Optimization of nanoparticle core size for magnetic particle imaging
Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution bo...
Saved in:
Published in | Journal of magnetism and magnetic materials Vol. 321; no. 10; pp. 1548 - 1551 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-8853 |
DOI | 10.1016/j.jmmm.2009.02.083 |
Cover
Loading…
Abstract | Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe
3O
4) and sub-millimeter spatial resolution are possible with MPI. |
---|---|
AbstractList | Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI. Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI.Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe(3)O(4)) and sub-millimeter spatial resolution are possible with MPI. Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe 3O 4) and sub-millimeter spatial resolution are possible with MPI. Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe 3 O 4 ) and sub-millimeter spatial resolution are possible with MPI. |
Author | Ferguson, R. Matthew Minard, Kevin R. Krishnan, Kannan M. |
AuthorAffiliation | b Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA a Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195−2120, USA |
AuthorAffiliation_xml | – name: a Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195−2120, USA – name: b Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA |
Author_xml | – sequence: 1 givenname: R. Matthew surname: Ferguson fullname: Ferguson, R. Matthew organization: Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195-2120, USA – sequence: 2 givenname: Kevin R. surname: Minard fullname: Minard, Kevin R. organization: Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99354, USA – sequence: 3 givenname: Kannan M. surname: Krishnan fullname: Krishnan, Kannan M. email: kannanmk@u.washington.edu organization: Materials Science and Engineering Department, University of Washington, Box 352120, Seattle, WA 98195-2120, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21658181$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19606261$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctq3DAU1SKleTQ_kEXxptDNOFeyLcsQCiXNCwLZtOuLRr6aarClqeQJJF9fTWY6pFlkJdB5cs8xO_DBE2NnHEoOXJ4vy-U4jqUA6EoQJajqgB1BBfVMqaY6ZMcpLQGA10p-ZIe8kyCF5Efsx8NqcqN71pMLvgi28NqHlY6TMwMVJkQqknumwoZYjHrhKQPFHnf5y_nFJ_bB6iHR6e49Yb-ur35e3s7uH27uLr_fz0zTttOs66y1fC4lKNubyhihYS6oNz2o1ja9rQVxC1q3Wsu6skKoqlFAPUlrajDVCfu29V2t52PWkZ-iHnAVc4_4hEE7_B_x7jcuwiOKFjrVQDb4ujOI4c-a0oSjS4aGQXsK64Q8Bza1ANFm6ufXWfuQf6fLhC87gk5GDzZqb1za8wSXjeJqw1NbnokhpUgWjZtezp0rugE54GZBXOJmQdwsiCAwL5il4o103-I90cVWRHmJR0cRk3HkDfUukpmwD-49-V-TErjn |
CODEN | JMMMDC |
CitedBy_id | crossref_primary_10_1109_TMAG_2016_2628341 crossref_primary_10_1063_1_4914061 crossref_primary_10_1118_1_3554646 crossref_primary_10_1134_S1063784220090108 crossref_primary_10_1371_journal_pone_0190214 crossref_primary_10_1088_1361_6560_aa6c99 crossref_primary_10_1016_j_physrep_2023_10_003 crossref_primary_10_1016_j_bios_2012_12_011 crossref_primary_10_1109_TMI_2011_2113188 crossref_primary_10_1109_ACCESS_2022_3178124 crossref_primary_10_1109_LMAG_2023_3243493 crossref_primary_10_1002_mrm_24421 crossref_primary_10_1016_j_addr_2022_114300 crossref_primary_10_1088_1361_6463_aa5066 crossref_primary_10_1126_sciadv_aax6040 crossref_primary_10_3390_pharmaceutics2020119 crossref_primary_10_1007_s11095_012_0711_y crossref_primary_10_1016_j_jmmm_2009_10_024 crossref_primary_10_1109_TMAG_2013_2272215 crossref_primary_10_1118_1_4837216 crossref_primary_10_1109_TMAG_2013_2245110 crossref_primary_10_1016_j_pmatsci_2024_101267 crossref_primary_10_1002_adhm_201901058 crossref_primary_10_1118_1_4948998 crossref_primary_10_1016_j_jmmm_2014_10_044 crossref_primary_10_1088_2516_1091_ac3111 crossref_primary_10_1109_TMAG_2015_2513746 crossref_primary_10_1109_TMI_2012_2185247 crossref_primary_10_1002_cmmi_499 crossref_primary_10_1088_1361_6528_ab4241 crossref_primary_10_1002_anie_202418015 crossref_primary_10_1039_C7CE00882A crossref_primary_10_1063_1_3675994 crossref_primary_10_1088_0031_9155_61_11_N257 crossref_primary_10_1063_1_4900605 crossref_primary_10_1088_0022_3727_44_39_393001 crossref_primary_10_1063_1_3556948 crossref_primary_10_1088_0031_9155_60_10_4033 crossref_primary_10_1016_j_neuroimage_2018_05_004 crossref_primary_10_1063_1_3694534 crossref_primary_10_1016_j_biomaterials_2013_01_087 crossref_primary_10_1039_C9CC08972A crossref_primary_10_1002_adma_201904385 crossref_primary_10_1016_j_zemedi_2014_12_002 crossref_primary_10_1016_j_jmmm_2017_07_029 crossref_primary_10_1109_JERM_2023_3308377 crossref_primary_10_1039_C6NR01877G crossref_primary_10_7567_JJAP_53_067001 crossref_primary_10_1109_TMI_2011_2125982 crossref_primary_10_1039_C8CE02115E crossref_primary_10_1002_ange_202418015 crossref_primary_10_1038_s41598_022_12303_4 crossref_primary_10_1186_s42492_022_00120_5 crossref_primary_10_1002_wnan_1169 crossref_primary_10_1063_1_3676053 crossref_primary_10_1002_adma_201904131 crossref_primary_10_1016_j_jmmm_2020_167402 crossref_primary_10_1109_TMAG_2010_2046907 crossref_primary_10_1016_j_nantod_2025_102706 crossref_primary_10_1016_j_jmr_2012_11_029 crossref_primary_10_1039_C9NR00242A crossref_primary_10_1016_j_jmmm_2014_08_057 crossref_primary_10_1088_1361_6560_aa70ca crossref_primary_10_1021_acsanm_0c00779 crossref_primary_10_1021_acsomega_9b01803 crossref_primary_10_1016_j_coche_2015_01_003 crossref_primary_10_1118_1_3701775 crossref_primary_10_1109_TMI_2013_2258029 crossref_primary_10_1039_D0CS00260G crossref_primary_10_3390_ijms140918682 crossref_primary_10_1063_1_5144713 crossref_primary_10_2147_IJN_S428687 crossref_primary_10_1016_j_jmmm_2013_10_050 crossref_primary_10_1088_1361_6501_ab2a4c crossref_primary_10_1118_1_4810962 crossref_primary_10_1007_s10853_015_9324_2 crossref_primary_10_1109_TMI_2019_2898202 crossref_primary_10_1118_1_4938097 crossref_primary_10_1109_TMAG_2014_2358252 crossref_primary_10_1016_j_jmmm_2024_171894 crossref_primary_10_1109_TMI_2022_3149583 crossref_primary_10_1109_TMI_2014_2375065 crossref_primary_10_1002_adma_201200221 crossref_primary_10_1016_j_jmmm_2019_166206 crossref_primary_10_1021_acsnano_9b08660 crossref_primary_10_1109_TIM_2025_3542880 crossref_primary_10_1016_j_jmmm_2021_168520 crossref_primary_10_1088_2057_1976_aa6ab6 crossref_primary_10_1109_TMI_2010_2052284 crossref_primary_10_1016_j_jmmm_2016_02_005 crossref_primary_10_1088_0031_9155_55_19_023 crossref_primary_10_1038_s41551_019_0506_0 crossref_primary_10_1039_C5SM02695D crossref_primary_10_1007_s11356_019_05211_0 crossref_primary_10_1088_2057_1976_ab3972 crossref_primary_10_1088_0031_9155_59_4_1047 crossref_primary_10_3174_ajnr_A5896 crossref_primary_10_1007_s10517_012_1651_6 crossref_primary_10_1118_1_4773869 crossref_primary_10_1016_j_jmmm_2018_05_069 crossref_primary_10_3390_pharmaceutics13091505 crossref_primary_10_1039_D0NA00343C crossref_primary_10_1063_1_4867756 crossref_primary_10_1002_app_50460 crossref_primary_10_1016_j_jmmm_2021_168594 crossref_primary_10_1016_j_nano_2014_12_011 crossref_primary_10_1016_j_jmmm_2014_11_049 crossref_primary_10_1039_C5NR06542A crossref_primary_10_7567_JJAP_53_103002 crossref_primary_10_1039_c3nr00544e crossref_primary_10_1088_0031_9155_59_5_1109 crossref_primary_10_1088_1361_6560_ad5828 crossref_primary_10_1109_TMAG_2014_2332371 crossref_primary_10_1002_pssa_201800544 crossref_primary_10_1038_s41598_023_30255_1 crossref_primary_10_1007_s11051_021_05164_x crossref_primary_10_1016_j_jconrel_2023_02_038 crossref_primary_10_1088_1361_6420_aab8d1 crossref_primary_10_1186_1471_2342_13_15 crossref_primary_10_1088_0957_4484_24_32_325502 crossref_primary_10_1063_5_0039565 crossref_primary_10_1080_09205063_2016_1195159 crossref_primary_10_1021_acs_jpclett_5b00610 crossref_primary_10_1371_journal_pone_0057335 crossref_primary_10_1103_PhysRevApplied_19_034029 crossref_primary_10_3934_ipi_2016033 crossref_primary_10_1002_jmri_26875 crossref_primary_10_2147_IJN_S415063 crossref_primary_10_2217_nnm_16_5 crossref_primary_10_1063_1_4919268 crossref_primary_10_1021_acs_nanolett_0c04455 crossref_primary_10_1088_1757_899X_678_1_012145 crossref_primary_10_1002_advs_202416838 crossref_primary_10_1007_s11307_018_1276_x crossref_primary_10_1016_j_mtphys_2023_101003 crossref_primary_10_1063_1_4885146 crossref_primary_10_1021_acsanm_9b00977 crossref_primary_10_1109_TMI_2015_2501462 crossref_primary_10_1109_TMI_2012_2217979 crossref_primary_10_1021_cr300213b crossref_primary_10_1109_TMAG_2012_2224646 crossref_primary_10_1021_acs_nanolett_7b03829 crossref_primary_10_1039_C5NR01651G crossref_primary_10_1109_TMI_2017_2787500 crossref_primary_10_1109_TBME_2024_3400274 crossref_primary_10_1007_s11468_017_0606_1 crossref_primary_10_1002_adma_202306450 crossref_primary_10_1039_D3NA00180F crossref_primary_10_1039_D1NR05670K crossref_primary_10_3390_catal13111448 |
Cites_doi | 10.1016/j.jmmm.2006.10.1150 10.1016/j.jmmm.2005.02.020 10.1109/TMAG.1978.1059918 10.1088/0031-9155/53/6/N01 10.1007/s10439-005-9002-7 10.1007/s003300100908 10.1016/S0304-8853(02)00706-0 10.1006/jmre.2001.2494 10.1002/9780470141571.ch4 10.1002/cmr.1008 10.1070/PU1974v017n02ABEH004332 10.1038/nature03808 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2009 Elsevier B.V. 2015 INIST-CNRS 2009 Elsevier B.V. All rights reserved. 2009 |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: 2009 Elsevier B.V. All rights reserved. 2009 |
DBID | AAYXX CITATION IQODW NPM 7X8 5PM |
DOI | 10.1016/j.jmmm.2009.02.083 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 1551 |
ExternalDocumentID | PMC2709850 19606261 21658181 10_1016_j_jmmm_2009_02_083 S0304885309001516 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL073598 – fundername: NIBIB NIH HHS grantid: R21 EB008192 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HZ~ IHE J1W K-O KOM M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP XXG ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW NPM 7X8 5PM |
ID | FETCH-LOGICAL-c577t-99fff1b6608fdc3cc2a0b2edcd087f5df42e1f0aa7aa643f2283580ede6fc40c3 |
IEDL.DBID | AIKHN |
ISSN | 0304-8853 |
IngestDate | Thu Aug 21 13:41:48 EDT 2025 Thu Jul 10 19:25:33 EDT 2025 Mon Jul 21 06:03:55 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 00:35:26 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Fri Feb 23 02:22:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Magnetic nanoparticle Molecular imaging Magnetic particle imaging Iron oxide nanoparticle Contrast agent Particle size Iron oxide Nanoparticle Superparamagnetism Modeling Optimization Tissue Magnetic particles Magnetite Medical imagery Spatial resolution |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Proceedings of the Seventh International Conference on the Scientific and Clinical Applications of Magnetic Carriers |
MergedId | FETCHMERGED-LOGICAL-c577t-99fff1b6608fdc3cc2a0b2edcd087f5df42e1f0aa7aa643f2283580ede6fc40c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.jmmm.2009.02.083 |
PMID | 19606261 |
PQID | 1835542027 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2709850 proquest_miscellaneous_1835542027 pubmed_primary_19606261 pascalfrancis_primary_21658181 crossref_citationtrail_10_1016_j_jmmm_2009_02_083 crossref_primary_10_1016_j_jmmm_2009_02_083 elsevier_sciencedirect_doi_10_1016_j_jmmm_2009_02_083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Journal of magnetism and magnetic materials |
PublicationTitleAlternate | J Magn Magn Mater |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Minard, Wind (bib12) 2002; 154 Chikazumi (bib7) 1964 Rosensweig (bib10) 2002; 252 Dormann, Fiorani, Tronc (bib9) 1997; 98 Gleich, Weizenecker (bib2) 2005; 435 Chantrell, Popplewell, Charles (bib11) 1978; 14 Gleich, Weizenecker, Borgert (bib3) 2008; 53 Morrish (bib14) 1965 Gonzales, Krishnan (bib5) 2007; 311 Thorek, Chen, Czupryna (bib1) 2006; 34 Gonzales, Krishnan (bib4) 2005; 293 Shliomis (bib8) 1974; 17 Chen, Hoult (bib13) 1989 Wang, Hussain, Krestin (bib6) 2001; 11 Minard, Wind (bib15) 2001; 13 Rosensweig (10.1016/j.jmmm.2009.02.083_bib10) 2002; 252 Chikazumi (10.1016/j.jmmm.2009.02.083_bib7) 1964 Morrish (10.1016/j.jmmm.2009.02.083_bib14) 1965 Gonzales (10.1016/j.jmmm.2009.02.083_bib4) 2005; 293 Chantrell (10.1016/j.jmmm.2009.02.083_bib11) 1978; 14 Gonzales (10.1016/j.jmmm.2009.02.083_bib5) 2007; 311 Dormann (10.1016/j.jmmm.2009.02.083_bib9) 1997; 98 Chen (10.1016/j.jmmm.2009.02.083_bib13) 1989 Gleich (10.1016/j.jmmm.2009.02.083_bib2) 2005; 435 Minard (10.1016/j.jmmm.2009.02.083_bib12) 2002; 154 Minard (10.1016/j.jmmm.2009.02.083_bib15) 2001; 13 Shliomis (10.1016/j.jmmm.2009.02.083_bib8) 1974; 17 Gleich (10.1016/j.jmmm.2009.02.083_bib3) 2008; 53 Wang (10.1016/j.jmmm.2009.02.083_bib6) 2001; 11 Thorek (10.1016/j.jmmm.2009.02.083_bib1) 2006; 34 |
References_xml | – year: 1964 ident: bib7 article-title: Physics of Magnetism – year: 1989 ident: bib13 article-title: Biomedical Magnetic Resonance Technology – volume: 311 start-page: 59 year: 2007 ident: bib5 publication-title: J. Magn. Magn. Mater. – volume: 14 start-page: 975 year: 1978 ident: bib11 publication-title: IEEE T. Magn. – volume: 34 start-page: 23 year: 2006 ident: bib1 publication-title: Ann. Biomed. Eng. – volume: 11 start-page: 2319 year: 2001 ident: bib6 publication-title: Eur. Radiol. – volume: 252 start-page: 370 year: 2002 ident: bib10 publication-title: J. Magn. Magn. Mater. – volume: 154 start-page: 336 year: 2002 ident: bib12 publication-title: J. Magn. Reson. – volume: 293 start-page: 265 year: 2005 ident: bib4 publication-title: J. Magn. Magn. Mater. – volume: 435 start-page: 1214 year: 2005 ident: bib2 publication-title: Nature – volume: 13 start-page: 190 year: 2001 ident: bib15 publication-title: Concepts Magn. Reson. – year: 1965 ident: bib14 article-title: The Physical Principles of Magnetism – volume: 53 start-page: N81 year: 2008 ident: bib3 publication-title: Phys. Med. Biol. – volume: 98 start-page: 283 year: 1997 ident: bib9 publication-title: Adv. Chem. Phys. – volume: 17 start-page: 153 year: 1974 ident: bib8 publication-title: Sov. Phys. Usp. – volume: 311 start-page: 59 year: 2007 ident: 10.1016/j.jmmm.2009.02.083_bib5 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.1150 – volume: 293 start-page: 265 year: 2005 ident: 10.1016/j.jmmm.2009.02.083_bib4 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.02.020 – year: 1965 ident: 10.1016/j.jmmm.2009.02.083_bib14 – volume: 14 start-page: 975 year: 1978 ident: 10.1016/j.jmmm.2009.02.083_bib11 publication-title: IEEE T. Magn. doi: 10.1109/TMAG.1978.1059918 – volume: 53 start-page: N81 year: 2008 ident: 10.1016/j.jmmm.2009.02.083_bib3 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/6/N01 – year: 1989 ident: 10.1016/j.jmmm.2009.02.083_bib13 – year: 1964 ident: 10.1016/j.jmmm.2009.02.083_bib7 – volume: 34 start-page: 23 year: 2006 ident: 10.1016/j.jmmm.2009.02.083_bib1 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-9002-7 – volume: 11 start-page: 2319 year: 2001 ident: 10.1016/j.jmmm.2009.02.083_bib6 publication-title: Eur. Radiol. doi: 10.1007/s003300100908 – volume: 252 start-page: 370 year: 2002 ident: 10.1016/j.jmmm.2009.02.083_bib10 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00706-0 – volume: 154 start-page: 336 year: 2002 ident: 10.1016/j.jmmm.2009.02.083_bib12 publication-title: J. Magn. Reson. doi: 10.1006/jmre.2001.2494 – volume: 98 start-page: 283 year: 1997 ident: 10.1016/j.jmmm.2009.02.083_bib9 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470141571.ch4 – volume: 13 start-page: 190 year: 2001 ident: 10.1016/j.jmmm.2009.02.083_bib15 publication-title: Concepts Magn. Reson. doi: 10.1002/cmr.1008 – volume: 17 start-page: 153 year: 1974 ident: 10.1016/j.jmmm.2009.02.083_bib8 publication-title: Sov. Phys. Usp. doi: 10.1070/PU1974v017n02ABEH004332 – volume: 435 start-page: 1214 year: 2005 ident: 10.1016/j.jmmm.2009.02.083_bib2 publication-title: Nature doi: 10.1038/nature03808 |
SSID | ssj0001486 |
Score | 2.3816247 |
Snippet | Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1548 |
SubjectTerms | Biological and medical sciences Contrast agent Iron oxide nanoparticle Magnetic nanoparticle Magnetic particle imaging Medical sciences Molecular imaging Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technology. Biomaterials. Equipments. Material. Instrumentation |
Title | Optimization of nanoparticle core size for magnetic particle imaging |
URI | https://dx.doi.org/10.1016/j.jmmm.2009.02.083 https://www.ncbi.nlm.nih.gov/pubmed/19606261 https://www.proquest.com/docview/1835542027 https://pubmed.ncbi.nlm.nih.gov/PMC2709850 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISSkquJNKF0ZiRtK14mdxD5WhWoBUQ5QqbfI8aOkItlVd3vhwG9nvHYCi0oPXGNbsWfsmc-eF8BrWbqKK6dSK7VJeeaaVFqqUsNYkWlbGW197PCns3J2zj9cFBdbcDLEwni3yij7g0xfS-v4ZRqpOV207fSLN-oJ1DZUesWflduwmzNZ4tbePX7_cXY2CmRE_MFkSXnqB8TYmeDmddV1XUxbmR9Rwf6ln_YWaolUc6HcxW149G-3yj_01OkD2I8AkxyHNTyELds_gntrR0-9fAxvP6OM6GLwJZk70qse782hN_E5Lcmy_WEJYlnSqcvexziSsb3t1kWNnsD56buvJ7M0VlJIdVFVq1RK51zWlCUVzmimda5ok-NMDRWVK4zjuc0cVapSCiGK8zlxCkGtsaXTnGr2FHb6eW-fA-HUWcqdYE4YzoxWjZAN8kBqboShLIFsoF-tY5pxX-3iez34k13Vnua-_qWsaV4jzRN4M45ZhCQbd_YuBrbUG1ulRi1w57jJBg_HX-UZwjBEOgm8Gpha4yHzlhPV2_nNska5h7DLvxMl8Cww-fdE_R0Q76EJVBvsHzv4BN6bLX37bZ3IO6-oFAV98Z8LOoD7wbbl3S9fws7q-sYeIkRaNRPYPvqZTeJB-AXlaBP9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQSqngTCsVI3FC6TuIk9rFqqRZoy4FW6s1y_CipSHbFbi8c-O2MY2fLIuiBa2wr9kxm5nPmBfBWVK5myqnUCm1SlrkmFZaq1BRFmWlbG2197vDxSTU9Yx_Py_MN2B9zYXxYZdT9QacP2jo-mURqTuZtO_ninXocrQ0V3vBn1S24zVB8vXTu_ryO80C8HxyWlKV-esycCUFel13XxaKV-S7lxb-s0_25WiDNXGh28Tc0-mdQ5W9W6vABbEV4SfbCCR7Chu0fwZ0hzFMvHsPBZ9QQXUy9JDNHetXjrTnMJr6iJVm0PyxBJEs6ddH7DEeyGm-7oaXREzg7fH-6P01jH4VUl3W9TIVwzmVNVVHujC60zhVtctypobx2pXEst5mjStVKIUBxviJOyak1tnKaUV08hc1-1tvnQBh1ljLHC8cNK4xWDRcNckBoZrihRQLZSD-pY5Fx3-vimxyjyS6lp7nvfikkzSXSPIF3qzXzUGLjxtnlyBa59qFItAE3rttZ4-HqVXmGIAxxTgJvRqZKFDHvN1G9nV0tJGo9BF3-L1ECzwKTrzfqb4B4C02gXmP_aoIv370-0rdfhzLeeU0FL-mL_zzQa7g7PT0-kkcfTj5tw73g5fKBmC9hc_n9yr5CsLRsdgZh-AUtchTB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+magnetism+and+magnetic+materials&rft.atitle=Optimization+of+nanoparticle+core+size+for+magnetic+particle+imaging&rft.au=MATTHEW+FERGUSON%2C+R&rft.au=MINARD%2C+Kevin+R&rft.au=KRISHNAN%2C+Kannan+M&rft.date=2009-05-01&rft.pub=Elsevier&rft.issn=0304-8853&rft.volume=321&rft.issue=10&rft.spage=1548&rft.epage=1551&rft_id=info:doi/10.1016%2Fj.jmmm.2009.02.083&rft.externalDBID=n%2Fa&rft.externalDocID=21658181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |