Fetal Hippocampal Grafts Containing CA3 Cells Restore Host Hippocampal Glutamate Decarboxylase-Positive Interneuron Numbers in a Rat Model of Temporal Lobe Epilepsy

Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarbox...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 20; no. 23; pp. 8788 - 8801
Main Authors Shetty, Ashok K, Turner, Dennis A
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.12.2000
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus.
AbstractList Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with “lesion-only” and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus.
Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus.Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus.
Author Turner, Dennis A
Shetty, Ashok K
AuthorAffiliation 1 Departments of Surgery (Neurosurgery) and Neurobiology, Duke University Medical Center. Durham, North Carolina 27710, and Medical Research and Surgery (Neurosurgery) Services, Veterans Affairs Medical Center, Durham, North Carolina 27705
AuthorAffiliation_xml – name: 1 Departments of Surgery (Neurosurgery) and Neurobiology, Duke University Medical Center. Durham, North Carolina 27710, and Medical Research and Surgery (Neurosurgery) Services, Veterans Affairs Medical Center, Durham, North Carolina 27705
Author_xml – sequence: 1
  fullname: Shetty, Ashok K
– sequence: 2
  fullname: Turner, Dennis A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11102487$$D View this record in MEDLINE/PubMed
BookMark eNpVUdFu0zAUjdAQ6wa_gCwe4CnDjpPY4QFpCt1aVDZUtmfLcW9aT4kdbGel_8OH4q4VsCdf655z7tE5Z8mJsQaS5B3BF6TI6McHA6OzXumLDKcZTTFnnMcZ4xfJJCKqNMsxOUkmOGM4LXOWnyZn3j9EAMOEvUpOCSE4yzmbJL-vIMgOzfQwWCX7Ic7XTrbBo9qaILXRZo3qS4pq6DqPluCDdYBm1ofnpG4MspcB0BdQ0jX2166THtLv1uugHwHNTQD3ZNygm7FvwHmkDZJoKQP6ZlfQIduiO-gH66LewjaApoPuYPC718nLVnYe3hzf8-T-anpXz9LF7fW8vlykqmAspLxhpMQ4K1mbcVKoomKrquWrpoFS5WUuGSF5XnBa8YIBparJFWlopVYUWs4rep58PugOY9PDSoEJ0YsYnO6l2wkrtXi-MXoj1vZRlIzRmG0UeH8UcPbnGLMSvfYqJicN2NELluUFKYr9pU8HoIpFegft3yMEi33J4uvN9H55-6OeiwyL-H8qWexLjuS3_9v8Rz22GgEfDoCNXm-22oHwvey6CCdiu90eBPd69A_fG7gc
CitedBy_id crossref_primary_10_1111_j_1460_9568_2007_05820_x
crossref_primary_10_1016_j_nurt_2009_01_016
crossref_primary_10_1016_j_tins_2018_03_008
crossref_primary_10_1016_S0169_328X_01_00202_9
crossref_primary_10_1016_j_brainres_2010_10_080
crossref_primary_10_1111_j_1474_9726_2007_00363_x
crossref_primary_10_1002_glia_20047
crossref_primary_10_1016_j_expneurol_2006_02_132
crossref_primary_10_1016_j_pharmthera_2011_04_008
crossref_primary_10_1007_s11064_010_0253_9
crossref_primary_10_3727_000000001783986963
crossref_primary_10_52711_0974_360X_2022_00886
crossref_primary_10_1007_s13311_011_0064_y
crossref_primary_10_1227_NEU_0b013e31822b30cd
crossref_primary_10_1523_JNEUROSCI_1538_05_2005
crossref_primary_10_1038_s41536_022_00234_7
crossref_primary_10_1111_j_1528_1167_2008_01743_x
crossref_primary_10_1155_2011_384216
crossref_primary_10_1016_S0306_4522_01_00478_X
crossref_primary_10_14336_AD_2019_0720
crossref_primary_10_1016_j_jneuroim_2011_03_005
crossref_primary_10_1016_j_neubiorev_2015_12_014
crossref_primary_10_1002_cpsc_9
crossref_primary_10_1046_j_1471_4159_2003_01979_x
crossref_primary_10_1016_j_bbr_2017_01_014
crossref_primary_10_1016_j_nbd_2005_07_009
crossref_primary_10_1080_20013078_2020_1809064
crossref_primary_10_2165_00023210_200216090_00001
crossref_primary_10_1002_hipo_20594
crossref_primary_10_1016_j_nbd_2007_03_016
crossref_primary_10_1016_j_npep_2008_09_002
crossref_primary_10_1002_hipo_20311
crossref_primary_10_1002_jnr_20302
crossref_primary_10_1016_j_brainres_2015_09_019
crossref_primary_10_1002_hipo_10031
crossref_primary_10_52711_0974_360X_2021_00381
crossref_primary_10_1016_j_neuroscience_2006_01_058
crossref_primary_10_1111_j_0953_816X_2003_03123_x
crossref_primary_10_1152_ajpregu_90412_2008
crossref_primary_10_1002_mas_20243
crossref_primary_10_1016_j_eplepsyres_2009_08_009
crossref_primary_10_1016_j_jtumed_2023_03_012
crossref_primary_10_1016_j_neubiorev_2007_10_004
crossref_primary_10_1186_1471_2202_11_42
crossref_primary_10_1002_dneu_20813
crossref_primary_10_1016_j_expneurol_2008_04_040
crossref_primary_10_1111_j_1582_4934_2008_00675_x
crossref_primary_10_1016_j_brainres_2012_09_006
crossref_primary_10_1002_9780470151808_sc02d07s18
crossref_primary_10_1006_exnr_2001_7668
crossref_primary_10_1111_j_1528_1167_2008_01635_x
crossref_primary_10_1016_j_wneu_2019_01_245
crossref_primary_10_1016_S0014_4886_03_00167_5
crossref_primary_10_1007_s12031_015_0571_0
crossref_primary_10_1002_hipo_20776
crossref_primary_10_1586_14737175_6_3_397
crossref_primary_10_5607_en_2018_27_2_112
crossref_primary_10_1002_cne_21851
crossref_primary_10_1016_j_pnpbp_2007_01_021
crossref_primary_10_1016_j_seizure_2007_05_003
crossref_primary_10_1227_01_NEU_0000047825_91205_E6
crossref_primary_10_1111_j_1471_4159_2004_02318_x
crossref_primary_10_1016_j_stem_2008_08_009
crossref_primary_10_1634_stemcells_2007_0313
crossref_primary_10_1016_j_brainres_2009_07_079
crossref_primary_10_1517_14728222_5_2_219
crossref_primary_10_1002_cne_22482
crossref_primary_10_1006_nbdi_2001_0440
crossref_primary_10_1002_hipo_10206
crossref_primary_10_14336_AD_2020_1020
crossref_primary_10_1177_09636897231164712
crossref_primary_10_1002_stem_446
crossref_primary_10_1007_s12035_018_0898_y
crossref_primary_10_1007_s12264_014_1478_4
crossref_primary_10_1007_s12035_015_9102_9
crossref_primary_10_1089_089771504323004566
crossref_primary_10_1016_j_bbi_2015_12_021
crossref_primary_10_1111_j_1460_9568_2005_03853_x
crossref_primary_10_1002_cne_21767
crossref_primary_10_1016_j_expneurol_2008_05_013
crossref_primary_10_1002_hipo_10091
crossref_primary_10_3727_096368910X491383
crossref_primary_10_1016_j_brainresrev_2003_11_003
crossref_primary_10_3389_fnins_2020_00660
crossref_primary_10_1155_2016_3915767
crossref_primary_10_2174_1574893617666211220154326
crossref_primary_10_1002_jnr_10401
crossref_primary_10_1371_journal_pone_0104092
Cites_doi 10.1523/JNEUROSCI.14-03-01834.1994
10.1177/096368979900800113
10.1523/JNEUROSCI.16-02-00675.1996
10.1016/0166-4328(94)00134-2
10.1523/JNEUROSCI.16-12-03991.1996
10.1523/JNEUROSCI.13-10-04470.1993
10.1016/0963-6897(94)E0011-7
10.1111/j.1460-9568.1996.tb01259.x
10.1016/S0920-1211(98)00043-6
10.1007/BF00966093
10.1016/S0079-6123(08)61264-9
10.1016/0006-8993(80)90825-2
10.1002/mds.870130303
10.1016/S0920-1211(96)00054-X
10.1016/0166-4328(95)00144-1
10.1002/hipo.450010106
10.1016/0300-9629(89)90209-0
10.1002/(SICI)1096-9861(19960930)373:4<593::AID-CNE8>3.0.CO;2-X
10.1002/cne.901920209
10.1016/0301-0082(92)90044-F
10.1002/(SICI)1096-9861(19980504)394:2<252::AID-CNE9>3.0.CO;2-1
10.1016/0301-0082(84)90023-6
10.1073/pnas.94.22.12151
10.1016/S0166-2236(97)01081-3
10.1016/0920-1211(90)90063-2
10.1097/00004691-199703000-00002
10.1016/0092-8674(94)90377-8
10.1007/BF00228948
10.1111/j.1749-6632.1997.tb52217.x
10.1523/JNEUROSCI.08-06-01991.1988
10.1016/0006-8993(95)00109-4
10.1126/science.2879352
10.1038/nm0898-963
10.1523/JNEUROSCI.11-09-02786.1991
10.1523/JNEUROSCI.15-05-03990.1995
10.1016/S0920-1211(98)00033-3
10.1016/0006-8993(94)90526-6
10.1016/S0079-6123(08)62623-0
10.1523/JNEUROSCI.14-06-03449.1994
10.1016/0306-4522(86)90081-3
10.1002/cne.902110202
10.1152/jn.1997.78.3.1504
10.1016/0006-8993(87)90362-3
10.1016/0304-3940(93)90660-D
10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
10.1016/S0306-4522(00)00178-0
10.1002/cne.903520404
10.1152/jn.1994.72.5.2167
10.1016/S0301-0082(96)00048-2
10.1016/0306-4522(89)90005-5
10.1006/exnr.1999.7304
10.1002/1531-8249(199901)45:1<92::AID-ART15>3.0.CO;2-N
10.1002/(SICI)1096-9861(19991115)414:2<238::AID-CNE7>3.0.CO;2-A
10.1037/0735-7044.106.1.39
10.1016/0306-4522(92)90357-8
10.1016/S0306-4522(96)00413-7
10.1007/BF00228813
10.1093/oxfordjournals.bmb.a011646
10.1006/exnr.1999.7107
10.1006/exnr.1996.6363
10.1523/JNEUROSCI.17-07-02295.1997
10.1002/ar.1090940210
10.1016/0306-4522(95)00025-E
10.1002/cne.903630406
10.1523/JNEUROSCI.15-05-03562.1995
10.1111/j.1471-4159.1991.tb08211.x
ContentType Journal Article
Copyright Copyright © 2000 Society for Neuroscience 2000
Copyright_xml – notice: Copyright © 2000 Society for Neuroscience 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1523/jneurosci.20-23-08788.2000
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 8801
ExternalDocumentID 10_1523_JNEUROSCI_20_23_08788_2000
11102487
www20_23_8788
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS36741
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
YYP
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c577t-8b71600267f2815c597d9f8dbbe6c464a711445839857e33cb4c1b39cd3ef8893
IEDL.DBID RPM
ISSN 0270-6474
1529-2401
IngestDate Tue Sep 17 20:49:06 EDT 2024
Sat Oct 26 04:37:03 EDT 2024
Thu Sep 26 17:00:43 EDT 2024
Sat Nov 02 12:12:38 EDT 2024
Tue Nov 10 19:48:35 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-8b71600267f2815c597d9f8dbbe6c464a711445839857e33cb4c1b39cd3ef8893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/20/23/8788.full.pdf
PMID 11102487
PQID 72451559
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6773070
proquest_miscellaneous_72451559
crossref_primary_10_1523_JNEUROSCI_20_23_08788_2000
pubmed_primary_11102487
highwire_smallpub1_www20_23_8788
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20001201
2000-Dec-01
2000-12-01
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: 20001201
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2000
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041302470287000_20.23.8788.32
2023041302470287000_20.23.8788.31
Tonder (2023041302470287000_20.23.8788.61) 1990; 83
2023041302470287000_20.23.8788.30
Rempe (2023041302470287000_20.23.8788.39) 1997; 78
2023041302470287000_20.23.8788.70
Sanberg (2023041302470287000_20.23.8788.41) 1997; 831
2023041302470287000_20.23.8788.38
2023041302470287000_20.23.8788.37
2023041302470287000_20.23.8788.36
2023041302470287000_20.23.8788.35
2023041302470287000_20.23.8788.33
Scharfman (2023041302470287000_20.23.8788.42) 1994; 72
2023041302470287000_20.23.8788.9
2023041302470287000_20.23.8788.43
2023041302470287000_20.23.8788.8
Shetty (2023041302470287000_20.23.8788.52) 1999; 159
2023041302470287000_20.23.8788.40
2023041302470287000_20.23.8788.49
2023041302470287000_20.23.8788.48
2023041302470287000_20.23.8788.47
2023041302470287000_20.23.8788.45
2023041302470287000_20.23.8788.44
2023041302470287000_20.23.8788.10
2023041302470287000_20.23.8788.54
2023041302470287000_20.23.8788.51
2023041302470287000_20.23.8788.50
2023041302470287000_20.23.8788.18
2023041302470287000_20.23.8788.17
2023041302470287000_20.23.8788.16
2023041302470287000_20.23.8788.15
2023041302470287000_20.23.8788.14
2023041302470287000_20.23.8788.58
2023041302470287000_20.23.8788.13
2023041302470287000_20.23.8788.57
2023041302470287000_20.23.8788.12
2023041302470287000_20.23.8788.56
2023041302470287000_20.23.8788.11
2023041302470287000_20.23.8788.55
Starr (2023041302470287000_20.23.8788.59) 1999; 8
2023041302470287000_20.23.8788.1
Shetty (2023041302470287000_20.23.8788.46) 1996; 50
2023041302470287000_20.23.8788.3
2023041302470287000_20.23.8788.2
2023041302470287000_20.23.8788.5
2023041302470287000_20.23.8788.4
2023041302470287000_20.23.8788.7
2023041302470287000_20.23.8788.6
2023041302470287000_20.23.8788.21
2023041302470287000_20.23.8788.65
2023041302470287000_20.23.8788.20
2023041302470287000_20.23.8788.64
Onifer (2023041302470287000_20.23.8788.34) 1990; 82
2023041302470287000_20.23.8788.63
2023041302470287000_20.23.8788.62
2023041302470287000_20.23.8788.60
Mudrick (2023041302470287000_20.23.8788.27) 1991; 86
2023041302470287000_20.23.8788.29
2023041302470287000_20.23.8788.28
2023041302470287000_20.23.8788.26
2023041302470287000_20.23.8788.25
2023041302470287000_20.23.8788.69
2023041302470287000_20.23.8788.24
2023041302470287000_20.23.8788.68
2023041302470287000_20.23.8788.23
2023041302470287000_20.23.8788.67
2023041302470287000_20.23.8788.22
2023041302470287000_20.23.8788.66
2023041302470287000_20.23.8788.19
Shetty (2023041302470287000_20.23.8788.53) 2000; 26
References_xml – ident: 2023041302470287000_20.23.8788.12
  doi: 10.1523/JNEUROSCI.14-03-01834.1994
– volume: 8
  start-page: 37
  year: 1999
  ident: 2023041302470287000_20.23.8788.59
  article-title: Intranigral transplantation of fetal substantia nigra allograft in the hemiparkinsonian rhesus monkey.
  publication-title: Cell Transplant
  doi: 10.1177/096368979900800113
  contributor:
    fullname: Starr
– ident: 2023041302470287000_20.23.8788.24
  doi: 10.1523/JNEUROSCI.16-02-00675.1996
– ident: 2023041302470287000_20.23.8788.10
  doi: 10.1016/0166-4328(94)00134-2
– ident: 2023041302470287000_20.23.8788.40
  doi: 10.1523/JNEUROSCI.16-12-03991.1996
– ident: 2023041302470287000_20.23.8788.64
– ident: 2023041302470287000_20.23.8788.32
  doi: 10.1523/JNEUROSCI.13-10-04470.1993
– ident: 2023041302470287000_20.23.8788.16
  doi: 10.1016/0963-6897(94)E0011-7
– ident: 2023041302470287000_20.23.8788.38
  doi: 10.1111/j.1460-9568.1996.tb01259.x
– ident: 2023041302470287000_20.23.8788.2
  doi: 10.1016/S0920-1211(98)00043-6
– ident: 2023041302470287000_20.23.8788.17
  doi: 10.1007/BF00966093
– volume: 83
  start-page: 391
  year: 1990
  ident: 2023041302470287000_20.23.8788.61
  article-title: Grafting of fetal CA3 neurons to excitotoxic, axon-sparing lesions of the hippocampal CA3 area in adult rats.
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)61264-9
  contributor:
    fullname: Tonder
– ident: 2023041302470287000_20.23.8788.29
  doi: 10.1016/0006-8993(80)90825-2
– ident: 2023041302470287000_20.23.8788.22
  doi: 10.1002/mds.870130303
– ident: 2023041302470287000_20.23.8788.18
  doi: 10.1016/S0920-1211(96)00054-X
– ident: 2023041302470287000_20.23.8788.60
  doi: 10.1016/0166-4328(95)00144-1
– ident: 2023041302470287000_20.23.8788.56
  doi: 10.1002/hipo.450010106
– ident: 2023041302470287000_20.23.8788.65
  doi: 10.1016/0300-9629(89)90209-0
– ident: 2023041302470287000_20.23.8788.57
  doi: 10.1002/(SICI)1096-9861(19960930)373:4<593::AID-CNE8>3.0.CO;2-X
– ident: 2023041302470287000_20.23.8788.28
  doi: 10.1002/cne.901920209
– ident: 2023041302470287000_20.23.8788.66
  doi: 10.1016/0301-0082(92)90044-F
– ident: 2023041302470287000_20.23.8788.49
  doi: 10.1002/(SICI)1096-9861(19980504)394:2<252::AID-CNE9>3.0.CO;2-1
– ident: 2023041302470287000_20.23.8788.4
  doi: 10.1016/0301-0082(84)90023-6
– ident: 2023041302470287000_20.23.8788.13
  doi: 10.1073/pnas.94.22.12151
– ident: 2023041302470287000_20.23.8788.19
  doi: 10.1016/S0166-2236(97)01081-3
– ident: 2023041302470287000_20.23.8788.7
  doi: 10.1016/0920-1211(90)90063-2
– ident: 2023041302470287000_20.23.8788.9
  doi: 10.1097/00004691-199703000-00002
– ident: 2023041302470287000_20.23.8788.20
  doi: 10.1016/0092-8674(94)90377-8
– volume: 26
  start-page: 224
  year: 2000
  ident: 2023041302470287000_20.23.8788.53
  article-title: Fetal hippocampal transplants containing CA3 cells restore host hippocampal glutamic acid decarboxylase (GAD)-positive interneuron numbers in a rat model of temporal lobe epilepsy.
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Shetty
– volume: 86
  start-page: 233
  year: 1991
  ident: 2023041302470287000_20.23.8788.27
  article-title: Hippocampal neurons transplanted into ischemically lesioned hippocampus: anatomical assessment of survival, maturation and integration.
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228948
  contributor:
    fullname: Mudrick
– volume: 831
  start-page: 452
  year: 1997
  ident: 2023041302470287000_20.23.8788.41
  article-title: Human fetal striatal transplantation in an excitotoxic lesioned model of Huntington's disease.
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1997.tb52217.x
  contributor:
    fullname: Sanberg
– ident: 2023041302470287000_20.23.8788.14
  doi: 10.1523/JNEUROSCI.08-06-01991.1988
– ident: 2023041302470287000_20.23.8788.45
  doi: 10.1016/0006-8993(95)00109-4
– ident: 2023041302470287000_20.23.8788.55
  doi: 10.1126/science.2879352
– ident: 2023041302470287000_20.23.8788.35
  doi: 10.1038/nm0898-963
– ident: 2023041302470287000_20.23.8788.63
  doi: 10.1523/JNEUROSCI.11-09-02786.1991
– ident: 2023041302470287000_20.23.8788.25
  doi: 10.1523/JNEUROSCI.15-05-03990.1995
– ident: 2023041302470287000_20.23.8788.26
  doi: 10.1016/S0920-1211(98)00033-3
– ident: 2023041302470287000_20.23.8788.8
  doi: 10.1016/0006-8993(94)90526-6
– volume: 82
  start-page: 359
  year: 1990
  ident: 2023041302470287000_20.23.8788.34
  article-title: Spatial memory deficit resulting from ischemia-induced damage to the hippocampus is ameliorated by intra-hippocampal transplants of fetal hippocampal neurons.
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)62623-0
  contributor:
    fullname: Onifer
– ident: 2023041302470287000_20.23.8788.30
  doi: 10.1523/JNEUROSCI.14-06-03449.1994
– ident: 2023041302470287000_20.23.8788.37
– ident: 2023041302470287000_20.23.8788.58
  doi: 10.1016/0306-4522(86)90081-3
– ident: 2023041302470287000_20.23.8788.23
  doi: 10.1002/cne.902110202
– volume: 78
  start-page: 1504
  year: 1997
  ident: 2023041302470287000_20.23.8788.39
  article-title: Interneurons in area CA1 stratum radiatum and stratum orients remain functionally connected to excitatory synaptic input in chronically epileptic animals.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1997.78.3.1504
  contributor:
    fullname: Rempe
– ident: 2023041302470287000_20.23.8788.68
  doi: 10.1016/0006-8993(87)90362-3
– ident: 2023041302470287000_20.23.8788.3
  doi: 10.1016/0304-3940(93)90660-D
– ident: 2023041302470287000_20.23.8788.15
  doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
– ident: 2023041302470287000_20.23.8788.54
  doi: 10.1016/S0306-4522(00)00178-0
– ident: 2023041302470287000_20.23.8788.33
  doi: 10.1002/cne.903520404
– volume: 72
  start-page: 2167
  year: 1994
  ident: 2023041302470287000_20.23.8788.42
  article-title: Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar cells.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.72.5.2167
  contributor:
    fullname: Scharfman
– volume: 50
  start-page: 593
  year: 1996
  ident: 2023041302470287000_20.23.8788.46
  article-title: Development of fetal hippocampal grafts in intact and lesioned hippocampus.
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(96)00048-2
  contributor:
    fullname: Shetty
– ident: 2023041302470287000_20.23.8788.6
  doi: 10.1016/0306-4522(89)90005-5
– ident: 2023041302470287000_20.23.8788.70
  doi: 10.1006/exnr.1999.7304
– ident: 2023041302470287000_20.23.8788.67
  doi: 10.1002/1531-8249(199901)45:1<92::AID-ART15>3.0.CO;2-N
– ident: 2023041302470287000_20.23.8788.51
  doi: 10.1002/(SICI)1096-9861(19991115)414:2<238::AID-CNE7>3.0.CO;2-A
– ident: 2023041302470287000_20.23.8788.69
  doi: 10.1037/0735-7044.106.1.39
– volume: 159
  start-page: 613
  year: 1999
  ident: 2023041302470287000_20.23.8788.52
  article-title: Fetal hippocampal cell grafting into CA3 region of adult hippocampus following kainic acid lesion rescues hippocampal interneurons from delayed cell death. American Society for Neural Transplantation and Repair Abstracts.
  publication-title: Exp Neurol
  contributor:
    fullname: Shetty
– ident: 2023041302470287000_20.23.8788.62
  doi: 10.1016/0306-4522(92)90357-8
– ident: 2023041302470287000_20.23.8788.47
  doi: 10.1016/S0306-4522(96)00413-7
– ident: 2023041302470287000_20.23.8788.36
  doi: 10.1007/BF00228813
– ident: 2023041302470287000_20.23.8788.11
  doi: 10.1093/oxfordjournals.bmb.a011646
– ident: 2023041302470287000_20.23.8788.50
  doi: 10.1006/exnr.1999.7107
– ident: 2023041302470287000_20.23.8788.48
  doi: 10.1006/exnr.1996.6363
– ident: 2023041302470287000_20.23.8788.5
  doi: 10.1523/JNEUROSCI.17-07-02295.1997
– ident: 2023041302470287000_20.23.8788.1
  doi: 10.1002/ar.1090940210
– ident: 2023041302470287000_20.23.8788.44
  doi: 10.1016/0306-4522(95)00025-E
– ident: 2023041302470287000_20.23.8788.43
  doi: 10.1002/cne.903630406
– ident: 2023041302470287000_20.23.8788.31
  doi: 10.1523/JNEUROSCI.15-05-03562.1995
– ident: 2023041302470287000_20.23.8788.21
  doi: 10.1111/j.1471-4159.1991.tb08211.x
SSID ssj0007017
Score 2.0419333
Snippet Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8788
SubjectTerms Animals
Brain Tissue Transplantation
Cell Count
Cell Size
Dentate Gyrus - drug effects
Dentate Gyrus - pathology
Disease Models, Animal
Epilepsy, Temporal Lobe - chemically induced
Epilepsy, Temporal Lobe - surgery
Epilepsy, Temporal Lobe - therapy
Fetal Tissue Transplantation
Glutamate Decarboxylase - metabolism
Graft Survival
Hippocampus - enzymology
Hippocampus - pathology
Hippocampus - surgery
Hippocampus - transplantation
Immunohistochemistry
Injections, Intraventricular
Interneurons - cytology
Interneurons - pathology
Interneurons - transplantation
Isoenzymes - metabolism
Kainic Acid
Male
Rats
Rats, Inbred F344
Title Fetal Hippocampal Grafts Containing CA3 Cells Restore Host Hippocampal Glutamate Decarboxylase-Positive Interneuron Numbers in a Rat Model of Temporal Lobe Epilepsy
URI http://www.jneurosci.org/cgi/content/abstract/20/23/8788
https://www.ncbi.nlm.nih.gov/pubmed/11102487
https://www.proquest.com/docview/72451559
https://pubmed.ncbi.nlm.nih.gov/PMC6773070
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAFFw1PXFBQPkwH-UdELdtHO_aax8j0xAKRKW0Um_W7nqtRnJsK3YR-T_8UN6u7dIgTtwcZa1EmvG-N_Z4HiHvci1ixDmkhpuAYoXgNFGhpkgWFSVGJkWf9rmKllf87Dq8PiDh-C6MM-1rtT6pys1Jtb5x3spmo6ejT2x6_jWNhLBUnU7IBA9GiT5sv8J3Y3ZRbqEu4oIPSaMouKZnK2uP-55-Ql1IA0b9GAWge1nFZodiIQy4tdbdL1BjaPC_GtC_fZT3CtPiEXk4dJQw7__5Y3JgqifkaF6hmt7s4D04j6e7eX5Efi0MNtuwXDcN1jDcCUr4uJVF14JNqeqHRUA6Z5Casmzhwo2dMbCs227_JOSrxF7XwAej5VbVP3fYhRt67ixgPwz0Nxpt8EcFKzd0pIV1BRIuZAd2_loJdQGXfS5WCV9qZeC0wR2qaXdPydXi9DJd0mFOA9WhEB2NFYouK-ZEEcSzUKNGyZMizpUykeYRlwJFl30-m8ShMIxpxfVMsUTnzBQxNkzPyGFVV-YFAdTLhTQIVuQzrlUucxEgyXIW4WEU5h5hIzhZ08dxZFbGILrZHbpZ4Gf42aFrx2z6HoERx6zdyLJE2GYZUq1faNd55O2Ib4YXmH1qIitT37aZCLgdg5N45HmP9p8fHhjjEbHHg7sFNrp7_xtktIvwHhj88r_PfEUeuFAAZ6x5TQ677a15g-1Rp47J5PO3-NhdFL8BiC0QmQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELXS9NBeqrbpB_3KHKreyLJgMBxXNFuSblZRupFys2xj1JVYQAupuv-nP7RjA2m26qk3EEYgvbFnHn68IeRjrliMOIeuptp3MUNQN5GhcjFYZJRokRS92-cyyq7p-U14c0DC8V8YK9pXcn1SlZuTav3daiubjZqMOrHJ5UUaMWZCdfKAPMT56tGRpA8LMPNso10kXMiMKKOD1yhSrsn50gjkvqVnyAxdP3C9GCmg_V3FuIdiKvSpEdfdT1GjbfC_StC_lZT3UtP8KXky1JQw69_9GTnQ1XNyNKuQT2928AmsytN-Pj8iv-Yay23I1k2DWQzXghK-bEXRtWB8qvp2EZDOAkh1WbZwZRvPaMjqttu_CSNWYLWr4bNWYivrnzusw7V7aUVgPzT0nxqN9UcFS9t2pIV1BQKuRAemA1sJdQGr3hmrhEUtNZw2uEY17e4FuZ6frtLMHTo1uCpkrHNjibTL0DlW-PE0VMhS8qSIcyl1pGhEBUPaZXZokzhkOgiUpGoqg0TlgS5iLJleksOqrvRrAsiYC6ERrMgLqJK5yJmPYZYHER5GYe6QYASHN70hBzdEBtHld-hy3-N4btE1jTY9h8CII283oiwRtinHYOsHmnEOOR7x5TjFzL6JqHR923LmU9MIJ3HIqx7tPw8eIsYhbC8O7gYY8-79KxjT1sR7iOE3_33nMXmUrS4WfHG2_PqWPLYWAVZm844cdttb_R6LpU5-sFPjN5U-Evo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSIgXBIyP8LX7gHjzkiZOnDxW2Uo3RlWNTdpbZDuOVilNoiZD9P_wQ7l2ktEinnhrVUetdI5970lOzyXkU654jDiHVDPtU6wQjCYyVBTJIqNEi6To0z4X0fyand-ENzujvqxpX8nVcVWuj6vVrfVWNmvljj4xd_ktjTg3VHWbvHAfkke4Z71oFOrDIcw9O2wXRReqI8bZkDeKsss9XxiT3Pf0DNUh9QPqxSgD7V9WTIIolkOfGYPdbpkao4P_1Yb-7abcKU-zZ-Tp0FfCtP_9z8kDXb0gh9MKNfV6C5_BOj3tLfRD8mumseWG-appsJLheVDCl40ouhZMVlU_MgLSaQCpLssWLu3wGQ3zuu32L0LWCux4NZxoJTay_rnFXlzTpTWC_dDQ32408R8VLOzokRZWFQi4FB2YKWwl1AVc9elYJVzUUsNpg-dU025fkuvZ6VU6p8O0BqpCzjsaS5ReRtLxwo8noUKlkidFnEupI8UiJjhKL_OUNolDroNASaYmMkhUHugixrbpFTmo6kq_IYCquRAawYq8gCmZi5z7SLU8iPBlFOYOCUZwsqYP5ciMmEF0s3t0M9_L8L1F1wzb9BwCI45ZuxZlibBNMiRcv9Csc8jRiG-G28w8OxGVru_ajPvMDMNJHPK6R_vPFw-McQjf48H9AhPgvf8J8toGeQ88fvvfVx6Rx8uTWXZxtvj6jjyxKQHWafOeHHSbO_0B-6VOfrQ74zeBnhQN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fetal+Hippocampal+Grafts+Containing+CA3+Cells+Restore+Host+Hippocampal+Glutamate+Decarboxylase-Positive+Interneuron+Numbers+in+a+Rat+Model+of+Temporal+Lobe+Epilepsy&rft.jtitle=The+Journal+of+neuroscience&rft.au=Shetty%2C+Ashok+K.&rft.au=Turner%2C+Dennis+A.&rft.date=2000-12-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=20&rft.issue=23&rft.spage=8788&rft.epage=8801&rft_id=info:doi/10.1523%2FJNEUROSCI.20-23-08788.2000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_20_23_08788_2000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon