Comparison of post-stroke white matter assessment using disconnectome-symptom mapping versus quantitative diffusion MRI

•Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping. Indirect structural disconnec...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 317; p. 121347
Main Authors Domin, Martin, Liew, Sook-Lei, Hordacre, Brenton, Boyd, Lara A, Conforto, Adriana B, Andrushko, Justin W, Borich, Michael R, Craddock, Richard C, Donnelly, Miranda R, Dula, Adrienne N, Warach, Steven J, Kautz, Steven A, Tavenner, Bethany P, Seo, Na Jin, Srivastava, Shraddha, Wong, Kristin A, Zavaliangos-Petropulu, Artemis, Thompson, Paul M, Lotze, Martin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2025
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping. Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.
AbstractList Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.
•Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned.•Tracts with low lesion load appear to be less informative for disconnection symptom mapping. Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n = 57 out of 166; for CC: n = 103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one-third-of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.
Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n=57 out of 166; for CC: n=103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one third of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW) imaging for each individual. Although widely used this method has not been validated. We analyzed a multicenter dataset obtained from 166 individuals in the chronic stage after stroke with upper limb impairment quantified with Fugl-Meyer upper extremity score (FMUE) comprising stroke lesion maps and MDDW imaging. White matter integrity was quantified (1) by diffusion-tensor-imaging-based fractional anisotropy in preselected tracts (fractional anisotropy method; FAM) and (2) by extracting a percentage of tract disconnection by masking each tract of a predefined tractography atlas using the individual map (disconnection-symptom mapping; DSM). We also calculated a lateralization index for the fractional anisotropy between both hemispheres. The following tracts were tested: corticospinal tract (CST), superior lateral fasciculus (SLF) and corpus callosum (CC) but also optic radiation (OR) as a control tract. Both methods (FAM, DSM) showed comparable results for the association of white matter integrity of the CST with FMUE. DSM showed a strong association with FMUE likely because of the number of participants who failed to show an overlap of the tracts and lesion masks (for CST: n=57 out of 166; for CC: n=103 out of 166) whereas with FAM these participants could be used for further analyses. On the first view, our data support the use of white matter integrity quantification based on DSM in individuals with chronic stroke. However, at least one third of cases (for CC even worse) showed no overlap of lesion and tract resulting in artificially high associations with clinical parameters.
Highlights•Comparison of methods for quantifying white matter intactness following stroke. •Only FA-method demonstrates compensatory importance of other tracts if CST is severely lesioned. •Tracts with low lesion load appear to be less informative for disconnection symptom mapping.
ArticleNumber 121347
Author Craddock, Richard C
Srivastava, Shraddha
Zavaliangos-Petropulu, Artemis
Thompson, Paul M
Kautz, Steven A
Hordacre, Brenton
Boyd, Lara A
Dula, Adrienne N
Lotze, Martin
Andrushko, Justin W
Warach, Steven J
Seo, Na Jin
Wong, Kristin A
Conforto, Adriana B
Donnelly, Miranda R
Domin, Martin
Liew, Sook-Lei
Tavenner, Bethany P
Borich, Michael R
Author_xml – sequence: 1
  givenname: Martin
  surname: Domin
  fullname: Domin, Martin
  organization: Functional Imaging Unit, Diagnostic and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
– sequence: 2
  givenname: Sook-Lei
  surname: Liew
  fullname: Liew, Sook-Lei
  organization: Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Brenton
  surname: Hordacre
  fullname: Hordacre, Brenton
  organization: IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
– sequence: 4
  givenname: Lara A
  surname: Boyd
  fullname: Boyd, Lara A
  organization: Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 5
  givenname: Adriana B
  surname: Conforto
  fullname: Conforto, Adriana B
  organization: Hospital das Clínicas, São Paulo University, São Paulo, Brazil
– sequence: 6
  givenname: Justin W
  surname: Andrushko
  fullname: Andrushko, Justin W
  organization: Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
– sequence: 7
  givenname: Michael R
  surname: Borich
  fullname: Borich, Michael R
  organization: Department of Rehabilitation Medicine, Emory School of Medicine, Atlanta, GA, USA
– sequence: 8
  givenname: Richard C
  surname: Craddock
  fullname: Craddock, Richard C
  organization: Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
– sequence: 9
  givenname: Miranda R
  surname: Donnelly
  fullname: Donnelly, Miranda R
  organization: Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
– sequence: 10
  givenname: Adrienne N
  surname: Dula
  fullname: Dula, Adrienne N
  organization: Department of Neurology, Dell Medical School at The University of Texas Austin, Austin, TX, USA
– sequence: 11
  givenname: Steven J
  surname: Warach
  fullname: Warach, Steven J
  organization: Department of Neurology, Dell Medical School at The University of Texas Austin, Austin, TX, USA
– sequence: 12
  givenname: Steven A
  surname: Kautz
  fullname: Kautz, Steven A
  organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA
– sequence: 13
  givenname: Bethany P
  surname: Tavenner
  fullname: Tavenner, Bethany P
  organization: Department of Psychology, University of California Riverside, Riverside, CA, USA
– sequence: 14
  givenname: Na Jin
  surname: Seo
  fullname: Seo, Na Jin
  organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA
– sequence: 15
  givenname: Shraddha
  surname: Srivastava
  fullname: Srivastava, Shraddha
  organization: Department of Health Sciences & Research, Medical University of South Carolina, Charleston, SC, USA
– sequence: 16
  givenname: Kristin A
  surname: Wong
  fullname: Wong, Kristin A
  organization: Department of Physical Medicine & Rehabilitation, The University of Texas at Austin, Austin, TX, USA
– sequence: 17
  givenname: Artemis
  surname: Zavaliangos-Petropulu
  fullname: Zavaliangos-Petropulu, Artemis
  organization: Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
– sequence: 18
  givenname: Paul M
  surname: Thompson
  fullname: Thompson, Paul M
  organization: Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
– sequence: 19
  givenname: Martin
  orcidid: 0000-0003-4519-4956
  surname: Lotze
  fullname: Lotze, Martin
  email: martin.lotze@uni-greifswald.de
  organization: Functional Imaging Unit, Diagnostic and Neuroradiology, University Hospital Greifswald, Greifswald, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40582383$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF1AkNmwy-Jk4GwSMeIxUhMRjbTn2zeBpYqe202r-PU6nDFIlpK58ZX_32Of6nBcnzjsoihKjFUa4frNbOZiDt6PawoogwleYYMqaJ8UZRi2vWt6Qk6XmtBIYt6fFeYw7hFCLmXhWnDLEBaGCnhW3az9OKtjoXen7cvIxVTEFfwXl7W-boBxVShBKFSPEOIJL5Ryt25bGRu2dA538CFXcj1MuMj1Ny-kNhDjH8npWLtmkkr2B3NH3uTdf9PX75nnxtFdDhBf360Xx69PHn-sv1eW3z5v1-8tK86ZJFTWM677pjNGo433d5g3EmDBNNt0w1KvWMAFN34GpGRited9SUjMEzGDU0Ytic9A1Xu3kFPLIwl56ZeXdhg9bqUKyegBJAXdGYE1URxmvuVCc94IbRnpOOkyy1uuD1hT89QwxyTEPAYZBOfBzlJQQLuqWMJrRVw_QnZ-Dy04zRSmrBUFNpl7eU3M3gjk-7-_3ZEAcAB18jAH6I4KRXJIgd_JfEuSSBHlIQm79cGiFPN0bC0FGbcFpMDbkT8v27WNE3j4Q0YN1VqvhCvYQj56wjEQi-WMJ3JI3whGi_M7hu_8LPO4NfwALUO14
Cites_doi 10.1177/1545968310389183
10.1177/1545968311427706
10.1212/WNL.0000000000200517
10.1007/s00429-019-01849-1
10.1016/j.jstrokecerebrovasdis.2011.03.004
10.1016/j.nicl.2017.04.024
10.3389/fnhum.2016.00101
10.1136/jnnp-2021-327211
10.1016/j.neuroimage.2004.03.041
10.1016/j.neuroimage.2017.08.047
10.1161/STROKEAHA.119.025898
10.1093/brain/aws146
10.1016/j.neuroimage.2020.116923
10.1038/nn1050
10.1093/brain/awaa156
10.1161/STROKEAHA.123.043713
10.1371/journal.pone.0098211
10.1016/j.nicl.2014.11.006
10.3174/ajnr.A1697
10.1093/brain/awl333
10.1161/STROKEAHA.109.577023
10.1212/WNL.0b013e3181ccc6d9
10.1016/j.neuroimage.2007.02.049
10.1016/j.neuroimage.2012.03.020
ContentType Journal Article
Copyright 2025 The Author(s)
The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2025.121347
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 121347
ExternalDocumentID oai_doaj_org_article_3e1bd81c2ab345658a55f85d42f52b12
40582383
10_1016_j_neuroimage_2025_121347
S1053811925003507
1_s2_0_S1053811925003507
Genre Multicenter Study
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HCIFZ
IHE
J1W
KOM
LG5
LX8
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
TEORI
UV1
YK3
Z5R
ZU3
~G-
29N
53G
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAQFI
AAQXK
ABUWG
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFKRA
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
AZQEC
BBNVY
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
EJD
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
LK8
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
R2-
SNS
UKHRP
WUQ
XPP
ZMT
6I.
AAFTH
AAYXX
AGRNS
ALIPV
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c577t-3d45cf7bddc0b5f693d40448d7025740fa9d48e7fbed64edcc5f932640e4d10b3
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:31:03 EDT 2025
Wed Jul 02 01:48:19 EDT 2025
Thu Aug 28 04:49:31 EDT 2025
Thu Aug 28 04:48:34 EDT 2025
Wed Aug 06 19:18:02 EDT 2025
Sat Aug 30 17:14:01 EDT 2025
Fri Aug 22 09:50:48 EDT 2025
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stroke
Superior longitudinal fasciculus
DWI
Upper limb function
DTI
Corticospinal tract
White matter integrity
Fugl-Meyer Score
Corpus callosum
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-3d45cf7bddc0b5f693d40448d7025740fa9d48e7fbed64edcc5f932640e4d10b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4519-4956
OpenAccessLink https://doaj.org/article/3e1bd81c2ab345658a55f85d42f52b12
PMID 40582383
PQID 3233468207
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3e1bd81c2ab345658a55f85d42f52b12
proquest_miscellaneous_3225869243
proquest_journals_3233468207
pubmed_primary_40582383
crossref_primary_10_1016_j_neuroimage_2025_121347
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121347
elsevier_clinicalkeyesjournals_1_s2_0_S1053811925003507
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121347
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2025
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Mori (bib0017) 2005
Griffis, Metcalf, Corbetta, Shulman (bib0008) 2021; 30
Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut De Schotten, Corbetta (bib0020) 2020; 143
Domin, Langner, Hosten, Lotze (bib0005) 2014; 9
Bates, Wilson, Saygin, Dick, Sereno, Knight, Dronkers (bib0001) 2003; 6
Qiu, Darling, Morecraft, Ni, Rajendra, Butler (bib0018) 2011; 25
Bonkhoff, Hope, Bzdok, Guggisberg, Hawe, Dukelow, Chollet, Lin, Grefkes, Bowman (bib0002) 2022; 93
Schulz, Braass, Liuzzi, Hoerniss, Lechner, Gerloff, Hummel (bib0021) 2015; 7
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (bib0027) 2020; 217
Domin, Lotze (bib0006) 2019; 224
Lindow, Domin, Grothe, Horn, Eickhoff, Lotze (bib0015) 2016; 10
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (bib0007) 2017; 161
Zhu, Lindenberg, Alexander, Schlaug (bib0028) 2010; 41
Cardenas, Sarlls, Kwan, Bageac, Gala, Danielian, Ray-Chaudhury, Wang, Miller, Foxley, Jbabdi, Welsh, Floeter (bib0003) 2017; 15
Wang, Wu, Cai, Lau, Cheung, Khong (bib0026) 2009; 30
Hayward, Ferris, Lohse, Borich, Borstad, Cassidy, Cramer, Dukelow, Findlater, Hawe, Liew, Neva, Stewart, Boyd (bib0009) 2022; 99
Stinear, Barber, Smale, Coxon, Fleming, Byblow (bib0023) 2007; 130
Hordacre, Lotze, Jenkinson, Lazari, Barras, Boyd, Hillier (bib0010) 2021; 29
Liew, Zavaliangos-Petropulu, Jahanshad, Lang, Hayward, Lohse, Juliano, Assogna, Baugh, Bhattacharya, Bigjahan, Borich, Boyd, Brodtmann, Buetefisch, Byblow, Cassidy, Conforto, Craddock, Dimyan, Dula, Ermer, Etherton, Fercho, Gregory, Hadidchi, Holguin, Hwang, Jung, Kautz, Khlif, Khoshab, Kim, Kim, Kuceyeski, Lotze, MacIntosh, Margetis, Mohamed, Piras, Ramos-Murguialday, Richard, Roberts, Robertson, Rondina, Rost, Sanossian, Schweighofer, Seo, Shiroishi, Soekadar, Spalletta, Stinear, Suri, Tang, Thielman, Vecchio, Villringer, Ward, Werden, Westlye, Winstein, Wittenberg, Wong, Yu, Cramer, Thompson (bib0012) 2020
Lindenberg, Renga, Zhu, Betzler, Alsop, Schlaug (bib0014) 2010; 74
Stinear, Barber, Petoe, Anwar, Byblow (bib0022) 2012; 135
Thomalla, Glauche, Koch, Beaulieu, Weiller, Röther (bib0024) 2004; 22
Koyama, Tsuji, Miyake, Ohmura, Domen (bib0011) 2012; 21
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, Van Zijl, Mori (bib0025) 2007; 36
Lotze, Beutling, Loibl, Domin, Platz, Schminke, Byblow (bib0016) 2012; 26
Rorden, Bonilha, Fridriksson, Bender, Karnath (bib0019) 2012; 61
Domin, Hordacre, Hok, Boyd, Conforto, Andrushko, Borich, Craddock, Donnelly, Dula, Warach, Kautz, Lo, Schranz, Seo, Srivastava, Wong, Zavaliangos-Petropulu, Thompson, Liew, Lotze (bib0004) 2023; 54
Lin, Cloutier, Erler, Cassidy, Snider, Ranford, Parlman, Giatsidis, Burke, Schwamm, Finklestein, Hochberg, Cramer (bib0013) 2019; 50
Warrington (10.1016/j.neuroimage.2025.121347_bib0027) 2020; 217
Wakana (10.1016/j.neuroimage.2025.121347_bib0025) 2007; 36
Hordacre (10.1016/j.neuroimage.2025.121347_bib0010) 2021; 29
Lin (10.1016/j.neuroimage.2025.121347_bib0013) 2019; 50
Stinear (10.1016/j.neuroimage.2025.121347_bib0022) 2012; 135
Koyama (10.1016/j.neuroimage.2025.121347_bib0011) 2012; 21
Wang (10.1016/j.neuroimage.2025.121347_bib0026) 2009; 30
Bonkhoff (10.1016/j.neuroimage.2025.121347_bib0002) 2022; 93
Hayward (10.1016/j.neuroimage.2025.121347_bib0009) 2022; 99
Mori (10.1016/j.neuroimage.2025.121347_bib0017) 2005
Rorden (10.1016/j.neuroimage.2025.121347_bib0019) 2012; 61
Schulz (10.1016/j.neuroimage.2025.121347_bib0021) 2015; 7
Cardenas (10.1016/j.neuroimage.2025.121347_bib0003) 2017; 15
Domin (10.1016/j.neuroimage.2025.121347_bib0004) 2023; 54
Domin (10.1016/j.neuroimage.2025.121347_bib0005) 2014; 9
Zhu (10.1016/j.neuroimage.2025.121347_bib0028) 2010; 41
Lindenberg (10.1016/j.neuroimage.2025.121347_bib0014) 2010; 74
Lindow (10.1016/j.neuroimage.2025.121347_bib0015) 2016; 10
Salvalaggio (10.1016/j.neuroimage.2025.121347_bib0020) 2020; 143
Qiu (10.1016/j.neuroimage.2025.121347_bib0018) 2011; 25
Liew (10.1016/j.neuroimage.2025.121347_bib0012) 2020
Lotze (10.1016/j.neuroimage.2025.121347_bib0016) 2012; 26
Griffis (10.1016/j.neuroimage.2025.121347_bib0008) 2021; 30
Domin (10.1016/j.neuroimage.2025.121347_bib0006) 2019; 224
Thomalla (10.1016/j.neuroimage.2025.121347_bib0024) 2004; 22
Fortin (10.1016/j.neuroimage.2025.121347_bib0007) 2017; 161
Stinear (10.1016/j.neuroimage.2025.121347_bib0023) 2007; 130
Bates (10.1016/j.neuroimage.2025.121347_bib0001) 2003; 6
References_xml – volume: 99
  start-page: e402
  year: 2022
  end-page: e413
  ident: bib0009
  article-title: Observational study of neuroimaging biomarkers of severe upper limb impairment after stroke
  publication-title: Neurology.
– volume: 15
  start-page: 200
  year: 2017
  end-page: 208
  ident: bib0003
  article-title: Pathology of callosal damage in ALS: an ex-vivo, 7 T diffusion tensor MRI study
  publication-title: NeuroImage
– volume: 130
  start-page: 170
  year: 2007
  end-page: 180
  ident: bib0023
  article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity
  publication-title: Brain
– volume: 143
  start-page: 2173
  year: 2020
  end-page: 2188
  ident: bib0020
  article-title: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection
  publication-title: Brain
– volume: 22
  start-page: 1767
  year: 2004
  end-page: 1774
  ident: bib0024
  article-title: Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke
  publication-title: Neuroimage
– volume: 41
  start-page: 910
  year: 2010
  end-page: 915
  ident: bib0028
  article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke
  publication-title: Stroke
– volume: 93
  start-page: 369
  year: 2022
  end-page: 378
  ident: bib0002
  article-title: Recovery after stroke: the severely impaired are a distinct group
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 135
  start-page: 2527
  year: 2012
  end-page: 2535
  ident: bib0022
  article-title: The PREP algorithm predicts potential for upper limb recovery after stroke
  publication-title: Brain: J. Neurol.
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: bib0007
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– volume: 21
  start-page: 704
  year: 2012
  end-page: 711
  ident: bib0011
  article-title: Motor outcome for patients with acute intracerebral hemorrhage predicted using diffusion tensor imaging: an application of ordinal logistic modeling
  publication-title: J. Stroke Cerebrovasc. Dis.
– volume: 54
  start-page: 2438
  year: 2023
  end-page: 2441
  ident: bib0004
  article-title: White matter integrity and chronic poststroke upper limb function: an ENIGMA stroke recovery analysis
  publication-title: Stroke
– volume: 30
  year: 2021
  ident: bib0008
  article-title: Lesion Quantification Toolkit: a MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions
  publication-title: NeuroImage: Clin.
– volume: 7
  start-page: 82
  year: 2015
  end-page: 86
  ident: bib0021
  article-title: White matter integrity of premotor–motor connections is associated with motor output in chronic stroke patients
  publication-title: Neuroimage: Clin.
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bib0025
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 74
  start-page: 280
  year: 2010
  end-page: 287
  ident: bib0014
  article-title: Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke
  publication-title: Neurology.
– volume: 25
  start-page: 275
  year: 2011
  end-page: 284
  ident: bib0018
  article-title: White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke
  publication-title: Neurorehabil. Neural Repair.
– volume: 6
  start-page: 448
  year: 2003
  end-page: 450
  ident: bib0001
  article-title: Voxel-based lesion–symptom mapping
  publication-title: Nat. Neurosci.
– volume: 224
  start-page: 1447
  year: 2019
  end-page: 1455
  ident: bib0006
  article-title: Parcellation of motor cortex-associated regions in the human corpus callosum on the basis of Human Connectome Project data
  publication-title: Brain Struct. Funct.
– volume: 26
  start-page: 594
  year: 2012
  end-page: 603
  ident: bib0016
  article-title: Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients
  publication-title: Neurorehabil. Neural Repair.
– year: 2005
  ident: bib0017
  article-title: MRI Atlas of Human White Matter
– volume: 217
  year: 2020
  ident: bib0027
  article-title: XTRACT - standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 61
  start-page: 957
  year: 2012
  end-page: 965
  ident: bib0019
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: Neuroimage
– volume: 50
  start-page: 3569
  year: 2019
  end-page: 3577
  ident: bib0013
  article-title: Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke
  publication-title: Stroke
– volume: 30
  start-page: 1907
  year: 2009
  end-page: 1913
  ident: bib0026
  article-title: Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 10
  year: 2016
  ident: bib0015
  article-title: Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke
  publication-title: Front. Hum. Neurosci.
– volume: 9
  year: 2014
  ident: bib0005
  article-title: Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects
  publication-title: PLoS. One
– volume: 29
  year: 2021
  ident: bib0010
  article-title: Fronto-parietal involvement in chronic stroke motor performance when corticospinal tract integrity is compromised
  publication-title: NeuroImage
– year: 2020
  ident: bib0012
  article-title: The ENIGMA Stroke Recovery Working Group: big data neuroimaging to study brain-behavior relationships after stroke
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 275
  year: 2011
  ident: 10.1016/j.neuroimage.2025.121347_bib0018
  article-title: White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke
  publication-title: Neurorehabil. Neural Repair.
  doi: 10.1177/1545968310389183
– volume: 26
  start-page: 594
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121347_bib0016
  article-title: Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients
  publication-title: Neurorehabil. Neural Repair.
  doi: 10.1177/1545968311427706
– volume: 99
  start-page: e402
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121347_bib0009
  article-title: Observational study of neuroimaging biomarkers of severe upper limb impairment after stroke
  publication-title: Neurology.
  doi: 10.1212/WNL.0000000000200517
– volume: 29
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121347_bib0010
  article-title: Fronto-parietal involvement in chronic stroke motor performance when corticospinal tract integrity is compromised
  publication-title: NeuroImage
– volume: 224
  start-page: 1447
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121347_bib0006
  article-title: Parcellation of motor cortex-associated regions in the human corpus callosum on the basis of Human Connectome Project data
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-019-01849-1
– volume: 21
  start-page: 704
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121347_bib0011
  article-title: Motor outcome for patients with acute intracerebral hemorrhage predicted using diffusion tensor imaging: an application of ordinal logistic modeling
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2011.03.004
– year: 2005
  ident: 10.1016/j.neuroimage.2025.121347_bib0017
– volume: 15
  start-page: 200
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121347_bib0003
  article-title: Pathology of callosal damage in ALS: an ex-vivo, 7 T diffusion tensor MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2017.04.024
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121347_bib0015
  article-title: Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2016.00101
– volume: 93
  start-page: 369
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121347_bib0002
  article-title: Recovery after stroke: the severely impaired are a distinct group
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2021-327211
– volume: 22
  start-page: 1767
  year: 2004
  ident: 10.1016/j.neuroimage.2025.121347_bib0024
  article-title: Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.041
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121347_bib0007
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 50
  start-page: 3569
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121347_bib0013
  article-title: Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025898
– volume: 135
  start-page: 2527
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121347_bib0022
  article-title: The PREP algorithm predicts potential for upper limb recovery after stroke
  publication-title: Brain: J. Neurol.
  doi: 10.1093/brain/aws146
– volume: 217
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121347_bib0027
  article-title: XTRACT - standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 6
  start-page: 448
  year: 2003
  ident: 10.1016/j.neuroimage.2025.121347_bib0001
  article-title: Voxel-based lesion–symptom mapping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1050
– volume: 143
  start-page: 2173
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121347_bib0020
  article-title: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection
  publication-title: Brain
  doi: 10.1093/brain/awaa156
– volume: 54
  start-page: 2438
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121347_bib0004
  article-title: White matter integrity and chronic poststroke upper limb function: an ENIGMA stroke recovery analysis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.123.043713
– volume: 30
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121347_bib0008
  article-title: Lesion Quantification Toolkit: a MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions
  publication-title: NeuroImage: Clin.
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2025.121347_bib0005
  article-title: Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0098211
– volume: 7
  start-page: 82
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121347_bib0021
  article-title: White matter integrity of premotor–motor connections is associated with motor output in chronic stroke patients
  publication-title: Neuroimage: Clin.
  doi: 10.1016/j.nicl.2014.11.006
– year: 2020
  ident: 10.1016/j.neuroimage.2025.121347_bib0012
  article-title: The ENIGMA Stroke Recovery Working Group: big data neuroimaging to study brain-behavior relationships after stroke
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 1907
  year: 2009
  ident: 10.1016/j.neuroimage.2025.121347_bib0026
  article-title: Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1697
– volume: 130
  start-page: 170
  year: 2007
  ident: 10.1016/j.neuroimage.2025.121347_bib0023
  article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity
  publication-title: Brain
  doi: 10.1093/brain/awl333
– volume: 41
  start-page: 910
  year: 2010
  ident: 10.1016/j.neuroimage.2025.121347_bib0028
  article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.577023
– volume: 74
  start-page: 280
  year: 2010
  ident: 10.1016/j.neuroimage.2025.121347_bib0014
  article-title: Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke
  publication-title: Neurology.
  doi: 10.1212/WNL.0b013e3181ccc6d9
– volume: 36
  start-page: 630
  year: 2007
  ident: 10.1016/j.neuroimage.2025.121347_bib0025
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 61
  start-page: 957
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121347_bib0019
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.020
SSID ssj0009148
Score 2.484416
Snippet •Comparison of methods for quantifying white matter intactness following stroke.•Only FA-method demonstrates compensatory importance of other tracts if CST is...
Highlights•Comparison of methods for quantifying white matter intactness following stroke. •Only FA-method demonstrates compensatory importance of other tracts...
Indirect structural disconnection-symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW)...
Indirect structural disconnection‐symptom mapping allows white matter impairment to be determined without the need for multi-directional diffusion (MDDW)...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 121347
SubjectTerms Adult
Aged
Anisotropy
Brain Mapping - methods
Corpus callosum
Corticospinal tract
Databases, Factual
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging - methods
DTI
DWI
Eigenvectors
Female
Fugl-Meyer Score
Humans
Lesions
Magnetic resonance imaging
Male
Middle Aged
Pyramidal tracts
Pyramidal Tracts - diagnostic imaging
Pyramidal Tracts - pathology
Radiology/Diagnostic Imaging
Registration
Stroke
Stroke - diagnostic imaging
Stroke - pathology
Substantia alba
Superior longitudinal fasciculus
Upper limb function
White Matter - diagnostic imaging
White Matter - pathology
White matter integrity
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDcpBRmJa7pJbMeJeoIVVUEqB6BSb1Yc26sFbbJsElVc-tuZcZxUK0CqxC1xJrHlGY-f45lnQt6Ci7OyhGWJQ54h7goTa1Oz2CRItgYjXTofbfE5P7_kn67E1QFZTrkwGFYZfP_o0723DiWL0JuL7Xq9-ArIAKYbQCjCb49hRjnnEq385OY2zKNM-ZgOJ1iM0iGaZ4zx8pyR6w2MXFgpZuLE85vJvSnKM_nvzVT_QqJ-Rjp7SB4EKEnfja19RA5s85jcuwib5U_I9XI-Y5C2jm7bro-7ftf-sPQaNw_oxnNr0mom56QYBb-imKmL8S91325s3P3abOECpJHKYUUxjmPo6M-hanyCGrhLisesDPjfjV58-fiUXJ59-LY8j8M5C3EtpOxjZriondTG1IkWLi-hIIFlm5HQJ5InrioNL6x02pqcW1PXwiHs44nlJk00e0YOm7axLwjNLRTLsuQ2rTgIafgqE1rL3GVGWhGRdOpatR3pNNQUZ_Zd3apDoTrUqI6IvEcdzPJIiO0L2t1KBYtQzKbaFGmdVZohSC0qIcD8DM-cyHSaRaScNKimnFPwkvCh9R0aIP_2ru3CcO9UqrpMJeoPk4zI6fzmnlXfsd7jydTUXBXLGOM54DZ4_GZ-DD4BN3qqxrYDymSiyGFlzSLyfDTRufcAoBcA09jRfzXtJbmPd_hzPRXH5LDfDfYVoLNev_bD7zfKoTqp
  priority: 102
  providerName: Elsevier
Title Comparison of post-stroke white matter assessment using disconnectome-symptom mapping versus quantitative diffusion MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003507
https://www.clinicalkey.es/playcontent/1-s2.0-S1053811925003507
https://dx.doi.org/10.1016/j.neuroimage.2025.121347
https://www.ncbi.nlm.nih.gov/pubmed/40582383
https://www.proquest.com/docview/3233468207
https://www.proquest.com/docview/3225869243
https://doaj.org/article/3e1bd81c2ab345658a55f85d42f52b12
Volume 317
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9UwFG8QEuMLUfy6iDcl8XW49WPd4hMSyQUCDyoJb826tgTN3a5sC_HFv91zug8k0cgDb0vXds35aH9nPf2VkHcwxTmVQ1jikWdI-MxGxpY8sjGSrYGnKx-yLc7Sxbk4vpAXf1z1hTlhPT1wL7j33CXGZknJCsMRfWSFlNCvFcxLZsL9wgzWvDGYGul2AeUPeTt9Nldgh7xago9CTMjkXmAyU3cWo8DZf2dN-hfmDGvP4VOyOYBGut8P9hlZc9UWeXw6bIs_JzcH022CtPZ0VTdt1LTX9XdHb3CbgC4DiyYtJhpOivnulxTP5GKmS9nWSxc1P5creIDaSNpwSTFjo2voj66owlE0mBgpXqjS4R82evr56AU5P_z09WARDTcqRKVUqo24FbL0ylhbxkb6NIeCGAI0q0AmSsS-yK3InPLG2VQ4W5bSI8ATsRM2iQ1_SdarunKvCU0dFKs8Fy4pBFQy0CuXxqjUM6ucnJFkFK1e9cQZeswo-6Zv1aFRHbpXx4x8RB1M9ZH6OhSAQejBIPT_DGJG8lGDejxdCvMhdHR1jwGov7V1zeDYjU50w3SsvwAsBawD8FiGvVlo-WFqOWCXHpPc87s7o6np6VOccS5SQGjwend6Dd6PWzpF5eoO6zCZpRBD8xl51ZvoJD2A4hkAMr79EFJ9Q57gePFveiJ3yHp73bm3AMdaMyeP9n4lc7Kxf3SyOJsHP_wNrJg4Tg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGJ8FeEN8EBhiJ19AktuNEPI2KqWVrH2CT9mbFsV0V1KRrUk3899zla6oAaRJvkb9i-c7nn-27nwn5ACbOyhS2JQ55hrhLjK9NznwTINkazHTpGm-LRTy95F-vxNUBmfSxMOhW2dn-1qY31rpLGXejOd6sVuPvgAxguQGEIprrMXmPHCI7lRiRw5PZ2XRxy70b8jYiTjAfK3QOPa2bV0MbuVrD5IXNYiQ-NhRncm-Vasj89xarf4HRZlE6fUQedmiSnrQdfkwObPGE3J939-VPyc1keGaQlo5uyqr2q3pb_rT0Bu8P6Lqh16TZwM9J0RF-STFYF11g8rpcW7_6td7AB5RGNoclRVeOXUWvd1nRxKiBxaT40soOj97o_NvsGbk8_XIxmfrdUwt-LqSsfWa4yJ3UxuSBFi5OISGAnZuRMCaSBy5LDU-sdNqamFuT58Ih8uOB5SYMNHtORkVZ2JeExhaSZZpyG2YcCmlolQmtZewiI63wSNgPrdq0jBqqdzX7oW7FoVAcqhWHRz6jDIbyyIndJJTbpeqUQjEbapOEeZRphjg1yYQADTQ8ciLSYeSRtJeg6sNOwVBCQ6s7dED-ra6tuhlfqVBVkQrUH1rpkU9DzT3FvuN_j3tVU8OvWMQYjwG6Qfb7IRvMAt71ZIUtd1gmEkkMm2vmkRetig6jBxg9AaTGXv1X196RB9OL-bk6ny3OXpMjzMGz9lAck1G93dk3ANZq_babjL8BU0Y-6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+post-stroke+white+matter+assessment+using+disconnectome-symptom+mapping+versus+quantitative+diffusion+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Domin%2C+Martin&rft.au=Liew%2C+Sook-Lei&rft.au=Hordacre%2C+Brenton&rft.au=Boyd%2C+Lara+A&rft.date=2025-08-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=317&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121347&rft.externalDocID=S1053811925003507
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10538119%2FS1053811925X00100%2Fcov150h.gif