Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients
Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD pa...
Saved in:
Published in | Medical engineering & physics Vol. 31; no. 3; pp. 306 - 313 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels (
p
<
0.01; Student's
t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD. |
---|---|
AbstractList | Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels (
p
<
0.01; Student's
t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD. Abstract Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects’ recordings. We found significant differences between both groups at 71 of the 148 MEG channels ( p < 0.01; Student's t -test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD. Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD.Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD. Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of dementia in western countries. The main aim of this study was to analyse the magnetoencephalogram (MEG) background activity from 20 AD patients and 21 elderly control subjects using Higuchi's fractal dimension (HFD). This non-linear measure can be used to estimate the dimensional complexity of biomedical time series. Before the analysis with HFD, the stationarity and the non-linear structure of the signals were proved. Our results showed that MEG signals from AD patients had lower HFD values than control subjects' recordings. We found significant differences between both groups at 71 of the 148 MEG channels (p<0.01; Student's t-test with Bonferroni's correction). Additionally, five brain regions (anterior, central, left lateral, posterior and right lateral) were analysed by means of receiver operating characteristic curves, using a leave-one-out cross-validation procedure. The highest accuracy (87.8%) was achieved when the mean HFD over all channels was analysed. To sum up, our results suggest that spontaneous MEG rhythms are less complex in AD patients than in healthy control subjects, hence indicating an abnormal type of dynamics in AD. |
Author | Abásolo, Daniel Hornero, Roberto Fernández, Alberto Mediavilla, Ángela Gómez, Carlos |
Author_xml | – sequence: 1 givenname: Carlos surname: Gómez fullname: Gómez, Carlos email: carlos.gomez@tel.uva.es organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain – sequence: 2 givenname: Ángela surname: Mediavilla fullname: Mediavilla, Ángela organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain – sequence: 3 givenname: Roberto surname: Hornero fullname: Hornero, Roberto organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain – sequence: 4 givenname: Daniel surname: Abásolo fullname: Abásolo, Daniel organization: Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain – sequence: 5 givenname: Alberto surname: Fernández fullname: Fernández, Alberto organization: Centro de Magnetoencefalografía Dr. Pérez-Modrego, Complutense University of Madrid, Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18676171$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURH_gFSArWCVc27GdWQAaVaVFKmIBXVuOfTPjacYe7ARpeHocpnRRCbUre3G-Y99z7mlx5IPHonhDoCZAxPtNvUWLfrVb72sK0NYgaiDwrDghrWRVAwyO8p1xqBrO2HFxmtIGAJpGsBfFMWmFFESSk-L2JmEZ-nJcY3nlVpNZu3ep7KM2ox5K67bokwu-7EP8q9FeD_vk0sx8vbgsI5oQrfOrGQrbcjn8XmOmYnaxLqHO9js9OvRjelk87_WQ8NXdeVbcfL74cX5VXX-7_HK-vK4Ml3KsOk5s1zaUGMO7jsqF1ILxvufCMmp7SzlSBCO57JkB0WBvmoZTkUcyrdSWnRVvD767GH5OmEa1dcngMGiPYUpKiEXL-YI_KqTQSMIpy8LXd8Kpy8GrXXRbHffqX45Z8OEgMDGkFLFXxo157ODHqN2gCKi5N7VR972puTcFQuXeMi8f8PdPPEouDyTmRH85jCqZnLZB63I3o7LBPcHj4wMPMzjvjB5ucY9pE6aYa0-KqEQVqO_zXs1rBS0AIbTJBp_-b_CkL_wBqMbiXQ |
CitedBy_id | crossref_primary_10_1016_j_knosys_2016_01_040 crossref_primary_10_1016_j_iswa_2021_200045 crossref_primary_10_1016_j_bspc_2018_09_014 crossref_primary_10_1260_2040_2295_3_2_299 crossref_primary_10_1016_j_neulet_2025_138146 crossref_primary_10_1038_s41598_023_32664_8 crossref_primary_10_1109_ACCESS_2020_3021455 crossref_primary_10_1016_j_bspc_2022_104233 crossref_primary_10_1016_j_matchemphys_2021_124647 crossref_primary_10_1016_j_neurobiolaging_2019_09_008 crossref_primary_10_1142_S0218348X19500014 crossref_primary_10_3389_fncom_2018_00060 crossref_primary_10_3390_a14110316 crossref_primary_10_1038_s41598_021_04213_8 crossref_primary_10_1186_s12938_020_0754_y crossref_primary_10_1007_s11760_013_0526_2 crossref_primary_10_1016_j_crneur_2022_100056 crossref_primary_10_1016_j_jns_2009_08_028 crossref_primary_10_1007_s00704_015_1565_0 crossref_primary_10_1007_s00521_017_3126_1 crossref_primary_10_1515_revneuro_2015_0011 crossref_primary_10_1007_s11517_017_1734_7 crossref_primary_10_1016_j_bandc_2014_03_002 crossref_primary_10_3390_e22121357 crossref_primary_10_1016_j_clinph_2017_05_012 crossref_primary_10_1186_s12868_019_0519_3 crossref_primary_10_1007_s11571_018_9509_x crossref_primary_10_1038_srep26948 crossref_primary_10_1152_jn_00530_2020 crossref_primary_10_1007_s11517_010_0620_3 crossref_primary_10_1016_j_asoc_2024_112178 crossref_primary_10_29121_granthaalayah_v9_i11_2021_4393 crossref_primary_10_1162_netn_a_00355 crossref_primary_10_1007_s10462_020_09804_x crossref_primary_10_1186_s40463_015_0065_7 crossref_primary_10_1142_S0218348X21500237 crossref_primary_10_1186_s40345_021_00235_3 crossref_primary_10_1016_j_bspc_2022_104439 crossref_primary_10_1007_s10877_013_9434_9 crossref_primary_10_4015_S1016237214500355 crossref_primary_10_1016_j_inffus_2025_102936 crossref_primary_10_3389_fncom_2022_877912 crossref_primary_10_1049_csy2_12009 crossref_primary_10_4236_jbbs_2012_24052 crossref_primary_10_1016_j_bspc_2019_101563 crossref_primary_10_1109_ACCESS_2019_2926515 crossref_primary_10_1016_j_cmpb_2019_105293 crossref_primary_10_1016_j_cmpb_2012_10_008 crossref_primary_10_3389_fnins_2016_00047 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1016_j_chaos_2011_08_012 crossref_primary_10_3389_fphys_2018_01767 crossref_primary_10_1016_j_procs_2023_10_260 crossref_primary_10_1371_journal_pone_0190081 crossref_primary_10_1007_s00702_010_0450_3 crossref_primary_10_3390_app14209414 crossref_primary_10_1155_2018_8915079 crossref_primary_10_3390_e25111561 crossref_primary_10_1080_03772063_2020_1753587 crossref_primary_10_1016_j_biopsycho_2018_06_008 crossref_primary_10_3390_e22020239 crossref_primary_10_1016_j_bspc_2021_102827 crossref_primary_10_1016_j_sigpro_2010_04_005 crossref_primary_10_1007_s10470_019_01388_z crossref_primary_10_1016_j_cmpb_2019_04_017 crossref_primary_10_3389_fneur_2020_00122 crossref_primary_10_3390_s18051372 crossref_primary_10_1016_j_eplepsyres_2014_06_007 crossref_primary_10_1177_1073858413513928 crossref_primary_10_1093_cercor_bhae143 crossref_primary_10_2174_1874120701004010223 crossref_primary_10_1093_sleep_zsae105 crossref_primary_10_1515_bmt_2019_0313 crossref_primary_10_3390_s20051491 crossref_primary_10_3390_e16084497 crossref_primary_10_1016_j_cmpb_2016_05_014 crossref_primary_10_1016_j_bspc_2021_102580 crossref_primary_10_3390_ctn8030027 crossref_primary_10_1016_j_cmpb_2024_108197 crossref_primary_10_1016_j_chaos_2022_112051 crossref_primary_10_3390_atmos13101583 crossref_primary_10_4316_AECE_2018_02009 crossref_primary_10_1016_j_csl_2014_08_002 crossref_primary_10_1088_1741_2560_7_4_046007 crossref_primary_10_1109_TBCAS_2018_2848477 crossref_primary_10_1186_s13634_024_01155_x crossref_primary_10_1097_WNP_0b013e3181f40dc8 crossref_primary_10_3389_fnhum_2017_00530 crossref_primary_10_1109_TIM_2022_3149325 crossref_primary_10_1080_10255842_2022_2072684 crossref_primary_10_1007_s10334_012_0312_0 crossref_primary_10_1016_j_neucom_2014_05_083 crossref_primary_10_1142_S0129065718500247 crossref_primary_10_4015_S1016237219500030 crossref_primary_10_1063_1_3514011 |
Cites_doi | 10.1097/00004691-200101000-00010 10.1016/0167-2789(88)90081-4 10.1016/j.physa.2004.05.045 10.7150/ijms.1.11 10.1016/0022-3956(75)90026-6 10.1023/A:1021420507901 10.1103/PhysRevE.58.5153 10.1103/PhysRevLett.50.346 10.1016/j.rbmret.2005.02.001 10.1016/j.medengphy.2006.01.003 10.1016/0006-3223(94)90004-3 10.1016/j.clinph.2005.06.011 10.1016/0013-4694(95)00186-7 10.1093/jnci/95.1.14 10.1016/j.cmpb.2007.07.001 10.1016/S1388-2457(03)00072-5 10.1109/51.805149 10.1109/TBME.2006.873543 10.1109/TNSRE.2004.841384 10.1016/0013-4694(95)00050-9 10.1007/BF02189530 10.1097/00001756-199401120-00042 10.1023/A:1026611219551 10.1103/PhysRevA.42.1869 10.1016/S1388-2457(99)00013-9 10.1016/0167-2789(92)90023-G 10.1109/TSP.1993.193131 10.1016/0167-2789(92)90102-S 10.1016/S0013-4694(97)00079-5 10.1103/PhysRevE.64.061907 10.1126/science.156.3775.636 10.1006/meth.2001.1238 10.1016/0013-4694(95)00147-Q 10.1109/81.904882 10.1109/CBMS.1995.465426 10.1103/RevModPhys.65.413 10.1016/j.clinph.2004.01.001 10.1016/0010-4825(88)90041-8 10.1007/s004220050394 |
ContentType | Journal Article |
Copyright | 2008 IPEM IPEM |
Copyright_xml | – notice: 2008 IPEM – notice: IPEM |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1016/j.medengphy.2008.06.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 313 |
ExternalDocumentID | 18676171 10_1016_j_medengphy_2008_06_010 S1350453308001124 1_s2_0_S1350453308001124 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c577t-b51db8421cc5bb2797a635ff56d32dfd25e2e0c757f3c064efc44526676c87ad3 |
IEDL.DBID | AIKHN |
ISSN | 1350-4533 |
IngestDate | Fri Jul 11 02:14:36 EDT 2025 Fri Jul 11 03:43:06 EDT 2025 Thu Apr 03 07:07:51 EDT 2025 Tue Jul 01 04:24:41 EDT 2025 Thu Apr 24 23:07:45 EDT 2025 Fri Feb 23 02:29:21 EST 2024 Sun Feb 23 10:19:59 EST 2025 Tue Aug 26 16:32:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Higuchi's algorithm Stationarity Fractal dimension Magnetoencephalogram Surrogate data Alzheimer's disease |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-b51db8421cc5bb2797a635ff56d32dfd25e2e0c757f3c064efc44526676c87ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18676171 |
PQID | 20471523 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_66985595 proquest_miscellaneous_20471523 pubmed_primary_18676171 crossref_citationtrail_10_1016_j_medengphy_2008_06_010 crossref_primary_10_1016_j_medengphy_2008_06_010 elsevier_sciencedirect_doi_10_1016_j_medengphy_2008_06_010 elsevier_clinicalkeyesjournals_1_s2_0_S1350453308001124 elsevier_clinicalkey_doi_10_1016_j_medengphy_2008_06_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-01 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jorm (bib2) 1991; 240 van Cappellen van Walsum, Pijnenburg, Berendse, van Dijk, Knol, Scheltens (bib20) 2003; 114 Grassberger, Procaccia (bib23) 1983; 50 Chau, Chau, Casas, Berall, Kenny (bib41) 2005; 13 Woyshville, Calabrese (bib44) 1994; 35 Simon, Radmacher, Dobbin, McShane (bib42) 2003; 95 Bird (bib1) 2001 Jeong, Kim, Han (bib43) 1998; 106 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib8) 2001; 64 Jeong, Chae, Kim, Han (bib12) 2001; 18 Vrba, Robinson (bib6) 2001; 25 Doyle, Dugan, Humphries, Newton (bib34) 2004; 1 Duchene, Goubel (bib40) 1993; 21 Mandelbrot (bib24) 1967; 156 Jelles, van Birgelen, Slaets, Hekster, Jonkman, Stam (bib10) 1999; 110 Ferenets, Lipping, Anier, Jäntti, Melto, Hovilehto (bib37) 2006; 53 Stam (bib7) 2005; 116 Babloyantz, Destexhe (bib18) 1988 Acharya, Bhat, Kannathal, Rao, Lim (bib38) 2005; 26 Gómez, Hornero, Abásolo, Fernández, López (bib45) 2006; 28 Stam, Jelles, Achtereekte, Rombouts, Slaets, Keunen (bib14) 1995; 95 Petrosian (bib28) 1995 Hornero, Espino, Alonso, López (bib15) 1999; 18 Katz (bib27) 1988; 18 Folstein, Folstein, McHugh (bib32) 1975; 12 Besthorn, Sattel, Geiger-Kabisch, Zerfass, Förstl (bib21) 1995; 95 Bendat, Piersol (bib33) 2000 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib4) 1993; 65 Mandelbrot (bib29) 1977 Gómez, Hornero, Abásolo, Fernández, Escudero (bib46) 2007; 87 Nandrino, Pezard, Martinerie, el Massioui, Renault, Jouvent (bib17) 1994; 5 Abatzoglou, Anninos, Adamopoulos, Koukourakis (bib19) 2007; 107 Maragos, Sun (bib26) 1983; 41 Accardo, Affinito, Carrozzi, Bouquet (bib9) 1997; 77 Klonowsky, Olejarczyk, Stepien (bib39) 2004; 342 Jeong (bib3) 2004; 115 Esteller, Vachtsevanos, Echauz, Litt (bib30) 2001; 48 Block, von Bloh, Schellnhuber (bib31) 1990; 42 Theiler, Eubank, Longtin, Galdrikian, Doyne Farmer (bib35) 1992; 58 Hari (bib5) 2005 Eckmann, Ruelle (bib22) 1992; 56 Kotini, Anninos (bib11) 2002; 15 Kim, Krieble, Kim, Reed, Rae-Grant (bib16) 1996; 98 Timmer (bib36) 1998; 58 Higuchi (bib25) 1988; 31 Anninos, Adamopoulos, Kotini, Tsagas (bib13) 2000; 13 Anninos (10.1016/j.medengphy.2008.06.010_bib13) 2000; 13 Hornero (10.1016/j.medengphy.2008.06.010_bib15) 1999; 18 van Cappellen van Walsum (10.1016/j.medengphy.2008.06.010_bib20) 2003; 114 Duchene (10.1016/j.medengphy.2008.06.010_bib40) 1993; 21 Ferenets (10.1016/j.medengphy.2008.06.010_bib37) 2006; 53 Jeong (10.1016/j.medengphy.2008.06.010_bib43) 1998; 106 Woyshville (10.1016/j.medengphy.2008.06.010_bib44) 1994; 35 Gómez (10.1016/j.medengphy.2008.06.010_bib45) 2006; 28 Accardo (10.1016/j.medengphy.2008.06.010_bib9) 1997; 77 Doyle (10.1016/j.medengphy.2008.06.010_bib34) 2004; 1 Vrba (10.1016/j.medengphy.2008.06.010_bib6) 2001; 25 Stam (10.1016/j.medengphy.2008.06.010_bib7) 2005; 116 Timmer (10.1016/j.medengphy.2008.06.010_bib36) 1998; 58 Hämäläinen (10.1016/j.medengphy.2008.06.010_bib4) 1993; 65 Bird (10.1016/j.medengphy.2008.06.010_bib1) 2001 Abatzoglou (10.1016/j.medengphy.2008.06.010_bib19) 2007; 107 Mandelbrot (10.1016/j.medengphy.2008.06.010_bib24) 1967; 156 Acharya (10.1016/j.medengphy.2008.06.010_bib38) 2005; 26 Jeong (10.1016/j.medengphy.2008.06.010_bib12) 2001; 18 Jelles (10.1016/j.medengphy.2008.06.010_bib10) 1999; 110 Esteller (10.1016/j.medengphy.2008.06.010_bib30) 2001; 48 Bendat (10.1016/j.medengphy.2008.06.010_bib33) 2000 Maragos (10.1016/j.medengphy.2008.06.010_bib26) 1983; 41 Andrzejak (10.1016/j.medengphy.2008.06.010_bib8) 2001; 64 Gómez (10.1016/j.medengphy.2008.06.010_bib46) 2007; 87 Petrosian (10.1016/j.medengphy.2008.06.010_bib28) 1995 Chau (10.1016/j.medengphy.2008.06.010_bib41) 2005; 13 Block (10.1016/j.medengphy.2008.06.010_bib31) 1990; 42 Folstein (10.1016/j.medengphy.2008.06.010_bib32) 1975; 12 Babloyantz (10.1016/j.medengphy.2008.06.010_bib18) 1988 Grassberger (10.1016/j.medengphy.2008.06.010_bib23) 1983; 50 Kotini (10.1016/j.medengphy.2008.06.010_bib11) 2002; 15 Jorm (10.1016/j.medengphy.2008.06.010_bib2) 1991; 240 Hari (10.1016/j.medengphy.2008.06.010_bib5) 2005 Theiler (10.1016/j.medengphy.2008.06.010_bib35) 1992; 58 Stam (10.1016/j.medengphy.2008.06.010_bib14) 1995; 95 Jeong (10.1016/j.medengphy.2008.06.010_bib3) 2004; 115 Eckmann (10.1016/j.medengphy.2008.06.010_bib22) 1992; 56 Klonowsky (10.1016/j.medengphy.2008.06.010_bib39) 2004; 342 Higuchi (10.1016/j.medengphy.2008.06.010_bib25) 1988; 31 Kim (10.1016/j.medengphy.2008.06.010_bib16) 1996; 98 Katz (10.1016/j.medengphy.2008.06.010_bib27) 1988; 18 Besthorn (10.1016/j.medengphy.2008.06.010_bib21) 1995; 95 Nandrino (10.1016/j.medengphy.2008.06.010_bib17) 1994; 5 Mandelbrot (10.1016/j.medengphy.2008.06.010_bib29) 1977 Simon (10.1016/j.medengphy.2008.06.010_bib42) 2003; 95 |
References_xml | – volume: 98 start-page: 35 year: 1996 end-page: 41 ident: bib16 article-title: Differentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalography publication-title: Electroenceph Clin Neurophysiol – volume: 58 start-page: 77 year: 1992 end-page: 94 ident: bib35 article-title: Testing for nonlinearity in time series: the method of surrogate data publication-title: Physica D – volume: 95 start-page: 309 year: 1995 end-page: 317 ident: bib14 article-title: Investigation of EEG nonlinearity in dementia and Parkinson's disease publication-title: Electroenceph Clin Neurophysiol – volume: 106 start-page: 220 year: 1998 end-page: 228 ident: bib43 article-title: Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension publication-title: Electroencephalogr Clin Neurophysiol – volume: 25 start-page: 249 year: 2001 end-page: 271 ident: bib6 article-title: Signal processing in magnetoencephalography publication-title: Methods – volume: 107 start-page: 34 year: 2007 end-page: 39 ident: bib19 article-title: Nonlinear analysis of brain magnetoencephalographic activity in Alzheimer disease patients publication-title: Acta Neurol Belg – volume: 15 start-page: 107 year: 2002 end-page: 113 ident: bib11 article-title: Detection of non-linearity in schizophrenic patients using magnetoencephalography publication-title: Brain Topogr – volume: 240 start-page: 218 year: 1991 end-page: 222 ident: bib2 article-title: Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias publication-title: Eur Arch Psychiatry Clin Neurosci – volume: 342 start-page: 701 year: 2004 end-page: 707 ident: bib39 article-title: Epileptic seizures in economic organism publication-title: Physica A – volume: 5 start-page: 528 year: 1994 end-page: 530 ident: bib17 article-title: Decrease of complexity in EEG as a symptom of depression publication-title: NeuroReport – year: 1977 ident: bib29 article-title: Fractals: Form, chance, and dimension – volume: 115 start-page: 1490 year: 2004 end-page: 1505 ident: bib3 article-title: EEG dynamics in patients with Alzheimer's disease publication-title: Clin Neurophysiol – start-page: 1165 year: 2005 end-page: 1197 ident: bib5 article-title: Magnetoencephalography in clinical neurophysiological assessment of human cortical functions publication-title: Electroencephalography: Basic principles, clinical applications, and related fields – volume: 42 start-page: 1869 year: 1990 end-page: 1874 ident: bib31 article-title: Efficient box-counting determination of generalized fractal dimensions publication-title: Phys Rev A – volume: 87 start-page: 239 year: 2007 end-page: 247 ident: bib46 article-title: Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information publication-title: Comput Meth Programs Biomed – volume: 53 start-page: 1067 year: 2006 end-page: 1077 ident: bib37 article-title: Comparison of entropy and complexity measures for the assessment of depth of sedation publication-title: IEEE Trans Biomed Eng – volume: 64 start-page: 061907 year: 2001 ident: bib8 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys Rev E – volume: 116 start-page: 2266 year: 2005 end-page: 2301 ident: bib7 article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field publication-title: Clin Neurophysiol – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib4 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev Mod Phys – volume: 110 start-page: 1159 year: 1999 end-page: 1167 ident: bib10 article-title: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls publication-title: Clin Neurophysiol – volume: 18 start-page: 73 year: 1999 end-page: 79 ident: bib15 article-title: Estimating complexity from EEG background activity of epileptic patients publication-title: IEEE Eng Med Biol – volume: 31 start-page: 277 year: 1988 end-page: 283 ident: bib25 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D – volume: 114 start-page: 1034 year: 2003 end-page: 1040 ident: bib20 article-title: A neural complexity measure applied to MEG data in Alzheimer's disease publication-title: Clin Neurophysiol – volume: 48 start-page: 177 year: 2001 end-page: 183 ident: bib30 article-title: A comparison of waveform fractal dimension algorithms publication-title: IEEE Trans Circuits Syst – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bib32 article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – start-page: 307 year: 1988 end-page: 316 ident: bib18 article-title: The Creutzfeldt–Jakob disease in the hierarchy of chaotic attractors publication-title: From chemical to biological organization – volume: 18 start-page: 58 year: 2001 end-page: 67 ident: bib12 article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia publication-title: J Clin Neurophysiol – volume: 50 start-page: 346 year: 1983 end-page: 349 ident: bib23 article-title: Characterization of strange attractors publication-title: Phys Rev Lett – start-page: 212 year: 1995 end-page: 217 ident: bib28 article-title: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns publication-title: Proc IEEE Symp Comp Med Syst – volume: 35 start-page: 381 year: 1994 end-page: 387 ident: bib44 article-title: Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: the fractal dimension publication-title: Biol Psychiatry – volume: 28 start-page: 851 year: 2006 end-page: 859 ident: bib45 article-title: Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients publication-title: Med Eng Phys – volume: 77 start-page: 339 year: 1997 end-page: 350 ident: bib9 article-title: Use of fractal dimension for the analysis of electroencephalographic time series publication-title: Biol Cybern – volume: 95 start-page: 14 year: 2003 end-page: 18 ident: bib42 article-title: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification publication-title: J Natl Cancer Inst – volume: 41 start-page: 108 year: 1983 end-page: 121 ident: bib26 article-title: Measuring the fractal dimension of signals: morphological covers and iterative optimization publication-title: IEEE Trans Signal Proc – volume: 58 start-page: 5153 year: 1998 end-page: 5156 ident: bib36 article-title: Power of surrogate data testing with respect to nonstationarity publication-title: Phys Rev E – volume: 26 start-page: 133 year: 2005 end-page: 139 ident: bib38 article-title: Analysis of cardiac health using fractal dimension and wavelet transformation publication-title: ITBM-RBM – volume: 156 start-page: 636 year: 1967 end-page: 638 ident: bib24 article-title: How long is the coast of Britain? Statistical selfsimilarity and fractional dimension publication-title: Science – volume: 13 start-page: 99 year: 2005 end-page: 105 ident: bib41 article-title: Investigating the stationarity of paediatric aspiration signals publication-title: IEEE Trans Neural Syst Rehab Eng – start-page: 2391 year: 2001 end-page: 2399 ident: bib1 article-title: Alzheimer's disease and other primary dementias publication-title: Harrison's principles of internal medicine – volume: 1 start-page: 11 year: 2004 end-page: 20 ident: bib34 article-title: Discriminating between elderly and young using a fractal dimension analysis of centre of pressure publication-title: Int J Med Sci – volume: 13 start-page: 135 year: 2000 end-page: 144 ident: bib13 article-title: Nonlinear analysis of brain activity in magnetic influenced Parkinson patients publication-title: Brain Topogr – volume: 56 start-page: 185 year: 1992 end-page: 187 ident: bib22 article-title: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems publication-title: Physica D – volume: 95 start-page: 84 year: 1995 end-page: 89 ident: bib21 article-title: Parameters of EEG dimensional complexity in Alzheimer's disease publication-title: Electroenceph Clin Neurophysiol – volume: 18 start-page: 145 year: 1988 end-page: 156 ident: bib27 article-title: Fractals and the analysis of waveforms publication-title: Comput Biol Med – volume: 21 start-page: 313 year: 1993 end-page: 397 ident: bib40 article-title: Surface electromyogram during voluntary contractions: processing tools and relation to physiological events publication-title: Crit Rev Biomed Eng – year: 2000 ident: bib33 article-title: Random data: Analysis and measurement procedures – volume: 18 start-page: 58 year: 2001 ident: 10.1016/j.medengphy.2008.06.010_bib12 article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia publication-title: J Clin Neurophysiol doi: 10.1097/00004691-200101000-00010 – volume: 31 start-page: 277 year: 1988 ident: 10.1016/j.medengphy.2008.06.010_bib25 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D doi: 10.1016/0167-2789(88)90081-4 – volume: 342 start-page: 701 year: 2004 ident: 10.1016/j.medengphy.2008.06.010_bib39 article-title: Epileptic seizures in economic organism publication-title: Physica A doi: 10.1016/j.physa.2004.05.045 – volume: 1 start-page: 11 year: 2004 ident: 10.1016/j.medengphy.2008.06.010_bib34 article-title: Discriminating between elderly and young using a fractal dimension analysis of centre of pressure publication-title: Int J Med Sci doi: 10.7150/ijms.1.11 – year: 2000 ident: 10.1016/j.medengphy.2008.06.010_bib33 – volume: 12 start-page: 189 year: 1975 ident: 10.1016/j.medengphy.2008.06.010_bib32 article-title: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res doi: 10.1016/0022-3956(75)90026-6 – volume: 15 start-page: 107 year: 2002 ident: 10.1016/j.medengphy.2008.06.010_bib11 article-title: Detection of non-linearity in schizophrenic patients using magnetoencephalography publication-title: Brain Topogr doi: 10.1023/A:1021420507901 – volume: 58 start-page: 5153 year: 1998 ident: 10.1016/j.medengphy.2008.06.010_bib36 article-title: Power of surrogate data testing with respect to nonstationarity publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.5153 – volume: 50 start-page: 346 year: 1983 ident: 10.1016/j.medengphy.2008.06.010_bib23 article-title: Characterization of strange attractors publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.50.346 – volume: 26 start-page: 133 year: 2005 ident: 10.1016/j.medengphy.2008.06.010_bib38 article-title: Analysis of cardiac health using fractal dimension and wavelet transformation publication-title: ITBM-RBM doi: 10.1016/j.rbmret.2005.02.001 – volume: 28 start-page: 851 year: 2006 ident: 10.1016/j.medengphy.2008.06.010_bib45 article-title: Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2006.01.003 – volume: 35 start-page: 381 year: 1994 ident: 10.1016/j.medengphy.2008.06.010_bib44 article-title: Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: the fractal dimension publication-title: Biol Psychiatry doi: 10.1016/0006-3223(94)90004-3 – volume: 116 start-page: 2266 year: 2005 ident: 10.1016/j.medengphy.2008.06.010_bib7 article-title: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.06.011 – volume: 98 start-page: 35 year: 1996 ident: 10.1016/j.medengphy.2008.06.010_bib16 article-title: Differentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalography publication-title: Electroenceph Clin Neurophysiol doi: 10.1016/0013-4694(95)00186-7 – volume: 95 start-page: 14 year: 2003 ident: 10.1016/j.medengphy.2008.06.010_bib42 article-title: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification publication-title: J Natl Cancer Inst doi: 10.1093/jnci/95.1.14 – volume: 87 start-page: 239 year: 2007 ident: 10.1016/j.medengphy.2008.06.010_bib46 article-title: Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information publication-title: Comput Meth Programs Biomed doi: 10.1016/j.cmpb.2007.07.001 – volume: 114 start-page: 1034 year: 2003 ident: 10.1016/j.medengphy.2008.06.010_bib20 article-title: A neural complexity measure applied to MEG data in Alzheimer's disease publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00072-5 – volume: 18 start-page: 73 year: 1999 ident: 10.1016/j.medengphy.2008.06.010_bib15 article-title: Estimating complexity from EEG background activity of epileptic patients publication-title: IEEE Eng Med Biol doi: 10.1109/51.805149 – start-page: 307 year: 1988 ident: 10.1016/j.medengphy.2008.06.010_bib18 article-title: The Creutzfeldt–Jakob disease in the hierarchy of chaotic attractors – volume: 53 start-page: 1067 year: 2006 ident: 10.1016/j.medengphy.2008.06.010_bib37 article-title: Comparison of entropy and complexity measures for the assessment of depth of sedation publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.873543 – volume: 13 start-page: 99 year: 2005 ident: 10.1016/j.medengphy.2008.06.010_bib41 article-title: Investigating the stationarity of paediatric aspiration signals publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/TNSRE.2004.841384 – volume: 95 start-page: 84 year: 1995 ident: 10.1016/j.medengphy.2008.06.010_bib21 article-title: Parameters of EEG dimensional complexity in Alzheimer's disease publication-title: Electroenceph Clin Neurophysiol doi: 10.1016/0013-4694(95)00050-9 – volume: 240 start-page: 218 year: 1991 ident: 10.1016/j.medengphy.2008.06.010_bib2 article-title: Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias publication-title: Eur Arch Psychiatry Clin Neurosci doi: 10.1007/BF02189530 – year: 1977 ident: 10.1016/j.medengphy.2008.06.010_bib29 – volume: 5 start-page: 528 year: 1994 ident: 10.1016/j.medengphy.2008.06.010_bib17 article-title: Decrease of complexity in EEG as a symptom of depression publication-title: NeuroReport doi: 10.1097/00001756-199401120-00042 – volume: 13 start-page: 135 year: 2000 ident: 10.1016/j.medengphy.2008.06.010_bib13 article-title: Nonlinear analysis of brain activity in magnetic influenced Parkinson patients publication-title: Brain Topogr doi: 10.1023/A:1026611219551 – volume: 42 start-page: 1869 year: 1990 ident: 10.1016/j.medengphy.2008.06.010_bib31 article-title: Efficient box-counting determination of generalized fractal dimensions publication-title: Phys Rev A doi: 10.1103/PhysRevA.42.1869 – volume: 110 start-page: 1159 year: 1999 ident: 10.1016/j.medengphy.2008.06.010_bib10 article-title: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00013-9 – volume: 107 start-page: 34 year: 2007 ident: 10.1016/j.medengphy.2008.06.010_bib19 article-title: Nonlinear analysis of brain magnetoencephalographic activity in Alzheimer disease patients publication-title: Acta Neurol Belg – volume: 56 start-page: 185 year: 1992 ident: 10.1016/j.medengphy.2008.06.010_bib22 article-title: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems publication-title: Physica D doi: 10.1016/0167-2789(92)90023-G – volume: 41 start-page: 108 year: 1983 ident: 10.1016/j.medengphy.2008.06.010_bib26 article-title: Measuring the fractal dimension of signals: morphological covers and iterative optimization publication-title: IEEE Trans Signal Proc doi: 10.1109/TSP.1993.193131 – volume: 58 start-page: 77 year: 1992 ident: 10.1016/j.medengphy.2008.06.010_bib35 article-title: Testing for nonlinearity in time series: the method of surrogate data publication-title: Physica D doi: 10.1016/0167-2789(92)90102-S – volume: 106 start-page: 220 year: 1998 ident: 10.1016/j.medengphy.2008.06.010_bib43 article-title: Non-linear dynamical analysis of the EEG in Alzheimer's disease with optimal embedding dimension publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(97)00079-5 – volume: 21 start-page: 313 year: 1993 ident: 10.1016/j.medengphy.2008.06.010_bib40 article-title: Surface electromyogram during voluntary contractions: processing tools and relation to physiological events publication-title: Crit Rev Biomed Eng – volume: 64 start-page: 061907 year: 2001 ident: 10.1016/j.medengphy.2008.06.010_bib8 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – volume: 156 start-page: 636 year: 1967 ident: 10.1016/j.medengphy.2008.06.010_bib24 article-title: How long is the coast of Britain? Statistical selfsimilarity and fractional dimension publication-title: Science doi: 10.1126/science.156.3775.636 – volume: 25 start-page: 249 year: 2001 ident: 10.1016/j.medengphy.2008.06.010_bib6 article-title: Signal processing in magnetoencephalography publication-title: Methods doi: 10.1006/meth.2001.1238 – start-page: 2391 year: 2001 ident: 10.1016/j.medengphy.2008.06.010_bib1 article-title: Alzheimer's disease and other primary dementias – volume: 95 start-page: 309 year: 1995 ident: 10.1016/j.medengphy.2008.06.010_bib14 article-title: Investigation of EEG nonlinearity in dementia and Parkinson's disease publication-title: Electroenceph Clin Neurophysiol doi: 10.1016/0013-4694(95)00147-Q – volume: 48 start-page: 177 year: 2001 ident: 10.1016/j.medengphy.2008.06.010_bib30 article-title: A comparison of waveform fractal dimension algorithms publication-title: IEEE Trans Circuits Syst doi: 10.1109/81.904882 – start-page: 212 year: 1995 ident: 10.1016/j.medengphy.2008.06.010_bib28 article-title: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns publication-title: Proc IEEE Symp Comp Med Syst doi: 10.1109/CBMS.1995.465426 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.medengphy.2008.06.010_bib4 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.65.413 – volume: 115 start-page: 1490 year: 2004 ident: 10.1016/j.medengphy.2008.06.010_bib3 article-title: EEG dynamics in patients with Alzheimer's disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.01.001 – volume: 18 start-page: 145 year: 1988 ident: 10.1016/j.medengphy.2008.06.010_bib27 article-title: Fractals and the analysis of waveforms publication-title: Comput Biol Med doi: 10.1016/0010-4825(88)90041-8 – start-page: 1165 year: 2005 ident: 10.1016/j.medengphy.2008.06.010_bib5 article-title: Magnetoencephalography in clinical neurophysiological assessment of human cortical functions – volume: 77 start-page: 339 year: 1997 ident: 10.1016/j.medengphy.2008.06.010_bib9 article-title: Use of fractal dimension for the analysis of electroencephalographic time series publication-title: Biol Cybern doi: 10.1007/s004220050394 |
SSID | ssj0004463 |
Score | 2.28208 |
Snippet | Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent form of... Abstract Alzheimer's disease (AD) is an irreversible brain disorder of unknown aetiology that gradually destroys brain cells and represents the most prevalent... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 306 |
SubjectTerms | Aged Aged, 80 and over Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - physiopathology Alzheimer's disease Automatic Data Processing Diagnosis, Computer-Assisted - methods Female Fractal dimension Fractals Higuchi's algorithm Humans Magnetoencephalogram Magnetoencephalography - methods Male Middle Aged Models, Statistical Neural Networks (Computer) Radiology Signal Processing, Computer-Assisted Stationarity Surrogate data |
Title | Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453308001124 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453308001124 https://dx.doi.org/10.1016/j.medengphy.2008.06.010 https://www.ncbi.nlm.nih.gov/pubmed/18676171 https://www.proquest.com/docview/20471523 https://www.proquest.com/docview/66985595 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CIm3sgLZuYwXGfJi0U2hsx3bCrapgZVO5bJW4WYntsAJKESmXHfa389w4BQSISRwT-bMT-_m9zz_eewBf84wZZ7mILM1dlDAno0xmNMoYKyg-FcZ4f-fxsRxNkh8n4mQFhq0vjL9WGXR_o9MX2jq86Yfe7F9Op_1flAvkI7geTz2vYckqrDGODXVgbXD0c3R86x6ZLBKq-fKRB9y75oU2x1Wn-EvhXqXci7037eNG6ikSujBGh29hI7BIMmg-9B2suKoLr4dt8rYuvLkTZ7ALr8bhBP09nE9qR2YlQd5HRtNTnwrlW01K7yuFFVof69_vnxHksosyeQha4jHjg--k2dTx2-vEe6aQwcXfPw5RV1hLOOwhIVZr_QEmhwe_h6MoJFyIjFBqHhWC2iJNGDVGFAVTmcqRj5SlkJYzW1omHHOxUUKV3CCXcaVJfIpyqaRJVW75R-hUs8p9AiJYLpHLcUUtcjSap66QtkS2xCV2uJU9kG0PaxOikfukGBe6vXZ2ppdDE3JlSo1D04N4CbxsAnI8D0nbIdStvylqSI1G43moegzq6jDTa011zXSsH0hjD_aXyHsC_X_NfmklTaPg-DOcvHKz6xoLIZsQjD9dQsosxWWi6MFmI6K33ZTiQFFFt17yaduw3h6oxXQHOvOra_cZedm82IXVvX90N8y-GwcGOE8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RKhU4oHZbYCkUHyr1FDZ2YjvpDa2ApWW5lJW4WYntwALKIrJcOPDbGSfOAgJEJY6JZhzHMx5_tucB8DNLmbYm4oGhmQ1iZkWQipQGKWM5xadcaxfvPDwSg1H854SfzEG_jYVxbpXe9jc2vbbW_k3Pj2bvajzu_aMRRzyC-_HE4RoWf4CP-Ji42bl99-Dngfud2sseqQNH_sTJC1ccW57iD3mvSrEduljal5eo1yBovRTtfYZljyHJTtPNLzBnyw4s9NvSbR1YepRlsAOfhv7-_CtcjCpLJgVB1EcG41NXCOVXRQoXKYUNGpfp352eEUSyNU3mU5Y4nuHuPmmOdNzhOnFxKWTn8vbMItc1tuKveojP1Fp9g9He7nF_EPhyC4HmUk6DnFOTJzGjWvM8ZzKVGaKRouDCRMwUhnHLbKgll0WkEcnYQseuQLmQQicyM9EKzJeT0q4B4SwTiOQiSQ0iNJolNhemQKwUCRxwI7og2hFW2ucidyUxLlXrdHauZqLxlTKFQtF0IZwxXjXpON5mSVoRqjbaFO2jwiXjbVb5Equt_DyvFFUVU6F6potd-D3jfKLO__fZrVbTFCqOu8HJSju5qZAIsQRn0esUQqQJbhJ5F1YbFX0YpgQFRSVdf0_XtmBhcDw8VIcHR3-_w2J7tRbSDZifXt_YTURo0_xHPQPvAZyFORM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+the+Higuchi%27s+fractal+dimension+for+the+analysis+of+MEG+recordings+from+Alzheimer%27s+disease+patients&rft.jtitle=Medical+engineering+%26+physics&rft.au=G%C3%B3mez%2C+Carlos&rft.au=Mediavilla%2C+%C3%81ngela&rft.au=Hornero%2C+Roberto&rft.au=Ab%C3%A1solo%2C+Daniel&rft.date=2009-04-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=31&rft.issue=3&rft.spage=306&rft.epage=313&rft_id=info:doi/10.1016%2Fj.medengphy.2008.06.010&rft.externalDocID=S1350453308001124 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453309X00032%2Fcov150h.gif |