Bulk–disclination correspondence in topological crystalline insulators

Most natural and artificial materials have crystalline structures from which abundant topological phases emerge 1 – 6 . However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 589; no. 7842; pp. 381 - 385
Main Authors Liu, Yang, Leung, Shuwai, Li, Fei-Fei, Lin, Zhi-Kang, Tao, Xiufeng, Poo, Yin, Jiang, Jian-Hua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most natural and artificial materials have crystalline structures from which abundant topological phases emerge 1 – 6 . However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases 7 – 16 , leading to challenges in the experimental classification of the large family of topological crystalline materials 4 – 6 . It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges 17 – 19 , but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators.
AbstractList Most natural and artificial materials have crystalline structures from which abundant topological phases emerge 1 – 6 . However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases 7 – 16 , leading to challenges in the experimental classification of the large family of topological crystalline materials 4 – 6 . It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges 17 – 19 , but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification ofthe large family oftopological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge correspondence--which has been widely used in experiments to determine the band topology from edge properties--is inadequate in discerning various topological crystalline phases.sup.7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials.sup.4-6. It has been theoretically predicted that disclinations--ubiquitous crystallographic defects--can provide an effective probe of crystalline topology beyond edges.sup.17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns--a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge . However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases , leading to challenges in the experimental classification of the large family of topological crystalline materials . It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges , but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge correspondence--which has been widely used in experiments to determine the band topology from edge properties--is inadequate in discerning various topological crystalline phases.sup.7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials.sup.4-6. It has been theoretically predicted that disclinations--ubiquitous crystallographic defects--can provide an effective probe of crystalline topology beyond edges.sup.17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns--a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators.
Audience Academic
Author Li, Fei-Fei
Tao, Xiufeng
Lin, Zhi-Kang
Liu, Yang
Poo, Yin
Jiang, Jian-Hua
Leung, Shuwai
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
– sequence: 2
  givenname: Shuwai
  surname: Leung
  fullname: Leung, Shuwai
  organization: School of Electronic Science and Engineering, Nanjing University
– sequence: 3
  givenname: Fei-Fei
  surname: Li
  fullname: Li, Fei-Fei
  organization: School of Electronic Science and Engineering, Nanjing University
– sequence: 4
  givenname: Zhi-Kang
  surname: Lin
  fullname: Lin, Zhi-Kang
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
– sequence: 5
  givenname: Xiufeng
  surname: Tao
  fullname: Tao, Xiufeng
  organization: School of Electronic Science and Engineering, Nanjing University
– sequence: 6
  givenname: Yin
  orcidid: 0000-0002-5856-9406
  surname: Poo
  fullname: Poo, Yin
  email: ypoo@nju.edu.cn
  organization: School of Electronic Science and Engineering, Nanjing University
– sequence: 7
  givenname: Jian-Hua
  orcidid: 0000-0001-6505-0998
  surname: Jiang
  fullname: Jiang, Jian-Hua
  email: jianhuajiang@suda.edu.cn
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33473227$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhS1URNPAC7BAEd2A0BT_212GCGilCiQoYml5PJ7IxbGntkeiO96BN-RJcJpCSRUqLyz5fuf4-vocgL0QgwXgKYJHCBL5OlPEJG8ghg0kCLOGPAATRAVvKJdiD0wgxLKBkvB9cJDzBYSQIUEfgX1CqCAYiwk4eTP6b79-_OxcNt4FXVwMMxNTsnmIobPB2JkLsxKH6OPSGe1nJl3lon2l16U8el1iyo_Bw177bJ_c7FPw5d3b88VJc_bx_eliftYYJkRpOERYtoa31jDM-l62FCGkeUfEsSASSiOP-1psLeygZJZo2VHLetwj2nPZkil4sfEdUrwcbS5qVVu33utg45gVptWISsFwRQ_voBdxTKF2VylZpyEoQ7fUUnurXOhjSdqsTdWcM1a7RpJXqtlBLW2wSfv6Lb2rx1v88x28Gdyl-hc62gHV1dmVMztdX24JKlPs97LUY87q9POnbfbV_9n5-dfFh2362c2sxnZlOzUkt9LpSv1JSgXwBjAp5pxs_xdBUK3jqDZxVDWO6jqOVTsF8o7IuHKdsfpQ5--Xko0013vC0qbbz7tH9Ruuze_e
CitedBy_id crossref_primary_10_1103_PhysRevApplied_17_064008
crossref_primary_10_1038_s42254_023_00602_2
crossref_primary_10_1364_PRJ_418689
crossref_primary_10_1103_PhysRevB_107_214108
crossref_primary_10_1016_j_ijsolstr_2021_111413
crossref_primary_10_1038_s41467_021_27008_x
crossref_primary_10_3788_CJL231385
crossref_primary_10_1038_s41467_024_52070_6
crossref_primary_10_1103_PhysRevB_105_L020403
crossref_primary_10_3389_fchem_2024_1500989
crossref_primary_10_1103_RevModPhys_96_015002
crossref_primary_10_1063_5_0144939
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1109_MAP_2021_3127541
crossref_primary_10_1002_andp_202200025
crossref_primary_10_1038_s41467_024_53819_9
crossref_primary_10_1038_s44310_024_00040_7
crossref_primary_10_1103_PhysRevB_107_035431
crossref_primary_10_1038_s42005_023_01254_5
crossref_primary_10_1088_1361_6382_ad69f5
crossref_primary_10_1103_PhysRevApplied_18_064089
crossref_primary_10_1038_s41467_022_29785_5
crossref_primary_10_3389_fmats_2021_685025
crossref_primary_10_1364_OL_455757
crossref_primary_10_1088_2515_7647_ad46aa
crossref_primary_10_1364_OE_551936
crossref_primary_10_1088_1361_648X_ad512a
crossref_primary_10_1103_PhysRevB_106_174112
crossref_primary_10_1088_1361_6633_aceeee
crossref_primary_10_1103_PhysRevLett_130_223403
crossref_primary_10_1364_OME_525214
crossref_primary_10_1103_PhysRevA_106_L021502
crossref_primary_10_1103_PhysRevB_109_205107
crossref_primary_10_1038_s41467_021_25716_y
crossref_primary_10_1038_s41377_024_01611_1
crossref_primary_10_1088_1361_648X_ac6788
crossref_primary_10_1038_s41377_021_00607_5
crossref_primary_10_7498_aps_73_20240640
crossref_primary_10_1016_j_vacuum_2024_112986
crossref_primary_10_1103_PhysRevApplied_18_064094
crossref_primary_10_1016_j_chaos_2024_115188
crossref_primary_10_1038_s41377_021_00698_0
crossref_primary_10_1038_s42254_023_00565_4
crossref_primary_10_1002_adem_202402301
crossref_primary_10_1039_D4NH00019F
crossref_primary_10_1103_PhysRevB_107_165145
crossref_primary_10_1103_PhysRevB_111_085148
crossref_primary_10_1103_PhysRevResearch_3_033107
crossref_primary_10_1142_S0218271824500652
crossref_primary_10_1038_s42005_021_00659_4
crossref_primary_10_1103_PhysRevApplied_19_024053
crossref_primary_10_1063_5_0185505
crossref_primary_10_1007_s12200_023_00094_z
crossref_primary_10_1088_1361_6463_ad6b35
crossref_primary_10_1016_j_matdes_2023_112209
crossref_primary_10_1103_PhysRevApplied_20_064042
crossref_primary_10_1103_PhysRevResearch_3_023056
crossref_primary_10_1021_acsphotonics_2c00571
crossref_primary_10_1364_PRJ_433188
crossref_primary_10_3389_fphy_2023_1213158
crossref_primary_10_1103_PhysRevB_105_155143
crossref_primary_10_1016_j_physleta_2023_129226
crossref_primary_10_1103_PhysRevB_107_L041403
crossref_primary_10_1364_OL_477077
crossref_primary_10_1103_PhysRevB_106_L041302
crossref_primary_10_1103_PhysRevB_108_205411
crossref_primary_10_21468_SciPostPhys_10_4_092
crossref_primary_10_1103_PhysRevLett_134_023801
crossref_primary_10_1364_OL_488612
crossref_primary_10_1038_s41566_024_01611_y
crossref_primary_10_1038_s41467_023_40335_5
crossref_primary_10_1002_lpor_202300204
crossref_primary_10_1103_PhysRevLett_129_253001
crossref_primary_10_1364_OL_543039
crossref_primary_10_1038_s42254_024_00745_w
crossref_primary_10_1364_OL_452983
crossref_primary_10_1103_PhysRevLett_129_053903
crossref_primary_10_1038_s41567_021_01275_3
crossref_primary_10_1103_PhysRevApplied_22_064097
crossref_primary_10_1360_TB_2021_0568
crossref_primary_10_3390_app12041987
crossref_primary_10_1063_5_0061950
crossref_primary_10_1103_PhysRevA_107_033514
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1364_OME_416552
crossref_primary_10_1088_1361_648X_ad3abd
crossref_primary_10_1038_s42005_023_01474_9
crossref_primary_10_1038_s41535_023_00558_7
crossref_primary_10_1063_5_0095543
crossref_primary_10_1038_s41566_023_01338_2
crossref_primary_10_1103_PhysRevApplied_18_064079
crossref_primary_10_1515_nanoph_2023_0790
crossref_primary_10_1038_s41467_021_23963_7
crossref_primary_10_1103_PhysRevB_110_104103
crossref_primary_10_1002_qute_202300265
crossref_primary_10_1103_PhysRevApplied_20_034028
crossref_primary_10_1016_j_chip_2024_100109
crossref_primary_10_1021_acsphotonics_3c00049
crossref_primary_10_1063_5_0132194
crossref_primary_10_1021_acsphotonics_3c01651
crossref_primary_10_1016_j_scib_2021_05_013
crossref_primary_10_1103_PhysRevResearch_6_013031
crossref_primary_10_1103_PhysRevApplied_22_044054
crossref_primary_10_1103_PhysRevB_109_224111
crossref_primary_10_1016_j_apacoust_2023_109570
crossref_primary_10_1103_PhysRevApplied_19_034073
crossref_primary_10_1038_s41377_024_01417_1
crossref_primary_10_1039_D4SM01076K
crossref_primary_10_1103_PhysRevLett_131_157201
crossref_primary_10_1002_adma_202310010
crossref_primary_10_1103_PhysRevA_110_013309
crossref_primary_10_1103_PhysRevApplied_21_054023
crossref_primary_10_1103_PhysRevB_109_054312
crossref_primary_10_1002_lpor_202300783
crossref_primary_10_1103_PhysRevLett_127_066401
crossref_primary_10_1364_OL_457058
crossref_primary_10_1103_PhysRevB_110_214203
crossref_primary_10_1209_0295_5075_acd71a
crossref_primary_10_1364_JOSAA_507789
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1002_lpor_202200499
crossref_primary_10_1016_j_scib_2023_03_015
crossref_primary_10_1016_j_ijmecsci_2022_107884
crossref_primary_10_1021_jacs_3c09699
crossref_primary_10_1364_OL_472677
crossref_primary_10_1002_andp_202100293
crossref_primary_10_1103_PhysRevLett_129_154301
crossref_primary_10_1103_PhysRevLett_130_036601
crossref_primary_10_1038_s41586_023_06163_9
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123497
crossref_primary_10_1002_adpr_202300089
crossref_primary_10_1038_s41377_023_01235_x
crossref_primary_10_1038_s43246_024_00618_w
crossref_primary_10_1063_5_0126104
crossref_primary_10_3390_photonics10090992
crossref_primary_10_1007_s10409_021_09083_0
crossref_primary_10_1364_OL_434502
crossref_primary_10_1021_acsami_2c20295
crossref_primary_10_1126_sciadv_adp6905
crossref_primary_10_3389_fchem_2025_1544147
crossref_primary_10_1002_lpor_202300956
crossref_primary_10_1103_PhysRevB_105_L100102
crossref_primary_10_1103_PhysRevLett_127_214301
crossref_primary_10_1103_PhysRevLett_132_036603
crossref_primary_10_1002_advs_202303222
crossref_primary_10_1103_PhysRevB_110_075407
crossref_primary_10_1063_5_0159253
crossref_primary_10_1103_PhysRevLett_134_033803
crossref_primary_10_1103_PhysRevB_109_L180101
crossref_primary_10_1103_PhysRevB_106_184101
crossref_primary_10_1038_s41467_022_28182_2
crossref_primary_10_1002_smsc_202100065
crossref_primary_10_1103_PhysRevA_109_013516
crossref_primary_10_1038_s41377_023_01200_8
crossref_primary_10_1093_nsr_nwac289
crossref_primary_10_1007_s11433_021_1776_8
crossref_primary_10_3389_fphy_2022_866552
crossref_primary_10_1016_j_jmmm_2022_169305
crossref_primary_10_1103_PhysRevLett_128_257401
crossref_primary_10_1103_PhysRevApplied_22_014025
crossref_primary_10_1007_s11433_023_2321_9
crossref_primary_10_1038_s41377_024_01512_3
crossref_primary_10_1016_j_rinp_2023_106322
crossref_primary_10_1103_PhysRevB_107_155138
crossref_primary_10_1103_PhysRevLett_126_156401
crossref_primary_10_1088_1361_648X_aca135
crossref_primary_10_1103_PhysRevMaterials_6_124201
crossref_primary_10_1103_PhysRevB_109_064105
crossref_primary_10_1103_PhysRevLett_133_233804
crossref_primary_10_1016_j_scib_2022_09_020
crossref_primary_10_1515_nanoph_2022_0547
crossref_primary_10_1103_PhysRevB_111_094110
crossref_primary_10_1364_OE_427389
crossref_primary_10_1002_lpor_202300384
crossref_primary_10_1103_PhysRevB_108_134118
crossref_primary_10_1038_s44310_024_00035_4
crossref_primary_10_1103_PhysRevB_110_094206
crossref_primary_10_1002_adom_202300764
crossref_primary_10_1002_advs_202201568
crossref_primary_10_1038_s41566_024_01564_2
crossref_primary_10_1038_s42254_021_00323_4
crossref_primary_10_1088_1741_4326_ac90d6
crossref_primary_10_1103_PhysRevLett_129_063902
crossref_primary_10_1016_j_chaos_2025_116199
crossref_primary_10_1063_5_0202383
crossref_primary_10_1063_5_0131701
crossref_primary_10_1103_PhysRevLett_128_174301
crossref_primary_10_1103_PhysRevB_108_144304
crossref_primary_10_3788_CJL240767
crossref_primary_10_1038_s41567_021_01493_9
crossref_primary_10_1103_PhysRevB_111_125125
crossref_primary_10_1038_s41467_023_42449_2
Cites_doi 10.1038/nature25156
10.1038/nature25777
10.1103/PhysRevLett.114.223901
10.1038/nphys3185
10.1126/science.aba7604
10.1103/PhysRevLett.110.046401
10.1038/nphys2513
10.1038/s41467-018-04861-x
10.1126/science.aah6442
10.1103/PhysRevB.97.201111
10.1038/nmat4807
10.1038/s41586-019-0937-5
10.1103/PhysRevLett.120.266401
10.1038/s41586-020-1981-x
10.1038/s41563-018-0252-9
10.1038/s41567-019-0472-1
10.1103/PhysRevLett.119.246402
10.1038/nature23268
10.1038/s41563-018-0251-x
10.1038/s41586-019-0944-6
10.1038/s41586-019-0954-4
10.1103/PhysRevB.98.081110
10.1103/PhysRevLett.100.013904
10.1038/srep12956
10.1038/s41567-018-0246-1
10.1126/science.aaq0327
10.1126/sciadv.aat0346
10.1103/PhysRevLett.119.246401
10.1038/nature08293
10.1103/PhysRevB.99.245151
10.1103/PhysRevLett.121.126402
10.1103/PhysRevLett.111.047006
10.1038/nmat4573
10.1103/PhysRevB.101.115115
10.1038/ncomms6782
10.1103/PhysRevLett.106.106802
10.1038/nphys1220
10.1103/PhysRevLett.108.106403
10.1038/s41566-018-0179-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Jan 21, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 21, 2021
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-020-03125-3
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database



PubMed



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 385
ExternalDocumentID A655577186
33473227
10_1038_s41586_020_03125_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c577t-60128bc6bec525ff8b4111a6d37973808c89fbecbe0d085e3a8d4e5f2f14f68b3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 19:23:24 EDT 2025
Fri Jul 25 09:02:37 EDT 2025
Tue Jun 17 20:34:46 EDT 2025
Thu Jun 12 23:44:34 EDT 2025
Tue Jun 10 15:31:58 EDT 2025
Tue Jun 10 20:35:43 EDT 2025
Fri Jun 27 04:00:23 EDT 2025
Fri Jun 27 05:13:54 EDT 2025
Wed Feb 19 02:29:10 EST 2025
Tue Jul 01 02:32:17 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 21 02:37:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7842
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-60128bc6bec525ff8b4111a6d37973808c89fbecbe0d085e3a8d4e5f2f14f68b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5856-9406
0000-0001-6505-0998
PMID 33473227
PQID 2480007451
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_2479748752
proquest_journals_2480007451
gale_infotracmisc_A655577186
gale_infotracgeneralonefile_A655577186
gale_infotraccpiq_655577186
gale_infotracacademiconefile_A655577186
gale_incontextgauss_ISR_A655577186
gale_incontextgauss_ATWCN_A655577186
pubmed_primary_33473227
crossref_primary_10_1038_s41586_020_03125_3
crossref_citationtrail_10_1038_s41586_020_03125_3
springer_journals_10_1038_s41586_020_03125_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-21
PublicationDateYYYYMMDD 2021-01-21
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhang (CR4) 2019; 566
Imhof (CR22) 2018; 14
Barik (CR38) 2018; 359
Slager, Mesaros, Juričić, Zaanen (CR2) 2013; 9
van Miert, Ortix (CR31) 2018; 97
Krasnok (CR39) 2015; 5
Li, Zhu, Benalcazar, Hughes (CR19) 2020; 101
Chen (CR34) 2014; 5
Liu, Vishwanath, Khalaf (CR9) 2019; 9
Serra-Garcia (CR20) 2018; 555
Bradlyn (CR3) 2017; 547
Po, Watanabe, Vishwanath (CR7) 2018; 121
Zhang (CR26) 2019; 15
Haldane, Raghu (CR32) 2008; 100
Dong, Chen, Zhu, Wang, Zhang (CR37) 2017; 16
Song, Fang, Fang (CR12) 2017; 119
Langbehn, Peng, Trifunovic, von Oppen, Brouwer (CR11) 2017; 119
Benalcazar, Li, Hughes (CR15) 2019; 99
Peterson, Li, Benalcazar, Hughes, Bahl (CR16) 2020; 368
Schindler (CR13) 2018; 4
Rüegg, Lin (CR17) 2013; 110
Peterson, Benalcazar, Hughes, Bahl (CR21) 2018; 555
Benalcazar, Bernevig, Hughes (CR10) 2017; 357
Ran, Zhang, Vishwanath (CR27) 2009; 5
Li (CR30) 2018; 9
Zeng (CR40) 2020; 578
Fu (CR1) 2011; 106
Vergniory (CR5) 2019; 566
Teo, Hughes (CR18) 2013; 111
Cheng (CR36) 2016; 15
Paulose, Chen, Vitelli (CR29) 2015; 11
Juričić, Mesaros, Slager, Zaanen (CR28) 2012; 108
Wang, Chong, Joannopoulos, Soljacic (CR33) 2009; 461
CR42
CR41
Cano (CR8) 2018; 120
Xue, Yang, Gao, Chong, Zhang (CR24) 2019; 18
Wu, Hu (CR35) 2015; 114
Tang, Po, Vishwanath, Wan (CR6) 2019; 566
van Miert, Ortix (CR14) 2018; 98
Noh (CR23) 2018; 12
Ni, Weiner, Alù, Khanikaev (CR25) 2019; 18
J Cano (3125_CR8) 2018; 120
JW Dong (3125_CR37) 2017; 16
G van Miert (3125_CR31) 2018; 97
G van Miert (3125_CR14) 2018; 98
M Serra-Garcia (3125_CR20) 2018; 555
H Xue (3125_CR24) 2019; 18
V Juričić (3125_CR28) 2012; 108
Z Wang (3125_CR33) 2009; 461
R-J Slager (3125_CR2) 2013; 9
JCY Teo (3125_CR18) 2013; 111
Y Zeng (3125_CR40) 2020; 578
F Tang (3125_CR6) 2019; 566
X Ni (3125_CR25) 2019; 18
MG Vergniory (3125_CR5) 2019; 566
HC Po (3125_CR7) 2018; 121
T Li (3125_CR19) 2020; 101
J Langbehn (3125_CR11) 2017; 119
X Cheng (3125_CR36) 2016; 15
B Bradlyn (3125_CR3) 2017; 547
W-J Chen (3125_CR34) 2014; 5
S Liu (3125_CR9) 2019; 9
Y Ran (3125_CR27) 2009; 5
AE Krasnok (3125_CR39) 2015; 5
FDM Haldane (3125_CR32) 2008; 100
T Zhang (3125_CR4) 2019; 566
S Imhof (3125_CR22) 2018; 14
J Paulose (3125_CR29) 2015; 11
J Noh (3125_CR23) 2018; 12
A Rüegg (3125_CR17) 2013; 110
WA Benalcazar (3125_CR15) 2019; 99
3125_CR41
3125_CR42
CW Peterson (3125_CR16) 2020; 368
F Schindler (3125_CR13) 2018; 4
S Barik (3125_CR38) 2018; 359
X Zhang (3125_CR26) 2019; 15
ZD Song (3125_CR12) 2017; 119
F-F Li (3125_CR30) 2018; 9
L-H Wu (3125_CR35) 2015; 114
CW Peterson (3125_CR21) 2018; 555
L Fu (3125_CR1) 2011; 106
WA Benalcazar (3125_CR10) 2017; 357
33473222 - Nature. 2021 Jan;589(7842):356-357
References_xml – volume: 555
  start-page: 342
  year: 2018
  end-page: 345
  ident: CR20
  article-title: Observation of a phononic quadrupole topological insulator
  publication-title: Nature
  doi: 10.1038/nature25156
– volume: 555
  start-page: 346
  year: 2018
  end-page: 350
  ident: CR21
  article-title: A quantized microwave quadrupole insulator with topological protected corner states
  publication-title: Nature
  doi: 10.1038/nature25777
– volume: 114
  start-page: 223901
  year: 2015
  ident: CR35
  article-title: Scheme for achieving a topological photonic crystal by using dielectric material
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.223901
– volume: 11
  start-page: 153
  year: 2015
  end-page: 156
  ident: CR29
  article-title: Topological modes bound to dislocations in mechanical metamaterials
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3185
– volume: 368
  start-page: 1114
  year: 2020
  end-page: 1118
  ident: CR16
  article-title: A fractional corner anomaly reveals higher-order topology
  publication-title: Science
  doi: 10.1126/science.aba7604
– volume: 110
  start-page: 046401
  year: 2013
  ident: CR17
  article-title: Bound states of conical singularities in graphene-based topological insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.046401
– volume: 9
  start-page: 98
  year: 2013
  end-page: 102
  ident: CR2
  article-title: The space group classification of topological band-insulators
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2513
– volume: 9
  year: 2018
  ident: CR30
  article-title: Topological light-trapping on a dislocation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04861-x
– volume: 357
  start-page: 61
  year: 2017
  end-page: 66
  ident: CR10
  article-title: Quantized electric multipole insulators
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 97
  start-page: 201111(R)
  year: 2018
  ident: CR31
  article-title: Dislocation charges reveal two-dimensional topological crystalline invariants
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.201111
– volume: 16
  start-page: 298
  year: 2017
  end-page: 302
  ident: CR37
  article-title: Valley photonic crystals for control of spin and topology
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4807
– volume: 566
  start-page: 486
  year: 2019
  end-page: 489
  ident: CR6
  article-title: Comprehensive search for topological materials using symmetry indicators
  publication-title: Nature
  doi: 10.1038/s41586-019-0937-5
– volume: 120
  start-page: 266401
  year: 2018
  ident: CR8
  article-title: Topology of disconnected elementary band representations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.266401
– volume: 578
  start-page: 246
  year: 2020
  end-page: 250
  ident: CR40
  article-title: Electrically pumped topological laser with valley edge modes
  publication-title: Nature
  doi: 10.1038/s41586-020-1981-x
– volume: 18
  start-page: 113
  year: 2019
  end-page: 120
  ident: CR25
  article-title: Observation of higher-order topological acoustic states protected by generalized chiral symmetry
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0252-9
– volume: 15
  start-page: 582
  year: 2019
  end-page: 588
  ident: CR26
  article-title: Second-order topology and multi-dimensional topological transitions in sonic crystals
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0472-1
– volume: 119
  start-page: 246402
  year: 2017
  ident: CR12
  article-title: (  − 2)-Dimensional edge states of rotation symmetry protected topological states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– volume: 547
  start-page: 298
  year: 2017
  end-page: 305
  ident: CR3
  article-title: Topological quantum chemistry
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 18
  start-page: 108
  year: 2019
  end-page: 112
  ident: CR24
  article-title: Acoustic higher-order topological insulator on a kagome lattice
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0251-x
– volume: 566
  start-page: 475
  year: 2019
  end-page: 479
  ident: CR4
  article-title: Catalogue of topological electronic materials
  publication-title: Nature
  doi: 10.1038/s41586-019-0944-6
– volume: 566
  start-page: 480
  year: 2019
  end-page: 485
  ident: CR5
  article-title: A complete catalogue of high-quality topological materials
  publication-title: Nature
  doi: 10.1038/s41586-019-0954-4
– volume: 98
  start-page: 081110(R)
  year: 2018
  ident: CR14
  article-title: Higher-order topological insulators protected by inversion and rotoinversion symmetries
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.081110
– volume: 100
  start-page: 013904
  year: 2008
  ident: CR32
  article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 5
  year: 2015
  ident: CR39
  article-title: An antenna model for the Purcell effect
  publication-title: Sci. Rep.
  doi: 10.1038/srep12956
– volume: 14
  start-page: 925
  year: 2018
  end-page: 929
  ident: CR22
  article-title: Topolectrical circuit realization of topological corner modes
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0246-1
– ident: CR42
– volume: 9
  start-page: 031003
  year: 2019
  ident: CR9
  article-title: Shift insulators: rotation-protected two-dimensional topological crystalline insulators
  publication-title: Phys. Rev. X
– volume: 359
  start-page: 666
  year: 2018
  end-page: 668
  ident: CR38
  article-title: A topological quantum optics interface
  publication-title: Science
  doi: 10.1126/science.aaq0327
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: CR13
  article-title: Higher-order topological insulators
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 119
  start-page: 246401
  year: 2017
  ident: CR11
  article-title: Reflection-symmetric second-order topological insulators and superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– volume: 461
  start-page: 772
  year: 2009
  end-page: 775
  ident: CR33
  article-title: Observation of unidirectional backscattering immune topological electromagnetic states
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 99
  start-page: 245151
  year: 2019
  ident: CR15
  article-title: Quantization of fractional corner charge in -symmetric higher-order topological crystalline insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.245151
– volume: 121
  start-page: 126402
  year: 2018
  ident: CR7
  article-title: Fragile topology and Wannier obstructions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.126402
– volume: 111
  start-page: 047006
  year: 2013
  ident: CR18
  article-title: Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.047006
– volume: 15
  start-page: 542
  year: 2016
  end-page: 548
  ident: CR36
  article-title: Robust reconfigurable electromagnetic pathways within a photonic topological insulator
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4573
– volume: 101
  start-page: 115115
  year: 2020
  ident: CR19
  article-title: Fractional disclination charge in two-dimensional -symmetric topological crystalline insulators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.115115
– volume: 5
  year: 2014
  ident: CR34
  article-title: Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6782
– volume: 106
  start-page: 106802
  year: 2011
  ident: CR1
  article-title: Topological crystalline insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– volume: 5
  start-page: 298
  year: 2009
  end-page: 303
  ident: CR27
  article-title: One-dimensional topologically protected modes in topological insulators with lattice dislocations
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1220
– volume: 108
  start-page: 106403
  year: 2012
  ident: CR28
  article-title: Universal probes of two-dimensional topological insulators: dislocation and π-flux
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.106403
– ident: CR41
– volume: 12
  start-page: 408
  year: 2018
  end-page: 415
  ident: CR23
  article-title: Topological protection of photonic mid-gap defect modes
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0179-3
– volume: 121
  start-page: 126402
  year: 2018
  ident: 3125_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.126402
– volume: 110
  start-page: 046401
  year: 2013
  ident: 3125_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.046401
– volume: 547
  start-page: 298
  year: 2017
  ident: 3125_CR3
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 357
  start-page: 61
  year: 2017
  ident: 3125_CR10
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 18
  start-page: 113
  year: 2019
  ident: 3125_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0252-9
– volume: 15
  start-page: 542
  year: 2016
  ident: 3125_CR36
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4573
– volume: 98
  start-page: 081110(R)
  year: 2018
  ident: 3125_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.081110
– volume: 555
  start-page: 346
  year: 2018
  ident: 3125_CR21
  publication-title: Nature
  doi: 10.1038/nature25777
– volume: 119
  start-page: 246402
  year: 2017
  ident: 3125_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– volume: 101
  start-page: 115115
  year: 2020
  ident: 3125_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.115115
– volume: 99
  start-page: 245151
  year: 2019
  ident: 3125_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.245151
– volume: 16
  start-page: 298
  year: 2017
  ident: 3125_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4807
– volume: 100
  start-page: 013904
  year: 2008
  ident: 3125_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 106
  start-page: 106802
  year: 2011
  ident: 3125_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.106802
– ident: 3125_CR41
– volume: 5
  start-page: 298
  year: 2009
  ident: 3125_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1220
– volume: 108
  start-page: 106403
  year: 2012
  ident: 3125_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.106403
– volume: 120
  start-page: 266401
  year: 2018
  ident: 3125_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.266401
– volume: 97
  start-page: 201111(R)
  year: 2018
  ident: 3125_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.201111
– volume: 555
  start-page: 342
  year: 2018
  ident: 3125_CR20
  publication-title: Nature
  doi: 10.1038/nature25156
– volume: 578
  start-page: 246
  year: 2020
  ident: 3125_CR40
  publication-title: Nature
  doi: 10.1038/s41586-020-1981-x
– volume: 566
  start-page: 475
  year: 2019
  ident: 3125_CR4
  publication-title: Nature
  doi: 10.1038/s41586-019-0944-6
– volume: 111
  start-page: 047006
  year: 2013
  ident: 3125_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.047006
– volume: 359
  start-page: 666
  year: 2018
  ident: 3125_CR38
  publication-title: Science
  doi: 10.1126/science.aaq0327
– volume: 5
  year: 2015
  ident: 3125_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep12956
– volume: 368
  start-page: 1114
  year: 2020
  ident: 3125_CR16
  publication-title: Science
  doi: 10.1126/science.aba7604
– volume: 15
  start-page: 582
  year: 2019
  ident: 3125_CR26
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0472-1
– volume: 14
  start-page: 925
  year: 2018
  ident: 3125_CR22
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0246-1
– volume: 11
  start-page: 153
  year: 2015
  ident: 3125_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3185
– volume: 566
  start-page: 486
  year: 2019
  ident: 3125_CR6
  publication-title: Nature
  doi: 10.1038/s41586-019-0937-5
– volume: 119
  start-page: 246401
  year: 2017
  ident: 3125_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– volume: 12
  start-page: 408
  year: 2018
  ident: 3125_CR23
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0179-3
– volume: 9
  start-page: 031003
  year: 2019
  ident: 3125_CR9
  publication-title: Phys. Rev. X
– volume: 5
  year: 2014
  ident: 3125_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6782
– ident: 3125_CR42
– volume: 9
  year: 2018
  ident: 3125_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04861-x
– volume: 9
  start-page: 98
  year: 2013
  ident: 3125_CR2
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2513
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: 3125_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 18
  start-page: 108
  year: 2019
  ident: 3125_CR24
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0251-x
– volume: 461
  start-page: 772
  year: 2009
  ident: 3125_CR33
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 566
  start-page: 480
  year: 2019
  ident: 3125_CR5
  publication-title: Nature
  doi: 10.1038/s41586-019-0954-4
– volume: 114
  start-page: 223901
  year: 2015
  ident: 3125_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.223901
– reference: 33473222 - Nature. 2021 Jan;589(7842):356-357
SSID ssj0005174
Score 2.6954954
Snippet Most natural and artificial materials have crystalline structures from which abundant topological phases emerge 1 – 6 . However, the bulk–edge...
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge . However, the bulk-edge correspondence-which...
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge...
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms 639/301/119/2792/4129
639/624/399/1015
Algebraic topology
Analysis
Bulk solids flow
Correspondence
Crystal defects
Crystal structure
Crystallinity
Crystallography
Crystals
Disclinations
Electric insulators
Electrical equipment and supplies industry
Experiments
Humanities and Social Sciences
Insulators
Materials
multidisciplinary
Observations
Photonic crystals
Product defects and recalls
Properties
Robustness
Science
Science (multidisciplinary)
Structure
Symmetry
Topology
Title Bulk–disclination correspondence in topological crystalline insulators
URI https://link.springer.com/article/10.1038/s41586-020-03125-3
https://www.ncbi.nlm.nih.gov/pubmed/33473227
https://www.proquest.com/docview/2480007451
https://www.proquest.com/docview/2479748752
Volume 589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJWSFxQW15pSxVQxUNgNY7t2Dmh7arLgsQKlVbszYodp6qoku1m98CNf-AP-RI8iXe3WZVefJmxZc-MZ_yYB0KH7haRRdykOM9zg5kVBmsmNCaa25SYTGYG3ju-jpLhOfsy5mP_4FZ7t8qFTmwUdV4ZeCM_ipls7B0nHyfXGKpGwe-qL6FxH21C6jJw6RJjsXLxWMvC7INmIiqPame4JLjfRtiJdcwx7RimdfV8wz6tfZg2dmiwhR75A2TYazm-je7Zcgc9aBw5Tb2Dtv1mrcO3PqP0u8doeDy_-vn39x8IwYUAXGBGaJq6HJOqbKqKhpdlOGsLJgDbQjP95c6NkLAbQDUU-aqm9RN0Pjg56w-xL6GADRdihhOwP9okjlM85kUhNXPKLUtyKlJBZSSNTAsH1DbK3eHL0kzmzPIiLggrEqnpU7RRVqV9jkJCciMSpmMuU8ZNJHOSamfcrciEKLgJEFnQTxmfXxzKXFyp5p-bStXSXDmaq4bmigbo_bLPpM2ucSf2IbBFQdqKEvxiLrJ5Xave2Y_-SPUSzt2SiUwC9Oo2tM_fTztIbzxSUblZmsxHI7i1QkKsDuZeB9NMLq_VDejrDvSiZe1tw-x3EN0uNl3wQtaU1yK1Wsl8gF4uwdATPONKW80Bx3ESbp1xgJ61MrokJaVMOIUtAvRhIbSrwf9P592757KHHsbg2BMRHJN9tDGbzu0LdzKb6YNm-7lW9gm0g08HaPP4ZPTt9B-wxzSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQLa_QAgGVl4rVOIlj54DQUqh2absHuhV7cxPHqSqqZLvZFeqNf-A_-Ci-BE8eu82q9NbzTCx73o7nAbBhbhGRw1RIkiRRxNdckdjnMaEx0yFVkYgU_u_Y7wfdQ__rkA2X4E9TC4NplY1NLA11kiv8R77l-qL0d4x-HJ0RnBqFr6vNCI1KLHb1-U9zZSs-9D4b_r5y3Z0vg-0uqacKEMU4n5AATXKsArN55rI0FbFv9D0KEo-H3BOOUCJMDTDWTmLiEe1FIvE1S92U-mkgYs-sewNuGsfroEbxIZ-nlCx0fa6LdBxPbBXGUQpM93WIUSOXEa_lCBfdwQV_uPBAW_q9nXtwtw5Y7U4lYSuwpLNVuFUmjqpiFVZq41DYb-sO1u_uQ_fT9PTH31-_seQXC36R-bYq54CM8qycYmqfZPakGtCAYmKr8bmJU7FBOIIKHCqWj4sHcHgtxH0Iy1me6cdgU5ooHvixy0ToM-WIhIaxCSY0jzhPmbKANvSTqu5njmM1TmX5ru4JWdFcGprLkubSs2Bz9s2o6uZxJfYGskVim4wM83COo2lRyM7g-3ZfdgLGzJGpCCx4eRla7-BbC-lNjZTmZpcqqqsfzFmxAVcLc62FqUYnZ_IC9HULelyx9rJl1luIxmqoNriRNVlbrULOdcyCFzMwfomZeJnOp4hjOIm3XNeCR5WMzkjpeT43DoJb8L4R2vni_6fzk6v38hxudwf7e3Kv199dgzsuJhU5lLh0HZYn46l-aqLCSfysVEUbjq5b9_8BYLZutA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMgXhBbNzCBgQ0bgKrcRzHzgNCZaNqGVRobKJvJnGSaWJKuqYV2hv_wN_wOXwJPrm0SzX2tudzbNnH52b7XAC2zC0idLgOSBzHmniJ0CTyRERoxJOA6lCGGt87Pg_9_oH3ccRHK_CnyYXBsMpGJ5aKOs41vpF3XE-W9o7TTlqHRXzZ6b0bnxDsIIU_rU07jYpFdpPTn-b6Vrwd7Jizfua6vQ_7231SdxggmgsxJT6q50j7ZiPc5WkqI8_IfujHTASCSUdqGaQGGCVObHyThIUy9hKeuin1Ul9GzMx7Ba4KxinKmBiJRXjJUgXoOmHHYbJTGKMpMfTXIUakXE5Yyygum4YztnHps7a0gb1bcLN2Xu1uxW1rsJJk63CtDCLVxTqs1YqisF_W1axf3Yb--9nxj7-_fmP6Lyb_IiPYuuwJMs6zsqOpfZTZ06pZA7KMrSenxmfFYuEIKrDBWD4p7sDBpRD3LqxmeZbcB5vSWAvfi1wuA49rR8Y0iIxjkYhQiJRrC2hDP6Xr2ubYYuNYlX_sTKqK5srQXJU0V8yC1_Mx46qyx4XYW3gsCktmZMh8h-GsKFR3_9v2UHV9zs2WqfQteHoe2uDrXgvpRY2U5maVOqwzIcxesRhXC3OjhanHRyfqDPR5C3pYHe1502y2EI0G0W1ww2uq1mCFWsibBU_mYByJUXlZks8Qx5wk3nhdC-5VPDonJWOeMMZCWPCmYdrF5P-n84OL1_IYrhupV58Gw90NuOFifJFDiUs3YXU6mSUPjYM4jR6VkmjD98sW_X_fcHLq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bulk%E2%80%93disclination+correspondence+in+topological+crystalline+insulators&rft.jtitle=Nature+%28London%29&rft.au=Liu%2C+Yang&rft.au=Leung%2C+Shuwai&rft.au=Li%2C+Fei-Fei&rft.au=Lin%2C+Zhi-Kang&rft.date=2021-01-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=589&rft.issue=7842&rft.spage=381&rft.epage=385H&rft_id=info:doi/10.1038%2Fs41586-020-03125-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon