Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining

•The Microsoft Kinect could be used for rehabilitation training.•Using simple calibration techniques the Kinect provides accurate gait lean data.•Further research is required to determine the benefits of real time feedback using the Kinect. Gait retraining programs are prescribed to assist in the re...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 38; no. 4; pp. 1064 - 1066
Main Authors Clark, Ross A., Pua, Yong-Hao, Bryant, Adam L., Hunt, Michael A.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The Microsoft Kinect could be used for rehabilitation training.•Using simple calibration techniques the Kinect provides accurate gait lean data.•Further research is required to determine the benefits of real time feedback using the Kinect. Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (P<0.001) improved this error to 1.7±1.5° and 0.8±0.8° respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.
AbstractList Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (P<0.001) improved this error to 1.7±1.5° and 0.8±0.8° respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (P<0.001) improved this error to 1.7±1.5° and 0.8±0.8° respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.
Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinectac (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10ADG. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2ADG) magnitude (mean error = 3.2 A- 2.2ADG). Performing global and individualized calibration significantly (P < 0.001) improved this error to 1.7 A- 1.5ADG and 0.8 A- 0.8ADG respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.
Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (P<0.001) improved this error to 1.7±1.5° and 0.8±0.8° respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.
•The Microsoft Kinect could be used for rehabilitation training.•Using simple calibration techniques the Kinect provides accurate gait lean data.•Further research is required to determine the benefits of real time feedback using the Kinect. Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the model, the aim of this study was to assess the concurrent validity of kinematic data recorded using a marker-based 3D motion analysis (3DMA) system and a low-cost alternative, the Microsoft Kinect™ (Kinect), during a gait retraining session. Twenty healthy adults were trained to modify their gait to obtain a lateral trunk lean angle of 10°. Real-time biofeedback of the lateral trunk lean angle was provided on a computer screen in front of the subject using data extracted from the Kinect skeletal tracking algorithm. Marker coordinate data were concurrently recorded using the 3DMA system, and the similarity and equivalency of the trunk lean angle data from each system were compared. The lateral trunk lean angle data obtained from the Kinect system without any form of calibration resulted in errors of a high (>2°) magnitude (mean error=3.2±2.2°). Performing global and individualized calibration significantly (P<0.001) improved this error to 1.7±1.5° and 0.8±0.8° respectively. With the addition of a simple calibration the anatomical position coordinates of the Kinect can be used to create a real-time biofeedback system for gait retraining. Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to laboratory-based gait retraining systems.
Highlights • The Microsoft Kinect could be used for rehabilitation training. • Using simple calibration techniques the Kinect provides accurate gait lean data. • Further research is required to determine the benefits of real time feedback using the Kinect.
Author Hunt, Michael A.
Pua, Yong-Hao
Bryant, Adam L.
Clark, Ross A.
Author_xml – sequence: 1
  givenname: Ross A.
  surname: Clark
  fullname: Clark, Ross A.
  email: ross.clark@acu.edu.au
  organization: School of Exercise Science, Australian Catholic University, Melbourne, Australia
– sequence: 2
  givenname: Yong-Hao
  surname: Pua
  fullname: Pua, Yong-Hao
  organization: Department of Physiotherapy, Singapore General Hospital, Singapore
– sequence: 3
  givenname: Adam L.
  surname: Bryant
  fullname: Bryant, Adam L.
  organization: Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
– sequence: 4
  givenname: Michael A.
  surname: Hunt
  fullname: Hunt, Michael A.
  organization: Department of Physical Therapy, University of British Columbia, Vancouver, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23643880$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1rGzEUFCWlcdL-haBjL3afpF1ZglJaQr9oSg_9uAqt9m0qey25kjbgf18tTnrIoQk8IQlmhmHmnZGTEAMScsFgxYDJV5vVtfVlH3NZcWBiBXW4fkIWTK31knOmT8gCtJRLKSQ_JWc5bwCgEYo_I6dcyPpSsCD2lx1978uBxoGW30i_epdijkOhX3xAV-gQE92neFNR4ZqOtmCyIy1pCls6og10QOw767a0n9IMmY3RhCVZH-r_OXk62DHji9v7nPz88P7H5afl1bePny_fXS1du16XpUDZqrYH6bpe8bbTUgneDVpagcoKq4SF6loPWis1tF09zaAF71vGwAKIc_LyqFvN_pkwF7Pz2eE42oBxyoa1AGspm-YR0KYRQrdKNBV6cQuduh32Zp_8zqaDuUuwAuQRMMeWEw7_IAzMXJXZmLuqzFyVgTpcV-Lre0Tniy0-hjm58WH62yMda6Y3HpPJzmNw2PtUazN99A9LvLkn4cZambPjFg-YN3FKoTZmmMncgPk-r9O8TUwAMKWa_ws8xsFfsFLeBA
CitedBy_id crossref_primary_10_1152_jn_00149_2021
crossref_primary_10_1186_s12938_015_0102_9
crossref_primary_10_3390_s23229263
crossref_primary_10_1016_j_gaitpost_2019_03_020
crossref_primary_10_3390_s18072216
crossref_primary_10_1016_j_riai_2016_07_007
crossref_primary_10_1186_s12859_018_2488_4
crossref_primary_10_1142_S0219519416500378
crossref_primary_10_3390_s16111965
crossref_primary_10_1016_j_gaitpost_2017_09_001
crossref_primary_10_1016_j_injury_2014_08_047
crossref_primary_10_1589_jpts_29_1940
crossref_primary_10_3758_s13428_017_0883_9
crossref_primary_10_1155_2014_964576
crossref_primary_10_1016_j_jbiomech_2013_11_031
crossref_primary_10_1115_1_4032878
crossref_primary_10_1007_s00264_020_04814_4
crossref_primary_10_1016_j_gaitpost_2018_11_029
crossref_primary_10_1109_JSEN_2014_2328340
crossref_primary_10_1016_j_jht_2016_06_010
crossref_primary_10_1016_j_ijmedinf_2019_06_016
crossref_primary_10_1109_ACCESS_2017_2759801
crossref_primary_10_1186_s12984_018_0444_1
crossref_primary_10_2352_J_Percept_Imaging_2020_3_1_010402
crossref_primary_10_1155_2015_186780
crossref_primary_10_3758_s13428_016_0764_7
crossref_primary_10_1016_j_jse_2017_06_004
crossref_primary_10_3390_s22197542
crossref_primary_10_1556_606_2021_00352
crossref_primary_10_1007_s13670_020_00349_z
crossref_primary_10_1016_j_medengphy_2021_08_005
crossref_primary_10_1016_j_clinbiomech_2015_06_007
crossref_primary_10_1016_j_gaitpost_2018_04_010
crossref_primary_10_3414_ME14_01_0120
crossref_primary_10_1186_s12984_018_0419_2
crossref_primary_10_3109_17483107_2015_1080767
crossref_primary_10_1080_02533839_2022_2126404
crossref_primary_10_1080_10447318_2017_1342943
crossref_primary_10_1155_2014_846514
crossref_primary_10_3390_s20123529
crossref_primary_10_7717_peerj_2364
crossref_primary_10_1016_j_smhl_2017_03_002
crossref_primary_10_1016_j_gaitpost_2016_10_001
crossref_primary_10_1016_j_apergo_2015_01_005
crossref_primary_10_1016_j_medntd_2021_100068
crossref_primary_10_1016_j_gaitpost_2016_04_004
crossref_primary_10_3390_ijerph17155620
crossref_primary_10_3414_ME13_01_0109
crossref_primary_10_3390_healthcare9081076
crossref_primary_10_1371_journal_pone_0128809
crossref_primary_10_3233_VES_170602
crossref_primary_10_1080_09593985_2016_1265620
crossref_primary_10_1016_j_compbiomed_2015_08_012
crossref_primary_10_1016_j_jbiomech_2017_10_016
crossref_primary_10_1186_s12984_021_00959_4
crossref_primary_10_1587_transinf_2015EDP7089
crossref_primary_10_1016_j_gaitpost_2015_03_005
crossref_primary_10_1089_g4h_2017_0137
crossref_primary_10_1097_MRR_0000000000000237
crossref_primary_10_3390_brainsci10020094
crossref_primary_10_4018_IJHISI_2019010103
crossref_primary_10_1109_TASE_2020_3010415
crossref_primary_10_1371_journal_pone_0204052
crossref_primary_10_1007_s00500_021_05649_w
crossref_primary_10_1016_j_cmpb_2019_04_019
crossref_primary_10_1155_2019_7175240
crossref_primary_10_3390_ijerph191610032
crossref_primary_10_1016_j_gaitpost_2015_12_034
crossref_primary_10_3389_fneur_2017_00708
crossref_primary_10_1016_j_jbiomech_2019_01_006
crossref_primary_10_1049_iet_cvi_2018_5274
crossref_primary_10_1115_1_4031060
crossref_primary_10_1093_ptj_pzz097
crossref_primary_10_1016_j_jbiomech_2020_109929
crossref_primary_10_1371_journal_pone_0215995
crossref_primary_10_3414_ME14_11_0001
crossref_primary_10_1142_S0218001415550083
crossref_primary_10_3390_s140203362
crossref_primary_10_3390_s23136217
crossref_primary_10_1682_JRRD_2013_12_0263
crossref_primary_10_1016_j_gaitpost_2015_05_002
crossref_primary_10_3138_ptc_2020_0051
crossref_primary_10_4018_IJITN_2020010102
crossref_primary_10_1016_j_heliyon_2024_e26060
crossref_primary_10_1109_ACCESS_2020_3032202
crossref_primary_10_1016_j_jbiomech_2014_11_048
crossref_primary_10_1007_s11044_017_9573_8
crossref_primary_10_1016_j_gaitpost_2015_01_028
Cites_doi 10.1016/j.jbiomech.2010.11.027
10.3233/AIS-2011-0124
10.1089/neu.2010.1649
10.1016/j.gaitpost.2012.03.033
10.1109/TBME.2005.846728
10.1016/j.jbiomech.2007.07.001
10.1198/000313001753272213
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
DOI 10.1016/j.gaitpost.2013.03.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList MEDLINE - Academic
Physical Education Index
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 1066
ExternalDocumentID 23643880
10_1016_j_gaitpost_2013_03_029
S0966636213001884
1_s2_0_S0966636213001884
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
ID FETCH-LOGICAL-c577t-3e6585d06cbd825b96832bf96a3e8a3a83a03649f9988f5b8f54f932d5110a003
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Mon Jul 21 09:51:07 EDT 2025
Fri Jul 11 09:51:45 EDT 2025
Mon Jul 21 06:04:21 EDT 2025
Tue Jul 01 03:47:22 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 23 02:33:12 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 18:56:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Knee adduction moment
Video game
Biofeedback
Gait training
Osteoarthritis
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-3e6585d06cbd825b96832bf96a3e8a3a83a03649f9988f5b8f54f932d5110a003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23643880
PQID 1443395834
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_1500766440
proquest_miscellaneous_1443395834
pubmed_primary_23643880
crossref_primary_10_1016_j_gaitpost_2013_03_029
crossref_citationtrail_10_1016_j_gaitpost_2013_03_029
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2013_03_029
elsevier_clinicalkeyesjournals_1_s2_0_S0966636213001884
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2013_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hunt, Simic, Hinman, Bennell, Wrigley (bib0005) 2011; 44
Clark, Pua, Fortin, Ritchie, Webster, Denehy (bib0015) 2012; 36
Schuirmann (bib0035) 1981; 37
Barker, Rolka, Rolka, Brown (bib0040) 2001; 55
Williams, Clark, Schache, Fini, Moore, Morris (bib0010) 2011; 28
Stone, Skubic (bib0020) 2011; 3
Cappello, Stagni, Fantozzi, Leardini (bib0030) 2005; 52
Mündermann, Asay, Mündermann, Andriacchi (bib0025) 2008; 41
Stone (10.1016/j.gaitpost.2013.03.029_bib0020) 2011; 3
Schuirmann (10.1016/j.gaitpost.2013.03.029_bib0035) 1981; 37
Mündermann (10.1016/j.gaitpost.2013.03.029_bib0025) 2008; 41
Clark (10.1016/j.gaitpost.2013.03.029_bib0015) 2012; 36
Williams (10.1016/j.gaitpost.2013.03.029_bib0010) 2011; 28
Cappello (10.1016/j.gaitpost.2013.03.029_bib0030) 2005; 52
Hunt (10.1016/j.gaitpost.2013.03.029_bib0005) 2011; 44
Barker (10.1016/j.gaitpost.2013.03.029_bib0040) 2001; 55
References_xml – volume: 36
  start-page: 372
  year: 2012
  end-page: 377
  ident: bib0015
  article-title: Validity of the Microsoft Kinect for assessment of postural control
  publication-title: Gait and Posture
– volume: 52
  start-page: 992
  year: 2005
  end-page: 998
  ident: bib0030
  article-title: Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 55
  start-page: 279
  year: 2001
  end-page: 287
  ident: bib0040
  article-title: Equivalence testing for binomial random variables: which test to use?
  publication-title: American Statistician
– volume: 44
  start-page: 943
  year: 2011
  end-page: 947
  ident: bib0005
  article-title: Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback
  publication-title: Journal of Biomechanics
– volume: 28
  start-page: 281
  year: 2011
  end-page: 287
  ident: bib0010
  article-title: Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments
  publication-title: Journal of Neurotrauma
– volume: 3
  start-page: 349
  year: 2011
  end-page: 361
  ident: bib0020
  article-title: Evaluation of an inexpensive depth camera for in-home gait assessment
  publication-title: Journal of Ambient Intelligence and Smart Environments
– volume: 41
  start-page: 165
  year: 2008
  end-page: 170
  ident: bib0025
  article-title: Implications of increased medio-lateral trunk sway for ambulatory mechanics
  publication-title: Journal of Biomechanics
– volume: 37
  start-page: 617
  year: 1981
  ident: bib0035
  article-title: On hypothesis testing to determine if the mean of a normal distribution is contained in a known interval
  publication-title: Biometrics
– volume: 44
  start-page: 943
  year: 2011
  ident: 10.1016/j.gaitpost.2013.03.029_bib0005
  article-title: Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.11.027
– volume: 3
  start-page: 349
  year: 2011
  ident: 10.1016/j.gaitpost.2013.03.029_bib0020
  article-title: Evaluation of an inexpensive depth camera for in-home gait assessment
  publication-title: Journal of Ambient Intelligence and Smart Environments
  doi: 10.3233/AIS-2011-0124
– volume: 28
  start-page: 281
  year: 2011
  ident: 10.1016/j.gaitpost.2013.03.029_bib0010
  article-title: Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2010.1649
– volume: 36
  start-page: 372
  year: 2012
  ident: 10.1016/j.gaitpost.2013.03.029_bib0015
  article-title: Validity of the Microsoft Kinect for assessment of postural control
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2012.03.033
– volume: 52
  start-page: 992
  year: 2005
  ident: 10.1016/j.gaitpost.2013.03.029_bib0030
  article-title: Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.846728
– volume: 41
  start-page: 165
  year: 2008
  ident: 10.1016/j.gaitpost.2013.03.029_bib0025
  article-title: Implications of increased medio-lateral trunk sway for ambulatory mechanics
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2007.07.001
– volume: 37
  start-page: 617
  year: 1981
  ident: 10.1016/j.gaitpost.2013.03.029_bib0035
  article-title: On hypothesis testing to determine if the mean of a normal distribution is contained in a known interval
  publication-title: Biometrics
– volume: 55
  start-page: 279
  year: 2001
  ident: 10.1016/j.gaitpost.2013.03.029_bib0040
  article-title: Equivalence testing for binomial random variables: which test to use?
  publication-title: American Statistician
  doi: 10.1198/000313001753272213
SSID ssj0004382
Score 2.427702
Snippet •The Microsoft Kinect could be used for rehabilitation training.•Using simple calibration techniques the Kinect provides accurate gait lean data.•Further...
Highlights • The Microsoft Kinect could be used for rehabilitation training. • Using simple calibration techniques the Kinect provides accurate gait lean data....
Gait retraining programs are prescribed to assist in the rehabilitation process of many clinical conditions. Using lateral trunk lean modification as the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1064
SubjectTerms Adult
Analysis
Biofeedback
Biofeedback, Psychology - instrumentation
Biomechanical Phenomena
Female
Gait
Gait training
Humans
Knee adduction moment
Male
Orthopedics
Osteoarthritis
Osteoarthritis, Knee - rehabilitation
Reproducibility of Results
Therapy, Computer-Assisted - instrumentation
Therapy, Computer-Assisted - statistics & numerical data
Torso - physiopathology
Video game
Video Games - statistics & numerical data
Young Adult
Title Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636213001884
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636213001884
https://dx.doi.org/10.1016/j.gaitpost.2013.03.029
https://www.ncbi.nlm.nih.gov/pubmed/23643880
https://www.proquest.com/docview/1443395834
https://www.proquest.com/docview/1500766440
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KBfFFtK16fpQtSN_Sy2U_kjweh-W0vSLWSt-W3WRXrj1zR5M--OLf7swmORWtLQoJgbCbbGZmZ36b-ViA17KwuSuFigqZyEiUSR5Za8uIezWy0khpCkpOnp2o6Zl4dy7PN2DS58JQWGWn-1udHrR1d2fYUXO4ms-Hpwi-0VyqhBwyoyyjmqBCpCTlB99-hHmQoyvU21MqotY_ZQlfHHw282a1rCmmcsRDsdMANf9ooG4CoMEQHT6Chx2CZON2kI9hw1VbsD2ucPX85SvbZyGmM_ws34L7s851vg3mEyLuEjE3W3qGqI_NKBSvRi3MjrBB0TCEr6xNzENzxhaGcpMXrLm6ri7ZwpmKebR01hSXrM1tZPRd7Mr1u0zswNnhm4-TadTtr4CMSdMm4g7hhyxjVdgSF4o2Vzi9rc-V4S4z3GTckJcy97gky7y0eAqPeK9EkBYbVAdPYLNaVu4ZMFQVLkmMT32cCSSm9al1KcfHOqoWZAYge6Lqois-TqNb6D7K7EL3zNDEDB3jkeQDGK77rdryG7f2SHue6T65FNWhRgvxbz1d3c3qWo90nehY_yZ5A8jXPX8R3ju9da8XLI0zm9w1pnLLa3ybEJznMuPiL20kuVIR08YDeNpK5ZpOtDUAlfp5_h-jewEPkrD_BwXVvYRNlDn3ClFYY3fDNNuFe-PJh-P3dH17ND35Dq4bNBU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToK9INiAdcAwEuItNI3tfDxWE1NH176wob1ZdmKjbl1aLdnD_vvdJU5h4mtiUvIS-WLHPt_9nPsC-CBzk9lCxEEuIxmIIsoCY0wRcBcPjdRS6pyCk6ezeHwqvpzJsw046GJhyK3Sy_5WpjfS2j8Z-NkcrObzwVcE36gu44gMMsM0FY9gk7JTyR5sjo4m49mP8Eje1Iyi9gER_BQofP7pu57Xq2VFbpVD3uQ7bdDmb3XUnzBoo4sOn8FTDyLZqB3nc9iw5TbsjEo8QF_esI-scets_pdvw-Opt57vgP6GoLtA2M2WjiHwY1PyxqtQELMJNshrhgiWtbF5qNHYQlN48oLVV9flBVtYXTKHys7o_IK14Y2Mvotd2a7QxAs4Pfx8cjAOfIkFXJskqQNuEYHIIoxzU-BZ0WQx7nDjslhzm2quU67JUJk5PJWlThq8hUPIVyBOCzVKhJfQK5el3QWG0sJGkXaJC1OBk2lcYmzC8bWWEgbpPshuUlXu84_T6BaqczQ7V91iKFoMFeIVZX0YrOlWbQaOf1Ik3ZqpLr4UJaJCJfF_lLbyG7tSQ1VFKlS_MF8fsjXlHf69V6_vO8ZSuLnJYqNLu7zG3oTgPJMpF39pI8mairA27MOrlivX80TVASjbz94DRvcOnoxPpsfq-Gg2eQ1bUVMOhHzs3kAP-c--RVBWm32_6W4BeFc1MQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validity+of+the+Microsoft+Kinect+for+providing+lateral+trunk+lean+feedback+during+gait+retraining&rft.jtitle=Gait+%26+posture&rft.au=Clark%2C+Ross&rft.au=Pua%2C+Yong-Hao&rft.au=Bryant%2C+Adam&rft.au=Hunt%2C+Michael&rft.date=2013-09-01&rft.issn=0966-6362&rft.volume=38&rft.issue=4&rft.spage=1064&rft.epage=1066&rft_id=info:doi/10.1016%2Fj.gaitpost.2013.03.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636213X00098%2Fcov150h.gif