Bulk–disclination correspondence in topological crystalline insulators
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge 1 – 6 . However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological...
Saved in:
Published in | Nature (London) Vol. 589; no. 7842; pp. 381 - 385 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most natural and artificial materials have crystalline structures from which abundant topological phases emerge
1
–
6
. However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases
7
–
16
, leading to challenges in the experimental classification of the large family of topological crystalline materials
4
–
6
. It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges
17
–
19
, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators. |
---|---|
AbstractList | Most natural and artificial materials have crystalline structures from which abundant topological phases emerge
1
–
6
. However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases
7
–
16
, leading to challenges in the experimental classification of the large family of topological crystalline materials
4
–
6
. It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges
17
–
19
, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.
It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators. Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification ofthe large family oftopological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge correspondence--which has been widely used in experiments to determine the band topology from edge properties--is inadequate in discerning various topological crystalline phases.sup.7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials.sup.4-6. It has been theoretically predicted that disclinations--ubiquitous crystallographic defects--can provide an effective probe of crystalline topology beyond edges.sup.17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns--a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. Most natural and artificial materials have crystalline structures from which abundant topological phases emerge . However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases , leading to challenges in the experimental classification of the large family of topological crystalline materials . It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges , but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge correspondence--which has been widely used in experiments to determine the band topology from edge properties--is inadequate in discerning various topological crystalline phases.sup.7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials.sup.4-6. It has been theoretically predicted that disclinations--ubiquitous crystallographic defects--can provide an effective probe of crystalline topology beyond edges.sup.17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns--a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials. It is experimentally shown that topological states exist at crystallographic defects in the bulk and that disclination defects trap fractional charges characteristic of topological crystalline insulators. |
Audience | Academic |
Author | Li, Fei-Fei Tao, Xiufeng Lin, Zhi-Kang Liu, Yang Poo, Yin Jiang, Jian-Hua Leung, Shuwai |
Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University – sequence: 2 givenname: Shuwai surname: Leung fullname: Leung, Shuwai organization: School of Electronic Science and Engineering, Nanjing University – sequence: 3 givenname: Fei-Fei surname: Li fullname: Li, Fei-Fei organization: School of Electronic Science and Engineering, Nanjing University – sequence: 4 givenname: Zhi-Kang surname: Lin fullname: Lin, Zhi-Kang organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University – sequence: 5 givenname: Xiufeng surname: Tao fullname: Tao, Xiufeng organization: School of Electronic Science and Engineering, Nanjing University – sequence: 6 givenname: Yin orcidid: 0000-0002-5856-9406 surname: Poo fullname: Poo, Yin email: ypoo@nju.edu.cn organization: School of Electronic Science and Engineering, Nanjing University – sequence: 7 givenname: Jian-Hua orcidid: 0000-0001-6505-0998 surname: Jiang fullname: Jiang, Jian-Hua email: jianhuajiang@suda.edu.cn organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33473227$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEUhS1URNPAC7BAEd2A0BT_212GCGilCiQoYml5PJ7IxbGntkeiO96BN-RJcJpCSRUqLyz5fuf4-vocgL0QgwXgKYJHCBL5OlPEJG8ghg0kCLOGPAATRAVvKJdiD0wgxLKBkvB9cJDzBYSQIUEfgX1CqCAYiwk4eTP6b79-_OxcNt4FXVwMMxNTsnmIobPB2JkLsxKH6OPSGe1nJl3lon2l16U8el1iyo_Bw177bJ_c7FPw5d3b88VJc_bx_eliftYYJkRpOERYtoa31jDM-l62FCGkeUfEsSASSiOP-1psLeygZJZo2VHLetwj2nPZkil4sfEdUrwcbS5qVVu33utg45gVptWISsFwRQ_voBdxTKF2VylZpyEoQ7fUUnurXOhjSdqsTdWcM1a7RpJXqtlBLW2wSfv6Lb2rx1v88x28Gdyl-hc62gHV1dmVMztdX24JKlPs97LUY87q9POnbfbV_9n5-dfFh2362c2sxnZlOzUkt9LpSv1JSgXwBjAp5pxs_xdBUK3jqDZxVDWO6jqOVTsF8o7IuHKdsfpQ5--Xko0013vC0qbbz7tH9Ruuze_e |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_17_064008 crossref_primary_10_1038_s42254_023_00602_2 crossref_primary_10_1364_PRJ_418689 crossref_primary_10_1103_PhysRevB_107_214108 crossref_primary_10_1016_j_ijsolstr_2021_111413 crossref_primary_10_1038_s41467_021_27008_x crossref_primary_10_3788_CJL231385 crossref_primary_10_1038_s41467_024_52070_6 crossref_primary_10_1103_PhysRevB_105_L020403 crossref_primary_10_3389_fchem_2024_1500989 crossref_primary_10_1103_RevModPhys_96_015002 crossref_primary_10_1063_5_0144939 crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1109_MAP_2021_3127541 crossref_primary_10_1002_andp_202200025 crossref_primary_10_1038_s41467_024_53819_9 crossref_primary_10_1038_s44310_024_00040_7 crossref_primary_10_1103_PhysRevB_107_035431 crossref_primary_10_1038_s42005_023_01254_5 crossref_primary_10_1088_1361_6382_ad69f5 crossref_primary_10_1103_PhysRevApplied_18_064089 crossref_primary_10_1038_s41467_022_29785_5 crossref_primary_10_3389_fmats_2021_685025 crossref_primary_10_1364_OL_455757 crossref_primary_10_1088_2515_7647_ad46aa crossref_primary_10_1364_OE_551936 crossref_primary_10_1088_1361_648X_ad512a crossref_primary_10_1103_PhysRevB_106_174112 crossref_primary_10_1088_1361_6633_aceeee crossref_primary_10_1103_PhysRevLett_130_223403 crossref_primary_10_1364_OME_525214 crossref_primary_10_1103_PhysRevA_106_L021502 crossref_primary_10_1103_PhysRevB_109_205107 crossref_primary_10_1038_s41467_021_25716_y crossref_primary_10_1038_s41377_024_01611_1 crossref_primary_10_1088_1361_648X_ac6788 crossref_primary_10_1038_s41377_021_00607_5 crossref_primary_10_7498_aps_73_20240640 crossref_primary_10_1016_j_vacuum_2024_112986 crossref_primary_10_1103_PhysRevApplied_18_064094 crossref_primary_10_1016_j_chaos_2024_115188 crossref_primary_10_1038_s41377_021_00698_0 crossref_primary_10_1038_s42254_023_00565_4 crossref_primary_10_1002_adem_202402301 crossref_primary_10_1039_D4NH00019F crossref_primary_10_1103_PhysRevB_107_165145 crossref_primary_10_1103_PhysRevB_111_085148 crossref_primary_10_1103_PhysRevResearch_3_033107 crossref_primary_10_1142_S0218271824500652 crossref_primary_10_1038_s42005_021_00659_4 crossref_primary_10_1103_PhysRevApplied_19_024053 crossref_primary_10_1063_5_0185505 crossref_primary_10_1007_s12200_023_00094_z crossref_primary_10_1088_1361_6463_ad6b35 crossref_primary_10_1016_j_matdes_2023_112209 crossref_primary_10_1103_PhysRevApplied_20_064042 crossref_primary_10_1103_PhysRevResearch_3_023056 crossref_primary_10_1021_acsphotonics_2c00571 crossref_primary_10_1364_PRJ_433188 crossref_primary_10_3389_fphy_2023_1213158 crossref_primary_10_1103_PhysRevB_105_155143 crossref_primary_10_1016_j_physleta_2023_129226 crossref_primary_10_1103_PhysRevB_107_L041403 crossref_primary_10_1364_OL_477077 crossref_primary_10_1103_PhysRevB_106_L041302 crossref_primary_10_1103_PhysRevB_108_205411 crossref_primary_10_21468_SciPostPhys_10_4_092 crossref_primary_10_1103_PhysRevLett_134_023801 crossref_primary_10_1364_OL_488612 crossref_primary_10_1038_s41566_024_01611_y crossref_primary_10_1038_s41467_023_40335_5 crossref_primary_10_1002_lpor_202300204 crossref_primary_10_1103_PhysRevLett_129_253001 crossref_primary_10_1364_OL_543039 crossref_primary_10_1038_s42254_024_00745_w crossref_primary_10_1364_OL_452983 crossref_primary_10_1103_PhysRevLett_129_053903 crossref_primary_10_1038_s41567_021_01275_3 crossref_primary_10_1103_PhysRevApplied_22_064097 crossref_primary_10_1360_TB_2021_0568 crossref_primary_10_3390_app12041987 crossref_primary_10_1063_5_0061950 crossref_primary_10_1103_PhysRevA_107_033514 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1364_OME_416552 crossref_primary_10_1088_1361_648X_ad3abd crossref_primary_10_1038_s42005_023_01474_9 crossref_primary_10_1038_s41535_023_00558_7 crossref_primary_10_1063_5_0095543 crossref_primary_10_1038_s41566_023_01338_2 crossref_primary_10_1103_PhysRevApplied_18_064079 crossref_primary_10_1515_nanoph_2023_0790 crossref_primary_10_1038_s41467_021_23963_7 crossref_primary_10_1103_PhysRevB_110_104103 crossref_primary_10_1002_qute_202300265 crossref_primary_10_1103_PhysRevApplied_20_034028 crossref_primary_10_1016_j_chip_2024_100109 crossref_primary_10_1021_acsphotonics_3c00049 crossref_primary_10_1063_5_0132194 crossref_primary_10_1021_acsphotonics_3c01651 crossref_primary_10_1016_j_scib_2021_05_013 crossref_primary_10_1103_PhysRevResearch_6_013031 crossref_primary_10_1103_PhysRevApplied_22_044054 crossref_primary_10_1103_PhysRevB_109_224111 crossref_primary_10_1016_j_apacoust_2023_109570 crossref_primary_10_1103_PhysRevApplied_19_034073 crossref_primary_10_1038_s41377_024_01417_1 crossref_primary_10_1039_D4SM01076K crossref_primary_10_1103_PhysRevLett_131_157201 crossref_primary_10_1002_adma_202310010 crossref_primary_10_1103_PhysRevA_110_013309 crossref_primary_10_1103_PhysRevApplied_21_054023 crossref_primary_10_1103_PhysRevB_109_054312 crossref_primary_10_1002_lpor_202300783 crossref_primary_10_1103_PhysRevLett_127_066401 crossref_primary_10_1364_OL_457058 crossref_primary_10_1103_PhysRevB_110_214203 crossref_primary_10_1209_0295_5075_acd71a crossref_primary_10_1364_JOSAA_507789 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1002_lpor_202200499 crossref_primary_10_1016_j_scib_2023_03_015 crossref_primary_10_1016_j_ijmecsci_2022_107884 crossref_primary_10_1021_jacs_3c09699 crossref_primary_10_1364_OL_472677 crossref_primary_10_1002_andp_202100293 crossref_primary_10_1103_PhysRevLett_129_154301 crossref_primary_10_1103_PhysRevLett_130_036601 crossref_primary_10_1038_s41586_023_06163_9 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123497 crossref_primary_10_1002_adpr_202300089 crossref_primary_10_1038_s41377_023_01235_x crossref_primary_10_1038_s43246_024_00618_w crossref_primary_10_1063_5_0126104 crossref_primary_10_3390_photonics10090992 crossref_primary_10_1007_s10409_021_09083_0 crossref_primary_10_1364_OL_434502 crossref_primary_10_1021_acsami_2c20295 crossref_primary_10_1126_sciadv_adp6905 crossref_primary_10_3389_fchem_2025_1544147 crossref_primary_10_1002_lpor_202300956 crossref_primary_10_1103_PhysRevB_105_L100102 crossref_primary_10_1103_PhysRevLett_127_214301 crossref_primary_10_1103_PhysRevLett_132_036603 crossref_primary_10_1002_advs_202303222 crossref_primary_10_1103_PhysRevB_110_075407 crossref_primary_10_1063_5_0159253 crossref_primary_10_1103_PhysRevLett_134_033803 crossref_primary_10_1103_PhysRevB_109_L180101 crossref_primary_10_1103_PhysRevB_106_184101 crossref_primary_10_1038_s41467_022_28182_2 crossref_primary_10_1002_smsc_202100065 crossref_primary_10_1103_PhysRevA_109_013516 crossref_primary_10_1038_s41377_023_01200_8 crossref_primary_10_1093_nsr_nwac289 crossref_primary_10_1007_s11433_021_1776_8 crossref_primary_10_3389_fphy_2022_866552 crossref_primary_10_1016_j_jmmm_2022_169305 crossref_primary_10_1103_PhysRevLett_128_257401 crossref_primary_10_1103_PhysRevApplied_22_014025 crossref_primary_10_1007_s11433_023_2321_9 crossref_primary_10_1038_s41377_024_01512_3 crossref_primary_10_1016_j_rinp_2023_106322 crossref_primary_10_1103_PhysRevB_107_155138 crossref_primary_10_1103_PhysRevLett_126_156401 crossref_primary_10_1088_1361_648X_aca135 crossref_primary_10_1103_PhysRevMaterials_6_124201 crossref_primary_10_1103_PhysRevB_109_064105 crossref_primary_10_1103_PhysRevLett_133_233804 crossref_primary_10_1016_j_scib_2022_09_020 crossref_primary_10_1515_nanoph_2022_0547 crossref_primary_10_1103_PhysRevB_111_094110 crossref_primary_10_1364_OE_427389 crossref_primary_10_1002_lpor_202300384 crossref_primary_10_1103_PhysRevB_108_134118 crossref_primary_10_1038_s44310_024_00035_4 crossref_primary_10_1103_PhysRevB_110_094206 crossref_primary_10_1002_adom_202300764 crossref_primary_10_1002_advs_202201568 crossref_primary_10_1038_s41566_024_01564_2 crossref_primary_10_1038_s42254_021_00323_4 crossref_primary_10_1088_1741_4326_ac90d6 crossref_primary_10_1103_PhysRevLett_129_063902 crossref_primary_10_1016_j_chaos_2025_116199 crossref_primary_10_1063_5_0202383 crossref_primary_10_1063_5_0131701 crossref_primary_10_1103_PhysRevLett_128_174301 crossref_primary_10_1103_PhysRevB_108_144304 crossref_primary_10_3788_CJL240767 crossref_primary_10_1038_s41567_021_01493_9 crossref_primary_10_1103_PhysRevB_111_125125 crossref_primary_10_1038_s41467_023_42449_2 |
Cites_doi | 10.1038/nature25156 10.1038/nature25777 10.1103/PhysRevLett.114.223901 10.1038/nphys3185 10.1126/science.aba7604 10.1103/PhysRevLett.110.046401 10.1038/nphys2513 10.1038/s41467-018-04861-x 10.1126/science.aah6442 10.1103/PhysRevB.97.201111 10.1038/nmat4807 10.1038/s41586-019-0937-5 10.1103/PhysRevLett.120.266401 10.1038/s41586-020-1981-x 10.1038/s41563-018-0252-9 10.1038/s41567-019-0472-1 10.1103/PhysRevLett.119.246402 10.1038/nature23268 10.1038/s41563-018-0251-x 10.1038/s41586-019-0944-6 10.1038/s41586-019-0954-4 10.1103/PhysRevB.98.081110 10.1103/PhysRevLett.100.013904 10.1038/srep12956 10.1038/s41567-018-0246-1 10.1126/science.aaq0327 10.1126/sciadv.aat0346 10.1103/PhysRevLett.119.246401 10.1038/nature08293 10.1103/PhysRevB.99.245151 10.1103/PhysRevLett.121.126402 10.1103/PhysRevLett.111.047006 10.1038/nmat4573 10.1103/PhysRevB.101.115115 10.1038/ncomms6782 10.1103/PhysRevLett.106.106802 10.1038/nphys1220 10.1103/PhysRevLett.108.106403 10.1038/s41566-018-0179-3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Jan 21, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 21, 2021 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-020-03125-3 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 385 |
ExternalDocumentID | A655577186 33473227 10_1038_s41586_020_03125_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE M0L MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c577t-60128bc6bec525ff8b4111a6d37973808c89fbecbe0d085e3a8d4e5f2f14f68b3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 19:23:24 EDT 2025 Fri Jul 25 09:02:37 EDT 2025 Tue Jun 17 20:34:46 EDT 2025 Thu Jun 12 23:44:34 EDT 2025 Tue Jun 10 15:31:58 EDT 2025 Tue Jun 10 20:35:43 EDT 2025 Fri Jun 27 04:00:23 EDT 2025 Fri Jun 27 05:13:54 EDT 2025 Wed Feb 19 02:29:10 EST 2025 Tue Jul 01 02:32:17 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 21 02:37:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7842 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-60128bc6bec525ff8b4111a6d37973808c89fbecbe0d085e3a8d4e5f2f14f68b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5856-9406 0000-0001-6505-0998 |
PMID | 33473227 |
PQID | 2480007451 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2479748752 proquest_journals_2480007451 gale_infotracmisc_A655577186 gale_infotracgeneralonefile_A655577186 gale_infotraccpiq_655577186 gale_infotracacademiconefile_A655577186 gale_incontextgauss_ISR_A655577186 gale_incontextgauss_ATWCN_A655577186 pubmed_primary_33473227 crossref_primary_10_1038_s41586_020_03125_3 crossref_citationtrail_10_1038_s41586_020_03125_3 springer_journals_10_1038_s41586_020_03125_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-21 |
PublicationDateYYYYMMDD | 2021-01-21 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhang (CR4) 2019; 566 Imhof (CR22) 2018; 14 Barik (CR38) 2018; 359 Slager, Mesaros, Juričić, Zaanen (CR2) 2013; 9 van Miert, Ortix (CR31) 2018; 97 Krasnok (CR39) 2015; 5 Li, Zhu, Benalcazar, Hughes (CR19) 2020; 101 Chen (CR34) 2014; 5 Liu, Vishwanath, Khalaf (CR9) 2019; 9 Serra-Garcia (CR20) 2018; 555 Bradlyn (CR3) 2017; 547 Po, Watanabe, Vishwanath (CR7) 2018; 121 Zhang (CR26) 2019; 15 Haldane, Raghu (CR32) 2008; 100 Dong, Chen, Zhu, Wang, Zhang (CR37) 2017; 16 Song, Fang, Fang (CR12) 2017; 119 Langbehn, Peng, Trifunovic, von Oppen, Brouwer (CR11) 2017; 119 Benalcazar, Li, Hughes (CR15) 2019; 99 Peterson, Li, Benalcazar, Hughes, Bahl (CR16) 2020; 368 Schindler (CR13) 2018; 4 Rüegg, Lin (CR17) 2013; 110 Peterson, Benalcazar, Hughes, Bahl (CR21) 2018; 555 Benalcazar, Bernevig, Hughes (CR10) 2017; 357 Ran, Zhang, Vishwanath (CR27) 2009; 5 Li (CR30) 2018; 9 Zeng (CR40) 2020; 578 Fu (CR1) 2011; 106 Vergniory (CR5) 2019; 566 Teo, Hughes (CR18) 2013; 111 Cheng (CR36) 2016; 15 Paulose, Chen, Vitelli (CR29) 2015; 11 Juričić, Mesaros, Slager, Zaanen (CR28) 2012; 108 Wang, Chong, Joannopoulos, Soljacic (CR33) 2009; 461 CR42 CR41 Cano (CR8) 2018; 120 Xue, Yang, Gao, Chong, Zhang (CR24) 2019; 18 Wu, Hu (CR35) 2015; 114 Tang, Po, Vishwanath, Wan (CR6) 2019; 566 van Miert, Ortix (CR14) 2018; 98 Noh (CR23) 2018; 12 Ni, Weiner, Alù, Khanikaev (CR25) 2019; 18 J Cano (3125_CR8) 2018; 120 JW Dong (3125_CR37) 2017; 16 G van Miert (3125_CR31) 2018; 97 G van Miert (3125_CR14) 2018; 98 M Serra-Garcia (3125_CR20) 2018; 555 H Xue (3125_CR24) 2019; 18 V Juričić (3125_CR28) 2012; 108 Z Wang (3125_CR33) 2009; 461 R-J Slager (3125_CR2) 2013; 9 JCY Teo (3125_CR18) 2013; 111 Y Zeng (3125_CR40) 2020; 578 F Tang (3125_CR6) 2019; 566 X Ni (3125_CR25) 2019; 18 MG Vergniory (3125_CR5) 2019; 566 HC Po (3125_CR7) 2018; 121 T Li (3125_CR19) 2020; 101 J Langbehn (3125_CR11) 2017; 119 X Cheng (3125_CR36) 2016; 15 B Bradlyn (3125_CR3) 2017; 547 W-J Chen (3125_CR34) 2014; 5 S Liu (3125_CR9) 2019; 9 Y Ran (3125_CR27) 2009; 5 AE Krasnok (3125_CR39) 2015; 5 FDM Haldane (3125_CR32) 2008; 100 T Zhang (3125_CR4) 2019; 566 S Imhof (3125_CR22) 2018; 14 J Paulose (3125_CR29) 2015; 11 J Noh (3125_CR23) 2018; 12 A Rüegg (3125_CR17) 2013; 110 WA Benalcazar (3125_CR15) 2019; 99 3125_CR41 3125_CR42 CW Peterson (3125_CR16) 2020; 368 F Schindler (3125_CR13) 2018; 4 S Barik (3125_CR38) 2018; 359 X Zhang (3125_CR26) 2019; 15 ZD Song (3125_CR12) 2017; 119 F-F Li (3125_CR30) 2018; 9 L-H Wu (3125_CR35) 2015; 114 CW Peterson (3125_CR21) 2018; 555 L Fu (3125_CR1) 2011; 106 WA Benalcazar (3125_CR10) 2017; 357 33473222 - Nature. 2021 Jan;589(7842):356-357 |
References_xml | – volume: 555 start-page: 342 year: 2018 end-page: 345 ident: CR20 article-title: Observation of a phononic quadrupole topological insulator publication-title: Nature doi: 10.1038/nature25156 – volume: 555 start-page: 346 year: 2018 end-page: 350 ident: CR21 article-title: A quantized microwave quadrupole insulator with topological protected corner states publication-title: Nature doi: 10.1038/nature25777 – volume: 114 start-page: 223901 year: 2015 ident: CR35 article-title: Scheme for achieving a topological photonic crystal by using dielectric material publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.223901 – volume: 11 start-page: 153 year: 2015 end-page: 156 ident: CR29 article-title: Topological modes bound to dislocations in mechanical metamaterials publication-title: Nat. Phys. doi: 10.1038/nphys3185 – volume: 368 start-page: 1114 year: 2020 end-page: 1118 ident: CR16 article-title: A fractional corner anomaly reveals higher-order topology publication-title: Science doi: 10.1126/science.aba7604 – volume: 110 start-page: 046401 year: 2013 ident: CR17 article-title: Bound states of conical singularities in graphene-based topological insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.046401 – volume: 9 start-page: 98 year: 2013 end-page: 102 ident: CR2 article-title: The space group classification of topological band-insulators publication-title: Nat. Phys. doi: 10.1038/nphys2513 – volume: 9 year: 2018 ident: CR30 article-title: Topological light-trapping on a dislocation publication-title: Nat. Commun. doi: 10.1038/s41467-018-04861-x – volume: 357 start-page: 61 year: 2017 end-page: 66 ident: CR10 article-title: Quantized electric multipole insulators publication-title: Science doi: 10.1126/science.aah6442 – volume: 97 start-page: 201111(R) year: 2018 ident: CR31 article-title: Dislocation charges reveal two-dimensional topological crystalline invariants publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.201111 – volume: 16 start-page: 298 year: 2017 end-page: 302 ident: CR37 article-title: Valley photonic crystals for control of spin and topology publication-title: Nat. Mater. doi: 10.1038/nmat4807 – volume: 566 start-page: 486 year: 2019 end-page: 489 ident: CR6 article-title: Comprehensive search for topological materials using symmetry indicators publication-title: Nature doi: 10.1038/s41586-019-0937-5 – volume: 120 start-page: 266401 year: 2018 ident: CR8 article-title: Topology of disconnected elementary band representations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.266401 – volume: 578 start-page: 246 year: 2020 end-page: 250 ident: CR40 article-title: Electrically pumped topological laser with valley edge modes publication-title: Nature doi: 10.1038/s41586-020-1981-x – volume: 18 start-page: 113 year: 2019 end-page: 120 ident: CR25 article-title: Observation of higher-order topological acoustic states protected by generalized chiral symmetry publication-title: Nat. Mater. doi: 10.1038/s41563-018-0252-9 – volume: 15 start-page: 582 year: 2019 end-page: 588 ident: CR26 article-title: Second-order topology and multi-dimensional topological transitions in sonic crystals publication-title: Nat. Phys. doi: 10.1038/s41567-019-0472-1 – volume: 119 start-page: 246402 year: 2017 ident: CR12 article-title: ( − 2)-Dimensional edge states of rotation symmetry protected topological states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – volume: 547 start-page: 298 year: 2017 end-page: 305 ident: CR3 article-title: Topological quantum chemistry publication-title: Nature doi: 10.1038/nature23268 – volume: 18 start-page: 108 year: 2019 end-page: 112 ident: CR24 article-title: Acoustic higher-order topological insulator on a kagome lattice publication-title: Nat. Mater. doi: 10.1038/s41563-018-0251-x – volume: 566 start-page: 475 year: 2019 end-page: 479 ident: CR4 article-title: Catalogue of topological electronic materials publication-title: Nature doi: 10.1038/s41586-019-0944-6 – volume: 566 start-page: 480 year: 2019 end-page: 485 ident: CR5 article-title: A complete catalogue of high-quality topological materials publication-title: Nature doi: 10.1038/s41586-019-0954-4 – volume: 98 start-page: 081110(R) year: 2018 ident: CR14 article-title: Higher-order topological insulators protected by inversion and rotoinversion symmetries publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.081110 – volume: 100 start-page: 013904 year: 2008 ident: CR32 article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 5 year: 2015 ident: CR39 article-title: An antenna model for the Purcell effect publication-title: Sci. Rep. doi: 10.1038/srep12956 – volume: 14 start-page: 925 year: 2018 end-page: 929 ident: CR22 article-title: Topolectrical circuit realization of topological corner modes publication-title: Nat. Phys. doi: 10.1038/s41567-018-0246-1 – ident: CR42 – volume: 9 start-page: 031003 year: 2019 ident: CR9 article-title: Shift insulators: rotation-protected two-dimensional topological crystalline insulators publication-title: Phys. Rev. X – volume: 359 start-page: 666 year: 2018 end-page: 668 ident: CR38 article-title: A topological quantum optics interface publication-title: Science doi: 10.1126/science.aaq0327 – volume: 4 start-page: eaat0346 year: 2018 ident: CR13 article-title: Higher-order topological insulators publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0346 – volume: 119 start-page: 246401 year: 2017 ident: CR11 article-title: Reflection-symmetric second-order topological insulators and superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – volume: 461 start-page: 772 year: 2009 end-page: 775 ident: CR33 article-title: Observation of unidirectional backscattering immune topological electromagnetic states publication-title: Nature doi: 10.1038/nature08293 – volume: 99 start-page: 245151 year: 2019 ident: CR15 article-title: Quantization of fractional corner charge in -symmetric higher-order topological crystalline insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245151 – volume: 121 start-page: 126402 year: 2018 ident: CR7 article-title: Fragile topology and Wannier obstructions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126402 – volume: 111 start-page: 047006 year: 2013 ident: CR18 article-title: Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.047006 – volume: 15 start-page: 542 year: 2016 end-page: 548 ident: CR36 article-title: Robust reconfigurable electromagnetic pathways within a photonic topological insulator publication-title: Nat. Mater. doi: 10.1038/nmat4573 – volume: 101 start-page: 115115 year: 2020 ident: CR19 article-title: Fractional disclination charge in two-dimensional -symmetric topological crystalline insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.115115 – volume: 5 year: 2014 ident: CR34 article-title: Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide publication-title: Nat. Commun. doi: 10.1038/ncomms6782 – volume: 106 start-page: 106802 year: 2011 ident: CR1 article-title: Topological crystalline insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – volume: 5 start-page: 298 year: 2009 end-page: 303 ident: CR27 article-title: One-dimensional topologically protected modes in topological insulators with lattice dislocations publication-title: Nat. Phys. doi: 10.1038/nphys1220 – volume: 108 start-page: 106403 year: 2012 ident: CR28 article-title: Universal probes of two-dimensional topological insulators: dislocation and π-flux publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.106403 – ident: CR41 – volume: 12 start-page: 408 year: 2018 end-page: 415 ident: CR23 article-title: Topological protection of photonic mid-gap defect modes publication-title: Nat. Photon. doi: 10.1038/s41566-018-0179-3 – volume: 121 start-page: 126402 year: 2018 ident: 3125_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126402 – volume: 110 start-page: 046401 year: 2013 ident: 3125_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.046401 – volume: 547 start-page: 298 year: 2017 ident: 3125_CR3 publication-title: Nature doi: 10.1038/nature23268 – volume: 357 start-page: 61 year: 2017 ident: 3125_CR10 publication-title: Science doi: 10.1126/science.aah6442 – volume: 18 start-page: 113 year: 2019 ident: 3125_CR25 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0252-9 – volume: 15 start-page: 542 year: 2016 ident: 3125_CR36 publication-title: Nat. Mater. doi: 10.1038/nmat4573 – volume: 98 start-page: 081110(R) year: 2018 ident: 3125_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.081110 – volume: 555 start-page: 346 year: 2018 ident: 3125_CR21 publication-title: Nature doi: 10.1038/nature25777 – volume: 119 start-page: 246402 year: 2017 ident: 3125_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – volume: 101 start-page: 115115 year: 2020 ident: 3125_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.115115 – volume: 99 start-page: 245151 year: 2019 ident: 3125_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245151 – volume: 16 start-page: 298 year: 2017 ident: 3125_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat4807 – volume: 100 start-page: 013904 year: 2008 ident: 3125_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 106 start-page: 106802 year: 2011 ident: 3125_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.106802 – ident: 3125_CR41 – volume: 5 start-page: 298 year: 2009 ident: 3125_CR27 publication-title: Nat. Phys. doi: 10.1038/nphys1220 – volume: 108 start-page: 106403 year: 2012 ident: 3125_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.106403 – volume: 120 start-page: 266401 year: 2018 ident: 3125_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.266401 – volume: 97 start-page: 201111(R) year: 2018 ident: 3125_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.201111 – volume: 555 start-page: 342 year: 2018 ident: 3125_CR20 publication-title: Nature doi: 10.1038/nature25156 – volume: 578 start-page: 246 year: 2020 ident: 3125_CR40 publication-title: Nature doi: 10.1038/s41586-020-1981-x – volume: 566 start-page: 475 year: 2019 ident: 3125_CR4 publication-title: Nature doi: 10.1038/s41586-019-0944-6 – volume: 111 start-page: 047006 year: 2013 ident: 3125_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.047006 – volume: 359 start-page: 666 year: 2018 ident: 3125_CR38 publication-title: Science doi: 10.1126/science.aaq0327 – volume: 5 year: 2015 ident: 3125_CR39 publication-title: Sci. Rep. doi: 10.1038/srep12956 – volume: 368 start-page: 1114 year: 2020 ident: 3125_CR16 publication-title: Science doi: 10.1126/science.aba7604 – volume: 15 start-page: 582 year: 2019 ident: 3125_CR26 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0472-1 – volume: 14 start-page: 925 year: 2018 ident: 3125_CR22 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0246-1 – volume: 11 start-page: 153 year: 2015 ident: 3125_CR29 publication-title: Nat. Phys. doi: 10.1038/nphys3185 – volume: 566 start-page: 486 year: 2019 ident: 3125_CR6 publication-title: Nature doi: 10.1038/s41586-019-0937-5 – volume: 119 start-page: 246401 year: 2017 ident: 3125_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – volume: 12 start-page: 408 year: 2018 ident: 3125_CR23 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0179-3 – volume: 9 start-page: 031003 year: 2019 ident: 3125_CR9 publication-title: Phys. Rev. X – volume: 5 year: 2014 ident: 3125_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms6782 – ident: 3125_CR42 – volume: 9 year: 2018 ident: 3125_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04861-x – volume: 9 start-page: 98 year: 2013 ident: 3125_CR2 publication-title: Nat. Phys. doi: 10.1038/nphys2513 – volume: 4 start-page: eaat0346 year: 2018 ident: 3125_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0346 – volume: 18 start-page: 108 year: 2019 ident: 3125_CR24 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0251-x – volume: 461 start-page: 772 year: 2009 ident: 3125_CR33 publication-title: Nature doi: 10.1038/nature08293 – volume: 566 start-page: 480 year: 2019 ident: 3125_CR5 publication-title: Nature doi: 10.1038/s41586-019-0954-4 – volume: 114 start-page: 223901 year: 2015 ident: 3125_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.223901 – reference: 33473222 - Nature. 2021 Jan;589(7842):356-357 |
SSID | ssj0005174 |
Score | 2.6954954 |
Snippet | Most natural and artificial materials have crystalline structures from which abundant topological phases emerge
1
–
6
. However, the bulk–edge... Most natural and artificial materials have crystalline structures from which abundant topological phases emerge . However, the bulk-edge correspondence-which... Most natural and artificial materials have crystalline structures from which abundant topological phases emerge.sup.1-6. However, the bulk-edge... Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | 639/301/119/2792/4129 639/624/399/1015 Algebraic topology Analysis Bulk solids flow Correspondence Crystal defects Crystal structure Crystallinity Crystallography Crystals Disclinations Electric insulators Electrical equipment and supplies industry Experiments Humanities and Social Sciences Insulators Materials multidisciplinary Observations Photonic crystals Product defects and recalls Properties Robustness Science Science (multidisciplinary) Structure Symmetry Topology |
Title | Bulk–disclination correspondence in topological crystalline insulators |
URI | https://link.springer.com/article/10.1038/s41586-020-03125-3 https://www.ncbi.nlm.nih.gov/pubmed/33473227 https://www.proquest.com/docview/2480007451 https://www.proquest.com/docview/2479748752 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJWSFxQW15pSxVQxUNgNY7t2Dmh7arLgsQKlVbszYodp6qoku1m98CNf-AP-RI8iXe3WZVefJmxZc-MZ_yYB0KH7haRRdykOM9zg5kVBmsmNCaa25SYTGYG3ju-jpLhOfsy5mP_4FZ7t8qFTmwUdV4ZeCM_ipls7B0nHyfXGKpGwe-qL6FxH21C6jJw6RJjsXLxWMvC7INmIiqPame4JLjfRtiJdcwx7RimdfV8wz6tfZg2dmiwhR75A2TYazm-je7Zcgc9aBw5Tb2Dtv1mrcO3PqP0u8doeDy_-vn39x8IwYUAXGBGaJq6HJOqbKqKhpdlOGsLJgDbQjP95c6NkLAbQDUU-aqm9RN0Pjg56w-xL6GADRdihhOwP9okjlM85kUhNXPKLUtyKlJBZSSNTAsH1DbK3eHL0kzmzPIiLggrEqnpU7RRVqV9jkJCciMSpmMuU8ZNJHOSamfcrciEKLgJEFnQTxmfXxzKXFyp5p-bStXSXDmaq4bmigbo_bLPpM2ucSf2IbBFQdqKEvxiLrJ5Xave2Y_-SPUSzt2SiUwC9Oo2tM_fTztIbzxSUblZmsxHI7i1QkKsDuZeB9NMLq_VDejrDvSiZe1tw-x3EN0uNl3wQtaU1yK1Wsl8gF4uwdATPONKW80Bx3ESbp1xgJ61MrokJaVMOIUtAvRhIbSrwf9P592757KHHsbg2BMRHJN9tDGbzu0LdzKb6YNm-7lW9gm0g08HaPP4ZPTt9B-wxzSA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQLa_QAgGVl4rVOIlj54DQUqh2absHuhV7cxPHqSqqZLvZFeqNf-A_-Ci-BE8eu82q9NbzTCx73o7nAbBhbhGRw1RIkiRRxNdckdjnMaEx0yFVkYgU_u_Y7wfdQ__rkA2X4E9TC4NplY1NLA11kiv8R77l-qL0d4x-HJ0RnBqFr6vNCI1KLHb1-U9zZSs-9D4b_r5y3Z0vg-0uqacKEMU4n5AATXKsArN55rI0FbFv9D0KEo-H3BOOUCJMDTDWTmLiEe1FIvE1S92U-mkgYs-sewNuGsfroEbxIZ-nlCx0fa6LdBxPbBXGUQpM93WIUSOXEa_lCBfdwQV_uPBAW_q9nXtwtw5Y7U4lYSuwpLNVuFUmjqpiFVZq41DYb-sO1u_uQ_fT9PTH31-_seQXC36R-bYq54CM8qycYmqfZPakGtCAYmKr8bmJU7FBOIIKHCqWj4sHcHgtxH0Iy1me6cdgU5ooHvixy0ToM-WIhIaxCSY0jzhPmbKANvSTqu5njmM1TmX5ru4JWdFcGprLkubSs2Bz9s2o6uZxJfYGskVim4wM83COo2lRyM7g-3ZfdgLGzJGpCCx4eRla7-BbC-lNjZTmZpcqqqsfzFmxAVcLc62FqUYnZ_IC9HULelyx9rJl1luIxmqoNriRNVlbrULOdcyCFzMwfomZeJnOp4hjOIm3XNeCR5WMzkjpeT43DoJb8L4R2vni_6fzk6v38hxudwf7e3Kv199dgzsuJhU5lLh0HZYn46l-aqLCSfysVEUbjq5b9_8BYLZutA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GgMgXhBbNzCBgQ0bgKrcRzHzgNCZaNqGVRobKJvJnGSaWJKuqYV2hv_wN_wOXwJPrm0SzX2tudzbNnH52b7XAC2zC0idLgOSBzHmniJ0CTyRERoxJOA6lCGGt87Pg_9_oH3ccRHK_CnyYXBsMpGJ5aKOs41vpF3XE-W9o7TTlqHRXzZ6b0bnxDsIIU_rU07jYpFdpPTn-b6Vrwd7Jizfua6vQ_7231SdxggmgsxJT6q50j7ZiPc5WkqI8_IfujHTASCSUdqGaQGGCVObHyThIUy9hKeuin1Ul9GzMx7Ba4KxinKmBiJRXjJUgXoOmHHYbJTGKMpMfTXIUakXE5Yyygum4YztnHps7a0gb1bcLN2Xu1uxW1rsJJk63CtDCLVxTqs1YqisF_W1axf3Yb--9nxj7-_fmP6Lyb_IiPYuuwJMs6zsqOpfZTZ06pZA7KMrSenxmfFYuEIKrDBWD4p7sDBpRD3LqxmeZbcB5vSWAvfi1wuA49rR8Y0iIxjkYhQiJRrC2hDP6Xr2ubYYuNYlX_sTKqK5srQXJU0V8yC1_Mx46qyx4XYW3gsCktmZMh8h-GsKFR3_9v2UHV9zs2WqfQteHoe2uDrXgvpRY2U5maVOqwzIcxesRhXC3OjhanHRyfqDPR5C3pYHe1502y2EI0G0W1ww2uq1mCFWsibBU_mYByJUXlZks8Qx5wk3nhdC-5VPDonJWOeMMZCWPCmYdrF5P-n84OL1_IYrhupV58Gw90NuOFifJFDiUs3YXU6mSUPjYM4jR6VkmjD98sW_X_fcHLq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bulk%E2%80%93disclination+correspondence+in+topological+crystalline+insulators&rft.jtitle=Nature+%28London%29&rft.au=Liu%2C+Yang&rft.au=Leung%2C+Shuwai&rft.au=Li%2C+Fei-Fei&rft.au=Lin%2C+Zhi-Kang&rft.date=2021-01-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=589&rft.issue=7842&rft.spage=381&rft.epage=385H&rft_id=info:doi/10.1038%2Fs41586-020-03125-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |