Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses

To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na 2 SO 4 , and Na 2 CO 3  + NaHCO 3 , in a pot study. Salt and alkali stre...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; pp. 21844 - 20
Main Authors Guo, Huijuan, Huang, Zhijie, Li, Meiqi, Hou, Zhenan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.12.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na 2 SO 4 , and Na 2 CO 3  + NaHCO 3 , in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na 2 CO 3  + NaHCO 3  > NaCl > Na 2 SO 4 . Principal component analysis showed a significant difference in ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na 2 SO 4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na 2 CO 3  + NaHCO 3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt–alkali stress.
AbstractList To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt-alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na SO , and Na CO  + NaHCO , in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na CO  + NaHCO  > NaCl > Na SO . Principal component analysis showed a significant difference in ion composition under the different types of salt-alkali stress. Under the three types of salt-alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na SO stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na CO  + NaHCO stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt-alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt-alkali stress.
To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na 2 SO 4 , and Na 2 CO 3  + NaHCO 3 , in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na 2 CO 3  + NaHCO 3  > NaCl > Na 2 SO 4 . Principal component analysis showed a significant difference in ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na 2 SO 4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na 2 CO 3  + NaHCO 3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt–alkali stress.
To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt–alkali stress.
To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt-alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt-alkali stress. Under the three types of salt-alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt-alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt-alkali stress.To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt-alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt-alkali stress. Under the three types of salt-alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt-alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt-alkali stress.
Abstract To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt–alkali stress.
ArticleNumber 21844
Author Guo, Huijuan
Li, Meiqi
Huang, Zhijie
Hou, Zhenan
Author_xml – sequence: 1
  givenname: Huijuan
  surname: Guo
  fullname: Guo, Huijuan
  organization: Department of Resources and Environmental Science, Agriculture College, Shihezi University
– sequence: 2
  givenname: Zhijie
  surname: Huang
  fullname: Huang, Zhijie
  organization: Department of Resources and Environmental Science, Agriculture College, Shihezi University
– sequence: 3
  givenname: Meiqi
  surname: Li
  fullname: Li, Meiqi
  organization: Department of Resources and Environmental Science, Agriculture College, Shihezi University
– sequence: 4
  givenname: Zhenan
  surname: Hou
  fullname: Hou, Zhenan
  email: hzatyl@163.com
  organization: Department of Resources and Environmental Science, Agriculture College, Shihezi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33318587$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1PVDEUhm8MRhD5Ay5MEzcuuNqve3vvxsQQRRISN-yb06-Zjp12bDsa-PWWGVBgQTdt2vd58_ac87o7iCnarntL8EeC2fSpcDLMU48p7sWM-dDfvOiO6O2BMkoPHpwPu5NSVritgc6czK-6Q8YYmYZJHHX-PKc_dXmKfIpeo2Va21QqFF9OEUSDNsvr4lNIC68hoGzLJsViC0oO6VRrimgbjc3IeOdstrGiAqHuUAg_IXhUaqMa8qZ76SAUe3K3H3dX375enX3vL3-cX5x9uez1IETt6Tw6IRyxQik8TtxQCy2qJUAY0wpPwhAnsHKAR6u0IcwoPql5UsxSA-y4u9jbmgQrucl-DflaJvByd5HyQkKuXgcr3egGO7BRgHIcNFWADXDNMZ-N5kY1r897r81Wra3R7XsZwiPTxy_RL-Ui_ZZCsLFVuBl8uDPI6dfWlirXvmgbAkSbtkVSLjCdOB7GJn3_RLpK2xxbpW5VjMyU8rmp3j1M9C_KfUObYNoLdE6lZOuk9hVq624L6IMkWN6Oj9yPj2zjI3fjI28aSp-g9-7PQmwPlSaOC5v_x36G-gsv9Nsu
CitedBy_id crossref_primary_10_3390_su15076232
crossref_primary_10_1016_j_envexpbot_2024_105913
crossref_primary_10_1186_s12870_024_05170_w
crossref_primary_10_3389_fpls_2022_974507
crossref_primary_10_3390_agronomy13092243
crossref_primary_10_1038_s41598_024_58979_8
crossref_primary_10_1080_15226514_2022_2056134
crossref_primary_10_1590_1519_6984_274499
crossref_primary_10_1038_s41598_022_14689_7
crossref_primary_10_3389_fpls_2024_1406913
crossref_primary_10_1007_s10725_023_01115_9
crossref_primary_10_3390_plants12071573
crossref_primary_10_3390_agronomy12122962
crossref_primary_10_1002_ldr_5306
crossref_primary_10_1016_j_scienta_2025_114014
crossref_primary_10_3390_horticulturae10070702
crossref_primary_10_3390_ijms23126435
crossref_primary_10_1016_j_indcrop_2024_118638
crossref_primary_10_1371_journal_pone_0256000
crossref_primary_10_1111_ppl_14452
crossref_primary_10_34133_plantphenomics_0125
crossref_primary_10_1111_ppl_14059
crossref_primary_10_1080_17429145_2023_2266514
crossref_primary_10_1016_j_scienta_2022_111455
crossref_primary_10_3390_horticulturae7080234
crossref_primary_10_1093_jxb_eraf022
crossref_primary_10_3389_fpls_2024_1416936
crossref_primary_10_1016_j_plaphy_2022_08_002
crossref_primary_10_1038_s41598_024_60778_0
crossref_primary_10_1186_s12870_023_04486_3
crossref_primary_10_3389_fpls_2023_1161539
crossref_primary_10_3390_insects15090713
crossref_primary_10_1007_s11356_022_24293_x
crossref_primary_10_3390_agronomy13020613
crossref_primary_10_3390_agronomy12112708
crossref_primary_10_1111_pce_15188
crossref_primary_10_3390_agronomy13092343
crossref_primary_10_1186_s12870_024_06042_z
crossref_primary_10_1016_j_sajb_2023_03_033
crossref_primary_10_1134_S1021443724608267
crossref_primary_10_1016_j_plaphy_2024_109111
crossref_primary_10_3390_f16010185
crossref_primary_10_3390_genes15060668
crossref_primary_10_1016_j_plaphy_2022_05_021
crossref_primary_10_48130_tia_0024_0002
crossref_primary_10_1016_j_scienta_2024_113847
crossref_primary_10_1080_13102818_2023_2202781
crossref_primary_10_1093_aobpla_plab065
crossref_primary_10_3389_fpls_2022_772948
crossref_primary_10_3389_fpls_2024_1283845
crossref_primary_10_3390_plants13121593
crossref_primary_10_3390_plants12152881
crossref_primary_10_1080_13102818_2022_2116356
crossref_primary_10_3389_fpls_2022_969896
crossref_primary_10_1016_j_jplph_2022_153708
crossref_primary_10_1186_s42397_024_00188_9
crossref_primary_10_1016_j_ecoenv_2021_112761
crossref_primary_10_1590_1678_992x_2021_0202
crossref_primary_10_1016_j_fcr_2025_109773
crossref_primary_10_1016_j_plaphy_2024_108548
crossref_primary_10_1093_plphys_kiae335
crossref_primary_10_1016_j_fcr_2021_108288
Cites_doi 10.1071/FP12109
10.1007/s11105-014-0722-4
10.1016/j.envexpbot.2006.12.005
10.1007/s10535-005-1304-y
10.1016/j.scienta.2011.07.006
10.1080/01904167.2014.881869
10.1016/j.flora.2018.07.008
10.1006/meth.2001.1262
10.1007/s11099-010-0034-3
10.1007/s11032-018-0774-5
10.1016/j.envexpbot.2011.07.001
10.1105/tpc.010371
10.1007/s11240-010-9802-9
10.1016/S1360-1385(02)02312-9
10.1078/0176-1617-01123
10.1016/j.envexpbot.2007.10.009
10.1111/j.1365-313X.2009.04110.x
10.1007/s11104-011-1001-x
10.1007/s11738-015-2032-3
10.1104/pp.98.4.1222
10.1046/j.0016-8025.2001.00808.x
10.1093/aob/mcu177
10.1080/17429145.2013.855271
10.1080/11263500802410918
10.1007/s11816-011-0200-5
10.1111/ppl.12791
10.1016/j.scienta.2007.05.002
10.1016/S0955-0674(00)00112-5
10.1111/j.1399-3054.2008.01174.x
10.1007/s10646-012-0924-1
10.5539/mas.v3n3p171
10.1007/s11738-013-1316-8
10.1007/s11099-008-0005-0
10.1002/jpln.201400358
10.1093/pcp/pct134
10.1016/j.ecoleng.2017.04.029
10.1155/2014/701596
10.1007/s11703-007-0052-5
10.1016/j.sajb.2014.08.009
10.1007/s11356-018-2383-6
10.1016/j.tplants.2010.08.002
10.1146/annurev.arplant.59.032607.092911
10.1371/journal.pone.0112807
10.1093/pcp/pch071
10.1186/1471-2164-15-760
10.1146/annurev.arplant.59.032607.092942
10.1016/j.indcrop.2014.03.015
10.1007/BF02197720
10.1016/j.cell.2015.08.028
10.1002/jpln.201100209
10.1007/s11104-013-1891-x
10.1186/s12870-017-0994-6
10.3923/ajpp.2010.350.360
10.1016/j.plaphy.2017.08.024
10.1007/s11104-007-9251-3
10.1111/j.1365-3040.2010.02266.x
10.1007/s00344-011-9224-x
10.1093/mp/ssp102
10.1007/BF00018060
10.1080/01904169409364847
10.1002/jpln.200420516
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-79045-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
ProQuest Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_f6f5e5367abf4ac2ba0da4c4049dc4db
PMC7736318
33318587
10_1038_s41598_020_79045_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31660594
– fundername: ;
  grantid: 31660594
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c577t-296f77f1e7bb0684d2ea858e1a133cb087d1f70bfa06ebcd13db48b98b3e2da3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:34 EDT 2025
Thu Aug 21 18:42:53 EDT 2025
Fri Jul 11 15:38:25 EDT 2025
Wed Aug 13 10:55:21 EDT 2025
Thu Jan 02 22:58:18 EST 2025
Tue Jul 01 02:47:04 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-296f77f1e7bb0684d2ea858e1a133cb087d1f70bfa06ebcd13db48b98b3e2da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f6f5e5367abf4ac2ba0da4c4049dc4db
PMID 33318587
PQID 2473192249
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_f6f5e5367abf4ac2ba0da4c4049dc4db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7736318
proquest_miscellaneous_2470284056
proquest_journals_2473192249
pubmed_primary_33318587
crossref_citationtrail_10_1038_s41598_020_79045_z
crossref_primary_10_1038_s41598_020_79045_z
springer_journals_10_1038_s41598_020_79045_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Habib, Akram, Akhtar, Hussain, Mansoor (CR17) 2014; 3
Wang (CR11) 2015; 27
Belkheiri, Mulas (CR13) 2013; 86
Tan (CR71) 2008; 46
Zhang (CR59) 2014; 9
Yuan (CR20) 2015; 115
Ibrahim (CR41) 2019; 165
Freitas, Alencar, de Lacerda, Prisco, Gomes-Filho (CR25) 2011; 5
Munns, Tester (CR65) 2008; 59
Singh, Sareen, Sengar, Kumar (CR24) 2013; 35
Wang, Shuman (CR55) 1994; 17
Wu (CR16) 2013; 54
Gupta, Huang (CR23) 2014; 2014
Ahuja, de Vos, Bones, Hall (CR3) 2010; 15
Livak, Schmittgen (CR74) 2001; 25
Chen, Li, Sun, Chen, Xin (CR37) 2017; 104
Parent (CR15) 2013; 4
Hu, Zhang, Jiang, Fu (CR10) 2015; 33
Wu, Yang, Meng, Zheng (CR21) 2004; 45
Eraslan, Inal, Savasturk, Gunes (CR31) 2007; 114
Rabhi (CR58) 2018; 246
Cakmak, Marschner (CR72) 1992; 98
Benzarti (CR43) 2014; 95
Kopittke (CR47) 2012; 352
Rathert (CR61) 1983; 73
Mittler (CR35) 2002; 7
Peng (CR73) 2014; 15
Wang, Lüttge, Ratajczak (CR36) 2004; 161
Li (CR34) 2009; 3
Azarmi, Mozafari, Dahaji, Hamidpour (CR44) 2016; 38
Shi, Quintero, Pardo, Zhu (CR64) 2002; 14
Ahmad, Ozturk, Sharma, Gucel (CR9) 2014; 9
Koca, Bor, Özdemir, Türkan (CR32) 2007; 60
Ali, Ashraf, Maqbool, Ahmad, Aziz (CR52) 2013; 45
Karimi, Ghorbanli, Heidari, Nejad, Assareh (CR62) 2005; 49
Bates, Waldren, Teare (CR69) 1973; 39
Bracci, Minnocci, Sebastiani (CR29) 2008; 142
Lee, Carrow, Duncan, Eiteman, Rieger (CR42) 2008; 63
Dogan, Ozyigit, Demir (CR57) 2012; 44
Yang (CR30) 2007; 294
Dai, Duan, Dong (CR18) 2014; 37
Kırmızı, Bell (CR46) 2012; 175
Rodríguez-Navarro (CR53) 2000; 1469
Abbas, Saqib, Akhtar, Haq (CR26) 2015; 178
Wu, Wu, Li, Duan, Zhang (CR68) 2012; 31
Blumwald (CR48) 2000; 12
Banjara, Zhu, Shen, Payton, Zhang (CR67) 2012; 6
Iqbal, Rasheed, Ashraf, Ashraf, Hussain (CR45) 2018; 25
Zhang (CR6) 2017; 40
Fan, Guo, Jiao, Zhang, Li (CR38) 2007; 1
Javid, Ford, Nicolas (CR8) 2012; 39
Zhang, Zhang, Chen, Zhou (CR40) 2013; 8
Shabala (CR50) 2010; 61
Sanchez (CR51) 2011; 34
Ma (CR66) 2014; 374
Salt, Baxter, Lahner (CR14) 2008; 59
Wang (CR27) 2017; 119
Pérez-López (CR33) 2009; 135
Shi, Ma, Fang, Xu (CR4) 2015; 15
Aleman (CR19) 2010; 3
Wang (CR49) 2011; 130
Endler (CR22) 2015; 162
Liu, Guo, Shi (CR1) 2010; 48
Zhang, Fu, Hu (CR70) 2012; 21
Naheed, Shahbaz, Latif, Rha (CR54) 2007; 39
Severino (CR60) 2014; 57
Tang, Li, Xu, Li (CR63) 2006; 27
Munns (CR5) 2002; 25
Amirjani (CR39) 2010; 5
Hu, Schmidhalter (CR56) 2005; 168
Cheng (CR2) 2018; 38
Chachar, Solangi, Verhoef (CR12) 2008; 40
Guo (CR7) 2017; 17
Lokhande, Nikam, Patade, Ahire, Suprasanna (CR28) 2011; 104
C Yang (79045_CR30) 2007; 294
D Wu (79045_CR16) 2013; 54
B Gupta (79045_CR23) 2014; 2014
H Wu (79045_CR68) 2012; 31
Y Chen (79045_CR37) 2017; 104
SÉ Parent (79045_CR15) 2013; 4
P Ahmad (79045_CR9) 2014; 9
L Shi (79045_CR4) 2015; 15
G Karimi (79045_CR62) 2005; 49
C Cheng (79045_CR2) 2018; 38
F Eraslan (79045_CR31) 2007; 114
QI Chachar (79045_CR12) 2008; 40
S Kırmızı (79045_CR46) 2012; 175
R Munns (79045_CR5) 2002; 25
MR Amirjani (79045_CR39) 2010; 5
PM Kopittke (79045_CR47) 2012; 352
I Ahuja (79045_CR3) 2010; 15
O Belkheiri (79045_CR13) 2013; 86
B Wang (79045_CR36) 2004; 161
VS Freitas (79045_CR25) 2011; 5
U Pérez-López (79045_CR33) 2009; 135
A Rodríguez-Navarro (79045_CR53) 2000; 1469
JL Dai (79045_CR18) 2014; 37
N Wang (79045_CR11) 2015; 27
L Zhang (79045_CR59) 2014; 9
H Shi (79045_CR64) 2002; 14
H Zhang (79045_CR6) 2017; 40
T Bracci (79045_CR29) 2008; 142
Y Hu (79045_CR56) 2005; 168
H Fan (79045_CR38) 2007; 1
LS Bates (79045_CR69) 1973; 39
F Azarmi (79045_CR44) 2016; 38
M Banjara (79045_CR67) 2012; 6
M Benzarti (79045_CR43) 2014; 95
CA Wu (79045_CR21) 2004; 45
LS Severino (79045_CR60) 2014; 57
Q Ma (79045_CR66) 2014; 374
H Koca (79045_CR32) 2007; 60
MN Iqbal (79045_CR45) 2018; 25
J Liu (79045_CR1) 2010; 48
Y Li (79045_CR34) 2009; 3
G Rathert (79045_CR61) 1983; 73
L Hu (79045_CR10) 2015; 33
W Ibrahim (79045_CR41) 2019; 165
F Habib (79045_CR17) 2014; 3
W Tan (79045_CR71) 2008; 46
R Guo (79045_CR7) 2017; 17
G Zhang (79045_CR40) 2013; 8
G Lee (79045_CR42) 2008; 63
I Dogan (79045_CR57) 2012; 44
R Munns (79045_CR65) 2008; 59
HJ Yuan (79045_CR20) 2015; 115
G Naheed (79045_CR54) 2007; 39
XP Wang (79045_CR49) 2011; 130
M Javid (79045_CR8) 2012; 39
E Blumwald (79045_CR48) 2000; 12
G Abbas (79045_CR26) 2015; 178
DH Sanchez (79045_CR51) 2011; 34
DE Salt (79045_CR14) 2008; 59
P Zhang (79045_CR70) 2012; 21
L Ali (79045_CR52) 2013; 45
R Mittler (79045_CR35) 2002; 7
I Cakmak (79045_CR72) 1992; 98
N Wang (79045_CR27) 2017; 119
S Shabala (79045_CR50) 2010; 61
KJ Livak (79045_CR74) 2001; 25
F Aleman (79045_CR19) 2010; 3
A Endler (79045_CR22) 2015; 162
Z Peng (79045_CR73) 2014; 15
J Wang (79045_CR55) 1994; 17
VH Lokhande (79045_CR28) 2011; 104
M Rabhi (79045_CR58) 2018; 246
UM Singh (79045_CR24) 2013; 35
JX Tang (79045_CR63) 2006; 27
References_xml – volume: 39
  start-page: 699
  issue: 8
  year: 2012
  end-page: 707
  ident: CR8
  article-title: Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12109
– volume: 33
  start-page: 56
  issue: 1
  year: 2015
  end-page: 68
  ident: CR10
  article-title: Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass ( )
  publication-title: Plant Mol. Boil. Rep.
  doi: 10.1007/s11105-014-0722-4
– volume: 60
  start-page: 344
  issue: 3
  year: 2007
  end-page: 351
  ident: CR32
  article-title: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2006.12.005
– volume: 5
  start-page: 264
  issue: 8
  year: 2011
  end-page: 271
  ident: CR25
  article-title: Changes in physiological and biochemical indicators associated with salt tolerance in cotton, sorghum and cowpea
  publication-title: Afr. J. Biochem. Res.
– volume: 49
  start-page: 301
  issue: 2
  year: 2005
  end-page: 304
  ident: CR62
  article-title: The effects of NaCl on growth, water relations, osmolytes and ion content in
  publication-title: Biol. Plantarum
  doi: 10.1007/s10535-005-1304-y
– volume: 130
  start-page: 248
  issue: 1
  year: 2011
  end-page: 255
  ident: CR49
  article-title: Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2011.07.006
– volume: 37
  start-page: 1269
  issue: 8
  year: 2014
  end-page: 1286
  ident: CR18
  article-title: Improved nutrient uptake enhances cotton growth and salinity tolerance in saline media
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2014.881869
– volume: 246
  start-page: 96
  year: 2018
  end-page: 101
  ident: CR58
  article-title: Physiological responses of to CaCl salinity under Mg-sufficient and Mg-deficient conditions
  publication-title: Flora
  doi: 10.1016/j.flora.2018.07.008
– volume: 39
  start-page: 729
  issue: 3
  year: 2007
  end-page: 737
  ident: CR54
  article-title: Alleviation of the adverse effects of salt stress on rice ( L.) by phosphorus applied through rooting medium: Growth and gas exchange characteristics
  publication-title: Pak. J. Bot.
– volume: 3
  start-page: 105
  issue: 2
  year: 2014
  end-page: 110
  ident: CR17
  article-title: Assessment of variations in growth and ionic concentration of salt tolerant and sensitive cotton genotypes
  publication-title: Scientia
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  end-page: 408
  ident: CR74
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 48
  start-page: 278
  issue: 2
  year: 2010
  end-page: 286
  ident: CR1
  article-title: Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions
  publication-title: Photosynthetica
  doi: 10.1007/s11099-010-0034-3
– volume: 38
  start-page: 19
  issue: 2
  year: 2018
  end-page: 33
  ident: CR2
  article-title: Co-expression of and improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-018-0774-5
– volume: 15
  start-page: 1007
  issue: 4
  year: 2015
  end-page: 1023
  ident: CR4
  article-title: Crucial variations in growth and ion homeostasis of seedlings under two types of salt stresses
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 86
  start-page: 17
  year: 2013
  end-page: 28
  ident: CR13
  article-title: The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.07.001
– volume: 14
  start-page: 465
  issue: 2
  year: 2002
  end-page: 477
  ident: CR64
  article-title: The putative plasma membrane Na /H antiporter SOS1 controls long-distance Na transport in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.010371
– volume: 104
  start-page: 41
  issue: 1
  year: 2011
  end-page: 49
  ident: CR28
  article-title: Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in L
  publication-title: Plant Cell Tissue Org.
  doi: 10.1007/s11240-010-9802-9
– volume: 7
  start-page: 405
  issue: 9
  year: 2002
  end-page: 410
  ident: CR35
  article-title: Oxidative stress, antioxidants and stress tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 161
  start-page: 285
  issue: 3
  year: 2004
  end-page: 293
  ident: CR36
  article-title: Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte L
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01123
– volume: 63
  start-page: 19
  issue: 1–3
  year: 2008
  end-page: 27
  ident: CR42
  article-title: Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.10.009
– volume: 61
  start-page: 839
  issue: 5
  year: 2010
  end-page: 853
  ident: CR50
  article-title: Xylem ionic relations and salinity tolerance in barley
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04110.x
– volume: 352
  start-page: 353
  issue: 1–2
  year: 2012
  end-page: 362
  ident: CR47
  article-title: Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1001-x
– volume: 38
  start-page: 21
  issue: 1
  year: 2016
  ident: CR44
  article-title: Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-015-2032-3
– volume: 98
  start-page: 1222
  issue: 4
  year: 1992
  end-page: 1227
  ident: CR72
  article-title: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves
  publication-title: Plant Physiol.
  doi: 10.1104/pp.98.4.1222
– volume: 25
  start-page: 239
  issue: 2
  year: 2002
  end-page: 250
  ident: CR5
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00808.x
– volume: 115
  start-page: 495
  issue: 3
  year: 2015
  end-page: 507
  ident: CR20
  article-title: controls Na and K homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu177
– volume: 9
  start-page: 460
  issue: 1
  year: 2014
  end-page: 467
  ident: CR9
  article-title: Effect of sodium carbonate-induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry ( L.) cultivars
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2013.855271
– volume: 40
  start-page: 853
  issue: 5
  year: 2017
  end-page: 858
  ident: CR6
  article-title: Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa ( L.) cultivars
  publication-title: Legume Res.
– volume: 142
  start-page: 563
  issue: 3
  year: 2008
  end-page: 571
  ident: CR29
  article-title: In vitro olive ( L.) cvs Frantoio and Moraiolo microshoot tolerance to NaCl
  publication-title: Plant Biosyst.
  doi: 10.1080/11263500802410918
– volume: 6
  start-page: 59
  issue: 1
  year: 2012
  end-page: 67
  ident: CR67
  article-title: Expression of an Arabidopsis sodium/proton antiporter gene ( ) in peanut to improve salt tolerance
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-011-0200-5
– volume: 165
  start-page: 155
  issue: 2
  year: 2019
  end-page: 168
  ident: CR41
  article-title: Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12791
– volume: 114
  start-page: 5
  issue: 1
  year: 2007
  end-page: 10
  ident: CR31
  article-title: Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2007.05.002
– volume: 12
  start-page: 431
  issue: 4
  year: 2000
  end-page: 434
  ident: CR48
  article-title: Sodium transport and salt tolerance in plants
  publication-title: Curr. Opin. Cell Boil.
  doi: 10.1016/S0955-0674(00)00112-5
– volume: 135
  start-page: 29
  issue: 1
  year: 2009
  end-page: 42
  ident: CR33
  article-title: The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.2008.01174.x
– volume: 21
  start-page: 1911
  year: 2012
  end-page: 1918
  ident: CR70
  article-title: Effects of alkali stress on growth, free amino acids andcarbohydrates metabolism in Kentucky bluegrass
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-012-0924-1
– volume: 3
  start-page: 171
  issue: 3
  year: 2009
  end-page: 176
  ident: CR34
  article-title: Physiological responses of tomato seedlings ( ) to salt stress
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v3n3p171
– volume: 35
  start-page: 2641
  issue: 9
  year: 2013
  end-page: 2653
  ident: CR24
  article-title: Plant ionomics: a newer approach to study mineral transport and its regulation
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-013-1316-8
– volume: 46
  start-page: 21
  issue: 1
  year: 2008
  end-page: 27
  ident: CR71
  article-title: Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging
  publication-title: Photosynthetica
  doi: 10.1007/s11099-008-0005-0
– volume: 178
  start-page: 306
  issue: 2
  year: 2015
  end-page: 311
  ident: CR26
  article-title: Interactive effects of salinity and iron deficiency on different rice genotypes
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201400358
– volume: 54
  start-page: 1976
  issue: 12
  year: 2013
  end-page: 1988
  ident: CR16
  article-title: Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct134
– volume: 104
  start-page: 177
  year: 2017
  end-page: 183
  ident: CR37
  article-title: Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient (N, P) removal performance of
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.04.029
– volume: 1469
  start-page: 1
  issue: 1
  year: 2000
  end-page: 30
  ident: CR53
  article-title: Potassium transport in fungi and plants
  publication-title: BBA. Biomembranes
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 18
  ident: CR23
  article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization
  publication-title: Int. J. Genomics
  doi: 10.1155/2014/701596
– volume: 44
  start-page: 15
  year: 2012
  end-page: 20
  ident: CR57
  article-title: Mineral element distribution of cotton ( L.) seedlings under different salinity levels
  publication-title: Pak. J. Bot.
– volume: 1
  start-page: 308
  issue: 3
  year: 2007
  end-page: 314
  ident: CR38
  article-title: Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress
  publication-title: Front. Agric. China
  doi: 10.1007/s11703-007-0052-5
– volume: 95
  start-page: 70
  year: 2014
  end-page: 77
  ident: CR43
  article-title: Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2014.08.009
– volume: 40
  start-page: 183
  issue: 1
  year: 2008
  ident: CR12
  article-title: Influence of sodium chloride on seed germination and seedling root growth of cotton ( L.)
  publication-title: Pak. J. Bot.
– volume: 25
  start-page: 23883
  issue: 24
  year: 2018
  end-page: 23896
  ident: CR45
  article-title: Exogenously applied zinc and copper mitigate salinity effect in maize ( L.) by improving key physiological and biochemical attributes
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2383-6
– volume: 15
  start-page: 664
  issue: 12
  year: 2010
  end-page: 674
  ident: CR3
  article-title: Plant molecular stress responses face climate change
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.08.002
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: CR65
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 9
  start-page: e112807
  issue: 11
  year: 2014
  ident: CR59
  article-title: Morphological and physiological responses of cotton ( L.) plants to salinity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0112807
– volume: 4
  start-page: 39
  year: 2013
  ident: CR15
  article-title: The plant ionome revisited by the nutrient balance concept
  publication-title: Front. Plant Sci.
– volume: 45
  start-page: 600
  issue: 5
  year: 2004
  end-page: 607
  ident: CR21
  article-title: The cotton gene encoding a novel putative tonoplast Na /H antiporter plays an important role in salt stress
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch071
– volume: 15
  start-page: 760
  issue: 1
  year: 2014
  ident: CR73
  article-title: Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-760
– volume: 59
  start-page: 709
  year: 2008
  end-page: 733
  ident: CR14
  article-title: Ionomics and the study of the plant ionome
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092942
– volume: 57
  start-page: 90
  year: 2014
  end-page: 97
  ident: CR60
  article-title: Calcium and magnesium do not alleviate the toxic effect of sodium on the emergence and initial growth of castor, cotton, and safflower
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2014.03.015
– volume: 73
  start-page: 247
  issue: 2
  year: 1983
  end-page: 256
  ident: CR61
  article-title: Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties
  publication-title: Plant Soil
  doi: 10.1007/BF02197720
– volume: 162
  start-page: 1353
  issue: 6
  year: 2015
  end-page: 1364
  ident: CR22
  article-title: A mechanism for sustained cellulose synthesis during salt stress
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.028
– volume: 175
  start-page: 630
  issue: 4
  year: 2012
  end-page: 640
  ident: CR46
  article-title: Responses of barley to hypoxia and salinity during seed germination, nutrient uptake, and early plant growth in solution culture
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201100209
– volume: 374
  start-page: 661
  issue: 1–2
  year: 2014
  end-page: 676
  ident: CR66
  article-title: ZxSOS1 is essential for long-distance transport and spatial distribution of Na and K in the xerophyte
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1891-x
– volume: 27
  start-page: 93
  issue: 1
  year: 2006
  end-page: 96
  ident: CR63
  article-title: Effects of Mn and Mo on the salt tolerance of cotton seedling growth
  publication-title: J. Jishou Univ. (Natural Sciences Edition)
– volume: 17
  start-page: 41
  issue: 1
  year: 2017
  ident: CR7
  article-title: Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize ( L.) seedlings
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-017-0994-6
– volume: 27
  start-page: 208
  issue: 3
  year: 2015
  end-page: 215
  ident: CR11
  article-title: Physiological salinity tolerance mechanism for transport of K and Na ions in cotton ( L.) seedlings under salt stress
  publication-title: Cotton Sci.
– volume: 5
  start-page: 350
  issue: 6
  year: 2010
  end-page: 360
  ident: CR39
  article-title: Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean
  publication-title: Am. J. Plant Physiol.
  doi: 10.3923/ajpp.2010.350.360
– volume: 119
  start-page: 121
  year: 2017
  end-page: 131
  ident: CR27
  article-title: Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton ( L.) cultivars
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.08.024
– volume: 294
  start-page: 263
  issue: 1–2
  year: 2007
  end-page: 276
  ident: CR30
  article-title: Osmotic adjustment and ion balance traits of an alkali resistant halophyte during adaptation to salt and alkali conditions
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9251-3
– volume: 34
  start-page: 605
  issue: 4
  year: 2011
  end-page: 617
  ident: CR51
  article-title: Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02266.x
– volume: 31
  start-page: 113
  issue: 1
  year: 2012
  end-page: 123
  ident: CR68
  article-title: Physiological evaluation of drought stress tolerance and recovery in cauliflower ( L.) seedlings treated with methyl jasmonate and coronatine
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-011-9224-x
– volume: 45
  start-page: 127
  issue: 1
  year: 2013
  end-page: 134
  ident: CR52
  article-title: Optimization of soil K:Na ratio for cotton ( L.) nutrition under field conditions
  publication-title: Pak. J. Bot.
– volume: 3
  start-page: 326
  issue: 2
  year: 2010
  end-page: 333
  ident: CR19
  article-title: The Arabidopsis thaliana K transporter is required for plant growth and K acquisition from low K solutions under saline conditions
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssp102
– volume: 39
  start-page: 205
  issue: 1
  year: 1973
  end-page: 207
  ident: CR69
  article-title: Rapid determination of free proline for water-stress studies
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 17
  start-page: 1803
  issue: 10
  year: 1994
  end-page: 1815
  ident: CR55
  article-title: Transformation of phosphate in rice ( L.) rhizosphere and its influence on phosphorus nutrition of rice
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904169409364847
– volume: 168
  start-page: 541
  issue: 4
  year: 2005
  end-page: 549
  ident: CR56
  article-title: Drought and salinity: A comparison of their effects on mineral nutrition of plants
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200420516
– volume: 8
  start-page: 6002
  issue: 47
  year: 2013
  end-page: 6011
  ident: CR40
  article-title: Photosynthesis, ion accumulation, antioxidants activities and yield responses of different cotton genotypes to mixed salt stress
  publication-title: Afr. J. Agric. Res.
– volume: 1
  start-page: 308
  issue: 3
  year: 2007
  ident: 79045_CR38
  publication-title: Front. Agric. China
  doi: 10.1007/s11703-007-0052-5
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: 79045_CR74
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 38
  start-page: 19
  issue: 2
  year: 2018
  ident: 79045_CR2
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-018-0774-5
– volume: 39
  start-page: 205
  issue: 1
  year: 1973
  ident: 79045_CR69
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 39
  start-page: 729
  issue: 3
  year: 2007
  ident: 79045_CR54
  publication-title: Pak. J. Bot.
– volume: 9
  start-page: e112807
  issue: 11
  year: 2014
  ident: 79045_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0112807
– volume: 119
  start-page: 121
  year: 2017
  ident: 79045_CR27
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.08.024
– volume: 38
  start-page: 21
  issue: 1
  year: 2016
  ident: 79045_CR44
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-015-2032-3
– volume: 59
  start-page: 709
  year: 2008
  ident: 79045_CR14
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092942
– volume: 27
  start-page: 93
  issue: 1
  year: 2006
  ident: 79045_CR63
  publication-title: J. Jishou Univ. (Natural Sciences Edition)
– volume: 86
  start-page: 17
  year: 2013
  ident: 79045_CR13
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.07.001
– volume: 104
  start-page: 177
  year: 2017
  ident: 79045_CR37
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.04.029
– volume: 15
  start-page: 664
  issue: 12
  year: 2010
  ident: 79045_CR3
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.08.002
– volume: 115
  start-page: 495
  issue: 3
  year: 2015
  ident: 79045_CR20
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu177
– volume: 168
  start-page: 541
  issue: 4
  year: 2005
  ident: 79045_CR56
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200420516
– volume: 2014
  start-page: 1
  year: 2014
  ident: 79045_CR23
  publication-title: Int. J. Genomics
  doi: 10.1155/2014/701596
– volume: 142
  start-page: 563
  issue: 3
  year: 2008
  ident: 79045_CR29
  publication-title: Plant Biosyst.
  doi: 10.1080/11263500802410918
– volume: 3
  start-page: 105
  issue: 2
  year: 2014
  ident: 79045_CR17
  publication-title: Scientia
– volume: 7
  start-page: 405
  issue: 9
  year: 2002
  ident: 79045_CR35
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 294
  start-page: 263
  issue: 1–2
  year: 2007
  ident: 79045_CR30
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9251-3
– volume: 45
  start-page: 127
  issue: 1
  year: 2013
  ident: 79045_CR52
  publication-title: Pak. J. Bot.
– volume: 6
  start-page: 59
  issue: 1
  year: 2012
  ident: 79045_CR67
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-011-0200-5
– volume: 49
  start-page: 301
  issue: 2
  year: 2005
  ident: 79045_CR62
  publication-title: Biol. Plantarum
  doi: 10.1007/s10535-005-1304-y
– volume: 161
  start-page: 285
  issue: 3
  year: 2004
  ident: 79045_CR36
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01123
– volume: 1469
  start-page: 1
  issue: 1
  year: 2000
  ident: 79045_CR53
  publication-title: BBA. Biomembranes
– volume: 37
  start-page: 1269
  issue: 8
  year: 2014
  ident: 79045_CR18
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2014.881869
– volume: 59
  start-page: 651
  year: 2008
  ident: 79045_CR65
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 40
  start-page: 183
  issue: 1
  year: 2008
  ident: 79045_CR12
  publication-title: Pak. J. Bot.
– volume: 5
  start-page: 264
  issue: 8
  year: 2011
  ident: 79045_CR25
  publication-title: Afr. J. Biochem. Res.
– volume: 31
  start-page: 113
  issue: 1
  year: 2012
  ident: 79045_CR68
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-011-9224-x
– volume: 12
  start-page: 431
  issue: 4
  year: 2000
  ident: 79045_CR48
  publication-title: Curr. Opin. Cell Boil.
  doi: 10.1016/S0955-0674(00)00112-5
– volume: 25
  start-page: 239
  issue: 2
  year: 2002
  ident: 79045_CR5
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00808.x
– volume: 178
  start-page: 306
  issue: 2
  year: 2015
  ident: 79045_CR26
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201400358
– volume: 5
  start-page: 350
  issue: 6
  year: 2010
  ident: 79045_CR39
  publication-title: Am. J. Plant Physiol.
  doi: 10.3923/ajpp.2010.350.360
– volume: 17
  start-page: 1803
  issue: 10
  year: 1994
  ident: 79045_CR55
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904169409364847
– volume: 45
  start-page: 600
  issue: 5
  year: 2004
  ident: 79045_CR21
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch071
– volume: 3
  start-page: 326
  issue: 2
  year: 2010
  ident: 79045_CR19
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssp102
– volume: 61
  start-page: 839
  issue: 5
  year: 2010
  ident: 79045_CR50
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04110.x
– volume: 35
  start-page: 2641
  issue: 9
  year: 2013
  ident: 79045_CR24
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-013-1316-8
– volume: 135
  start-page: 29
  issue: 1
  year: 2009
  ident: 79045_CR33
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.2008.01174.x
– volume: 165
  start-page: 155
  issue: 2
  year: 2019
  ident: 79045_CR41
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12791
– volume: 44
  start-page: 15
  year: 2012
  ident: 79045_CR57
  publication-title: Pak. J. Bot.
– volume: 352
  start-page: 353
  issue: 1–2
  year: 2012
  ident: 79045_CR47
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1001-x
– volume: 162
  start-page: 1353
  issue: 6
  year: 2015
  ident: 79045_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.028
– volume: 63
  start-page: 19
  issue: 1–3
  year: 2008
  ident: 79045_CR42
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.10.009
– volume: 175
  start-page: 630
  issue: 4
  year: 2012
  ident: 79045_CR46
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201100209
– volume: 54
  start-page: 1976
  issue: 12
  year: 2013
  ident: 79045_CR16
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct134
– volume: 21
  start-page: 1911
  year: 2012
  ident: 79045_CR70
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-012-0924-1
– volume: 40
  start-page: 853
  issue: 5
  year: 2017
  ident: 79045_CR6
  publication-title: Legume Res.
– volume: 17
  start-page: 41
  issue: 1
  year: 2017
  ident: 79045_CR7
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-017-0994-6
– volume: 95
  start-page: 70
  year: 2014
  ident: 79045_CR43
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2014.08.009
– volume: 48
  start-page: 278
  issue: 2
  year: 2010
  ident: 79045_CR1
  publication-title: Photosynthetica
  doi: 10.1007/s11099-010-0034-3
– volume: 15
  start-page: 1007
  issue: 4
  year: 2015
  ident: 79045_CR4
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 104
  start-page: 41
  issue: 1
  year: 2011
  ident: 79045_CR28
  publication-title: Plant Cell Tissue Org.
  doi: 10.1007/s11240-010-9802-9
– volume: 39
  start-page: 699
  issue: 8
  year: 2012
  ident: 79045_CR8
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12109
– volume: 9
  start-page: 460
  issue: 1
  year: 2014
  ident: 79045_CR9
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2013.855271
– volume: 46
  start-page: 21
  issue: 1
  year: 2008
  ident: 79045_CR71
  publication-title: Photosynthetica
  doi: 10.1007/s11099-008-0005-0
– volume: 246
  start-page: 96
  year: 2018
  ident: 79045_CR58
  publication-title: Flora
  doi: 10.1016/j.flora.2018.07.008
– volume: 98
  start-page: 1222
  issue: 4
  year: 1992
  ident: 79045_CR72
  publication-title: Plant Physiol.
  doi: 10.1104/pp.98.4.1222
– volume: 15
  start-page: 760
  issue: 1
  year: 2014
  ident: 79045_CR73
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-760
– volume: 130
  start-page: 248
  issue: 1
  year: 2011
  ident: 79045_CR49
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2011.07.006
– volume: 34
  start-page: 605
  issue: 4
  year: 2011
  ident: 79045_CR51
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02266.x
– volume: 8
  start-page: 6002
  issue: 47
  year: 2013
  ident: 79045_CR40
  publication-title: Afr. J. Agric. Res.
– volume: 25
  start-page: 23883
  issue: 24
  year: 2018
  ident: 79045_CR45
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2383-6
– volume: 57
  start-page: 90
  year: 2014
  ident: 79045_CR60
  publication-title: Ind. Crop Prod.
  doi: 10.1016/j.indcrop.2014.03.015
– volume: 4
  start-page: 39
  year: 2013
  ident: 79045_CR15
  publication-title: Front. Plant Sci.
– volume: 3
  start-page: 171
  issue: 3
  year: 2009
  ident: 79045_CR34
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v3n3p171
– volume: 33
  start-page: 56
  issue: 1
  year: 2015
  ident: 79045_CR10
  publication-title: Plant Mol. Boil. Rep.
  doi: 10.1007/s11105-014-0722-4
– volume: 114
  start-page: 5
  issue: 1
  year: 2007
  ident: 79045_CR31
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2007.05.002
– volume: 73
  start-page: 247
  issue: 2
  year: 1983
  ident: 79045_CR61
  publication-title: Plant Soil
  doi: 10.1007/BF02197720
– volume: 14
  start-page: 465
  issue: 2
  year: 2002
  ident: 79045_CR64
  publication-title: Plant Cell
  doi: 10.1105/tpc.010371
– volume: 27
  start-page: 208
  issue: 3
  year: 2015
  ident: 79045_CR11
  publication-title: Cotton Sci.
– volume: 60
  start-page: 344
  issue: 3
  year: 2007
  ident: 79045_CR32
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2006.12.005
– volume: 374
  start-page: 661
  issue: 1–2
  year: 2014
  ident: 79045_CR66
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1891-x
SSID ssj0000529419
Score 2.565819
Snippet To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali...
To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt-alkali...
Abstract To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21844
SubjectTerms 631/449
631/449/2661
Abiotic stress
Absorption
Antioxidants
Cotton
Electrical conductivity
Enzymatic activity
Enzymes
Homeostasis
Humanities and Social Sciences
Leaves
Malondialdehyde
Manganese
multidisciplinary
Physiological responses
Principal components analysis
Proline
Salinity tolerance
Salt tolerance
Science
Science (multidisciplinary)
Sodium bicarbonate
Sodium carbonate
Sodium chloride
Sodium sulfate
Stress
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiJ1AQUbixkRNbCfPORZEqZDgVKTeLK-aEUNSTdID_fV9tjNDh_XCIZfYliy_7fPyvkfIa6adtYjrS-5Al8KwUBotoGwRi0jd2cr7mOD86XN7-kV8PG_Ob5T6im_CMj1wXrij0IbGN7wFbYLQlhldOS2sQGTrrHAmel-MeTc2U5nVm3Wi7uYsmYrLoxEjVcwmw90SdIhjyqu9SJQI-3-HMn99LPnTjWkKRCf3yN0ZQdLjPPP75JbvH5Dbuabk94dk9QE31tNyQeNBq6XL4ZsfEAGOq3FBde9oOsrYejy6yU9k_UiHQCNNw9DTmFa2odvKKRMd9XpKQ_X6K6J2mtNL_PiInJ28P3t3Ws71FErbAEwl69oAEGoPxlStFI55LRvpa40bVWsqCa4OUJmgq9Yb62rujJCmk4Z75jR_TA76ofdPCRUaIheZAC0iv6CT8XMiugAQTRUKUm-XVtmZazyWvFirdOfNpcriUCgOlcShrgryZjfmIjNt_LX32yixXc_Ikp1-oO6oWXfUv3SnIIdbeavZdEfFBKBbQmTTFeTVrhmNLt6k6N4Pl6kP4jLEum1BnmT12M2E85iQLqEgsKc4e1Pdb-lXy0TsDcBbHFyQxVbFfkzrz0vx7H8sxXNyh0XbqFlZi0NyMG0u_QuEW5N5mSzrGvNEKmw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxY60msZNxTggQpUKCU5H2ZvnJrrokZZMe6K_H4yRbLY8ecklsyfGM7c_z-IaQ16V21kZcz7gDzYQpAzNaAKsjFpG6sbn3mOD85Wt98k18XlbLyeDWT2GV856YNmrXWbSRH5UCorbEA6d5e_6TYdUo9K5OJTRukltIXYYhXbCEnY0FvViiaKZcmZzLoz6eV5hTFu9M0EQ0wy73zqNE2_8vrPl3yOQfftN0HB3fI3cnHEnfjYK_T2749gG5PVaW_PWQrD_F6_WwWlA0t1q66n74LuLAft0vqG4dTQaNed-j2zFQ1ve0CxTJGrqWYnLZls71Uwba682QuurNWcTudEwy8f0jcnr88fTDCZuqKjBbAQysbOoAEAoPxuS1FK70WlbSFzpeV63JJbgiQG6CzmtvrCu4M0KaRhruS6f5Y3LQdq1_SqjQgIxkArRAlkEn8XECNwIQVR4yUsxTq-zEOI6FLzYqeb65VKM4VBSHSuJQlxl5s-tzPvJtXNv6PUps1xK5stOLbvtdTUtPhTpUvuI1aBOEtqXRudPCxhE3zgpnMnI4y1tNC7hXV-qWkVe7z3HpoT9Ft767SG0iOouIt87Ik1E9diPhHNPSJWQE9hRnb6j7X9r1KtF7A_A6ds7IYlaxq2H9fyqeXf8Xz8mdErW-KFkhDsnBsL3wLyKcGszLtGZ-A2-NIBM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDcpbWUkbmxEYju2c4RVH0KCU5F6s_xkV2wTtEkP9NfXdh5ooSBxyCX2SCPPjP35Md8AvMXKGhNwfU4sVznV2OdaUZ6zgEWEqk3hXExw_vyFnX-lny6ryz3AUy5MerSfKC3TND29DnvfhYUmJoOFzQ6vAwzJb-7B_UjdHr16yZbzuUq8uaJlPebHFETcIbqzBiWq_rvw5Z_PJH-7K01L0OljeDRiR_Rh0PYJ7LnmKTwYqkn-fAbrs7Cl7lcLFI9YDVq1V64N2K9bdwukGovSIcY016Ht8DjWdaj1KBI0tA2KCWVbNNVM6VGnNn0SVZvvAa-jIbHEdc_h4vTkYnmej5UUclNx3ue4Zp5zXzqudcEEtdgpUQlXqrBFNboQ3JaeF9qrgjltbEmspkLXQhOHrSIvYL9pG_cKEFU8spBRrmhkFrQifpbG4Oe0KnwG5TS00ows47HYxUam224i5GAOGcwhkznkTQbvZpkfA8fGP3t_jBabe0Z-7PSj3X6To79Iz3zlKsK40p4qg7UqrKImaFxbQ63O4HCytxyDtpOY8jAhBUxTZ_Bmbg7hFu9QVOPa69QnILKAclkGLwf3mDUhJKaiC54B33GcHVV3W5r1KlF6c05YEM5gMbnYL7X-PhQH_9f9NTzEMQpKnJf0EPb77bU7CpCq18cphm4B2PUecQ
  priority: 102
  providerName: Springer Nature
Title Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses
URI https://link.springer.com/article/10.1038/s41598-020-79045-z
https://www.ncbi.nlm.nih.gov/pubmed/33318587
https://www.proquest.com/docview/2473192249
https://www.proquest.com/docview/2470284056
https://pubmed.ncbi.nlm.nih.gov/PMC7736318
https://doaj.org/article/f6f5e5367abf4ac2ba0da4c4049dc4db
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB71EKgviBtDiRaJN2LwsfHYDwilUUsVqRWCVuqbtZebiGBD7Eq0v57ZtR0IpDxYlvaQRjszu98e8w3A60hopQjX-7FG4XMZFb4UHP2EsEgqMhUYYwOcT06T43M-vRhdbEGf7qgbwHrj1s7mkzpfLt7-_HH9gRz-fRsynr6raRGygWK0EcKMIIp_sw27tDKhddSTDu63XN9RxsOsi53Z3HUP7saxDSm2j-z-WKoco_8mGPrva8q_rlTdSnV0H-51EJONW5t4AFumfAh32qST149g_pF23s1syOxJrGKz6pupCCLW83rIRKmZO-vop0S2bN_QmppVBbM8DlXJbNzZkvWpVRpWi0XjuorFV4L1rI0_MfVjODs6PJsc-13CBV-NEBs_ypICsQgNShkkKdeRETQQJhS0k1UySFGHBQayEEFipNJhrCVPZZbK2ERaxE9gp6xK8wwYF2jJyjgKbgkIdWo_ze0cgXwUFB6E_dDmqiMjtzkxFrm7FI_TvNVMTprJnWbyGw_erPp8b6k4_tv6wGps1dLSaLuCanmZd16ZF0kxMqM4QSELLlQkRaAFVyRxphXX0oP9Xt95b5p5xJHmLYI-mQevVtXklfaqRZSmunJtCLgRGE48eNqax0qS3rw8wDXDWRN1vaaczxzzN2KcUGcPhr2J_Rbr9qF4fqsIL2AvsrYfRn7I92GnWV6ZlwSyGjmAbbzAAeyOx9MvU_ofHJ5--kylk2QycAcXA-dbvwAEbilF
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IJ4lUMBIcGKjJrYTOweEKLRsabtCaJF6s_wKu-qSlE0q1P4n_iN2Hlstj956yCW2I8fz8DcezwzASyyN1g7Xh8QwGVKF81BJysLUYREuMx1Z6wOcj8bp6Cv9dJwcr8GvPhbGX6vsdWKjqE2p_Rn5NqbMcYvbcLK3pz9CXzXKe1f7EhotWxzY85_OZKve7H9w9H2F8d7u5P0o7KoKhDphrA5xluaM5bFlSkUppwZbyRNuY-nMNa0izkycs0jlMkqt0iYmRlGuMq6IxUYS99kbsE6Js2QGsL6zO_78ZXmo491mNM664JyI8O3KbZA-iM0ZaSxz8Cm8WNkAmzoB_wK3f9_R_MNR2-x_e3fgdgdc0buW0-7Cmi3uwc22lOX5fZh9dPZ8PR0if76r0bT8bksHPKtZNUSyMKg5QekVLVq0N3Nthcoc-ewQZYF8NNsC9QVbalTJed0MlfMTZyygNqrFVg9gch0L_hAGRVnYR4CoZD4FGmWS-rSGhvvHUK95GE2iPIC4X1qhuxTnvtLGXDSudsJFSw7hyCEacoiLAF4vx5y2CT6u7L3jKbbs6ZNzNy_KxTfRybrI0zyxCUmZVDmVGisZGUm1m3FmNDUqgK2e3qLTGJW45O8AXiybnax7B44sbHnW9HFw0EHsNIDNlj2WMyHEx8FzFgBbYZyVqa62FLNpk0-cMZK6wQEMexa7nNb_l-Lx1X_xHG6NJkeH4nB_fPAENrCXgBiHMd2CQb04s08dlqvVs06CEIhrltnf191fLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgxEabxE7GOSAElKWlUHEo0t4sP9lVt0nZpELtP-PfYTvJVsujtx5yie3I8Tz8jcczg9CLTGilHK6PiQYRU5nZWAoKceGwCBOlSozxAc5f9oudb_TTNJ9uoF9DLIy_VjnoxKCoda38Gfk4o-C4xW045dj21yK-bk_eHP-IfQUp72kdyml0LLJnTn868615vbvtaP0yyyYfDt7vxH2FgVjlAG2clYUFsKkBKZOCUZ0ZwXJmUuFMNyUTBjq1kEgrksJIpVOiJWWyZJKYTAviPnsFXQWSp17EYAqr4x3vQKNp2YfpJISNG7dV-nA2Z65B6YBUfLa2FYaKAf-CuX_f1vzDZRt2wsktdLOHsPhtx3O30Yap7qBrXVHL07to_tFZ9u1shP1Jr8Kz-sjUDoI282aERaVxOEsZVC5ednd0TYNri32eiLrCPq5tiYfSLS1uxKINQ8Xi0JkNuItvMc09dHAZy30fbVZ1ZR4iTAX4ZGgUBPUJDjXzj6ZeBwHNExuhdFharvpk577mxoIHpzthvCMHd-TggRz8LEKvVmOOu1QfF_Z-5ym26unTdIcX9fI776We28LmJicFCGmpUJkUiRZUuRmXWlEtI7Q10Jv3uqPh55weoeerZif13pUjKlOfhD4OGDqwXUToQcceq5kQ4iPiGUQI1hhnbarrLdV8FjKLA5DCDY7QaGCx82n9fykeXfwXz9B1J6n88-7-3mN0I_MCkGZxSrfQZrs8MU8cqGvl0yA-GPFLFtffIdlh_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth%2C+ionic+homeostasis%2C+and+physiological+responses+of+cotton+under+different+salt+and+alkali+stresses&rft.jtitle=Scientific+reports&rft.au=Guo%2C+Huijuan&rft.au=Huang%2C+Zhijie&rft.au=Li%2C+Meiqi&rft.au=Hou%2C+Zhenan&rft.date=2020-12-14&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft.spage=21844&rft_id=info:doi/10.1038%2Fs41598-020-79045-z&rft_id=info%3Apmid%2F33318587&rft.externalDocID=33318587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon