Fetal Hippocampal Grafts Containing CA3 Cells Restore Host Hippocampal Glutamate Decarboxylase-Positive Interneuron Numbers in a Rat Model of Temporal Lobe Epilepsy
Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarbox...
Saved in:
Published in | The Journal of neuroscience Vol. 20; no. 23; pp. 8788 - 8801 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.12.2000
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus. |
---|---|
AbstractList | Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with “lesion-only” and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus. Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus.Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results in hyperexcitability within both dentate gyrus and the CA1 subfield. It also leads to persistent reductions in hippocampal glutamate decarboxylase (GAD) interneuron numbers without diminution in Nissl-stained interneuron numbers, indicating loss of GAD expression in a majority of interneurons. We hypothesize that enduring loss of GAD expression in hippocampal interneurons after intracerebroventricular KA is attributable to degeneration of their CA3 afferent input; therefore, fetal CA3 grafts can restore GAD interneuron numbers through graft axon reinnervation of the host. We analyzed GAD interneuron density in the adult rat hippocampus at 6 months after KA administration after grafting of fetal mixed hippocampal, CA3 or CA1 cells into the CA3 region at 45 d after lesion, in comparison with "lesion-only" and intact hippocampus. In dentate and CA1 regions of the lesioned hippocampus receiving grafts of either mixed hippocampal or CA3 cells, GAD interneuron density was both significantly greater than lesion-only hippocampus and comparable with the intact hippocampus. In the CA3 region, GAD interneuron density was significantly greater than lesion-only hippocampus but less than the intact hippocampus. Collectively, the overall GAD interneuron density in the lesioned hippocampus receiving either mixed hippocampal or CA3 grafts was restored to that in the intact hippocampus. In contrast, GADinterneuron density in the lesioned hippocampus receiving CA1 grafts remained comparable with lesion-only hippocampus. Thus, grafts containing CA3 cells restore CA3 lesion-induced depletions in hippocampal GAD interneurons, likely by reinnervation of GAD-deficient interneurons. This specific graft-mediated effect is beneficial because reactivation of interneurons could ameliorate both loss of functional inhibition and hyperexcitability in CA3-lesioned hippocampus. |
Author | Turner, Dennis A Shetty, Ashok K |
AuthorAffiliation | 1 Departments of Surgery (Neurosurgery) and Neurobiology, Duke University Medical Center. Durham, North Carolina 27710, and Medical Research and Surgery (Neurosurgery) Services, Veterans Affairs Medical Center, Durham, North Carolina 27705 |
AuthorAffiliation_xml | – name: 1 Departments of Surgery (Neurosurgery) and Neurobiology, Duke University Medical Center. Durham, North Carolina 27710, and Medical Research and Surgery (Neurosurgery) Services, Veterans Affairs Medical Center, Durham, North Carolina 27705 |
Author_xml | – sequence: 1 fullname: Shetty, Ashok K – sequence: 2 fullname: Turner, Dennis A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11102487$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUdFu0zAUjdAQ6wa_gCwe4CnDjpPY4QFpCt1aVDZUtmfLcW9aT4kdbGel_8OH4q4VsCdf655z7tE5Z8mJsQaS5B3BF6TI6McHA6OzXumLDKcZTTFnnMcZ4xfJJCKqNMsxOUkmOGM4LXOWnyZn3j9EAMOEvUpOCSE4yzmbJL-vIMgOzfQwWCX7Ic7XTrbBo9qaILXRZo3qS4pq6DqPluCDdYBm1ofnpG4MspcB0BdQ0jX2166THtLv1uugHwHNTQD3ZNygm7FvwHmkDZJoKQP6ZlfQIduiO-gH66LewjaApoPuYPC718nLVnYe3hzf8-T-anpXz9LF7fW8vlykqmAspLxhpMQ4K1mbcVKoomKrquWrpoFS5WUuGSF5XnBa8YIBparJFWlopVYUWs4rep58PugOY9PDSoEJ0YsYnO6l2wkrtXi-MXoj1vZRlIzRmG0UeH8UcPbnGLMSvfYqJicN2NELluUFKYr9pU8HoIpFegft3yMEi33J4uvN9H55-6OeiwyL-H8qWexLjuS3_9v8Rz22GgEfDoCNXm-22oHwvey6CCdiu90eBPd69A_fG7gc |
CitedBy_id | crossref_primary_10_1111_j_1460_9568_2007_05820_x crossref_primary_10_1016_j_nurt_2009_01_016 crossref_primary_10_1016_j_tins_2018_03_008 crossref_primary_10_1016_S0169_328X_01_00202_9 crossref_primary_10_1016_j_brainres_2010_10_080 crossref_primary_10_1111_j_1474_9726_2007_00363_x crossref_primary_10_1002_glia_20047 crossref_primary_10_1016_j_expneurol_2006_02_132 crossref_primary_10_1016_j_pharmthera_2011_04_008 crossref_primary_10_1007_s11064_010_0253_9 crossref_primary_10_3727_000000001783986963 crossref_primary_10_52711_0974_360X_2022_00886 crossref_primary_10_1007_s13311_011_0064_y crossref_primary_10_1227_NEU_0b013e31822b30cd crossref_primary_10_1523_JNEUROSCI_1538_05_2005 crossref_primary_10_1038_s41536_022_00234_7 crossref_primary_10_1111_j_1528_1167_2008_01743_x crossref_primary_10_1155_2011_384216 crossref_primary_10_1016_S0306_4522_01_00478_X crossref_primary_10_14336_AD_2019_0720 crossref_primary_10_1016_j_jneuroim_2011_03_005 crossref_primary_10_1016_j_neubiorev_2015_12_014 crossref_primary_10_1002_cpsc_9 crossref_primary_10_1046_j_1471_4159_2003_01979_x crossref_primary_10_1016_j_bbr_2017_01_014 crossref_primary_10_1016_j_nbd_2005_07_009 crossref_primary_10_1080_20013078_2020_1809064 crossref_primary_10_2165_00023210_200216090_00001 crossref_primary_10_1002_hipo_20594 crossref_primary_10_1016_j_nbd_2007_03_016 crossref_primary_10_1016_j_npep_2008_09_002 crossref_primary_10_1002_hipo_20311 crossref_primary_10_1002_jnr_20302 crossref_primary_10_1016_j_brainres_2015_09_019 crossref_primary_10_1002_hipo_10031 crossref_primary_10_52711_0974_360X_2021_00381 crossref_primary_10_1016_j_neuroscience_2006_01_058 crossref_primary_10_1111_j_0953_816X_2003_03123_x crossref_primary_10_1152_ajpregu_90412_2008 crossref_primary_10_1002_mas_20243 crossref_primary_10_1016_j_eplepsyres_2009_08_009 crossref_primary_10_1016_j_jtumed_2023_03_012 crossref_primary_10_1016_j_neubiorev_2007_10_004 crossref_primary_10_1186_1471_2202_11_42 crossref_primary_10_1002_dneu_20813 crossref_primary_10_1016_j_expneurol_2008_04_040 crossref_primary_10_1111_j_1582_4934_2008_00675_x crossref_primary_10_1016_j_brainres_2012_09_006 crossref_primary_10_1002_9780470151808_sc02d07s18 crossref_primary_10_1006_exnr_2001_7668 crossref_primary_10_1111_j_1528_1167_2008_01635_x crossref_primary_10_1016_j_wneu_2019_01_245 crossref_primary_10_1016_S0014_4886_03_00167_5 crossref_primary_10_1007_s12031_015_0571_0 crossref_primary_10_1002_hipo_20776 crossref_primary_10_1586_14737175_6_3_397 crossref_primary_10_5607_en_2018_27_2_112 crossref_primary_10_1002_cne_21851 crossref_primary_10_1016_j_pnpbp_2007_01_021 crossref_primary_10_1016_j_seizure_2007_05_003 crossref_primary_10_1227_01_NEU_0000047825_91205_E6 crossref_primary_10_1111_j_1471_4159_2004_02318_x crossref_primary_10_1016_j_stem_2008_08_009 crossref_primary_10_1634_stemcells_2007_0313 crossref_primary_10_1016_j_brainres_2009_07_079 crossref_primary_10_1517_14728222_5_2_219 crossref_primary_10_1002_cne_22482 crossref_primary_10_1006_nbdi_2001_0440 crossref_primary_10_1002_hipo_10206 crossref_primary_10_14336_AD_2020_1020 crossref_primary_10_1177_09636897231164712 crossref_primary_10_1002_stem_446 crossref_primary_10_1007_s12035_018_0898_y crossref_primary_10_1007_s12264_014_1478_4 crossref_primary_10_1007_s12035_015_9102_9 crossref_primary_10_1089_089771504323004566 crossref_primary_10_1016_j_bbi_2015_12_021 crossref_primary_10_1111_j_1460_9568_2005_03853_x crossref_primary_10_1002_cne_21767 crossref_primary_10_1016_j_expneurol_2008_05_013 crossref_primary_10_1002_hipo_10091 crossref_primary_10_3727_096368910X491383 crossref_primary_10_1016_j_brainresrev_2003_11_003 crossref_primary_10_3389_fnins_2020_00660 crossref_primary_10_1155_2016_3915767 crossref_primary_10_2174_1574893617666211220154326 crossref_primary_10_1002_jnr_10401 crossref_primary_10_1371_journal_pone_0104092 |
Cites_doi | 10.1523/JNEUROSCI.14-03-01834.1994 10.1177/096368979900800113 10.1523/JNEUROSCI.16-02-00675.1996 10.1016/0166-4328(94)00134-2 10.1523/JNEUROSCI.16-12-03991.1996 10.1523/JNEUROSCI.13-10-04470.1993 10.1016/0963-6897(94)E0011-7 10.1111/j.1460-9568.1996.tb01259.x 10.1016/S0920-1211(98)00043-6 10.1007/BF00966093 10.1016/S0079-6123(08)61264-9 10.1016/0006-8993(80)90825-2 10.1002/mds.870130303 10.1016/S0920-1211(96)00054-X 10.1016/0166-4328(95)00144-1 10.1002/hipo.450010106 10.1016/0300-9629(89)90209-0 10.1002/(SICI)1096-9861(19960930)373:4<593::AID-CNE8>3.0.CO;2-X 10.1002/cne.901920209 10.1016/0301-0082(92)90044-F 10.1002/(SICI)1096-9861(19980504)394:2<252::AID-CNE9>3.0.CO;2-1 10.1016/0301-0082(84)90023-6 10.1073/pnas.94.22.12151 10.1016/S0166-2236(97)01081-3 10.1016/0920-1211(90)90063-2 10.1097/00004691-199703000-00002 10.1016/0092-8674(94)90377-8 10.1007/BF00228948 10.1111/j.1749-6632.1997.tb52217.x 10.1523/JNEUROSCI.08-06-01991.1988 10.1016/0006-8993(95)00109-4 10.1126/science.2879352 10.1038/nm0898-963 10.1523/JNEUROSCI.11-09-02786.1991 10.1523/JNEUROSCI.15-05-03990.1995 10.1016/S0920-1211(98)00033-3 10.1016/0006-8993(94)90526-6 10.1016/S0079-6123(08)62623-0 10.1523/JNEUROSCI.14-06-03449.1994 10.1016/0306-4522(86)90081-3 10.1002/cne.902110202 10.1152/jn.1997.78.3.1504 10.1016/0006-8993(87)90362-3 10.1016/0304-3940(93)90660-D 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I 10.1016/S0306-4522(00)00178-0 10.1002/cne.903520404 10.1152/jn.1994.72.5.2167 10.1016/S0301-0082(96)00048-2 10.1016/0306-4522(89)90005-5 10.1006/exnr.1999.7304 10.1002/1531-8249(199901)45:1<92::AID-ART15>3.0.CO;2-N 10.1002/(SICI)1096-9861(19991115)414:2<238::AID-CNE7>3.0.CO;2-A 10.1037/0735-7044.106.1.39 10.1016/0306-4522(92)90357-8 10.1016/S0306-4522(96)00413-7 10.1007/BF00228813 10.1093/oxfordjournals.bmb.a011646 10.1006/exnr.1999.7107 10.1006/exnr.1996.6363 10.1523/JNEUROSCI.17-07-02295.1997 10.1002/ar.1090940210 10.1016/0306-4522(95)00025-E 10.1002/cne.903630406 10.1523/JNEUROSCI.15-05-03562.1995 10.1111/j.1471-4159.1991.tb08211.x |
ContentType | Journal Article |
Copyright | Copyright © 2000 Society for Neuroscience 2000 |
Copyright_xml | – notice: Copyright © 2000 Society for Neuroscience 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1523/jneurosci.20-23-08788.2000 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 8801 |
ExternalDocumentID | 10_1523_JNEUROSCI_20_23_08788_2000 11102487 www20_23_8788 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS36741 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AI. AOIJS BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F YBU YHG YKV YNH YSK YYP AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c577t-8b71600267f2815c597d9f8dbbe6c464a711445839857e33cb4c1b39cd3ef8893 |
IEDL.DBID | RPM |
ISSN | 0270-6474 1529-2401 |
IngestDate | Tue Sep 17 20:49:06 EDT 2024 Sat Oct 26 04:37:03 EDT 2024 Thu Sep 26 17:00:43 EDT 2024 Sat Nov 02 12:12:38 EDT 2024 Tue Nov 10 19:48:35 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-8b71600267f2815c597d9f8dbbe6c464a711445839857e33cb4c1b39cd3ef8893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/20/23/8788.full.pdf |
PMID | 11102487 |
PQID | 72451559 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6773070 proquest_miscellaneous_72451559 crossref_primary_10_1523_JNEUROSCI_20_23_08788_2000 pubmed_primary_11102487 highwire_smallpub1_www20_23_8788 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 20001201 2000-Dec-01 2000-12-01 |
PublicationDateYYYYMMDD | 2000-12-01 |
PublicationDate_xml | – month: 12 year: 2000 text: 20001201 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2000 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041302470287000_20.23.8788.32 2023041302470287000_20.23.8788.31 Tonder (2023041302470287000_20.23.8788.61) 1990; 83 2023041302470287000_20.23.8788.30 Rempe (2023041302470287000_20.23.8788.39) 1997; 78 2023041302470287000_20.23.8788.70 Sanberg (2023041302470287000_20.23.8788.41) 1997; 831 2023041302470287000_20.23.8788.38 2023041302470287000_20.23.8788.37 2023041302470287000_20.23.8788.36 2023041302470287000_20.23.8788.35 2023041302470287000_20.23.8788.33 Scharfman (2023041302470287000_20.23.8788.42) 1994; 72 2023041302470287000_20.23.8788.9 2023041302470287000_20.23.8788.43 2023041302470287000_20.23.8788.8 Shetty (2023041302470287000_20.23.8788.52) 1999; 159 2023041302470287000_20.23.8788.40 2023041302470287000_20.23.8788.49 2023041302470287000_20.23.8788.48 2023041302470287000_20.23.8788.47 2023041302470287000_20.23.8788.45 2023041302470287000_20.23.8788.44 2023041302470287000_20.23.8788.10 2023041302470287000_20.23.8788.54 2023041302470287000_20.23.8788.51 2023041302470287000_20.23.8788.50 2023041302470287000_20.23.8788.18 2023041302470287000_20.23.8788.17 2023041302470287000_20.23.8788.16 2023041302470287000_20.23.8788.15 2023041302470287000_20.23.8788.14 2023041302470287000_20.23.8788.58 2023041302470287000_20.23.8788.13 2023041302470287000_20.23.8788.57 2023041302470287000_20.23.8788.12 2023041302470287000_20.23.8788.56 2023041302470287000_20.23.8788.11 2023041302470287000_20.23.8788.55 Starr (2023041302470287000_20.23.8788.59) 1999; 8 2023041302470287000_20.23.8788.1 Shetty (2023041302470287000_20.23.8788.46) 1996; 50 2023041302470287000_20.23.8788.3 2023041302470287000_20.23.8788.2 2023041302470287000_20.23.8788.5 2023041302470287000_20.23.8788.4 2023041302470287000_20.23.8788.7 2023041302470287000_20.23.8788.6 2023041302470287000_20.23.8788.21 2023041302470287000_20.23.8788.65 2023041302470287000_20.23.8788.20 2023041302470287000_20.23.8788.64 Onifer (2023041302470287000_20.23.8788.34) 1990; 82 2023041302470287000_20.23.8788.63 2023041302470287000_20.23.8788.62 2023041302470287000_20.23.8788.60 Mudrick (2023041302470287000_20.23.8788.27) 1991; 86 2023041302470287000_20.23.8788.29 2023041302470287000_20.23.8788.28 2023041302470287000_20.23.8788.26 2023041302470287000_20.23.8788.25 2023041302470287000_20.23.8788.69 2023041302470287000_20.23.8788.24 2023041302470287000_20.23.8788.68 2023041302470287000_20.23.8788.23 2023041302470287000_20.23.8788.67 2023041302470287000_20.23.8788.22 2023041302470287000_20.23.8788.66 2023041302470287000_20.23.8788.19 Shetty (2023041302470287000_20.23.8788.53) 2000; 26 |
References_xml | – ident: 2023041302470287000_20.23.8788.12 doi: 10.1523/JNEUROSCI.14-03-01834.1994 – volume: 8 start-page: 37 year: 1999 ident: 2023041302470287000_20.23.8788.59 article-title: Intranigral transplantation of fetal substantia nigra allograft in the hemiparkinsonian rhesus monkey. publication-title: Cell Transplant doi: 10.1177/096368979900800113 contributor: fullname: Starr – ident: 2023041302470287000_20.23.8788.24 doi: 10.1523/JNEUROSCI.16-02-00675.1996 – ident: 2023041302470287000_20.23.8788.10 doi: 10.1016/0166-4328(94)00134-2 – ident: 2023041302470287000_20.23.8788.40 doi: 10.1523/JNEUROSCI.16-12-03991.1996 – ident: 2023041302470287000_20.23.8788.64 – ident: 2023041302470287000_20.23.8788.32 doi: 10.1523/JNEUROSCI.13-10-04470.1993 – ident: 2023041302470287000_20.23.8788.16 doi: 10.1016/0963-6897(94)E0011-7 – ident: 2023041302470287000_20.23.8788.38 doi: 10.1111/j.1460-9568.1996.tb01259.x – ident: 2023041302470287000_20.23.8788.2 doi: 10.1016/S0920-1211(98)00043-6 – ident: 2023041302470287000_20.23.8788.17 doi: 10.1007/BF00966093 – volume: 83 start-page: 391 year: 1990 ident: 2023041302470287000_20.23.8788.61 article-title: Grafting of fetal CA3 neurons to excitotoxic, axon-sparing lesions of the hippocampal CA3 area in adult rats. publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)61264-9 contributor: fullname: Tonder – ident: 2023041302470287000_20.23.8788.29 doi: 10.1016/0006-8993(80)90825-2 – ident: 2023041302470287000_20.23.8788.22 doi: 10.1002/mds.870130303 – ident: 2023041302470287000_20.23.8788.18 doi: 10.1016/S0920-1211(96)00054-X – ident: 2023041302470287000_20.23.8788.60 doi: 10.1016/0166-4328(95)00144-1 – ident: 2023041302470287000_20.23.8788.56 doi: 10.1002/hipo.450010106 – ident: 2023041302470287000_20.23.8788.65 doi: 10.1016/0300-9629(89)90209-0 – ident: 2023041302470287000_20.23.8788.57 doi: 10.1002/(SICI)1096-9861(19960930)373:4<593::AID-CNE8>3.0.CO;2-X – ident: 2023041302470287000_20.23.8788.28 doi: 10.1002/cne.901920209 – ident: 2023041302470287000_20.23.8788.66 doi: 10.1016/0301-0082(92)90044-F – ident: 2023041302470287000_20.23.8788.49 doi: 10.1002/(SICI)1096-9861(19980504)394:2<252::AID-CNE9>3.0.CO;2-1 – ident: 2023041302470287000_20.23.8788.4 doi: 10.1016/0301-0082(84)90023-6 – ident: 2023041302470287000_20.23.8788.13 doi: 10.1073/pnas.94.22.12151 – ident: 2023041302470287000_20.23.8788.19 doi: 10.1016/S0166-2236(97)01081-3 – ident: 2023041302470287000_20.23.8788.7 doi: 10.1016/0920-1211(90)90063-2 – ident: 2023041302470287000_20.23.8788.9 doi: 10.1097/00004691-199703000-00002 – ident: 2023041302470287000_20.23.8788.20 doi: 10.1016/0092-8674(94)90377-8 – volume: 26 start-page: 224 year: 2000 ident: 2023041302470287000_20.23.8788.53 article-title: Fetal hippocampal transplants containing CA3 cells restore host hippocampal glutamic acid decarboxylase (GAD)-positive interneuron numbers in a rat model of temporal lobe epilepsy. publication-title: Soc Neurosci Abstr contributor: fullname: Shetty – volume: 86 start-page: 233 year: 1991 ident: 2023041302470287000_20.23.8788.27 article-title: Hippocampal neurons transplanted into ischemically lesioned hippocampus: anatomical assessment of survival, maturation and integration. publication-title: Exp Brain Res doi: 10.1007/BF00228948 contributor: fullname: Mudrick – volume: 831 start-page: 452 year: 1997 ident: 2023041302470287000_20.23.8788.41 article-title: Human fetal striatal transplantation in an excitotoxic lesioned model of Huntington's disease. publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1997.tb52217.x contributor: fullname: Sanberg – ident: 2023041302470287000_20.23.8788.14 doi: 10.1523/JNEUROSCI.08-06-01991.1988 – ident: 2023041302470287000_20.23.8788.45 doi: 10.1016/0006-8993(95)00109-4 – ident: 2023041302470287000_20.23.8788.55 doi: 10.1126/science.2879352 – ident: 2023041302470287000_20.23.8788.35 doi: 10.1038/nm0898-963 – ident: 2023041302470287000_20.23.8788.63 doi: 10.1523/JNEUROSCI.11-09-02786.1991 – ident: 2023041302470287000_20.23.8788.25 doi: 10.1523/JNEUROSCI.15-05-03990.1995 – ident: 2023041302470287000_20.23.8788.26 doi: 10.1016/S0920-1211(98)00033-3 – ident: 2023041302470287000_20.23.8788.8 doi: 10.1016/0006-8993(94)90526-6 – volume: 82 start-page: 359 year: 1990 ident: 2023041302470287000_20.23.8788.34 article-title: Spatial memory deficit resulting from ischemia-induced damage to the hippocampus is ameliorated by intra-hippocampal transplants of fetal hippocampal neurons. publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)62623-0 contributor: fullname: Onifer – ident: 2023041302470287000_20.23.8788.30 doi: 10.1523/JNEUROSCI.14-06-03449.1994 – ident: 2023041302470287000_20.23.8788.37 – ident: 2023041302470287000_20.23.8788.58 doi: 10.1016/0306-4522(86)90081-3 – ident: 2023041302470287000_20.23.8788.23 doi: 10.1002/cne.902110202 – volume: 78 start-page: 1504 year: 1997 ident: 2023041302470287000_20.23.8788.39 article-title: Interneurons in area CA1 stratum radiatum and stratum orients remain functionally connected to excitatory synaptic input in chronically epileptic animals. publication-title: J Neurophysiol doi: 10.1152/jn.1997.78.3.1504 contributor: fullname: Rempe – ident: 2023041302470287000_20.23.8788.68 doi: 10.1016/0006-8993(87)90362-3 – ident: 2023041302470287000_20.23.8788.3 doi: 10.1016/0304-3940(93)90660-D – ident: 2023041302470287000_20.23.8788.15 doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I – ident: 2023041302470287000_20.23.8788.54 doi: 10.1016/S0306-4522(00)00178-0 – ident: 2023041302470287000_20.23.8788.33 doi: 10.1002/cne.903520404 – volume: 72 start-page: 2167 year: 1994 ident: 2023041302470287000_20.23.8788.42 article-title: Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar cells. publication-title: J Neurophysiol doi: 10.1152/jn.1994.72.5.2167 contributor: fullname: Scharfman – volume: 50 start-page: 593 year: 1996 ident: 2023041302470287000_20.23.8788.46 article-title: Development of fetal hippocampal grafts in intact and lesioned hippocampus. publication-title: Prog Neurobiol doi: 10.1016/S0301-0082(96)00048-2 contributor: fullname: Shetty – ident: 2023041302470287000_20.23.8788.6 doi: 10.1016/0306-4522(89)90005-5 – ident: 2023041302470287000_20.23.8788.70 doi: 10.1006/exnr.1999.7304 – ident: 2023041302470287000_20.23.8788.67 doi: 10.1002/1531-8249(199901)45:1<92::AID-ART15>3.0.CO;2-N – ident: 2023041302470287000_20.23.8788.51 doi: 10.1002/(SICI)1096-9861(19991115)414:2<238::AID-CNE7>3.0.CO;2-A – ident: 2023041302470287000_20.23.8788.69 doi: 10.1037/0735-7044.106.1.39 – volume: 159 start-page: 613 year: 1999 ident: 2023041302470287000_20.23.8788.52 article-title: Fetal hippocampal cell grafting into CA3 region of adult hippocampus following kainic acid lesion rescues hippocampal interneurons from delayed cell death. American Society for Neural Transplantation and Repair Abstracts. publication-title: Exp Neurol contributor: fullname: Shetty – ident: 2023041302470287000_20.23.8788.62 doi: 10.1016/0306-4522(92)90357-8 – ident: 2023041302470287000_20.23.8788.47 doi: 10.1016/S0306-4522(96)00413-7 – ident: 2023041302470287000_20.23.8788.36 doi: 10.1007/BF00228813 – ident: 2023041302470287000_20.23.8788.11 doi: 10.1093/oxfordjournals.bmb.a011646 – ident: 2023041302470287000_20.23.8788.50 doi: 10.1006/exnr.1999.7107 – ident: 2023041302470287000_20.23.8788.48 doi: 10.1006/exnr.1996.6363 – ident: 2023041302470287000_20.23.8788.5 doi: 10.1523/JNEUROSCI.17-07-02295.1997 – ident: 2023041302470287000_20.23.8788.1 doi: 10.1002/ar.1090940210 – ident: 2023041302470287000_20.23.8788.44 doi: 10.1016/0306-4522(95)00025-E – ident: 2023041302470287000_20.23.8788.43 doi: 10.1002/cne.903630406 – ident: 2023041302470287000_20.23.8788.31 doi: 10.1523/JNEUROSCI.15-05-03562.1995 – ident: 2023041302470287000_20.23.8788.21 doi: 10.1111/j.1471-4159.1991.tb08211.x |
SSID | ssj0007017 |
Score | 2.0419333 |
Snippet | Degeneration of CA3-pyramidal neurons in hippocampus after intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, results... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8788 |
SubjectTerms | Animals Brain Tissue Transplantation Cell Count Cell Size Dentate Gyrus - drug effects Dentate Gyrus - pathology Disease Models, Animal Epilepsy, Temporal Lobe - chemically induced Epilepsy, Temporal Lobe - surgery Epilepsy, Temporal Lobe - therapy Fetal Tissue Transplantation Glutamate Decarboxylase - metabolism Graft Survival Hippocampus - enzymology Hippocampus - pathology Hippocampus - surgery Hippocampus - transplantation Immunohistochemistry Injections, Intraventricular Interneurons - cytology Interneurons - pathology Interneurons - transplantation Isoenzymes - metabolism Kainic Acid Male Rats Rats, Inbred F344 |
Title | Fetal Hippocampal Grafts Containing CA3 Cells Restore Host Hippocampal Glutamate Decarboxylase-Positive Interneuron Numbers in a Rat Model of Temporal Lobe Epilepsy |
URI | http://www.jneurosci.org/cgi/content/abstract/20/23/8788 https://www.ncbi.nlm.nih.gov/pubmed/11102487 https://www.proquest.com/docview/72451559 https://pubmed.ncbi.nlm.nih.gov/PMC6773070 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAFFw1PXFBQPkwH-UdELdtHO_aax8j0xAKRKW0Um_W7nqtRnJsK3YR-T_8UN6u7dIgTtwcZa1EmvG-N_Z4HiHvci1ixDmkhpuAYoXgNFGhpkgWFSVGJkWf9rmKllf87Dq8PiDh-C6MM-1rtT6pys1Jtb5x3spmo6ejT2x6_jWNhLBUnU7IBA9GiT5sv8J3Y3ZRbqEu4oIPSaMouKZnK2uP-55-Ql1IA0b9GAWge1nFZodiIQy4tdbdL1BjaPC_GtC_fZT3CtPiEXk4dJQw7__5Y3JgqifkaF6hmt7s4D04j6e7eX5Efi0MNtuwXDcN1jDcCUr4uJVF14JNqeqHRUA6Z5Casmzhwo2dMbCs227_JOSrxF7XwAej5VbVP3fYhRt67ixgPwz0Nxpt8EcFKzd0pIV1BRIuZAd2_loJdQGXfS5WCV9qZeC0wR2qaXdPydXi9DJd0mFOA9WhEB2NFYouK-ZEEcSzUKNGyZMizpUykeYRlwJFl30-m8ShMIxpxfVMsUTnzBQxNkzPyGFVV-YFAdTLhTQIVuQzrlUucxEgyXIW4WEU5h5hIzhZ08dxZFbGILrZHbpZ4Gf42aFrx2z6HoERx6zdyLJE2GYZUq1faNd55O2Ib4YXmH1qIitT37aZCLgdg5N45HmP9p8fHhjjEbHHg7sFNrp7_xtktIvwHhj88r_PfEUeuFAAZ6x5TQ677a15g-1Rp47J5PO3-NhdFL8BiC0QmQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELXS9NBeqrbpB_3KHKreyLJgMBxXNFuSblZRupFys2xj1JVYQAupuv-nP7RjA2m26qk3EEYgvbFnHn68IeRjrliMOIeuptp3MUNQN5GhcjFYZJRokRS92-cyyq7p-U14c0DC8V8YK9pXcn1SlZuTav3daiubjZqMOrHJ5UUaMWZCdfKAPMT56tGRpA8LMPNso10kXMiMKKOD1yhSrsn50gjkvqVnyAxdP3C9GCmg_V3FuIdiKvSpEdfdT1GjbfC_StC_lZT3UtP8KXky1JQw69_9GTnQ1XNyNKuQT2928AmsytN-Pj8iv-Yay23I1k2DWQzXghK-bEXRtWB8qvp2EZDOAkh1WbZwZRvPaMjqttu_CSNWYLWr4bNWYivrnzusw7V7aUVgPzT0nxqN9UcFS9t2pIV1BQKuRAemA1sJdQGr3hmrhEUtNZw2uEY17e4FuZ6frtLMHTo1uCpkrHNjibTL0DlW-PE0VMhS8qSIcyl1pGhEBUPaZXZokzhkOgiUpGoqg0TlgS5iLJleksOqrvRrAsiYC6ERrMgLqJK5yJmPYZYHER5GYe6QYASHN70hBzdEBtHld-hy3-N4btE1jTY9h8CII283oiwRtinHYOsHmnEOOR7x5TjFzL6JqHR923LmU9MIJ3HIqx7tPw8eIsYhbC8O7gYY8-79KxjT1sR7iOE3_33nMXmUrS4WfHG2_PqWPLYWAVZm844cdttb_R6LpU5-sFPjN5U-Evo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSIgXBIyP8LX7gHjzkiZOnDxW2Uo3RlWNTdpbZDuOVilNoiZD9P_wQ7l2ktEinnhrVUetdI5970lOzyXkU654jDiHVDPtU6wQjCYyVBTJIqNEi6To0z4X0fyand-ENzujvqxpX8nVcVWuj6vVrfVWNmvljj4xd_ktjTg3VHWbvHAfkke4Z71oFOrDIcw9O2wXRReqI8bZkDeKsss9XxiT3Pf0DNUh9QPqxSgD7V9WTIIolkOfGYPdbpkao4P_1Yb-7abcKU-zZ-Tp0FfCtP_9z8kDXb0gh9MKNfV6C5_BOj3tLfRD8mumseWG-appsJLheVDCl40ouhZMVlU_MgLSaQCpLssWLu3wGQ3zuu32L0LWCux4NZxoJTay_rnFXlzTpTWC_dDQ32408R8VLOzokRZWFQi4FB2YKWwl1AVc9elYJVzUUsNpg-dU025fkuvZ6VU6p8O0BqpCzjsaS5ReRtLxwo8noUKlkidFnEupI8UiJjhKL_OUNolDroNASaYmMkhUHugixrbpFTmo6kq_IYCquRAawYq8gCmZi5z7SLU8iPBlFOYOCUZwsqYP5ciMmEF0s3t0M9_L8L1F1wzb9BwCI45ZuxZlibBNMiRcv9Csc8jRiG-G28w8OxGVru_ajPvMDMNJHPK6R_vPFw-McQjf48H9AhPgvf8J8toGeQ88fvvfVx6Rx8uTWXZxtvj6jjyxKQHWafOeHHSbO_0B-6VOfrQ74zeBnhQN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fetal+Hippocampal+Grafts+Containing+CA3+Cells+Restore+Host+Hippocampal+Glutamate+Decarboxylase-Positive+Interneuron+Numbers+in+a+Rat+Model+of+Temporal+Lobe+Epilepsy&rft.jtitle=The+Journal+of+neuroscience&rft.au=Shetty%2C+Ashok+K.&rft.au=Turner%2C+Dennis+A.&rft.date=2000-12-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=20&rft.issue=23&rft.spage=8788&rft.epage=8801&rft_id=info:doi/10.1523%2FJNEUROSCI.20-23-08788.2000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_20_23_08788_2000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |