Comparison of post-stroke white matter assessment using disconnectome-symptom mapping versus quantitative diffusion MRI
•Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping. Indirect structural disconnec...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 317; p. 121347 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2025
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping.
Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated.
We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract.
Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses.
On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters. |
---|---|
AbstractList | Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters. •Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping. Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters. Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n=57 out of 166; for CC: n=103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one third of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n=57 out of 166; for CC: n=103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one third of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters. Highlights•Comparison of methods for quantifying white matter intactness following stroke. •Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned. •Tracts with low lesion load appear to be less informative for disconnection symptom mapping. |
ArticleNumber | 121347 |
Author | Craddock, Richard C Srivastava, Shraddha Zavaliangos-Petropulu, Artemis Thompson, Paul M Kautz, Steven A Hordacre, Brenton Boyd, Lara A Dula, Adrienne N Lotze, Martin Andrushko, Justin W Warach, Steven J Seo, Na Jin Wong, Kristin A Conforto, Adriana B Donnelly, Miranda R Domin, Martin Liew, Sook-Lei Tavenner, Bethany P Borich, Michael R |
Author_xml | – sequence: 1 givenname: Martin surname: Domin fullname: Domin, Martin organization: Functional Imaging Unit, Diagnostic and Neuroradiology, University Hospital Greifswald, Greifswald, Germany – sequence: 2 givenname: Sook-Lei surname: Liew fullname: Liew, Sook-Lei organization: Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: Brenton surname: Hordacre fullname: Hordacre, Brenton organization: IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia – sequence: 4 givenname: Lara A surname: Boyd fullname: Boyd, Lara A organization: Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 5 givenname: Adriana B surname: Conforto fullname: Conforto, Adriana B organization: Hospital das Clínicas, São Paulo University, São Paulo, Brazil – sequence: 6 givenname: Justin W surname: Andrushko fullname: Andrushko, Justin W organization: Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK – sequence: 7 givenname: Michael R surname: Borich fullname: Borich, Michael R organization: Department of Rehabilitation Medicine, Emory School of Medicine, Atlanta, GA, USA – sequence: 8 givenname: Richard C surname: Craddock fullname: Craddock, Richard C organization: Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA – sequence: 9 givenname: Miranda R surname: Donnelly fullname: Donnelly, Miranda R organization: Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA – sequence: 10 givenname: Adrienne N surname: Dula fullname: Dula, Adrienne N organization: Department of Neurology, Dell Medical School at The University of Texas Austin, Austin, TX, USA – sequence: 11 givenname: Steven J surname: Warach fullname: Warach, Steven J organization: Department of Neurology, Dell Medical School at The University of Texas Austin, Austin, TX, USA – sequence: 12 givenname: Steven A surname: Kautz fullname: Kautz, Steven A organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA – sequence: 13 givenname: Bethany P surname: Tavenner fullname: Tavenner, Bethany P organization: Department of Psychology, University of California Riverside, Riverside, CA, USA – sequence: 14 givenname: Na Jin surname: Seo fullname: Seo, Na Jin organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA – sequence: 15 givenname: Shraddha surname: Srivastava fullname: Srivastava, Shraddha organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA – sequence: 16 givenname: Kristin A surname: Wong fullname: Wong, Kristin A organization: Department of Physical Medicine & Rehabilitation, The University of Texas at Austin, Austin, TX, USA – sequence: 17 givenname: Artemis surname: Zavaliangos-Petropulu fullname: Zavaliangos-Petropulu, Artemis organization: Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, CA, USA – sequence: 18 givenname: Paul M surname: Thompson fullname: Thompson, Paul M organization: Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA – sequence: 19 givenname: Martin orcidid: 0000-0003-4519-4956 surname: Lotze fullname: Lotze, Martin email: martin.lotze@uni-greifswald.de organization: Functional Imaging Unit, Diagnostic and Neuroradiology, University Hospital Greifswald, Greifswald, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40582383$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF1AkNmwy-Jk4GwSMeIxUhMRjbTn2zeBpYqe202r-PU6nDFIlpK58ZX_32Of6nBcnzjsoihKjFUa4frNbOZiDt6PawoogwleYYMqaJ8UZRi2vWt6Qk6XmtBIYt6fFeYw7hFCLmXhWnDLEBaGCnhW3az9OKtjoXen7cvIxVTEFfwXl7W-boBxVShBKFSPEOIJL5Ryt25bGRu2dA538CFXcj1MuMj1Ny-kNhDjH8npWLtmkkr2B3NH3uTdf9PX75nnxtFdDhBf360Xx69PHn-sv1eW3z5v1-8tK86ZJFTWM677pjNGo433d5g3EmDBNNt0w1KvWMAFN34GpGRited9SUjMEzGDU0Ytic9A1Xu3kFPLIwl56ZeXdhg9bqUKyegBJAXdGYE1URxmvuVCc94IbRnpOOkyy1uuD1hT89QwxyTEPAYZBOfBzlJQQLuqWMJrRVw_QnZ-Dy04zRSmrBUFNpl7eU3M3gjk-7-_3ZEAcAB18jAH6I4KRXJIgd_JfEuSSBHlIQm79cGiFPN0bC0FGbcFpMDbkT8v27WNE3j4Q0YN1VqvhCvYQj56wjEQi-WMJ3JI3whGi_M7hu_8LPO4NfwALUO14 |
Cites_doi | 10.1177/1545968310389183 10.1177/1545968311427706 10.1212/WNL.0000000000200517 10.1007/s00429-019-01849-1 10.1016/j.jstrokecerebrovasdis.2011.03.004 10.1016/j.nicl.2017.04.024 10.3389/fnhum.2016.00101 10.1136/jnnp-2021-327211 10.1016/j.neuroimage.2004.03.041 10.1016/j.neuroimage.2017.08.047 10.1161/STROKEAHA.119.025898 10.1093/brain/aws146 10.1016/j.neuroimage.2020.116923 10.1038/nn1050 10.1093/brain/awaa156 10.1161/STROKEAHA.123.043713 10.1371/journal.pone.0098211 10.1016/j.nicl.2014.11.006 10.3174/ajnr.A1697 10.1093/brain/awl333 10.1161/STROKEAHA.109.577023 10.1212/WNL.0b013e3181ccc6d9 10.1016/j.neuroimage.2007.02.049 10.1016/j.neuroimage.2012.03.020 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 The Author(s) – notice: The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. P64 RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2025.121347 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 121347 |
ExternalDocumentID | oai_doaj_org_article_3e1bd81c2ab345658a55f85d42f52b12 40582383 10_1016_j_neuroimage_2025_121347 S1053811925003507 1_s2_0_S1053811925003507 |
Genre | Multicenter Study Journal Article Comparative Study |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BENPR BHPHI BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HCIFZ IHE J1W KOM LG5 LX8 M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K TEORI UV1 YK3 Z5R ZU3 ~G- 29N 53G 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAQFI AAQXK ABUWG ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AFKRA AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN AZQEC BBNVY BPHCQ BVXVI CAG CCPQU COF DWQXO EJD FEDTE FGOYB FYUFA G-2 GNUQQ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ LK8 M1P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ R2- SNS UKHRP WUQ XPP ZMT 6I. AAFTH AAYXX AGRNS ALIPV CITATION RIG CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c577t-3d45cf7bddc0b5f693d40448d7025740fa9d48e7fbed64edcc5f932640e4d10b3 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:31:03 EDT 2025 Wed Jul 02 01:48:19 EDT 2025 Thu Aug 28 04:49:31 EDT 2025 Thu Aug 28 04:48:34 EDT 2025 Wed Aug 06 19:18:02 EDT 2025 Sat Aug 30 17:14:01 EDT 2025 Fri Aug 22 09:50:48 EDT 2025 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stroke Superior longitudinal fasciculus DWI Upper limb function DTI Corticospinal tract White matter integrity Fugl-Meyer Score Corpus callosum |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c577t-3d45cf7bddc0b5f693d40448d7025740fa9d48e7fbed64edcc5f932640e4d10b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4519-4956 |
OpenAccessLink | https://doaj.org/article/3e1bd81c2ab345658a55f85d42f52b12 |
PMID | 40582383 |
PQID | 3233468207 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e1bd81c2ab345658a55f85d42f52b12 proquest_miscellaneous_3225869243 proquest_journals_3233468207 pubmed_primary_40582383 crossref_primary_10_1016_j_neuroimage_2025_121347 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121347 elsevier_clinicalkeyesjournals_1_s2_0_S1053811925003507 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121347 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-15 |
PublicationDateYYYYMMDD | 2025-08-15 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Mori (bib0017) 2005 Griffis, Metcalf, Corbetta, Shulman (bib0008) 2021; 30 Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut De Schotten, Corbetta (bib0020) 2020; 143 Domin, Langner, Hosten, Lotze (bib0005) 2014; 9 Bates, Wilson, Saygin, Dick, Sereno, Knight, Dronkers (bib0001) 2003; 6 Qiu, Darling, Morecraft, Ni, Rajendra, Butler (bib0018) 2011; 25 Bonkhoff, Hope, Bzdok, Guggisberg, Hawe, Dukelow, Chollet, Lin, Grefkes, Bowman (bib0002) 2022; 93 Schulz, Braass, Liuzzi, Hoerniss, Lechner, Gerloff, Hummel (bib0021) 2015; 7 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (bib0027) 2020; 217 Domin, Lotze (bib0006) 2019; 224 Lindow, Domin, Grothe, Horn, Eickhoff, Lotze (bib0015) 2016; 10 Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (bib0007) 2017; 161 Zhu, Lindenberg, Alexander, Schlaug (bib0028) 2010; 41 Cardenas, Sarlls, Kwan, Bageac, Gala, Danielian, Ray-Chaudhury, Wang, Miller, Foxley, Jbabdi, Welsh, Floeter (bib0003) 2017; 15 Wang, Wu, Cai, Lau, Cheung, Khong (bib0026) 2009; 30 Hayward, Ferris, Lohse, Borich, Borstad, Cassidy, Cramer, Dukelow, Findlater, Hawe, Liew, Neva, Stewart, Boyd (bib0009) 2022; 99 Stinear, Barber, Smale, Coxon, Fleming, Byblow (bib0023) 2007; 130 Hordacre, Lotze, Jenkinson, Lazari, Barras, Boyd, Hillier (bib0010) 2021; 29 Liew, Zavaliangos-Petropulu, Jahanshad, Lang, Hayward, Lohse, Juliano, Assogna, Baugh, Bhattacharya, Bigjahan, Borich, Boyd, Brodtmann, Buetefisch, Byblow, Cassidy, Conforto, Craddock, Dimyan, Dula, Ermer, Etherton, Fercho, Gregory, Hadidchi, Holguin, Hwang, Jung, Kautz, Khlif, Khoshab, Kim, Kim, Kuceyeski, Lotze, MacIntosh, Margetis, Mohamed, Piras, Ramos-Murguialday, Richard, Roberts, Robertson, Rondina, Rost, Sanossian, Schweighofer, Seo, Shiroishi, Soekadar, Spalletta, Stinear, Suri, Tang, Thielman, Vecchio, Villringer, Ward, Werden, Westlye, Winstein, Wittenberg, Wong, Yu, Cramer, Thompson (bib0012) 2020 Lindenberg, Renga, Zhu, Betzler, Alsop, Schlaug (bib0014) 2010; 74 Stinear, Barber, Petoe, Anwar, Byblow (bib0022) 2012; 135 Thomalla, Glauche, Koch, Beaulieu, Weiller, Röther (bib0024) 2004; 22 Koyama, Tsuji, Miyake, Ohmura, Domen (bib0011) 2012; 21 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, Van Zijl, Mori (bib0025) 2007; 36 Lotze, Beutling, Loibl, Domin, Platz, Schminke, Byblow (bib0016) 2012; 26 Rorden, Bonilha, Fridriksson, Bender, Karnath (bib0019) 2012; 61 Domin, Hordacre, Hok, Boyd, Conforto, Andrushko, Borich, Craddock, Donnelly, Dula, Warach, Kautz, Lo, Schranz, Seo, Srivastava, Wong, Zavaliangos-Petropulu, Thompson, Liew, Lotze (bib0004) 2023; 54 Lin, Cloutier, Erler, Cassidy, Snider, Ranford, Parlman, Giatsidis, Burke, Schwamm, Finklestein, Hochberg, Cramer (bib0013) 2019; 50 Warrington (10.1016/j.neuroimage.2025.121347_bib0027) 2020; 217 Wakana (10.1016/j.neuroimage.2025.121347_bib0025) 2007; 36 Hordacre (10.1016/j.neuroimage.2025.121347_bib0010) 2021; 29 Lin (10.1016/j.neuroimage.2025.121347_bib0013) 2019; 50 Stinear (10.1016/j.neuroimage.2025.121347_bib0022) 2012; 135 Koyama (10.1016/j.neuroimage.2025.121347_bib0011) 2012; 21 Wang (10.1016/j.neuroimage.2025.121347_bib0026) 2009; 30 Bonkhoff (10.1016/j.neuroimage.2025.121347_bib0002) 2022; 93 Hayward (10.1016/j.neuroimage.2025.121347_bib0009) 2022; 99 Mori (10.1016/j.neuroimage.2025.121347_bib0017) 2005 Rorden (10.1016/j.neuroimage.2025.121347_bib0019) 2012; 61 Schulz (10.1016/j.neuroimage.2025.121347_bib0021) 2015; 7 Cardenas (10.1016/j.neuroimage.2025.121347_bib0003) 2017; 15 Domin (10.1016/j.neuroimage.2025.121347_bib0004) 2023; 54 Domin (10.1016/j.neuroimage.2025.121347_bib0005) 2014; 9 Zhu (10.1016/j.neuroimage.2025.121347_bib0028) 2010; 41 Lindenberg (10.1016/j.neuroimage.2025.121347_bib0014) 2010; 74 Lindow (10.1016/j.neuroimage.2025.121347_bib0015) 2016; 10 Salvalaggio (10.1016/j.neuroimage.2025.121347_bib0020) 2020; 143 Qiu (10.1016/j.neuroimage.2025.121347_bib0018) 2011; 25 Liew (10.1016/j.neuroimage.2025.121347_bib0012) 2020 Lotze (10.1016/j.neuroimage.2025.121347_bib0016) 2012; 26 Griffis (10.1016/j.neuroimage.2025.121347_bib0008) 2021; 30 Domin (10.1016/j.neuroimage.2025.121347_bib0006) 2019; 224 Thomalla (10.1016/j.neuroimage.2025.121347_bib0024) 2004; 22 Fortin (10.1016/j.neuroimage.2025.121347_bib0007) 2017; 161 Stinear (10.1016/j.neuroimage.2025.121347_bib0023) 2007; 130 Bates (10.1016/j.neuroimage.2025.121347_bib0001) 2003; 6 |
References_xml | – volume: 99 start-page: e402 year: 2022 end-page: e413 ident: bib0009 article-title: Observational study of neuroimaging biomarkers of severe upper limb impairment after stroke publication-title: Neurology. – volume: 15 start-page: 200 year: 2017 end-page: 208 ident: bib0003 article-title: Pathology of callosal damage in ALS: an ex-vivo, 7 T diffusion tensor MRI study publication-title: NeuroImage – volume: 130 start-page: 170 year: 2007 end-page: 180 ident: bib0023 article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity publication-title: Brain – volume: 143 start-page: 2173 year: 2020 end-page: 2188 ident: bib0020 article-title: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection publication-title: Brain – volume: 22 start-page: 1767 year: 2004 end-page: 1774 ident: bib0024 article-title: Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke publication-title: Neuroimage – volume: 41 start-page: 910 year: 2010 end-page: 915 ident: bib0028 article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke publication-title: Stroke – volume: 93 start-page: 369 year: 2022 end-page: 378 ident: bib0002 article-title: Recovery after stroke: the severely impaired are a distinct group publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 135 start-page: 2527 year: 2012 end-page: 2535 ident: bib0022 article-title: The PREP algorithm predicts potential for upper limb recovery after stroke publication-title: Brain: J. Neurol. – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: bib0007 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – volume: 21 start-page: 704 year: 2012 end-page: 711 ident: bib0011 article-title: Motor outcome for patients with acute intracerebral hemorrhage predicted using diffusion tensor imaging: an application of ordinal logistic modeling publication-title: J. Stroke Cerebrovasc. Dis. – volume: 54 start-page: 2438 year: 2023 end-page: 2441 ident: bib0004 article-title: White matter integrity and chronic poststroke upper limb function: an ENIGMA stroke recovery analysis publication-title: Stroke – volume: 30 year: 2021 ident: bib0008 article-title: Lesion Quantification Toolkit: a MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions publication-title: NeuroImage: Clin. – volume: 7 start-page: 82 year: 2015 end-page: 86 ident: bib0021 article-title: White matter integrity of premotor–motor connections is associated with motor output in chronic stroke patients publication-title: Neuroimage: Clin. – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bib0025 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 74 start-page: 280 year: 2010 end-page: 287 ident: bib0014 article-title: Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke publication-title: Neurology. – volume: 25 start-page: 275 year: 2011 end-page: 284 ident: bib0018 article-title: White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke publication-title: Neurorehabil. Neural Repair. – volume: 6 start-page: 448 year: 2003 end-page: 450 ident: bib0001 article-title: Voxel-based lesion–symptom mapping publication-title: Nat. Neurosci. – volume: 224 start-page: 1447 year: 2019 end-page: 1455 ident: bib0006 article-title: Parcellation of motor cortex-associated regions in the human corpus callosum on the basis of Human Connectome Project data publication-title: Brain Struct. Funct. – volume: 26 start-page: 594 year: 2012 end-page: 603 ident: bib0016 article-title: Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients publication-title: Neurorehabil. Neural Repair. – year: 2005 ident: bib0017 article-title: MRI Atlas of Human White Matter – volume: 217 year: 2020 ident: bib0027 article-title: XTRACT - standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 61 start-page: 957 year: 2012 end-page: 965 ident: bib0019 article-title: Age-specific CT and MRI templates for spatial normalization publication-title: Neuroimage – volume: 50 start-page: 3569 year: 2019 end-page: 3577 ident: bib0013 article-title: Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke publication-title: Stroke – volume: 30 start-page: 1907 year: 2009 end-page: 1913 ident: bib0026 article-title: Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging publication-title: AJNR Am. J. Neuroradiol. – volume: 10 year: 2016 ident: bib0015 article-title: Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke publication-title: Front. Hum. Neurosci. – volume: 9 year: 2014 ident: bib0005 article-title: Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects publication-title: PLoS. One – volume: 29 year: 2021 ident: bib0010 article-title: Fronto-parietal involvement in chronic stroke motor performance when corticospinal tract integrity is compromised publication-title: NeuroImage – year: 2020 ident: bib0012 article-title: The ENIGMA Stroke Recovery Working Group: big data neuroimaging to study brain-behavior relationships after stroke publication-title: Hum. Brain Mapp. – volume: 25 start-page: 275 year: 2011 ident: 10.1016/j.neuroimage.2025.121347_bib0018 article-title: White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke publication-title: Neurorehabil. Neural Repair. doi: 10.1177/1545968310389183 – volume: 26 start-page: 594 year: 2012 ident: 10.1016/j.neuroimage.2025.121347_bib0016 article-title: Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients publication-title: Neurorehabil. Neural Repair. doi: 10.1177/1545968311427706 – volume: 99 start-page: e402 year: 2022 ident: 10.1016/j.neuroimage.2025.121347_bib0009 article-title: Observational study of neuroimaging biomarkers of severe upper limb impairment after stroke publication-title: Neurology. doi: 10.1212/WNL.0000000000200517 – volume: 29 year: 2021 ident: 10.1016/j.neuroimage.2025.121347_bib0010 article-title: Fronto-parietal involvement in chronic stroke motor performance when corticospinal tract integrity is compromised publication-title: NeuroImage – volume: 224 start-page: 1447 year: 2019 ident: 10.1016/j.neuroimage.2025.121347_bib0006 article-title: Parcellation of motor cortex-associated regions in the human corpus callosum on the basis of Human Connectome Project data publication-title: Brain Struct. Funct. doi: 10.1007/s00429-019-01849-1 – volume: 21 start-page: 704 year: 2012 ident: 10.1016/j.neuroimage.2025.121347_bib0011 article-title: Motor outcome for patients with acute intracerebral hemorrhage predicted using diffusion tensor imaging: an application of ordinal logistic modeling publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2011.03.004 – year: 2005 ident: 10.1016/j.neuroimage.2025.121347_bib0017 – volume: 15 start-page: 200 year: 2017 ident: 10.1016/j.neuroimage.2025.121347_bib0003 article-title: Pathology of callosal damage in ALS: an ex-vivo, 7 T diffusion tensor MRI study publication-title: NeuroImage doi: 10.1016/j.nicl.2017.04.024 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2025.121347_bib0015 article-title: Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2016.00101 – volume: 93 start-page: 369 year: 2022 ident: 10.1016/j.neuroimage.2025.121347_bib0002 article-title: Recovery after stroke: the severely impaired are a distinct group publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2021-327211 – volume: 22 start-page: 1767 year: 2004 ident: 10.1016/j.neuroimage.2025.121347_bib0024 article-title: Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.041 – volume: 161 start-page: 149 year: 2017 ident: 10.1016/j.neuroimage.2025.121347_bib0007 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 50 start-page: 3569 year: 2019 ident: 10.1016/j.neuroimage.2025.121347_bib0013 article-title: Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke publication-title: Stroke doi: 10.1161/STROKEAHA.119.025898 – volume: 135 start-page: 2527 year: 2012 ident: 10.1016/j.neuroimage.2025.121347_bib0022 article-title: The PREP algorithm predicts potential for upper limb recovery after stroke publication-title: Brain: J. Neurol. doi: 10.1093/brain/aws146 – volume: 217 year: 2020 ident: 10.1016/j.neuroimage.2025.121347_bib0027 article-title: XTRACT - standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 6 start-page: 448 year: 2003 ident: 10.1016/j.neuroimage.2025.121347_bib0001 article-title: Voxel-based lesion–symptom mapping publication-title: Nat. Neurosci. doi: 10.1038/nn1050 – volume: 143 start-page: 2173 year: 2020 ident: 10.1016/j.neuroimage.2025.121347_bib0020 article-title: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection publication-title: Brain doi: 10.1093/brain/awaa156 – volume: 54 start-page: 2438 year: 2023 ident: 10.1016/j.neuroimage.2025.121347_bib0004 article-title: White matter integrity and chronic poststroke upper limb function: an ENIGMA stroke recovery analysis publication-title: Stroke doi: 10.1161/STROKEAHA.123.043713 – volume: 30 year: 2021 ident: 10.1016/j.neuroimage.2025.121347_bib0008 article-title: Lesion Quantification Toolkit: a MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions publication-title: NeuroImage: Clin. – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2025.121347_bib0005 article-title: Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects publication-title: PLoS. One doi: 10.1371/journal.pone.0098211 – volume: 7 start-page: 82 year: 2015 ident: 10.1016/j.neuroimage.2025.121347_bib0021 article-title: White matter integrity of premotor–motor connections is associated with motor output in chronic stroke patients publication-title: Neuroimage: Clin. doi: 10.1016/j.nicl.2014.11.006 – year: 2020 ident: 10.1016/j.neuroimage.2025.121347_bib0012 article-title: The ENIGMA Stroke Recovery Working Group: big data neuroimaging to study brain-behavior relationships after stroke publication-title: Hum. Brain Mapp. – volume: 30 start-page: 1907 year: 2009 ident: 10.1016/j.neuroimage.2025.121347_bib0026 article-title: Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A1697 – volume: 130 start-page: 170 year: 2007 ident: 10.1016/j.neuroimage.2025.121347_bib0023 article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity publication-title: Brain doi: 10.1093/brain/awl333 – volume: 41 start-page: 910 year: 2010 ident: 10.1016/j.neuroimage.2025.121347_bib0028 article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.109.577023 – volume: 74 start-page: 280 year: 2010 ident: 10.1016/j.neuroimage.2025.121347_bib0014 article-title: Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke publication-title: Neurology. doi: 10.1212/WNL.0b013e3181ccc6d9 – volume: 36 start-page: 630 year: 2007 ident: 10.1016/j.neuroimage.2025.121347_bib0025 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 61 start-page: 957 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2025.121347_bib0019 article-title: Age-specific CT and MRI templates for spatial normalization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.020 |
SSID | ssj0009148 |
Score | 2.484416 |
Snippet | •Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is... Highlights•Comparison of methods for quantifying white matter intactness following stroke. •Only FA-method demonstrates compensatory importance of other tracts... Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW)... Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW)... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 121347 |
SubjectTerms | Adult Aged Anisotropy Brain Mapping - methods Corpus callosum Corticospinal tract Databases, Factual Diffusion Magnetic Resonance Imaging - methods Diffusion Tensor Imaging - methods DTI DWI Eigenvectors Female Fugl-Meyer Score Humans Lesions Magnetic resonance imaging Male Middle Aged Pyramidal tracts Pyramidal Tracts - diagnostic imaging Pyramidal Tracts - pathology Radiology/Diagnostic Imaging Registration Stroke Stroke - diagnostic imaging Stroke - pathology Substantia alba Superior longitudinal fasciculus Upper limb function White Matter - diagnostic imaging White Matter - pathology White matter integrity |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDcpBRmJa7pJbMeJeoIVVUEqB6BSb1Yc26sFbbJsElVc-tuZcZxUK0CqxC1xJrHlGY-f45lnQt6Ci7OyhGWJQ54h7goTa1Oz2CRItgYjXTofbfE5P7_kn67E1QFZTrkwGFYZfP_o0723DiWL0JuL7Xq9-ArIAKYbQCjCb49hRjnnEq385OY2zKNM-ZgOJ1iM0iGaZ4zx8pyR6w2MXFgpZuLE85vJvSnKM_nvzVT_QqJ-Rjp7SB4EKEnfja19RA5s85jcuwib5U_I9XI-Y5C2jm7bro-7ftf-sPQaNw_oxnNr0mom56QYBb-imKmL8S91325s3P3abOECpJHKYUUxjmPo6M-hanyCGrhLisesDPjfjV58-fiUXJ59-LY8j8M5C3EtpOxjZriondTG1IkWLi-hIIFlm5HQJ5InrioNL6x02pqcW1PXwiHs44nlJk00e0YOm7axLwjNLRTLsuQ2rTgIafgqE1rL3GVGWhGRdOpatR3pNNQUZ_Zd3apDoTrUqI6IvEcdzPJIiO0L2t1KBYtQzKbaFGmdVZohSC0qIcD8DM-cyHSaRaScNKimnFPwkvCh9R0aIP_2ru3CcO9UqrpMJeoPk4zI6fzmnlXfsd7jydTUXBXLGOM54DZ4_GZ-DD4BN3qqxrYDymSiyGFlzSLyfDTRufcAoBcA09jRfzXtJbmPd_hzPRXH5LDfDfYVoLNev_bD7zfKoTqp priority: 102 providerName: Elsevier |
Title | Comparison of post-stroke white matter assessment using disconnectome-symptom mapping versus quantitative diffusion MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003507 https://www.clinicalkey.es/playcontent/1-s2.0-S1053811925003507 https://dx.doi.org/10.1016/j.neuroimage.2025.121347 https://www.ncbi.nlm.nih.gov/pubmed/40582383 https://www.proquest.com/docview/3233468207 https://www.proquest.com/docview/3225869243 https://doaj.org/article/3e1bd81c2ab345658a55f85d42f52b12 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9UwFG8QEuMLUfy6iDcl8XW49WPd4hMSyQUCDyoJb826tgTN3a5sC_HFv91zug8k0cgDb0vXds35aH9nPf2VkHcwxTmVQ1jikWdI-MxGxpY8sjGSrYGnKx-yLc7Sxbk4vpAXf1z1hTlhPT1wL7j33CXGZknJCsMRfWSFlNCvFcxLZsL9wgzWvDGYGul2AeUPeTt9Nldgh7xago9CTMjkXmAyU3cWo8DZf2dN-hfmDGvP4VOyOYBGut8P9hlZc9UWeXw6bIs_JzcH022CtPZ0VTdt1LTX9XdHb3CbgC4DiyYtJhpOivnulxTP5GKmS9nWSxc1P5creIDaSNpwSTFjo2voj66owlE0mBgpXqjS4R82evr56AU5P_z09WARDTcqRKVUqo24FbL0ylhbxkb6NIeCGAI0q0AmSsS-yK3InPLG2VQ4W5bSI8ATsRM2iQ1_SdarunKvCU0dFKs8Fy4pBFQy0CuXxqjUM6ucnJFkFK1e9cQZeswo-6Zv1aFRHbpXx4x8RB1M9ZH6OhSAQejBIPT_DGJG8lGDejxdCvMhdHR1jwGov7V1zeDYjU50w3SsvwAsBawD8FiGvVlo-WFqOWCXHpPc87s7o6np6VOccS5SQGjwend6Dd6PWzpF5eoO6zCZpRBD8xl51ZvoJD2A4hkAMr79EFJ9Q57gePFveiJ3yHp73bm3AMdaMyeP9n4lc7Kxf3SyOJsHP_wNrJg4Tg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGJ8FeEN8EBhiJ19AktuNEPI2KqWVrH2CT9mbFsV0V1KRrUk3899zla6oAaRJvkb9i-c7nn-27nwn5ACbOyhS2JQ55hrhLjK9NznwTINkazHTpGm-LRTy95F-vxNUBmfSxMOhW2dn-1qY31rpLGXejOd6sVuPvgAxguQGEIprrMXmPHCI7lRiRw5PZ2XRxy70b8jYiTjAfK3QOPa2bV0MbuVrD5IXNYiQ-NhRncm-Vasj89xarf4HRZlE6fUQedmiSnrQdfkwObPGE3J939-VPyc1keGaQlo5uyqr2q3pb_rT0Bu8P6Lqh16TZwM9J0RF-STFYF11g8rpcW7_6td7AB5RGNoclRVeOXUWvd1nRxKiBxaT40soOj97o_NvsGbk8_XIxmfrdUwt-LqSsfWa4yJ3UxuSBFi5OISGAnZuRMCaSBy5LDU-sdNqamFuT58Ih8uOB5SYMNHtORkVZ2JeExhaSZZpyG2YcCmlolQmtZewiI63wSNgPrdq0jBqqdzX7oW7FoVAcqhWHRz6jDIbyyIndJJTbpeqUQjEbapOEeZRphjg1yYQADTQ8ciLSYeSRtJeg6sNOwVBCQ6s7dED-ra6tuhlfqVBVkQrUH1rpkU9DzT3FvuN_j3tVU8OvWMQYjwG6Qfb7IRvMAt71ZIUtd1gmEkkMm2vmkRetig6jBxg9AaTGXv1X196RB9OL-bk6ny3OXpMjzMGz9lAck1G93dk3ANZq_babjL8BU0Y-6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+post-stroke+white+matter+assessment+using+disconnectome-symptom+mapping+versus+quantitative+diffusion+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Domin%2C+Martin&rft.au=Liew%2C+Sook-Lei&rft.au=Hordacre%2C+Brenton&rft.au=Boyd%2C+Lara+A&rft.date=2025-08-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=317&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121347&rft.externalDocID=S1053811925003507 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10538119%2FS1053811925X00100%2Fcov150h.gif |