Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients

Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD pa...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 31; no. 3; pp. 306 - 313
Main Authors Gómez, Carlos, Mediavilla, Ángela, Hornero, Roberto, Abásolo, Daniel, Fernández, Alberto
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels ( p < 0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.
AbstractList Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels ( p < 0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.
Abstract Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels ( p < 0.01; Student's t -test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.
Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.
Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.
Author Abásolo, Daniel
Hornero, Roberto
Fernández, Alberto
Mediavilla, Ángela
Gómez, Carlos
Author_xml – sequence: 1
  givenname: Carlos
  surname: Gómez
  fullname: Gómez, Carlos
  email: carlos.gomez@tel.uva.es
  organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
– sequence: 2
  givenname: Ángela
  surname: Mediavilla
  fullname: Mediavilla, Ángela
  organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
– sequence: 3
  givenname: Roberto
  surname: Hornero
  fullname: Hornero, Roberto
  organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
– sequence: 4
  givenname: Daniel
  surname: Abásolo
  fullname: Abásolo, Daniel
  organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
– sequence: 5
  givenname: Alberto
  surname: Fernández
  fullname: Fernández, Alberto
  organization: Centro de Magnetoencefalografía Dr. Pérez-Modrego, Complutense University of Madrid, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18676171$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH_gFSArWCVc27GdWQAaVaVFKmIBXVuOfTPjacYe7ARpeHocpnRRCbUre3G-Y99z7mlx5IPHonhDoCZAxPtNvUWLfrVb72sK0NYgaiDwrDghrWRVAwyO8p1xqBrO2HFxmtIGAJpGsBfFMWmFFESSk-L2JmEZ-nJcY3nlVpNZu3ep7KM2ox5K67bokwu-7EP8q9FeD_vk0sx8vbgsI5oQrfOrGQrbcjn8XmOmYnaxLqHO9js9OvRjelk87_WQ8NXdeVbcfL74cX5VXX-7_HK-vK4Ml3KsOk5s1zaUGMO7jsqF1ILxvufCMmp7SzlSBCO57JkB0WBvmoZTkUcyrdSWnRVvD767GH5OmEa1dcngMGiPYUpKiEXL-YI_KqTQSMIpy8LXd8Kpy8GrXXRbHffqX45Z8OEgMDGkFLFXxo157ODHqN2gCKi5N7VR972puTcFQuXeMi8f8PdPPEouDyTmRH85jCqZnLZB63I3o7LBPcHj4wMPMzjvjB5ucY9pE6aYa0-KqEQVqO_zXs1rBS0AIbTJBp_-b_CkL_wBqMbiXQ
CitedBy_id crossref_primary_10_1016_j_knosys_2016_01_040
crossref_primary_10_1016_j_iswa_2021_200045
crossref_primary_10_1016_j_bspc_2018_09_014
crossref_primary_10_1260_2040_2295_3_2_299
crossref_primary_10_1016_j_neulet_2025_138146
crossref_primary_10_1038_s41598_023_32664_8
crossref_primary_10_1109_ACCESS_2020_3021455
crossref_primary_10_1016_j_bspc_2022_104233
crossref_primary_10_1016_j_matchemphys_2021_124647
crossref_primary_10_1016_j_neurobiolaging_2019_09_008
crossref_primary_10_1142_S0218348X19500014
crossref_primary_10_3389_fncom_2018_00060
crossref_primary_10_3390_a14110316
crossref_primary_10_1038_s41598_021_04213_8
crossref_primary_10_1186_s12938_020_0754_y
crossref_primary_10_1007_s11760_013_0526_2
crossref_primary_10_1016_j_crneur_2022_100056
crossref_primary_10_1016_j_jns_2009_08_028
crossref_primary_10_1007_s00704_015_1565_0
crossref_primary_10_1007_s00521_017_3126_1
crossref_primary_10_1515_revneuro_2015_0011
crossref_primary_10_1007_s11517_017_1734_7
crossref_primary_10_1016_j_bandc_2014_03_002
crossref_primary_10_3390_e22121357
crossref_primary_10_1016_j_clinph_2017_05_012
crossref_primary_10_1186_s12868_019_0519_3
crossref_primary_10_1007_s11571_018_9509_x
crossref_primary_10_1038_srep26948
crossref_primary_10_1152_jn_00530_2020
crossref_primary_10_1007_s11517_010_0620_3
crossref_primary_10_1016_j_asoc_2024_112178
crossref_primary_10_29121_granthaalayah_v9_i11_2021_4393
crossref_primary_10_1162_netn_a_00355
crossref_primary_10_1007_s10462_020_09804_x
crossref_primary_10_1186_s40463_015_0065_7
crossref_primary_10_1142_S0218348X21500237
crossref_primary_10_1186_s40345_021_00235_3
crossref_primary_10_1016_j_bspc_2022_104439
crossref_primary_10_1007_s10877_013_9434_9
crossref_primary_10_4015_S1016237214500355
crossref_primary_10_1016_j_inffus_2025_102936
crossref_primary_10_3389_fncom_2022_877912
crossref_primary_10_1049_csy2_12009
crossref_primary_10_4236_jbbs_2012_24052
crossref_primary_10_1016_j_bspc_2019_101563
crossref_primary_10_1109_ACCESS_2019_2926515
crossref_primary_10_1016_j_cmpb_2019_105293
crossref_primary_10_1016_j_cmpb_2012_10_008
crossref_primary_10_3389_fnins_2016_00047
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1016_j_chaos_2011_08_012
crossref_primary_10_3389_fphys_2018_01767
crossref_primary_10_1016_j_procs_2023_10_260
crossref_primary_10_1371_journal_pone_0190081
crossref_primary_10_1007_s00702_010_0450_3
crossref_primary_10_3390_app14209414
crossref_primary_10_1155_2018_8915079
crossref_primary_10_3390_e25111561
crossref_primary_10_1080_03772063_2020_1753587
crossref_primary_10_1016_j_biopsycho_2018_06_008
crossref_primary_10_3390_e22020239
crossref_primary_10_1016_j_bspc_2021_102827
crossref_primary_10_1016_j_sigpro_2010_04_005
crossref_primary_10_1007_s10470_019_01388_z
crossref_primary_10_1016_j_cmpb_2019_04_017
crossref_primary_10_3389_fneur_2020_00122
crossref_primary_10_3390_s18051372
crossref_primary_10_1016_j_eplepsyres_2014_06_007
crossref_primary_10_1177_1073858413513928
crossref_primary_10_1093_cercor_bhae143
crossref_primary_10_2174_1874120701004010223
crossref_primary_10_1093_sleep_zsae105
crossref_primary_10_1515_bmt_2019_0313
crossref_primary_10_3390_s20051491
crossref_primary_10_3390_e16084497
crossref_primary_10_1016_j_cmpb_2016_05_014
crossref_primary_10_1016_j_bspc_2021_102580
crossref_primary_10_3390_ctn8030027
crossref_primary_10_1016_j_cmpb_2024_108197
crossref_primary_10_1016_j_chaos_2022_112051
crossref_primary_10_3390_atmos13101583
crossref_primary_10_4316_AECE_2018_02009
crossref_primary_10_1016_j_csl_2014_08_002
crossref_primary_10_1088_1741_2560_7_4_046007
crossref_primary_10_1109_TBCAS_2018_2848477
crossref_primary_10_1186_s13634_024_01155_x
crossref_primary_10_1097_WNP_0b013e3181f40dc8
crossref_primary_10_3389_fnhum_2017_00530
crossref_primary_10_1109_TIM_2022_3149325
crossref_primary_10_1080_10255842_2022_2072684
crossref_primary_10_1007_s10334_012_0312_0
crossref_primary_10_1016_j_neucom_2014_05_083
crossref_primary_10_1142_S0129065718500247
crossref_primary_10_4015_S1016237219500030
crossref_primary_10_1063_1_3514011
Cites_doi 10.1097/00004691-200101000-00010
10.1016/0167-2789(88)90081-4
10.1016/j.physa.2004.05.045
10.7150/ijms.1.11
10.1016/0022-3956(75)90026-6
10.1023/A:1021420507901
10.1103/PhysRevE.58.5153
10.1103/PhysRevLett.50.346
10.1016/j.rbmret.2005.02.001
10.1016/j.medengphy.2006.01.003
10.1016/0006-3223(94)90004-3
10.1016/j.clinph.2005.06.011
10.1016/0013-4694(95)00186-7
10.1093/jnci/95.1.14
10.1016/j.cmpb.2007.07.001
10.1016/S1388-2457(03)00072-5
10.1109/51.805149
10.1109/TBME.2006.873543
10.1109/TNSRE.2004.841384
10.1016/0013-4694(95)00050-9
10.1007/BF02189530
10.1097/00001756-199401120-00042
10.1023/A:1026611219551
10.1103/PhysRevA.42.1869
10.1016/S1388-2457(99)00013-9
10.1016/0167-2789(92)90023-G
10.1109/TSP.1993.193131
10.1016/0167-2789(92)90102-S
10.1016/S0013-4694(97)00079-5
10.1103/PhysRevE.64.061907
10.1126/science.156.3775.636
10.1006/meth.2001.1238
10.1016/0013-4694(95)00147-Q
10.1109/81.904882
10.1109/CBMS.1995.465426
10.1103/RevModPhys.65.413
10.1016/j.clinph.2004.01.001
10.1016/0010-4825(88)90041-8
10.1007/s004220050394
ContentType Journal Article
Copyright 2008 IPEM
IPEM
Copyright_xml – notice: 2008 IPEM
– notice: IPEM
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1016/j.medengphy.2008.06.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 313
ExternalDocumentID 18676171
10_1016_j_medengphy_2008_06_010
S1350453308001124
1_s2_0_S1350453308001124
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c577t-b51db8421cc5bb2797a635ff56d32dfd25e2e0c757f3c064efc44526676c87ad3
IEDL.DBID AIKHN
ISSN 1350-4533
IngestDate Fri Jul 11 02:14:36 EDT 2025
Fri Jul 11 03:43:06 EDT 2025
Thu Apr 03 07:07:51 EDT 2025
Tue Jul 01 04:24:41 EDT 2025
Thu Apr 24 23:07:45 EDT 2025
Fri Feb 23 02:29:21 EST 2024
Sun Feb 23 10:19:59 EST 2025
Tue Aug 26 16:32:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Higuchi's algorithm
Stationarity
Fractal dimension
Magnetoencephalogram
Surrogate data
Alzheimer's disease
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-b51db8421cc5bb2797a635ff56d32dfd25e2e0c757f3c064efc44526676c87ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18676171
PQID 20471523
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_66985595
proquest_miscellaneous_20471523
pubmed_primary_18676171
crossref_citationtrail_10_1016_j_medengphy_2008_06_010
crossref_primary_10_1016_j_medengphy_2008_06_010
elsevier_sciencedirect_doi_10_1016_j_medengphy_2008_06_010
elsevier_clinicalkeyesjournals_1_s2_0_S1350453308001124
elsevier_clinicalkey_doi_10_1016_j_medengphy_2008_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jorm (bib2) 1991; 240
van Cappellen van Walsum, Pijnenburg, Berendse, van Dijk, Knol, Scheltens (bib20) 2003; 114
Grassberger, Procaccia (bib23) 1983; 50
Chau, Chau, Casas, Berall, Kenny (bib41) 2005; 13
Woyshville, Calabrese (bib44) 1994; 35
Simon, Radmacher, Dobbin, McShane (bib42) 2003; 95
Bird (bib1) 2001
Jeong, Kim, Han (bib43) 1998; 106
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib8) 2001; 64
Jeong, Chae, Kim, Han (bib12) 2001; 18
Vrba, Robinson (bib6) 2001; 25
Doyle, Dugan, Humphries, Newton (bib34) 2004; 1
Duchene, Goubel (bib40) 1993; 21
Mandelbrot (bib24) 1967; 156
Jelles, van Birgelen, Slaets, Hekster, Jonkman, Stam (bib10) 1999; 110
Ferenets, Lipping, Anier, Jäntti, Melto, Hovilehto (bib37) 2006; 53
Stam (bib7) 2005; 116
Babloyantz, Destexhe (bib18) 1988
Acharya, Bhat, Kannathal, Rao, Lim (bib38) 2005; 26
Gómez, Hornero, Abásolo, Fernández, López (bib45) 2006; 28
Stam, Jelles, Achtereekte, Rombouts, Slaets, Keunen (bib14) 1995; 95
Petrosian (bib28) 1995
Hornero, Espino, Alonso, López (bib15) 1999; 18
Katz (bib27) 1988; 18
Folstein, Folstein, McHugh (bib32) 1975; 12
Besthorn, Sattel, Geiger-Kabisch, Zerfass, Förstl (bib21) 1995; 95
Bendat, Piersol (bib33) 2000
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib4) 1993; 65
Mandelbrot (bib29) 1977
Gómez, Hornero, Abásolo, Fernández, Escudero (bib46) 2007; 87
Nandrino, Pezard, Martinerie, el Massioui, Renault, Jouvent (bib17) 1994; 5
Abatzoglou, Anninos, Adamopoulos, Koukourakis (bib19) 2007; 107
Maragos, Sun (bib26) 1983; 41
Accardo, Affinito, Carrozzi, Bouquet (bib9) 1997; 77
Klonowsky, Olejarczyk, Stepien (bib39) 2004; 342
Jeong (bib3) 2004; 115
Esteller, Vachtsevanos, Echauz, Litt (bib30) 2001; 48
Block, von Bloh, Schellnhuber (bib31) 1990; 42
Theiler, Eubank, Longtin, Galdrikian, Doyne Farmer (bib35) 1992; 58
Hari (bib5) 2005
Eckmann, Ruelle (bib22) 1992; 56
Kotini, Anninos (bib11) 2002; 15
Kim, Krieble, Kim, Reed, Rae-Grant (bib16) 1996; 98
Timmer (bib36) 1998; 58
Higuchi (bib25) 1988; 31
Anninos, Adamopoulos, Kotini, Tsagas (bib13) 2000; 13
Anninos (10.1016/j.medengphy.2008.06.010_bib13) 2000; 13
Hornero (10.1016/j.medengphy.2008.06.010_bib15) 1999; 18
van Cappellen van Walsum (10.1016/j.medengphy.2008.06.010_bib20) 2003; 114
Duchene (10.1016/j.medengphy.2008.06.010_bib40) 1993; 21
Ferenets (10.1016/j.medengphy.2008.06.010_bib37) 2006; 53
Jeong (10.1016/j.medengphy.2008.06.010_bib43) 1998; 106
Woyshville (10.1016/j.medengphy.2008.06.010_bib44) 1994; 35
Gómez (10.1016/j.medengphy.2008.06.010_bib45) 2006; 28
Accardo (10.1016/j.medengphy.2008.06.010_bib9) 1997; 77
Doyle (10.1016/j.medengphy.2008.06.010_bib34) 2004; 1
Vrba (10.1016/j.medengphy.2008.06.010_bib6) 2001; 25
Stam (10.1016/j.medengphy.2008.06.010_bib7) 2005; 116
Timmer (10.1016/j.medengphy.2008.06.010_bib36) 1998; 58
Hämäläinen (10.1016/j.medengphy.2008.06.010_bib4) 1993; 65
Bird (10.1016/j.medengphy.2008.06.010_bib1) 2001
Abatzoglou (10.1016/j.medengphy.2008.06.010_bib19) 2007; 107
Mandelbrot (10.1016/j.medengphy.2008.06.010_bib24) 1967; 156
Acharya (10.1016/j.medengphy.2008.06.010_bib38) 2005; 26
Jeong (10.1016/j.medengphy.2008.06.010_bib12) 2001; 18
Jelles (10.1016/j.medengphy.2008.06.010_bib10) 1999; 110
Esteller (10.1016/j.medengphy.2008.06.010_bib30) 2001; 48
Bendat (10.1016/j.medengphy.2008.06.010_bib33) 2000
Maragos (10.1016/j.medengphy.2008.06.010_bib26) 1983; 41
Andrzejak (10.1016/j.medengphy.2008.06.010_bib8) 2001; 64
Gómez (10.1016/j.medengphy.2008.06.010_bib46) 2007; 87
Petrosian (10.1016/j.medengphy.2008.06.010_bib28) 1995
Chau (10.1016/j.medengphy.2008.06.010_bib41) 2005; 13
Block (10.1016/j.medengphy.2008.06.010_bib31) 1990; 42
Folstein (10.1016/j.medengphy.2008.06.010_bib32) 1975; 12
Babloyantz (10.1016/j.medengphy.2008.06.010_bib18) 1988
Grassberger (10.1016/j.medengphy.2008.06.010_bib23) 1983; 50
Kotini (10.1016/j.medengphy.2008.06.010_bib11) 2002; 15
Jorm (10.1016/j.medengphy.2008.06.010_bib2) 1991; 240
Hari (10.1016/j.medengphy.2008.06.010_bib5) 2005
Theiler (10.1016/j.medengphy.2008.06.010_bib35) 1992; 58
Stam (10.1016/j.medengphy.2008.06.010_bib14) 1995; 95
Jeong (10.1016/j.medengphy.2008.06.010_bib3) 2004; 115
Eckmann (10.1016/j.medengphy.2008.06.010_bib22) 1992; 56
Klonowsky (10.1016/j.medengphy.2008.06.010_bib39) 2004; 342
Higuchi (10.1016/j.medengphy.2008.06.010_bib25) 1988; 31
Kim (10.1016/j.medengphy.2008.06.010_bib16) 1996; 98
Katz (10.1016/j.medengphy.2008.06.010_bib27) 1988; 18
Besthorn (10.1016/j.medengphy.2008.06.010_bib21) 1995; 95
Nandrino (10.1016/j.medengphy.2008.06.010_bib17) 1994; 5
Mandelbrot (10.1016/j.medengphy.2008.06.010_bib29) 1977
Simon (10.1016/j.medengphy.2008.06.010_bib42) 2003; 95
References_xml – volume: 98
  start-page: 35
  year: 1996
  end-page: 41
  ident: bib16
  article-title: Differentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalography
  publication-title: Electroenceph Clin Neurophysiol
– volume: 58
  start-page: 77
  year: 1992
  end-page: 94
  ident: bib35
  article-title: Testing for nonlinearity in time series: the method of surrogate data
  publication-title: Physica D
– volume: 95
  start-page: 309
  year: 1995
  end-page: 317
  ident: bib14
  article-title: Investigation of EEG nonlinearity in dementia and Parkinson's disease
  publication-title: Electroenceph Clin Neurophysiol
– volume: 106
  start-page: 220
  year: 1998
  end-page: 228
  ident: bib43
  article-title: Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 25
  start-page: 249
  year: 2001
  end-page: 271
  ident: bib6
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
– volume: 107
  start-page: 34
  year: 2007
  end-page: 39
  ident: bib19
  article-title: Nonlinear analysis of brain magnetoencephalographic activity in Alzheimer disease patients
  publication-title: Acta Neurol Belg
– volume: 15
  start-page: 107
  year: 2002
  end-page: 113
  ident: bib11
  article-title: Detection of non-linearity in schizophrenic patients using magnetoencephalography
  publication-title: Brain Topogr
– volume: 240
  start-page: 218
  year: 1991
  end-page: 222
  ident: bib2
  article-title: Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias
  publication-title: Eur Arch Psychiatry Clin Neurosci
– volume: 342
  start-page: 701
  year: 2004
  end-page: 707
  ident: bib39
  article-title: Epileptic seizures in economic organism
  publication-title: Physica A
– volume: 5
  start-page: 528
  year: 1994
  end-page: 530
  ident: bib17
  article-title: Decrease of complexity in EEG as a symptom of depression
  publication-title: NeuroReport
– year: 1977
  ident: bib29
  article-title: Fractals: Form, chance, and dimension
– volume: 115
  start-page: 1490
  year: 2004
  end-page: 1505
  ident: bib3
  article-title: EEG dynamics in patients with Alzheimer's disease
  publication-title: Clin Neurophysiol
– start-page: 1165
  year: 2005
  end-page: 1197
  ident: bib5
  article-title: Magnetoencephalography in clinical neurophysiological assessment of human cortical functions
  publication-title: Electroencephalography: Basic principles, clinical applications, and related fields
– volume: 42
  start-page: 1869
  year: 1990
  end-page: 1874
  ident: bib31
  article-title: Efficient box-counting determination of generalized fractal dimensions
  publication-title: Phys Rev A
– volume: 87
  start-page: 239
  year: 2007
  end-page: 247
  ident: bib46
  article-title: Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information
  publication-title: Comput Meth Programs Biomed
– volume: 53
  start-page: 1067
  year: 2006
  end-page: 1077
  ident: bib37
  article-title: Comparison of entropy and complexity measures for the assessment of depth of sedation
  publication-title: IEEE Trans Biomed Eng
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib8
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys Rev E
– volume: 116
  start-page: 2266
  year: 2005
  end-page: 2301
  ident: bib7
  article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field
  publication-title: Clin Neurophysiol
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib4
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev Mod Phys
– volume: 110
  start-page: 1159
  year: 1999
  end-page: 1167
  ident: bib10
  article-title: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls
  publication-title: Clin Neurophysiol
– volume: 18
  start-page: 73
  year: 1999
  end-page: 79
  ident: bib15
  article-title: Estimating complexity from EEG background activity of epileptic patients
  publication-title: IEEE Eng Med Biol
– volume: 31
  start-page: 277
  year: 1988
  end-page: 283
  ident: bib25
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D
– volume: 114
  start-page: 1034
  year: 2003
  end-page: 1040
  ident: bib20
  article-title: A neural complexity measure applied to MEG data in Alzheimer's disease
  publication-title: Clin Neurophysiol
– volume: 48
  start-page: 177
  year: 2001
  end-page: 183
  ident: bib30
  article-title: A comparison of waveform fractal dimension algorithms
  publication-title: IEEE Trans Circuits Syst
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bib32
  article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– start-page: 307
  year: 1988
  end-page: 316
  ident: bib18
  article-title: The Creutzfeldt–Jakob disease in the hierarchy of chaotic attractors
  publication-title: From chemical to biological organization
– volume: 18
  start-page: 58
  year: 2001
  end-page: 67
  ident: bib12
  article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia
  publication-title: J Clin Neurophysiol
– volume: 50
  start-page: 346
  year: 1983
  end-page: 349
  ident: bib23
  article-title: Characterization of strange attractors
  publication-title: Phys Rev Lett
– start-page: 212
  year: 1995
  end-page: 217
  ident: bib28
  article-title: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns
  publication-title: Proc IEEE Symp Comp Med Syst
– volume: 35
  start-page: 381
  year: 1994
  end-page: 387
  ident: bib44
  article-title: Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: the fractal dimension
  publication-title: Biol Psychiatry
– volume: 28
  start-page: 851
  year: 2006
  end-page: 859
  ident: bib45
  article-title: Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients
  publication-title: Med Eng Phys
– volume: 77
  start-page: 339
  year: 1997
  end-page: 350
  ident: bib9
  article-title: Use of fractal dimension for the analysis of electroencephalographic time series
  publication-title: Biol Cybern
– volume: 95
  start-page: 14
  year: 2003
  end-page: 18
  ident: bib42
  article-title: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
  publication-title: J Natl Cancer Inst
– volume: 41
  start-page: 108
  year: 1983
  end-page: 121
  ident: bib26
  article-title: Measuring the fractal dimension of signals: morphological covers and iterative optimization
  publication-title: IEEE Trans Signal Proc
– volume: 58
  start-page: 5153
  year: 1998
  end-page: 5156
  ident: bib36
  article-title: Power of surrogate data testing with respect to nonstationarity
  publication-title: Phys Rev E
– volume: 26
  start-page: 133
  year: 2005
  end-page: 139
  ident: bib38
  article-title: Analysis of cardiac health using fractal dimension and wavelet transformation
  publication-title: ITBM-RBM
– volume: 156
  start-page: 636
  year: 1967
  end-page: 638
  ident: bib24
  article-title: How long is the coast of Britain? Statistical selfsimilarity and fractional dimension
  publication-title: Science
– volume: 13
  start-page: 99
  year: 2005
  end-page: 105
  ident: bib41
  article-title: Investigating the stationarity of paediatric aspiration signals
  publication-title: IEEE Trans Neural Syst Rehab Eng
– start-page: 2391
  year: 2001
  end-page: 2399
  ident: bib1
  article-title: Alzheimer's disease and other primary dementias
  publication-title: Harrison's principles of internal medicine
– volume: 1
  start-page: 11
  year: 2004
  end-page: 20
  ident: bib34
  article-title: Discriminating between elderly and young using a fractal dimension analysis of centre of pressure
  publication-title: Int J Med Sci
– volume: 13
  start-page: 135
  year: 2000
  end-page: 144
  ident: bib13
  article-title: Nonlinear analysis of brain activity in magnetic influenced Parkinson patients
  publication-title: Brain Topogr
– volume: 56
  start-page: 185
  year: 1992
  end-page: 187
  ident: bib22
  article-title: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
  publication-title: Physica D
– volume: 95
  start-page: 84
  year: 1995
  end-page: 89
  ident: bib21
  article-title: Parameters of EEG dimensional complexity in Alzheimer's disease
  publication-title: Electroenceph Clin Neurophysiol
– volume: 18
  start-page: 145
  year: 1988
  end-page: 156
  ident: bib27
  article-title: Fractals and the analysis of waveforms
  publication-title: Comput Biol Med
– volume: 21
  start-page: 313
  year: 1993
  end-page: 397
  ident: bib40
  article-title: Surface electromyogram during voluntary contractions: processing tools and relation to physiological events
  publication-title: Crit Rev Biomed Eng
– year: 2000
  ident: bib33
  article-title: Random data: Analysis and measurement procedures
– volume: 18
  start-page: 58
  year: 2001
  ident: 10.1016/j.medengphy.2008.06.010_bib12
  article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-200101000-00010
– volume: 31
  start-page: 277
  year: 1988
  ident: 10.1016/j.medengphy.2008.06.010_bib25
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physica D
  doi: 10.1016/0167-2789(88)90081-4
– volume: 342
  start-page: 701
  year: 2004
  ident: 10.1016/j.medengphy.2008.06.010_bib39
  article-title: Epileptic seizures in economic organism
  publication-title: Physica A
  doi: 10.1016/j.physa.2004.05.045
– volume: 1
  start-page: 11
  year: 2004
  ident: 10.1016/j.medengphy.2008.06.010_bib34
  article-title: Discriminating between elderly and young using a fractal dimension analysis of centre of pressure
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.1.11
– year: 2000
  ident: 10.1016/j.medengphy.2008.06.010_bib33
– volume: 12
  start-page: 189
  year: 1975
  ident: 10.1016/j.medengphy.2008.06.010_bib32
  article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
  doi: 10.1016/0022-3956(75)90026-6
– volume: 15
  start-page: 107
  year: 2002
  ident: 10.1016/j.medengphy.2008.06.010_bib11
  article-title: Detection of non-linearity in schizophrenic patients using magnetoencephalography
  publication-title: Brain Topogr
  doi: 10.1023/A:1021420507901
– volume: 58
  start-page: 5153
  year: 1998
  ident: 10.1016/j.medengphy.2008.06.010_bib36
  article-title: Power of surrogate data testing with respect to nonstationarity
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.5153
– volume: 50
  start-page: 346
  year: 1983
  ident: 10.1016/j.medengphy.2008.06.010_bib23
  article-title: Characterization of strange attractors
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.50.346
– volume: 26
  start-page: 133
  year: 2005
  ident: 10.1016/j.medengphy.2008.06.010_bib38
  article-title: Analysis of cardiac health using fractal dimension and wavelet transformation
  publication-title: ITBM-RBM
  doi: 10.1016/j.rbmret.2005.02.001
– volume: 28
  start-page: 851
  year: 2006
  ident: 10.1016/j.medengphy.2008.06.010_bib45
  article-title: Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.01.003
– volume: 35
  start-page: 381
  year: 1994
  ident: 10.1016/j.medengphy.2008.06.010_bib44
  article-title: Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: the fractal dimension
  publication-title: Biol Psychiatry
  doi: 10.1016/0006-3223(94)90004-3
– volume: 116
  start-page: 2266
  year: 2005
  ident: 10.1016/j.medengphy.2008.06.010_bib7
  article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.06.011
– volume: 98
  start-page: 35
  year: 1996
  ident: 10.1016/j.medengphy.2008.06.010_bib16
  article-title: Differentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalography
  publication-title: Electroenceph Clin Neurophysiol
  doi: 10.1016/0013-4694(95)00186-7
– volume: 95
  start-page: 14
  year: 2003
  ident: 10.1016/j.medengphy.2008.06.010_bib42
  article-title: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/95.1.14
– volume: 87
  start-page: 239
  year: 2007
  ident: 10.1016/j.medengphy.2008.06.010_bib46
  article-title: Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information
  publication-title: Comput Meth Programs Biomed
  doi: 10.1016/j.cmpb.2007.07.001
– volume: 114
  start-page: 1034
  year: 2003
  ident: 10.1016/j.medengphy.2008.06.010_bib20
  article-title: A neural complexity measure applied to MEG data in Alzheimer's disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00072-5
– volume: 18
  start-page: 73
  year: 1999
  ident: 10.1016/j.medengphy.2008.06.010_bib15
  article-title: Estimating complexity from EEG background activity of epileptic patients
  publication-title: IEEE Eng Med Biol
  doi: 10.1109/51.805149
– start-page: 307
  year: 1988
  ident: 10.1016/j.medengphy.2008.06.010_bib18
  article-title: The Creutzfeldt–Jakob disease in the hierarchy of chaotic attractors
– volume: 53
  start-page: 1067
  year: 2006
  ident: 10.1016/j.medengphy.2008.06.010_bib37
  article-title: Comparison of entropy and complexity measures for the assessment of depth of sedation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.873543
– volume: 13
  start-page: 99
  year: 2005
  ident: 10.1016/j.medengphy.2008.06.010_bib41
  article-title: Investigating the stationarity of paediatric aspiration signals
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/TNSRE.2004.841384
– volume: 95
  start-page: 84
  year: 1995
  ident: 10.1016/j.medengphy.2008.06.010_bib21
  article-title: Parameters of EEG dimensional complexity in Alzheimer's disease
  publication-title: Electroenceph Clin Neurophysiol
  doi: 10.1016/0013-4694(95)00050-9
– volume: 240
  start-page: 218
  year: 1991
  ident: 10.1016/j.medengphy.2008.06.010_bib2
  article-title: Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/BF02189530
– year: 1977
  ident: 10.1016/j.medengphy.2008.06.010_bib29
– volume: 5
  start-page: 528
  year: 1994
  ident: 10.1016/j.medengphy.2008.06.010_bib17
  article-title: Decrease of complexity in EEG as a symptom of depression
  publication-title: NeuroReport
  doi: 10.1097/00001756-199401120-00042
– volume: 13
  start-page: 135
  year: 2000
  ident: 10.1016/j.medengphy.2008.06.010_bib13
  article-title: Nonlinear analysis of brain activity in magnetic influenced Parkinson patients
  publication-title: Brain Topogr
  doi: 10.1023/A:1026611219551
– volume: 42
  start-page: 1869
  year: 1990
  ident: 10.1016/j.medengphy.2008.06.010_bib31
  article-title: Efficient box-counting determination of generalized fractal dimensions
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.42.1869
– volume: 110
  start-page: 1159
  year: 1999
  ident: 10.1016/j.medengphy.2008.06.010_bib10
  article-title: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00013-9
– volume: 107
  start-page: 34
  year: 2007
  ident: 10.1016/j.medengphy.2008.06.010_bib19
  article-title: Nonlinear analysis of brain magnetoencephalographic activity in Alzheimer disease patients
  publication-title: Acta Neurol Belg
– volume: 56
  start-page: 185
  year: 1992
  ident: 10.1016/j.medengphy.2008.06.010_bib22
  article-title: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90023-G
– volume: 41
  start-page: 108
  year: 1983
  ident: 10.1016/j.medengphy.2008.06.010_bib26
  article-title: Measuring the fractal dimension of signals: morphological covers and iterative optimization
  publication-title: IEEE Trans Signal Proc
  doi: 10.1109/TSP.1993.193131
– volume: 58
  start-page: 77
  year: 1992
  ident: 10.1016/j.medengphy.2008.06.010_bib35
  article-title: Testing for nonlinearity in time series: the method of surrogate data
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90102-S
– volume: 106
  start-page: 220
  year: 1998
  ident: 10.1016/j.medengphy.2008.06.010_bib43
  article-title: Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00079-5
– volume: 21
  start-page: 313
  year: 1993
  ident: 10.1016/j.medengphy.2008.06.010_bib40
  article-title: Surface electromyogram during voluntary contractions: processing tools and relation to physiological events
  publication-title: Crit Rev Biomed Eng
– volume: 64
  start-page: 061907
  year: 2001
  ident: 10.1016/j.medengphy.2008.06.010_bib8
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.061907
– volume: 156
  start-page: 636
  year: 1967
  ident: 10.1016/j.medengphy.2008.06.010_bib24
  article-title: How long is the coast of Britain? Statistical selfsimilarity and fractional dimension
  publication-title: Science
  doi: 10.1126/science.156.3775.636
– volume: 25
  start-page: 249
  year: 2001
  ident: 10.1016/j.medengphy.2008.06.010_bib6
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
  doi: 10.1006/meth.2001.1238
– start-page: 2391
  year: 2001
  ident: 10.1016/j.medengphy.2008.06.010_bib1
  article-title: Alzheimer's disease and other primary dementias
– volume: 95
  start-page: 309
  year: 1995
  ident: 10.1016/j.medengphy.2008.06.010_bib14
  article-title: Investigation of EEG nonlinearity in dementia and Parkinson's disease
  publication-title: Electroenceph Clin Neurophysiol
  doi: 10.1016/0013-4694(95)00147-Q
– volume: 48
  start-page: 177
  year: 2001
  ident: 10.1016/j.medengphy.2008.06.010_bib30
  article-title: A comparison of waveform fractal dimension algorithms
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/81.904882
– start-page: 212
  year: 1995
  ident: 10.1016/j.medengphy.2008.06.010_bib28
  article-title: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns
  publication-title: Proc IEEE Symp Comp Med Syst
  doi: 10.1109/CBMS.1995.465426
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.medengphy.2008.06.010_bib4
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.65.413
– volume: 115
  start-page: 1490
  year: 2004
  ident: 10.1016/j.medengphy.2008.06.010_bib3
  article-title: EEG dynamics in patients with Alzheimer's disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.01.001
– volume: 18
  start-page: 145
  year: 1988
  ident: 10.1016/j.medengphy.2008.06.010_bib27
  article-title: Fractals and the analysis of waveforms
  publication-title: Comput Biol Med
  doi: 10.1016/0010-4825(88)90041-8
– start-page: 1165
  year: 2005
  ident: 10.1016/j.medengphy.2008.06.010_bib5
  article-title: Magnetoencephalography in clinical neurophysiological assessment of human cortical functions
– volume: 77
  start-page: 339
  year: 1997
  ident: 10.1016/j.medengphy.2008.06.010_bib9
  article-title: Use of fractal dimension for the analysis of electroencephalographic time series
  publication-title: Biol Cybern
  doi: 10.1007/s004220050394
SSID ssj0004463
Score 2.28208
Snippet Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of...
Abstract Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Aged
Aged, 80 and over
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - physiopathology
Alzheimer's disease
Automatic Data Processing
Diagnosis, Computer-Assisted - methods
Female
Fractal dimension
Fractals
Higuchi's algorithm
Humans
Magnetoencephalogram
Magnetoencephalography - methods
Male
Middle Aged
Models, Statistical
Neural Networks (Computer)
Radiology
Signal Processing, Computer-Assisted
Stationarity
Surrogate data
Title Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453308001124
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453308001124
https://dx.doi.org/10.1016/j.medengphy.2008.06.010
https://www.ncbi.nlm.nih.gov/pubmed/18676171
https://www.proquest.com/docview/20471523
https://www.proquest.com/docview/66985595
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CIm3sgLZuYwXGfJi0U2hsx3bCrapgZVO5bJW4WYntsAJKESmXHfa389w4BQSISRwT-bMT-_m9zz_eewBf84wZZ7mILM1dlDAno0xmNMoYKyg-FcZ4f-fxsRxNkh8n4mQFhq0vjL9WGXR_o9MX2jq86Yfe7F9Op_1flAvkI7geTz2vYckqrDGODXVgbXD0c3R86x6ZLBKq-fKRB9y75oU2x1Wn-EvhXqXci7037eNG6ikSujBGh29hI7BIMmg-9B2suKoLr4dt8rYuvLkTZ7ALr8bhBP09nE9qR2YlQd5HRtNTnwrlW01K7yuFFVof69_vnxHksosyeQha4jHjg--k2dTx2-vEe6aQwcXfPw5RV1hLOOwhIVZr_QEmhwe_h6MoJFyIjFBqHhWC2iJNGDVGFAVTmcqRj5SlkJYzW1omHHOxUUKV3CCXcaVJfIpyqaRJVW75R-hUs8p9AiJYLpHLcUUtcjSap66QtkS2xCV2uJU9kG0PaxOikfukGBe6vXZ2ppdDE3JlSo1D04N4CbxsAnI8D0nbIdStvylqSI1G43moegzq6jDTa011zXSsH0hjD_aXyHsC_X_NfmklTaPg-DOcvHKz6xoLIZsQjD9dQsosxWWi6MFmI6K33ZTiQFFFt17yaduw3h6oxXQHOvOra_cZedm82IXVvX90N8y-GwcGOE8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RKhU4oHZbYCkUHyr1FDZ2YjvpDa2ApWW5lJW4WYntwALKIrJcOPDbGSfOAgJEJY6JZhzHMx5_tucB8DNLmbYm4oGhmQ1iZkWQipQGKWM5xadcaxfvPDwSg1H854SfzEG_jYVxbpXe9jc2vbbW_k3Pj2bvajzu_aMRRzyC-_HE4RoWf4CP-Ji42bl99-Dngfud2sseqQNH_sTJC1ccW57iD3mvSrEduljal5eo1yBovRTtfYZljyHJTtPNLzBnyw4s9NvSbR1YepRlsAOfhv7-_CtcjCpLJgVB1EcG41NXCOVXRQoXKYUNGpfp352eEUSyNU3mU5Y4nuHuPmmOdNzhOnFxKWTn8vbMItc1tuKveojP1Fp9g9He7nF_EPhyC4HmUk6DnFOTJzGjWvM8ZzKVGaKRouDCRMwUhnHLbKgll0WkEcnYQseuQLmQQicyM9EKzJeT0q4B4SwTiOQiSQ0iNJolNhemQKwUCRxwI7og2hFW2ucidyUxLlXrdHauZqLxlTKFQtF0IZwxXjXpON5mSVoRqjbaFO2jwiXjbVb5Equt_DyvFFUVU6F6potd-D3jfKLO__fZrVbTFCqOu8HJSju5qZAIsQRn0esUQqQJbhJ5F1YbFX0YpgQFRSVdf0_XtmBhcDw8VIcHR3-_w2J7tRbSDZifXt_YTURo0_xHPQPvAZyFORM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+the+Higuchi%27s+fractal+dimension+for+the+analysis+of+MEG+recordings+from+Alzheimer%27s+disease+patients&rft.jtitle=Medical+engineering+%26+physics&rft.au=G%C3%B3mez%2C+Carlos&rft.au=Mediavilla%2C+%C3%81ngela&rft.au=Hornero%2C+Roberto&rft.au=Ab%C3%A1solo%2C+Daniel&rft.date=2009-04-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=31&rft.issue=3&rft.spage=306&rft.epage=313&rft_id=info:doi/10.1016%2Fj.medengphy.2008.06.010&rft.externalDocID=S1350453308001124
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453309X00032%2Fcov150h.gif