001; 118
G Kresse (4122_CR53) 1993; 47
WH Zachariasen (4122_CR2) 1932; 54
LJ Chen (4122_CR29) 2002; 8
4122_CR35
H Tang (4122_CR31) 2018; 129
H Hirai (4122_CR8) 1994; 64
AC Ferrari (4122_CR27) 2004; 362
YQ Cheng (4122_CR59) 2009; 102
M Dixon (4122_CR67) 1977; 33
V Georgakilas (4122_CR15) 2015; 115
VL Solozhenko (4122_CR72) 2001; 10
T Ishii (4122_CR50) 2016; 87
B Sundqvist (4122_CR26) 2021; 909
A Laio (4122_CR60) 2002; 99
K Bewilogua (4122_CR47) 2014; 242
A Hirata (4122_CR7) 2011; 10
AR Oganov (4122_CR14) 2013; 75
VL Solozhenko (4122_CR71) 2009; 102
P Németh (4122_CR16) 2020; 19
D Faken (4122_CR37) 1994; 2
S Osswald (4122_CR48) 2006; 128
A Kubo (4122_CR51) 2000; 121
YY Chang (4122_CR76) 2014; 228
F Wooten (4122_CR55) 1985; 54
RJ Baxter (4122_CR66) 1967; 154
4122_CR24
A Stukowski (4122_CR65) 2012; 20
Z Zeng (4122_CR9) 2017; 8
S Yamanaka (4122_CR25) 2006; 96
PJ Steinhardt (4122_CR64) 1983; 28
HW Sheng (4122_CR36) 2007; 6
H Tang (4122_CR43) 2016; 108
Y Mishin (4122_CR57) 2005; 53
J Robertson (4122_CR20) 2002; 37
T Irifune (4122_CR39) 2003; 421
H Sumiya (4122_CR41) 2007; 22
PE Blöchl (4122_CR54) 1994; 50
Y Lin (4122_CR10) 2011; 107
RS Kumar (4122_CR70) 2007; 16
JL Finney (4122_CR63) 1970; 319
4122_CR1
T Ishii (4122_CR21) 2019; 5
W Hujo (4122_CR44) 2011; 145
4122_CR17
4122_CR12
I Lobato (4122_CR68) 2016; 168
Z Pan (4122_CR73) 2009; 102
4122_CR13
DM Teter (4122_CR46) 1998; 23
4122_CR18
DB Miracle (4122_CR6) 2004; 3
34819687 - Nature. 2021 Nov;599(7886):563-564
References_xml – reference: ElliottSRA continuous random network approach to the structure of vitreous boron trioxidePhilos. Mag. B1978374354461978PMagB..37..435E1:CAS:528:DyaE1cXmt1ChtLw%3D10.1080/01418637808225788
– reference: Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117 (2016).
– reference: SteinhardtPJNelsonDRRonchettiMBond-orientational order in liquids and glassesPhys. Rev. B1983287848051983PhRvB..28..784S1:CAS:528:DyaL3sXkslOgs7w%3D10.1103/PhysRevB.28.784
– reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B19945017953179791994PhRvB..5017953B10.1103/PhysRevB.50.17953
– reference: BrommerPGählerFPotfit: effective potentials from ab initio dataModel. Simul. Mat. Sci. Eng.2007152953042007MSMSE..15..295B1:CAS:528:DC%2BD2sXmvVyhu74%3D10.1088/0965-0393/15/3/008
– reference: HujoWShadrack JabesBRanaVKChakravartyCMolineroVThe rise and fall of anomalies in tetrahedral liquidsJ. Stat. Phys.20111452933122011JSP...145..293H1:CAS:528:DC%2BC3MXhsVGqu7jE1231.8207410.1007/s10955-011-0293-9
– reference: TeterDMComputational alchemy: the search for new superhard materialsMRS Bull.19982322271:CAS:528:DyaK1cXosVCrtg%3D%3D10.1557/S0883769400031420
– reference: DubrovinskaiaNDubrovinskyLLangenhorstFJacobsenSLiebskeCNanocrystalline diamond synthesized from C60Diam. Relat. Mater.20051416222005DRM....14...16D1:CAS:528:DC%2BD2cXpslWksLg%3D10.1016/j.diamond.2004.06.017
– reference: ShengHWPolyamorphism in a metallic glassNat. Mater.200761921972007JMMM..316..192S1:CAS:528:DC%2BD2sXit1Khsbg%3D1731014010.1038/nmat1839
– reference: LobatoIvan AertSVerbeeckJProgress and new advances in simulating electron microscopy datasets using MULTEMUltramicroscopy201616817271:CAS:528:DC%2BC28XhtVWktrbK2732335010.1016/j.ultramic.2016.06.003
– reference: ChangYYJacobsenSDKimuraMIrifuneTOhnoIElastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methodsPhys. Earth Planet. Inter.201422847552014PEPI..228...47C1:CAS:528:DC%2BC3sXhslSmt7bK10.1016/j.pepi.2013.09.009
– reference: ZachariasenWHThe atomic arrangement in glassJ. Am. Chem. Soc.193254384138511:CAS:528:DyaA38Xls1OnsQ%3D%3D10.1021/ja01349a006
– reference: MiracleDBA structural model for metallic glassesNat. Mater.200436977022004NatMa...3..697M1:CAS:528:DC%2BD2cXotVSlt7o%3D1537805010.1038/nmat1219
– reference: Lee, L. L. Molecular Thermodynamics of Electrolyte Solutions (World Scientific, 2008).
– reference: DanielsHBrydsonRRandBBrownAInvestigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM)Philos. Mag.200787407340922007PMag...87.4073D1:CAS:528:DC%2BD2sXptlSqt7c%3D10.1080/14786430701394041
– reference: MaraglianoLVanden-EijndenEA temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulationsChem. Phys. Lett.20064261681752006CPL...426..168M1:CAS:528:DC%2BD28XmslGns7c%3D10.1016/j.cplett.2006.05.062
– reference: OsswaldSYushinGMochalinVKucheyevSOGogotsiYControl of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in airJ. Am. Chem. Soc.200612811635116421:CAS:528:DC%2BD28Xot1Kgsrw%3D1693928910.1021/ja063303n
– reference: MishinYMehlMJPapaconstantopoulosDAPhase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulationsActa Mater.200553402940412005AcMat..53.4029M1:CAS:528:DC%2BD2MXntlSntrc%3D10.1016/j.actamat.2005.05.001
– reference: NémethPComplex nanostructures in diamondNat. Mater.202019112611312020NatMa..19.1126N3277881410.1038/s41563-020-0759-81:CAS:528:DC%2BB3cXhsFOhtrjJ
– reference: TangHSynthesis of nano-polycrystalline diamond in proximity to industrial conditionsCarbon2016108161:CAS:528:DC%2BC28XhtFens73I10.1016/j.carbon.2016.07.004
– reference: ZhuS-cYanX-zLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013
– reference: OganovARHemleyRJHazenRMJonesAPStructure, bonding, and mineralogy of carbon at extreme conditionsRev. Mineral. Geochem.20137547771:CAS:528:DC%2BC3sXmvVylur4%3D10.2138/rmg.2013.75.3
– reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191995JCoPh.117....1P1:CAS:528:DyaK2MXlt1ejs7Y%3D0830.6512010.1006/jcph.1995.1039
– reference: Colón-RamosDALa RivierePShroffHOldenbourgRPromoting transparency and reproducibility in enhanced molecular simulationsNat. Methods20191667067310.1038/s41592-019-0506-81:CAS:528:DC%2BC1MXhsVOku73L
– reference: HirataADirect observation of local atomic order in a metallic glassNat. Mater.20111028332011NatMa..10...28H1:CAS:528:DC%2BC3cXhsFKisrjN2110245410.1038/nmat2897
– reference: Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3 (2012).
– reference: PuJ-CWangS-FSungJCHigh-temperature oxidation behaviors of CVD diamond filmsAppl. Surf. Sci.20092566686732009ApSS..256..668P1:CAS:528:DC%2BD1MXhsVWrurjN10.1016/j.apsusc.2009.08.042
– reference: WootenFWinerKWeaireDComputer generation of structural models of amorphous Si and GePhys. Rev. Lett.198554139213951985PhRvL..54.1392W1:CAS:528:DyaL2MXit1KgtLw%3D1003102010.1103/PhysRevLett.54.1392
– reference: SundqvistBCarbon under pressurePhys. Rep.20219091732021PhR...909....1S1:CAS:528:DC%2BB3MXptlKiuw%3D%3D10.1016/j.physrep.2020.12.007
– reference: RobertsonJDiamond-like amorphous carbonMater. Sci. Eng. R Rep.20023712928110.1016/S0927-796X(02)00005-0
– reference: LaioAParrinelloMEscaping free-energy minimaProc. Natl Acad. Sci. USA20029912562125662002PNAS...9912562L1:CAS:528:DC%2BD38XnvFGiurc%3D1227113613049910.1073/pnas.202427399
– reference: KuboAAkaogiMPost-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskitePhys. Earth Planet. Inter.2000121851022000PEPI..121...85K1:CAS:528:DC%2BD3cXlvVCks74%3D10.1016/S0031-9201(00)00162-X
– reference: StukowskiAStructure identification methods for atomistic simulations of crystalline materialsModel. Simul. Mat. Sci. Eng.2012200450212012MSMSE..20d5021S10.1088/0965-0393/20/4/0450211:CAS:528:DC%2BC38XpsFOgtr4%3D
– reference: ShengHWLuoWKAlamgirFMBaiJMMaEAtomic packing and short-to-medium-range order in metallic glassesNature20064394194252006Natur.439..419S1:CAS:528:DC%2BD28XntFWltQ%3D%3D1643710510.1038/nature04421
– reference: IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b
– reference: ChenLJStructural evolution in amorphous silicon and germanium thin filmsMicrosc. Microanal.200282682732002MiMic...8..268C1:CAS:528:DC%2BD38XmtVOit7c%3D1253322410.1017/S1431927602020202
– reference: SolozhenkoVLKurakevychOOAndraultDLe GodecYMezouarMUltimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5Phys. Rev. Lett.20091020155062009PhRvL.102a5506S1925721010.1103/PhysRevLett.102.0155061:CAS:528:DC%2BD1MXkvVSquw%3D%3D
– reference: ZengZSynthesis of quenchable amorphous diamondNat. Commun.201782017NatCo...8..322Z28831044556727210.1038/s41467-017-00395-w1:CAS:528:DC%2BC1cXos1Smurs%3D
– reference: LinYAmorphous diamond: a high-pressure superhard carbon allotropePhys. Rev. Lett.20111071755042011PhRvL.107q5504L2210753610.1103/PhysRevLett.107.1755041:CAS:528:DC%2BC3MXhsVWks7vI
– reference: SerebryanayaNBlankVIvdenkoVChernozatonskiiLPressure-induced superhard phase of C60Solid State Commun.20011181831872001SSCom.118..183S1:CAS:528:DC%2BD3MXisFGnsLk%3D10.1016/S0038-1098(01)00082-5
– reference: Wang, Q. et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4 (2014).
– reference: OliverWCPharrGMAn improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experimentsJ. Mater. Res.19927156415831992JMatR...7.1564O1:CAS:528:DyaK38XktlWqtb4%3D10.1557/JMR.1992.1564
– reference: YamanakaSElectron conductive three-dimensional polymer of cuboidal C60Phys. Rev. Lett.2006960766022006PhRvL..96g6602Y1660611710.1103/PhysRevLett.96.0766021:CAS:528:DC%2BD28XhvVartLc%3D
– reference: ElliottSRMedium-range structural order in covalent amorphous solidsNature19913544454521991Natur.354..445E1:CAS:528:DyaK38Xks1ClsA%3D%3D10.1038/354445a0
– reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: BlankVDPhase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fulleritesPhys. Lett. A19962201491571996PhLA..220..149B1:CAS:528:DyaK28XltVyjurc%3D10.1016/0375-9601(96)00483-5
– reference: FakenDJónssonHSystematic analysis of local atomic structure combined with 3D computer graphicsComput. Mater. Sci.199422792861:CAS:528:DyaK2cXkvV2js7c%3D10.1016/0927-0256(94)90109-0
– reference: IshiiTGeneration of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvilsRev. Sci. Instrum.2016870245012016RScI...87b4501I1:STN:280:DC%2BC28jmtVynuw%3D%3D2693187110.1063/1.4941716
– reference: VoylesPMStructure and physical properties of paracrystalline atomistic models of amorphous siliconJ. Appl. Phys.200190443744512001JAP....90.4437V1:CAS:528:DC%2BD3MXns1KgsL0%3D10.1063/1.1407319
– reference: GeorgakilasVPermanJATucekJZborilRBroad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructuresChem. Rev.2015115474448221:CAS:528:DC%2BC2MXptVGls7s%3D2601248810.1021/cr500304f
– reference: DixonMHutchinsonPA method for the extrapolation of pair distribution functionsMol. Phys.197733166316701977MolPh..33.1663D1:CAS:528:DyaE2sXlvV2ksbk%3D10.1080/00268977700101381
– reference: MerlenAHigh pressure–high temperature synthesis of diamond from single-wall pristine and iodine doped carbon nanotube bundlesCarbon200947164316511:CAS:528:DC%2BD1MXltVGjurg%3D10.1016/j.carbon.2009.02.014
– reference: Zallen, R. The Physics of Amorphous Solids (Wiley, 1983).
– reference: PanZSunHZhangYChenCHarder than diamond: superior indentation strength of wurtzite BN and lonsdaleitePhys. Rev. Lett.20091020555032009PhRvL.102e5503P1925751910.1103/PhysRevLett.102.0555031:CAS:528:DC%2BD1MXhs1elt7Y%3D
– reference: TreacyMMJBorisenkoKBThe local structure of amorphous siliconScience20123359509532012Sci...335..950T1:CAS:528:DC%2BC38XisFarsL0%3D2236300310.1126/science.1214780
– reference: FinneyJLRandom packings and the structure of simple liquids. I. The geometry of random close packingProc. R. Soc. Lond. A Math. Phys. Sci.19703194794931970RSPSA.319..479F1:CAS:528:DyaE3MXnsFKg
– reference: KumarRSX-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressureDiam. Relat. Mater.200716125012532007DRM....16.1250K1:CAS:528:DC%2BD2sXkt1amt7o%3D10.1016/j.diamond.2006.11.103
– reference: TangHRevealing the formation mechanism of ultrahard nanotwinned diamond from onion carbonCarbon20181291591671:CAS:528:DC%2BC2sXhvFOns7fI10.1016/j.carbon.2017.12.027
– reference: Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Preprint at https://arxiv.org/abs/2011.14819 (2020).
– reference: Blase, X., Gillet, P., Miguel, A. S. & Mélinon, P. Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92 (2004).
– reference: KeatingPNEffect of invariance requirements on the elastic strain energy of crystals with application to the diamond structurePhys. Rev.19661456376451966PhRv..145..637K1:CAS:528:DyaF28XpvVGlug%3D%3D10.1103/PhysRev.145.637
– reference: ChengYQMaEShengHWAtomic level structure in multicomponent bulk metallic glassPhys. Rev. Lett.20091022455012009PhRvL.102x5501C1:STN:280:DC%2BD1MrjvFGgug%3D%3D1965902410.1103/PhysRevLett.102.245501
– reference: Gibson, J. M., Treacy, M. M. J., Sun, T. & Zaluzec, N. J. Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett. 105 (2010).
– reference: IwasaYNew phases of C60 synthesized at high pressureScience1994264157015721994Sci...264.1570I1:CAS:528:DyaK2cXksVOisb8%3D1776960010.1126/science.264.5165.1570
– reference: SumiyaHIrifuneTHardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperatureJ. Mater. Res.200722234523512007JMatR..22.2345S1:CAS:528:DC%2BD2sXptVyjsro%3D10.1557/jmr.2007.0295
– reference: Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett. 108 (2012).
– reference: HiraiHKondoKYoshizawaNShiraishiMAmorphous diamond from C60 fullereneAppl. Phys. Lett.199464179717991994ApPhL..64.1797H1:CAS:528:DyaK2cXisVylsr0%3D10.1063/1.111811
– reference: MarchiMBallonePAdiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systemsJ. Chem. Phys.1999110369737021999JChPh.110.3697M1:CAS:528:DyaK1MXosVWmtQ%3D%3D10.1063/1.478259
– reference: BaxterRJMethod of solution of the Percus-Yevick, hypernetted-chain, or similar equationsPhys. Rev.19671541701741967PhRv..154..170B1:CAS:528:DyaF2sXnvFyitg%3D%3D10.1103/PhysRev.154.170
– reference: HuangQNanotwinned diamond with unprecedented hardness and stabilityNature20145102502532014Natur.510..250H1:CAS:528:DC%2BC2cXps1WmurY%3D2491991910.1038/nature13381
– reference: IshiiTLiuZKatsuraTA breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvilsEngineering201954344401:CAS:528:DC%2BC1MXitVOlt77P10.1016/j.eng.2019.01.013
– reference: FerrariACRobertsonJRaman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamondPhilos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.2004362247725122004RSPTA.362.2477F1:CAS:528:DC%2BD2cXhtFahtbrM10.1098/rsta.2004.1452
– reference: BewiloguaKHofmannDHistory of diamond-like carbon films — from first experiments to worldwide applicationsSurf. Coat. Technol.20142422142251:CAS:528:DC%2BC2cXitF2hsLg%3D10.1016/j.surfcoat.2014.01.031
– reference: Sarac, B. et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 9 (2018).
– reference: LechnerWDellagoCAccurate determination of crystal structures based on averaged local bond order parametersJ. Chem. Phys.20081291147072008JChPh.129k4707L1904498010.1063/1.29779701:CAS:528:DC%2BD1cXhtFOrtbnN
– reference: SolozhenkoVLDubSNNovikovNVMechanical properties of cubic BC2N, a new superhard phaseDiam. Relat. Mater.200110222822312001DRM....10.2228S1:CAS:528:DC%2BD3MXot1Kntbs%3D10.1016/S0925-9635(01)00513-1
– volume: 319
  start-page: 479
  year: 1970
  ident: 4122_CR63
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.1970.0189
– volume: 145
  start-page: 637
  year: 1966
  ident: 4122_CR56
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.145.637
– volume: 10
  start-page: 28
  year: 2011
  ident: 4122_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2897
– volume: 129
  start-page: 159
  year: 2018
  ident: 4122_CR31
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.027
– volume: 16
  start-page: 1250
  year: 2007
  ident: 4122_CR70
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2006.11.103
– ident: 4122_CR74
  doi: 10.1103/PhysRevLett.92.215505
– ident: 4122_CR13
  doi: 10.1103/PhysRevLett.105.125504
– volume: 6
  start-page: 192
  year: 2007
  ident: 4122_CR36
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1839
– volume: 10
  start-page: 2228
  year: 2001
  ident: 4122_CR72
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/S0925-9635(01)00513-1
– ident: 4122_CR24
– volume: 102
  start-page: 015506
  year: 2009
  ident: 4122_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.015506
– volume: 64
  start-page: 1797
  year: 1994
  ident: 4122_CR8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111811
– volume: 154
  start-page: 170
  year: 1967
  ident: 4122_CR66
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.154.170
– volume: 108
  start-page: 1
  year: 2016
  ident: 4122_CR43
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.07.004
– volume: 96
  start-page: 076602
  year: 2006
  ident: 4122_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.076602
– volume: 145
  start-page: 293
  year: 2011
  ident: 4122_CR44
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0293-9
– volume: 115
  start-page: 4744
  year: 2015
  ident: 4122_CR15
  publication-title: Chem. Rev.
  doi: 10.1021/cr500304f
– volume: 15
  start-page: 295
  year: 2007
  ident: 4122_CR58
  publication-title: Model. Simul. Mat. Sci. Eng.
  doi: 10.1088/0965-0393/15/3/008
– volume: 14
  start-page: 16
  year: 2005
  ident: 4122_CR40
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2004.06.017
– ident: 4122_CR30
  doi: 10.1038/srep04648
– volume: 256
  start-page: 668
  year: 2009
  ident: 4122_CR49
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.08.042
– volume: 354
  start-page: 445
  year: 1991
  ident: 4122_CR4
  publication-title: Nature
  doi: 10.1038/354445a0
– volume: 121
  start-page: 85
  year: 2000
  ident: 4122_CR51
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/S0031-9201(00)00162-X
– volume: 102
  start-page: 245501
  year: 2009
  ident: 4122_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.245501
– volume: 87
  start-page: 024501
  year: 2016
  ident: 4122_CR50
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4941716
– volume: 228
  start-page: 47
  year: 2014
  ident: 4122_CR76
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/j.pepi.2013.09.009
– volume: 99
  start-page: 12562
  year: 2002
  ident: 4122_CR60
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.202427399
– volume: 54
  start-page: 3841
  year: 1932
  ident: 4122_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01349a006
– volume: 20
  start-page: 045021
  year: 2012
  ident: 4122_CR65
  publication-title: Model. Simul. Mat. Sci. Eng.
  doi: 10.1088/0965-0393/20/4/045021
– volume: 3
  start-page: 864
  year: 2020
  ident: 4122_CR33
  publication-title: Matter
  doi: 10.1016/j.matt.2020.05.013
– volume: 54
  start-page: 1392
  year: 1985
  ident: 4122_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1392
– volume: 129
  start-page: 114707
  year: 2008
  ident: 4122_CR38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2977970
– volume: 47
  start-page: 1643
  year: 2009
  ident: 4122_CR45
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.02.014
– volume: 2
  start-page: 279
  year: 1994
  ident: 4122_CR37
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(94)90109-0
– volume: 23
  start-page: 22
  year: 1998
  ident: 4122_CR46
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400031420
– volume: 242
  start-page: 214
  year: 2014
  ident: 4122_CR47
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.01.031
– volume: 75
  start-page: 47
  year: 2013
  ident: 4122_CR14
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2013.75.3
– ident: 4122_CR35
  doi: 10.1142/6836
– volume: 33
  start-page: 1663
  year: 1977
  ident: 4122_CR67
  publication-title: Mol. Phys.
  doi: 10.1080/00268977700101381
– volume: 22
  start-page: 2345
  year: 2007
  ident: 4122_CR41
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2007.0295
– volume: 118
  start-page: 183
  year: 2001
  ident: 4122_CR69
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(01)00082-5
– volume: 117
  start-page: 1
  year: 1995
  ident: 4122_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 16
  start-page: 670
  year: 2019
  ident: 4122_CR62
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0506-8
– volume: 7
  start-page: 1564
  year: 1992
  ident: 4122_CR52
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.1564
– volume: 335
  start-page: 950
  year: 2012
  ident: 4122_CR11
  publication-title: Science
  doi: 10.1126/science.1214780
– ident: 4122_CR18
  doi: 10.1103/PhysRevLett.108.195505
– volume: 102
  start-page: 055503
  year: 2009
  ident: 4122_CR73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.055503
– volume: 19
  start-page: 1126
  year: 2020
  ident: 4122_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0759-8
– volume: 426
  start-page: 168
  year: 2006
  ident: 4122_CR61
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.062
– volume: 3
  start-page: 697
  year: 2004
  ident: 4122_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1219
– volume: 107
  start-page: 175504
  year: 2011
  ident: 4122_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.175504
– volume: 909
  start-page: 1
  year: 2021
  ident: 4122_CR26
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.12.007
– ident: 4122_CR12
  doi: 10.1038/ncomms1974
– volume: 37
  start-page: 129
  year: 2002
  ident: 4122_CR20
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/S0927-796X(02)00005-0
– volume: 128
  start-page: 11635
  year: 2006
  ident: 4122_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063303n
– volume: 439
  start-page: 419
  year: 2006
  ident: 4122_CR5
  publication-title: Nature
  doi: 10.1038/nature04421
– ident: 4122_CR17
  doi: 10.1038/s41467-018-03744-5
– ident: 4122_CR1
  doi: 10.1002/3527602798
– volume: 5
  start-page: 434
  year: 2019
  ident: 4122_CR21
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.01.013
– ident: 4122_CR75
  doi: 10.1103/PhysRevLett.117.116103
– volume: 37
  start-page: 435
  year: 1978
  ident: 4122_CR3
  publication-title: Philos. Mag. B
  doi: 10.1080/01418637808225788
– volume: 110
  start-page: 3697
  year: 1999
  ident: 4122_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478259
– volume: 510
  start-page: 250
  year: 2014
  ident: 4122_CR42
  publication-title: Nature
  doi: 10.1038/nature13381
– volume: 8
  start-page: 268
  year: 2002
  ident: 4122_CR29
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927602020202
– volume: 220
  start-page: 149
  year: 1996
  ident: 4122_CR23
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00483-5
– volume: 362
  start-page: 2477
  year: 2004
  ident: 4122_CR27
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2004.1452
– volume: 53
  start-page: 4029
  year: 2005
  ident: 4122_CR57
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.001
– volume: 28
  start-page: 784
  year: 1983
  ident: 4122_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.784
– volume: 421
  start-page: 599
  year: 2003
  ident: 4122_CR39
  publication-title: Nature
  doi: 10.1038/421599b
– volume: 50
  start-page: 17953
  year: 1994
  ident: 4122_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 90
  start-page: 4437
  year: 2001
  ident: 4122_CR19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1407319
– volume: 87
  start-page: 4073
  year: 2007
  ident: 4122_CR28
  publication-title: Philos. Mag.
  doi: 10.1080/14786430701394041
– volume: 264
  start-page: 1570
  year: 1994
  ident: 4122_CR22
  publication-title: Science
  doi: 10.1126/science.264.5165.1570
– volume: 47
  start-page: 558
  year: 1993
  ident: 4122_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 168
  start-page: 17
  year: 2016
  ident: 4122_CR68
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.06.003
– volume: 8
  year: 2017
  ident: 4122_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00395-w
– reference: 34819687 - Nature. 2021 Nov;599(7886):563-564
SSID ssj0005174
Score 2.6582139
Snippet Solids in nature can be generally classified into crystalline and non-crystalline states 1 – 7 , depending on whether long-range lattice periodicity is present...
Solids in nature can be generally classified into crystalline and non-crystalline states , depending on whether long-range lattice periodicity is present in...
Solids in nature can be generally classified into crystalline and non-crystalline states.sup.1-7, depending on whether long-range lattice periodicity is...
Solids in nature can be generally classified into crystalline and non-crystalline states1-7, depending on whether long-range lattice periodicity is present in...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 605
SubjectTerms 639/301/1034/1035
639/766/119/1002
Amorphous materials
Amorphous structure
Bonding strength
Buckminsterfullerene
Carbon
Chemical properties
Chemical synthesis
Crystal structure
Crystallinity
Crystals
Diamond crystals
Diamonds
High temperature
Humanities and Social Sciences
Long range order
Methods
Microscopy
Molecular dynamics
multidisciplinary
Nucleation
Periodicity
Physical properties
Production processes
Science
Science (multidisciplinary)
Short range order
Simulation
Temperature
X-ray diffraction
Title Synthesis of paracrystalline diamond
URI https://link.springer.com/article/10.1038/s41586-021-04122-w
https://www.ncbi.nlm.nih.gov/pubmed/34819683
https://www.proquest.com/docview/2603245872
https://www.proquest.com/docview/2602640020
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFeRtt9ue2KN8I-2Ewtx7bkp5GFZt1gYfSD5U3IklwKw07rhNL_fne2ktSh64v8oJNsne90v5NOJ4AeU1bYvlJBjsYsiHmhAiVEHCDS12gtWJrntKD_a5wen8c_J8nELbjVLqxyMSc2E7WpNK2RHyLuRtufCB59nV4FdGsU7a66KzQewyalLqOQLj7hqxCPtSzM7tBM2BeHNRouQeG36EzHDB2ym45hWp-e79intQ3Txg6NtuCZA5D-oP3j2_DIljvwpAnk1PUObDtlrf2PLqP0p-fQO70tEejVl7VfFT5l-9bXtwgLKR-39VFCcHDmBZyPjs6Gx4G7HiHQCeezwIrQ8kRHHP3MPE6UEqxAOJCFRidolgyzWqECW4NPbQyLuYp5ZpnlIjQKVfklbJRVaV-DH4aap5lIQ8VNHDF0sK3C5kWBzl4aceUBW_BGapc7nK6w-CubPey-kC0_JfJTNvyUNx58XraZtpkzHqTuEcslpaQoKeblQs3rWg7O_gzHcpCiG41AlGcevLuP7MfpSYfogyMqKvxKHH170gDHSsmuOpR7HUo9vbySd2rfd2ov2t92Xzf7HULUUN2tXsiRdDNELVfy7MHbZTW1pKi30lbzhgbxKiF6D1618rdkJR2gzvAVHnxZCOSq8__zeffhb9mDpxHpBGNBlOzDxux6bt8g6prlB41qYSmGjMrR9wPY_HY0_n3yD0xqJYw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiI2vsAEBFRjaosVpErsHhKrB1LKtB9aJ3ozjONMklHRLq6r_FH8j7-WjXaqx2045-Nlxfn6f8fMzQIspI0xbKSdCY-b4PFGOEsJ30NPXaC1YGEX0Q_9kEPbO_B-jYLQGf-uzMJRWWevEQlHHmaZ_5Pvod6PtDwT3vo4vHbo1inZX6ys0SrY4MvMZhmz5l_43XN8Pnnf4fXjQc6pbBRwdcD5xjHAND7THMTyL_EApwRK0oh031gFq85gZrZDvTYxPHcfM58rnHcMMF26sUAJw3HtwH7u4JFF8xJcpJStVn6tDOm5b7OdoKAWl-2Lw7jMMAGcNQ7hqDq7Zw5UN2sLuHT6Bx5XDandLDtuANZNuwoMicVTnm7BRKYfc3qkqWH9-Cq3TeYqOZX6R21liU3VxfTVHN5TqfxsbORLBjJ_B2Z0A9xzW0yw1L8F2Xc3DjghdxWPfYxjQG4XdkwSDy9DjygJWYyN1Vaucrsz4I4s987aQJZ4S8ZQFnnJmwe6iz7is1HErdYsgl1QCI6Ucm3M1zXPZHf46GMhuiGE7Or68Y8H7m8j6pz8bRJ8qoiTDWeLXlycb8FupuFaDcqtBqccXl_Ja68dG63m5bDcNs90gRI2gm801H8lKI-VyKT8WvFs0U0_KsktNNi1o0D-mCMKCFyX_LaCkA9sdfIUFezVDLgf_P86vbp_LW3jYG54cy-P-4GgLHnkkH4w5XrAN65OrqXmNHt8kelOImQ2_71qu_wFs6l-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviA0YYQMCKjA0osZpErsPCFUb1cqgQmwTfTOO40yTUNItrar-a_x13OWjXaqxtz3lwWfH-fk-4_MZoMWUEaajlBOhMXN8nihHCeE76OlrtBYsjCL6of99GB6e-l9HwWgN_tZnYSitstaJhaKOM03_yNvod6PtDwT32kmVFvHjoP95fOHQDVK001pfp1GyyJGZzzB8yz8NDnCt33pe_8vJ_qFT3TDg6IDziWOEa3igPY6hWuQHSgmWoEXturEOULPHzGiFMmBifOo4Zj5XPu8aZrhwY4XSgOPegbu8EzCSMT7iy_SSlQrQ1YEdtyPaORpNQam_GMj7DIPBWcMorpqGK7ZxZbO2sIH9R_Cwcl7tXsltG7Bm0k24VySR6nwTNipFkdu7VTXrD4-hdTxP0cnMz3M7S2yqNK4v5-iSUi1wYyN3IpjxEzi9FeCewnqapeYZ2K6redgVoat47HsMg3ujsHuSYKAZelxZwGpspK7qltP1GX9ksX_eEbLEUyKessBTzizYW_QZl1U7bqRuEeSSymGkxFhnaprnsnfya38oeyGG8OgE864Fb64jGxz_bBC9r4iSDGeJX1-ecsBvpUJbDcrtBqUen1_IK63vGq1n5bJdN8xOgxC1g24213wkK-2Uy6UsWfB60Uw9KeMuNdm0oEFfmaIJC7ZK_ltASYe3u_gKCz7WDLkc_P84P795Lq_gPkq0_DYYHm3DA4_EgzHHC3ZgfXI5NS_Q-ZtELwsps-H3bYv1P02lY8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+paracrystalline+diamond&rft.jtitle=Nature+%28London%29&rft.au=Tang%2C+Hu&rft.au=Yuan%2C+Xiaohong&rft.au=Cheng%2C+Yong&rft.au=Fei%2C+Hongzhan&rft.date=2021-11-25&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7886&rft.spage=605&rft_id=info:doi/10.1038%2Fs41586-021-04122-w&rft.externalDocID=A683723179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon