Optimization of nanoparticle core size for magnetic particle imaging

Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution bo...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 321; no. 10; pp. 1548 - 1551
Main Authors Ferguson, R. Matthew, Minard, Kevin R., Krishnan, Kannan M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0304-8853
DOI10.1016/j.jmmm.2009.02.083

Cover

Loading…
Abstract Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe 3O 4) and sub-millimeter spatial resolution are possible with MPI.
AbstractList Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI.
Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI.Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI.
Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe 3O 4) and sub-millimeter spatial resolution are possible with MPI.
Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe 3 O 4 ) and sub-millimeter spatial resolution are possible with MPI.
Author Ferguson, R. Matthew
Minard, Kevin R.
Krishnan, Kannan M.
AuthorAffiliation b Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA
a Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195−2120, USA
AuthorAffiliation_xml – name: a Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195−2120, USA
– name: b Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA
Author_xml – sequence: 1
  givenname: R. Matthew
  surname: Ferguson
  fullname: Ferguson, R. Matthew
  organization: Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195-2120, USA
– sequence: 2
  givenname: Kevin R.
  surname: Minard
  fullname: Minard, Kevin R.
  organization: Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA
– sequence: 3
  givenname: Kannan M.
  surname: Krishnan
  fullname: Krishnan, Kannan M.
  email: kannanmk@u.washington.edu
  organization: Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195-2120, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21658181$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19606261$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctq3DAU1SKleTQ_kEXxptDNOFeyLcsQCiXNCwLZtOuLRr6aarClqeQJJF9fTWY6pFlkJdB5cs8xO_DBE2NnHEoOXJ4vy-U4jqUA6EoQJajqgB1BBfVMqaY6ZMcpLQGA10p-ZIe8kyCF5Efsx8NqcqN71pMLvgi28NqHlY6TMwMVJkQqknumwoZYjHrhKQPFHnf5y_nFJ_bB6iHR6e49Yb-ur35e3s7uH27uLr_fz0zTttOs66y1fC4lKNubyhihYS6oNz2o1ja9rQVxC1q3Wsu6skKoqlFAPUlrajDVCfu29V2t52PWkZ-iHnAVc4_4hEE7_B_x7jcuwiOKFjrVQDb4ujOI4c-a0oSjS4aGQXsK64Q8Bza1ANFm6ufXWfuQf6fLhC87gk5GDzZqb1za8wSXjeJqw1NbnokhpUgWjZtezp0rugE54GZBXOJmQdwsiCAwL5il4o103-I90cVWRHmJR0cRk3HkDfUukpmwD-49-V-TErjn
CODEN JMMMDC
CitedBy_id crossref_primary_10_1109_TMAG_2016_2628341
crossref_primary_10_1063_1_4914061
crossref_primary_10_1118_1_3554646
crossref_primary_10_1134_S1063784220090108
crossref_primary_10_1371_journal_pone_0190214
crossref_primary_10_1088_1361_6560_aa6c99
crossref_primary_10_1016_j_physrep_2023_10_003
crossref_primary_10_1016_j_bios_2012_12_011
crossref_primary_10_1109_TMI_2011_2113188
crossref_primary_10_1109_ACCESS_2022_3178124
crossref_primary_10_1109_LMAG_2023_3243493
crossref_primary_10_1002_mrm_24421
crossref_primary_10_1016_j_addr_2022_114300
crossref_primary_10_1088_1361_6463_aa5066
crossref_primary_10_1126_sciadv_aax6040
crossref_primary_10_3390_pharmaceutics2020119
crossref_primary_10_1007_s11095_012_0711_y
crossref_primary_10_1016_j_jmmm_2009_10_024
crossref_primary_10_1109_TMAG_2013_2272215
crossref_primary_10_1118_1_4837216
crossref_primary_10_1109_TMAG_2013_2245110
crossref_primary_10_1016_j_pmatsci_2024_101267
crossref_primary_10_1002_adhm_201901058
crossref_primary_10_1118_1_4948998
crossref_primary_10_1016_j_jmmm_2014_10_044
crossref_primary_10_1088_2516_1091_ac3111
crossref_primary_10_1109_TMAG_2015_2513746
crossref_primary_10_1109_TMI_2012_2185247
crossref_primary_10_1002_cmmi_499
crossref_primary_10_1088_1361_6528_ab4241
crossref_primary_10_1002_anie_202418015
crossref_primary_10_1039_C7CE00882A
crossref_primary_10_1063_1_3675994
crossref_primary_10_1088_0031_9155_61_11_N257
crossref_primary_10_1063_1_4900605
crossref_primary_10_1088_0022_3727_44_39_393001
crossref_primary_10_1063_1_3556948
crossref_primary_10_1088_0031_9155_60_10_4033
crossref_primary_10_1016_j_neuroimage_2018_05_004
crossref_primary_10_1063_1_3694534
crossref_primary_10_1016_j_biomaterials_2013_01_087
crossref_primary_10_1039_C9CC08972A
crossref_primary_10_1002_adma_201904385
crossref_primary_10_1016_j_zemedi_2014_12_002
crossref_primary_10_1016_j_jmmm_2017_07_029
crossref_primary_10_1109_JERM_2023_3308377
crossref_primary_10_1039_C6NR01877G
crossref_primary_10_7567_JJAP_53_067001
crossref_primary_10_1109_TMI_2011_2125982
crossref_primary_10_1039_C8CE02115E
crossref_primary_10_1002_ange_202418015
crossref_primary_10_1038_s41598_022_12303_4
crossref_primary_10_1186_s42492_022_00120_5
crossref_primary_10_1002_wnan_1169
crossref_primary_10_1063_1_3676053
crossref_primary_10_1002_adma_201904131
crossref_primary_10_1016_j_jmmm_2020_167402
crossref_primary_10_1109_TMAG_2010_2046907
crossref_primary_10_1016_j_nantod_2025_102706
crossref_primary_10_1016_j_jmr_2012_11_029
crossref_primary_10_1039_C9NR00242A
crossref_primary_10_1016_j_jmmm_2014_08_057
crossref_primary_10_1088_1361_6560_aa70ca
crossref_primary_10_1021_acsanm_0c00779
crossref_primary_10_1021_acsomega_9b01803
crossref_primary_10_1016_j_coche_2015_01_003
crossref_primary_10_1118_1_3701775
crossref_primary_10_1109_TMI_2013_2258029
crossref_primary_10_1039_D0CS00260G
crossref_primary_10_3390_ijms140918682
crossref_primary_10_1063_1_5144713
crossref_primary_10_2147_IJN_S428687
crossref_primary_10_1016_j_jmmm_2013_10_050
crossref_primary_10_1088_1361_6501_ab2a4c
crossref_primary_10_1118_1_4810962
crossref_primary_10_1007_s10853_015_9324_2
crossref_primary_10_1109_TMI_2019_2898202
crossref_primary_10_1118_1_4938097
crossref_primary_10_1109_TMAG_2014_2358252
crossref_primary_10_1016_j_jmmm_2024_171894
crossref_primary_10_1109_TMI_2022_3149583
crossref_primary_10_1109_TMI_2014_2375065
crossref_primary_10_1002_adma_201200221
crossref_primary_10_1016_j_jmmm_2019_166206
crossref_primary_10_1021_acsnano_9b08660
crossref_primary_10_1109_TIM_2025_3542880
crossref_primary_10_1016_j_jmmm_2021_168520
crossref_primary_10_1088_2057_1976_aa6ab6
crossref_primary_10_1109_TMI_2010_2052284
crossref_primary_10_1016_j_jmmm_2016_02_005
crossref_primary_10_1088_0031_9155_55_19_023
crossref_primary_10_1038_s41551_019_0506_0
crossref_primary_10_1039_C5SM02695D
crossref_primary_10_1007_s11356_019_05211_0
crossref_primary_10_1088_2057_1976_ab3972
crossref_primary_10_1088_0031_9155_59_4_1047
crossref_primary_10_3174_ajnr_A5896
crossref_primary_10_1007_s10517_012_1651_6
crossref_primary_10_1118_1_4773869
crossref_primary_10_1016_j_jmmm_2018_05_069
crossref_primary_10_3390_pharmaceutics13091505
crossref_primary_10_1039_D0NA00343C
crossref_primary_10_1063_1_4867756
crossref_primary_10_1002_app_50460
crossref_primary_10_1016_j_jmmm_2021_168594
crossref_primary_10_1016_j_nano_2014_12_011
crossref_primary_10_1016_j_jmmm_2014_11_049
crossref_primary_10_1039_C5NR06542A
crossref_primary_10_7567_JJAP_53_103002
crossref_primary_10_1039_c3nr00544e
crossref_primary_10_1088_0031_9155_59_5_1109
crossref_primary_10_1088_1361_6560_ad5828
crossref_primary_10_1109_TMAG_2014_2332371
crossref_primary_10_1002_pssa_201800544
crossref_primary_10_1038_s41598_023_30255_1
crossref_primary_10_1007_s11051_021_05164_x
crossref_primary_10_1016_j_jconrel_2023_02_038
crossref_primary_10_1088_1361_6420_aab8d1
crossref_primary_10_1186_1471_2342_13_15
crossref_primary_10_1088_0957_4484_24_32_325502
crossref_primary_10_1063_5_0039565
crossref_primary_10_1080_09205063_2016_1195159
crossref_primary_10_1021_acs_jpclett_5b00610
crossref_primary_10_1371_journal_pone_0057335
crossref_primary_10_1103_PhysRevApplied_19_034029
crossref_primary_10_3934_ipi_2016033
crossref_primary_10_1002_jmri_26875
crossref_primary_10_2147_IJN_S415063
crossref_primary_10_2217_nnm_16_5
crossref_primary_10_1063_1_4919268
crossref_primary_10_1021_acs_nanolett_0c04455
crossref_primary_10_1088_1757_899X_678_1_012145
crossref_primary_10_1002_advs_202416838
crossref_primary_10_1007_s11307_018_1276_x
crossref_primary_10_1016_j_mtphys_2023_101003
crossref_primary_10_1063_1_4885146
crossref_primary_10_1021_acsanm_9b00977
crossref_primary_10_1109_TMI_2015_2501462
crossref_primary_10_1109_TMI_2012_2217979
crossref_primary_10_1021_cr300213b
crossref_primary_10_1109_TMAG_2012_2224646
crossref_primary_10_1021_acs_nanolett_7b03829
crossref_primary_10_1039_C5NR01651G
crossref_primary_10_1109_TMI_2017_2787500
crossref_primary_10_1109_TBME_2024_3400274
crossref_primary_10_1007_s11468_017_0606_1
crossref_primary_10_1002_adma_202306450
crossref_primary_10_1039_D3NA00180F
crossref_primary_10_1039_D1NR05670K
crossref_primary_10_3390_catal13111448
Cites_doi 10.1016/j.jmmm.2006.10.1150
10.1016/j.jmmm.2005.02.020
10.1109/TMAG.1978.1059918
10.1088/0031-9155/53/6/N01
10.1007/s10439-005-9002-7
10.1007/s003300100908
10.1016/S0304-8853(02)00706-0
10.1006/jmre.2001.2494
10.1002/9780470141571.ch4
10.1002/cmr.1008
10.1070/PU1974v017n02ABEH004332
10.1038/nature03808
ContentType Journal Article
Conference Proceeding
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
2009 Elsevier B.V. All rights reserved. 2009
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: 2009 Elsevier B.V. All rights reserved. 2009
DBID AAYXX
CITATION
IQODW
NPM
7X8
5PM
DOI 10.1016/j.jmmm.2009.02.083
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 1551
ExternalDocumentID PMC2709850
19606261
21658181
10_1016_j_jmmm_2009_02_083
S0304885309001516
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL073598
– fundername: NIBIB NIH HHS
  grantid: R21 EB008192
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HZ~
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
XXG
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
NPM
7X8
5PM
ID FETCH-LOGICAL-c577t-99fff1b6608fdc3cc2a0b2edcd087f5df42e1f0aa7aa643f2283580ede6fc40c3
IEDL.DBID AIKHN
ISSN 0304-8853
IngestDate Thu Aug 21 13:41:48 EDT 2025
Thu Jul 10 19:25:33 EDT 2025
Mon Jul 21 06:03:55 EDT 2025
Mon Jul 21 09:16:04 EDT 2025
Tue Jul 01 00:35:26 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Fri Feb 23 02:22:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Magnetic nanoparticle
Molecular imaging
Magnetic particle imaging
Iron oxide nanoparticle
Contrast agent
Particle size
Iron oxide
Nanoparticle
Superparamagnetism
Modeling
Optimization
Tissue
Magnetic particles
Magnetite
Medical imagery
Spatial resolution
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Proceedings of the Seventh International Conference on the Scientific and Clinical Applications of Magnetic Carriers
MergedId FETCHMERGED-LOGICAL-c577t-99fff1b6608fdc3cc2a0b2edcd087f5df42e1f0aa7aa643f2283580ede6fc40c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.jmmm.2009.02.083
PMID 19606261
PQID 1835542027
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2709850
proquest_miscellaneous_1835542027
pubmed_primary_19606261
pascalfrancis_primary_21658181
crossref_citationtrail_10_1016_j_jmmm_2009_02_083
crossref_primary_10_1016_j_jmmm_2009_02_083
elsevier_sciencedirect_doi_10_1016_j_jmmm_2009_02_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of magnetism and magnetic materials
PublicationTitleAlternate J Magn Magn Mater
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Minard, Wind (bib12) 2002; 154
Chikazumi (bib7) 1964
Rosensweig (bib10) 2002; 252
Dormann, Fiorani, Tronc (bib9) 1997; 98
Gleich, Weizenecker (bib2) 2005; 435
Chantrell, Popplewell, Charles (bib11) 1978; 14
Gleich, Weizenecker, Borgert (bib3) 2008; 53
Morrish (bib14) 1965
Gonzales, Krishnan (bib5) 2007; 311
Thorek, Chen, Czupryna (bib1) 2006; 34
Gonzales, Krishnan (bib4) 2005; 293
Shliomis (bib8) 1974; 17
Chen, Hoult (bib13) 1989
Wang, Hussain, Krestin (bib6) 2001; 11
Minard, Wind (bib15) 2001; 13
Rosensweig (10.1016/j.jmmm.2009.02.083_bib10) 2002; 252
Chikazumi (10.1016/j.jmmm.2009.02.083_bib7) 1964
Morrish (10.1016/j.jmmm.2009.02.083_bib14) 1965
Gonzales (10.1016/j.jmmm.2009.02.083_bib4) 2005; 293
Chantrell (10.1016/j.jmmm.2009.02.083_bib11) 1978; 14
Gonzales (10.1016/j.jmmm.2009.02.083_bib5) 2007; 311
Dormann (10.1016/j.jmmm.2009.02.083_bib9) 1997; 98
Chen (10.1016/j.jmmm.2009.02.083_bib13) 1989
Gleich (10.1016/j.jmmm.2009.02.083_bib2) 2005; 435
Minard (10.1016/j.jmmm.2009.02.083_bib12) 2002; 154
Minard (10.1016/j.jmmm.2009.02.083_bib15) 2001; 13
Shliomis (10.1016/j.jmmm.2009.02.083_bib8) 1974; 17
Gleich (10.1016/j.jmmm.2009.02.083_bib3) 2008; 53
Wang (10.1016/j.jmmm.2009.02.083_bib6) 2001; 11
Thorek (10.1016/j.jmmm.2009.02.083_bib1) 2006; 34
References_xml – year: 1964
  ident: bib7
  article-title: Physics of Magnetism
– year: 1989
  ident: bib13
  article-title: Biomedical Magnetic Resonance Technology
– volume: 311
  start-page: 59
  year: 2007
  ident: bib5
  publication-title: J. Magn. Magn. Mater.
– volume: 14
  start-page: 975
  year: 1978
  ident: bib11
  publication-title: IEEE T. Magn.
– volume: 34
  start-page: 23
  year: 2006
  ident: bib1
  publication-title: Ann. Biomed. Eng.
– volume: 11
  start-page: 2319
  year: 2001
  ident: bib6
  publication-title: Eur. Radiol.
– volume: 252
  start-page: 370
  year: 2002
  ident: bib10
  publication-title: J. Magn. Magn. Mater.
– volume: 154
  start-page: 336
  year: 2002
  ident: bib12
  publication-title: J. Magn. Reson.
– volume: 293
  start-page: 265
  year: 2005
  ident: bib4
  publication-title: J. Magn. Magn. Mater.
– volume: 435
  start-page: 1214
  year: 2005
  ident: bib2
  publication-title: Nature
– volume: 13
  start-page: 190
  year: 2001
  ident: bib15
  publication-title: Concepts Magn. Reson.
– year: 1965
  ident: bib14
  article-title: The Physical Principles of Magnetism
– volume: 53
  start-page: N81
  year: 2008
  ident: bib3
  publication-title: Phys. Med. Biol.
– volume: 98
  start-page: 283
  year: 1997
  ident: bib9
  publication-title: Adv. Chem. Phys.
– volume: 17
  start-page: 153
  year: 1974
  ident: bib8
  publication-title: Sov. Phys. Usp.
– volume: 311
  start-page: 59
  year: 2007
  ident: 10.1016/j.jmmm.2009.02.083_bib5
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.1150
– volume: 293
  start-page: 265
  year: 2005
  ident: 10.1016/j.jmmm.2009.02.083_bib4
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.02.020
– year: 1965
  ident: 10.1016/j.jmmm.2009.02.083_bib14
– volume: 14
  start-page: 975
  year: 1978
  ident: 10.1016/j.jmmm.2009.02.083_bib11
  publication-title: IEEE T. Magn.
  doi: 10.1109/TMAG.1978.1059918
– volume: 53
  start-page: N81
  year: 2008
  ident: 10.1016/j.jmmm.2009.02.083_bib3
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/6/N01
– year: 1989
  ident: 10.1016/j.jmmm.2009.02.083_bib13
– year: 1964
  ident: 10.1016/j.jmmm.2009.02.083_bib7
– volume: 34
  start-page: 23
  year: 2006
  ident: 10.1016/j.jmmm.2009.02.083_bib1
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-9002-7
– volume: 11
  start-page: 2319
  year: 2001
  ident: 10.1016/j.jmmm.2009.02.083_bib6
  publication-title: Eur. Radiol.
  doi: 10.1007/s003300100908
– volume: 252
  start-page: 370
  year: 2002
  ident: 10.1016/j.jmmm.2009.02.083_bib10
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00706-0
– volume: 154
  start-page: 336
  year: 2002
  ident: 10.1016/j.jmmm.2009.02.083_bib12
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2001.2494
– volume: 98
  start-page: 283
  year: 1997
  ident: 10.1016/j.jmmm.2009.02.083_bib9
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470141571.ch4
– volume: 13
  start-page: 190
  year: 2001
  ident: 10.1016/j.jmmm.2009.02.083_bib15
  publication-title: Concepts Magn. Reson.
  doi: 10.1002/cmr.1008
– volume: 17
  start-page: 153
  year: 1974
  ident: 10.1016/j.jmmm.2009.02.083_bib8
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1974v017n02ABEH004332
– volume: 435
  start-page: 1214
  year: 2005
  ident: 10.1016/j.jmmm.2009.02.083_bib2
  publication-title: Nature
  doi: 10.1038/nature03808
SSID ssj0001486
Score 2.3816247
Snippet Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1548
SubjectTerms Biological and medical sciences
Contrast agent
Iron oxide nanoparticle
Magnetic nanoparticle
Magnetic particle imaging
Medical sciences
Molecular imaging
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Technology. Biomaterials. Equipments. Material. Instrumentation
Title Optimization of nanoparticle core size for magnetic particle imaging
URI https://dx.doi.org/10.1016/j.jmmm.2009.02.083
https://www.ncbi.nlm.nih.gov/pubmed/19606261
https://www.proquest.com/docview/1835542027
https://pubmed.ncbi.nlm.nih.gov/PMC2709850
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISSkquJNKF0ZiRtK14mdxD5WhWoBUQ5QqbfI8aOkItlVd3vhwG9nvHYCi0oPXGNbsWfsmc-eF8BrWbqKK6dSK7VJeeaaVFqqUsNYkWlbGW197PCns3J2zj9cFBdbcDLEwni3yij7g0xfS-v4ZRqpOV207fSLN-oJ1DZUesWflduwmzNZ4tbePX7_cXY2CmRE_MFkSXnqB8TYmeDmddV1XUxbmR9Rwf6ln_YWaolUc6HcxW149G-3yj_01OkD2I8AkxyHNTyELds_gntrR0-9fAxvP6OM6GLwJZk70qse782hN_E5Lcmy_WEJYlnSqcvexziSsb3t1kWNnsD56buvJ7M0VlJIdVFVq1RK51zWlCUVzmimda5ok-NMDRWVK4zjuc0cVapSCiGK8zlxCkGtsaXTnGr2FHb6eW-fA-HUWcqdYE4YzoxWjZAN8kBqboShLIFsoF-tY5pxX-3iez34k13Vnua-_qWsaV4jzRN4M45ZhCQbd_YuBrbUG1ulRi1w57jJBg_HX-UZwjBEOgm8Gpha4yHzlhPV2_nNska5h7DLvxMl8Cww-fdE_R0Q76EJVBvsHzv4BN6bLX37bZ3IO6-oFAV98Z8LOoD7wbbl3S9fws7q-sYeIkRaNRPYPvqZTeJB-AXlaBP9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQSqngTCsVI3FC6TuIk9rFqqRZoy4FW6s1y_CipSHbFbi8c-O2MY2fLIuiBa2wr9kxm5nPmBfBWVK5myqnUCm1SlrkmFZaq1BRFmWlbG2197vDxSTU9Yx_Py_MN2B9zYXxYZdT9QacP2jo-mURqTuZtO_ninXocrQ0V3vBn1S24zVB8vXTu_ryO80C8HxyWlKV-esycCUFel13XxaKV-S7lxb-s0_25WiDNXGh28Tc0-mdQ5W9W6vABbEV4SfbCCR7Chu0fwZ0hzFMvHsPBZ9QQXUy9JDNHetXjrTnMJr6iJVm0PyxBJEs6ddH7DEeyGm-7oaXREzg7fH-6P01jH4VUl3W9TIVwzmVNVVHujC60zhVtctypobx2pXEst5mjStVKIUBxviJOyak1tnKaUV08hc1-1tvnQBh1ljLHC8cNK4xWDRcNckBoZrihRQLZSD-pY5Fx3-vimxyjyS6lp7nvfikkzSXSPIF3qzXzUGLjxtnlyBa59qFItAE3rttZ4-HqVXmGIAxxTgJvRqZKFDHvN1G9nV0tJGo9BF3-L1ECzwKTrzfqb4B4C02gXmP_aoIv370-0rdfhzLeeU0FL-mL_zzQa7g7PT0-kkcfTj5tw73g5fKBmC9hc_n9yr5CsLRsdgZh-AUtchTB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+magnetism+and+magnetic+materials&rft.atitle=Optimization+of+nanoparticle+core+size+for+magnetic+particle+imaging&rft.au=MATTHEW+FERGUSON%2C+R&rft.au=MINARD%2C+Kevin+R&rft.au=KRISHNAN%2C+Kannan+M&rft.date=2009-05-01&rft.pub=Elsevier&rft.issn=0304-8853&rft.volume=321&rft.issue=10&rft.spage=1548&rft.epage=1551&rft_id=info:doi/10.1016%2Fj.jmmm.2009.02.083&rft.externalDBID=n%2Fa&rft.externalDocID=21658181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon