Endurance exercise-mediated metabolic reshuffle attenuates high-caloric diet-induced non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mech...

Full description

Saved in:
Bibliographic Details
Published inAnnals of hepatology Vol. 27; no. 4; p. 100709
Main Authors Cook, Joshua J., Wei, Madeline, Segovia, Benny, Cosio-Lima, Ludmila, Simpson, Jeffrey, Taylor, Scott, Koh, Yunsuk, Kim, Sangho, Lee, Youngil
Format Journal Article
LanguageEnglish
Published Mexico Elsevier España, S.L.U 01.07.2022
Elsevier
Subjects
p53
p16
GSK
HSL
AKT
PGD
p21
EXE
FAT
Online AccessGet full text

Cover

Loading…
Abstract Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice. Nine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued. EEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1). EEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
AbstractList Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice. Nine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued. EEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1). EEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice.INTRODUCTION AND AIMNon-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice.Nine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued.MATERIAL AND METHODSNine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued.EEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1).RESULTSEEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1).EEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.CONCLUSIONEEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
AbstractIntroduction and ObjectivesNon-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice. Material and methodsNine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued. ResultsEEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1). ConclusionEEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
Introduction and aim: Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice. Material and methods: Nine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued. Results: EEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1). Conclusion: EEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
ArticleNumber 100709
Author Cook, Joshua J.
Simpson, Jeffrey
Segovia, Benny
Cosio-Lima, Ludmila
Taylor, Scott
Lee, Youngil
Koh, Yunsuk
Kim, Sangho
Wei, Madeline
Author_xml – sequence: 1
  givenname: Joshua J.
  orcidid: 0000-0003-3508-7065
  surname: Cook
  fullname: Cook, Joshua J.
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
– sequence: 2
  givenname: Madeline
  orcidid: 0000-0002-5613-8231
  surname: Wei
  fullname: Wei, Madeline
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
– sequence: 3
  givenname: Benny
  surname: Segovia
  fullname: Segovia, Benny
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
– sequence: 4
  givenname: Ludmila
  surname: Cosio-Lima
  fullname: Cosio-Lima, Ludmila
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
– sequence: 5
  givenname: Jeffrey
  surname: Simpson
  fullname: Simpson, Jeffrey
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
– sequence: 6
  givenname: Scott
  surname: Taylor
  fullname: Taylor, Scott
  organization: Department of Biology, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
– sequence: 7
  givenname: Yunsuk
  surname: Koh
  fullname: Koh, Yunsuk
  organization: Department of Health, Human Performance and Recreation, Robbins College of Human Sciences, Baylor University, Waco, TX 76798, USA
– sequence: 8
  givenname: Sangho
  surname: Kim
  fullname: Kim, Sangho
  organization: Department of Sport Science, College of Culture and Sports, School of Global Sport Studies, Korea University, Sejong 30019, South Korea
– sequence: 9
  givenname: Youngil
  surname: Lee
  fullname: Lee, Youngil
  email: ylee1@uwf.edu
  organization: Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35489641$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7B_9BILMoy-zJpkkM4MolFK1UPBBfQ53MjfdrNnJmmQW99ub3W19KGifAjfndxLOuefkZAoTEvKa0QWjTL1bLSAscbPglPMyoS3tn5EzrmRfy77jJ-SMKSVrrjp2Ss5TWlEqGsn4C3LaSNH1SrAzsr2exjnCZLDC3xiNS1ivcXSQcazWmGEI3pkqYlrO1nqsIGec5nKdqqW7W9YGfIhFMTrMtStmpoDlpzV4E5YH2BZmV3m3xVhkCSHhS_Lcgk_46v68ID8-XX-_-lLffv18c3V5WxvZtrlmAAOwdjSjbYRCyaxiPbMgek4lDC1XRlrOpBH90HYDG4USPQBtWo60UU1zQW6OvmOAld5Et4a40wGcPgxCvNMQszMedcslFRztOBghWD8MEiw3xa1TfFANFq-3R69NDL9mTFmvXTLoPUwY5qRL8h3nXc9Fkb65l85DSfPvww-5F0F_FJgYUopotXEZsgtTjuC8ZlTvO9YrfehY7zvWx44L2zxiH-z_T304Ulji3jqMOhmHpffRRTS55OGe4D8-4o13kyv1_8QdplWY41Sa1Ewnrqn-tt-9_epxTimVTBaD9_82ePL5PyNc6t4
CitedBy_id crossref_primary_10_1002_jcp_31366
crossref_primary_10_1038_s41598_023_46302_w
crossref_primary_10_1097_MOG_0000000000001013
crossref_primary_10_3390_healthcare11141992
crossref_primary_10_1007_s11033_024_09844_4
crossref_primary_10_1111_liv_70068
crossref_primary_10_3389_fnut_2024_1326092
crossref_primary_10_1039_D4FO02984D
Cites_doi 10.18632/aging.102552
10.1016/j.atherosclerosis.2008.06.016
10.1152/ajpgi.00032.2011
10.4103/CJP.CJP_43_20
10.1089/jmf.2019.4651
10.1038/labinvest.2011.55
10.1002/hep.22980
10.1136/gut.2011.242073
10.1016/j.jhep.2015.02.022
10.1159/000320552
10.1038/nrneph.2017.107
10.1002/hep.22774
10.1016/j.aohep.2019.08.010
10.1186/s12967-021-02769-7
10.1186/1471-230X-14-81
10.1016/j.isci.2018.12.033
10.1038/s41598-020-61473-6
10.1016/j.cmet.2011.11.004
10.1152/japplphysiol.00127.2012
10.1186/s12986-015-0026-1
10.3390/cells8050447
10.1016/j.lfs.2021.119071
10.1194/jlr.M066415
10.1194/jlr.M035519
10.1038/nature07976
10.5717/jenb.2013.17.4.181
10.1038/srep23664
10.5717/jenb.2014.18.4.339
10.1002/hep.30765
10.1074/jbc.RA119.008708
10.1186/s12944-018-0933-z
10.1007/s10863-006-9052-z
10.1016/j.mito.2014.03.012
10.3390/nu10101383
10.1038/ncomms15691
10.1016/j.jhep.2019.08.026
10.1111/hepr.13071
10.1152/ajpendo.00342.2017
10.1016/0531-5565(95)02032-2
10.1002/hep.30251
10.1177/1535370213489446
10.1155/2021/9986299
10.1016/j.biocel.2014.07.011
10.1249/MSS.0000000000002011
10.1016/j.molmet.2019.08.008
ContentType Journal Article
Copyright 2022 Fundación Clínica Médica Sur, A.C.
Fundación Clínica Médica Sur, A.C.
Copyright © 2022 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. All rights reserved.
Copyright_xml – notice: 2022 Fundación Clínica Médica Sur, A.C.
– notice: Fundación Clínica Médica Sur, A.C.
– notice: Copyright © 2022 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1016/j.aohep.2022.100709
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2659-5982
EndPage 100709
ExternalDocumentID oai_doaj_org_article_725042efdbc4419bb5af2c9aa862b63e
35489641
10_1016_j_aohep_2022_100709
S1665268122000515
1_s2_0_S1665268122000515
Genre Journal Article
GroupedDBID ---
.1-
.FO
0R~
1P~
23M
2WC
53G
5GY
77H
AAEDW
AAKDD
AALRI
AAXUO
AAYWO
ABXHO
ACVFH
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APOWU
APXCP
BAWUL
EBD
EBS
EMOBN
F5P
FDB
GROUPED_DOAJ
GX1
M41
OC.
OK1
ON0
P2P
ROL
RSH
SV3
TR2
Z5R
AFCTW
DIK
NCXOZ
0SF
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c577t-1aaba17dcdf346e51f6191fa49205ab726c5f215c49b78b1d4649aa0372e03633
IEDL.DBID DOA
ISSN 1665-2681
IngestDate Wed Aug 27 01:25:27 EDT 2025
Fri Jul 11 16:14:41 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Tue Jul 01 00:53:21 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 25 20:56:20 EDT 2023
Tue Feb 25 20:02:56 EST 2025
Tue Aug 26 16:40:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Oxidative stress
Senescence
NAFLD
ACSS2
ATGL
LC3-II
PARP
ABHD5
p53
Mitochondria
CuZnSOD
PI3K
CPT-1A
p16
LAMP2
mTOR
PCK1
ATG7
GSK
HSL
GLUT2
G6PD
G6PC
NADPHOx2
DGAT1
ACSL1
Endurance exercise
TFEB
IRβ
AKT
PGD
IL-1β
p21
FABP1
ACLY
EXE
TNF-α
MnSOD
CASPASE3
BCL2
FAT
AMPK
Non-alcoholic fatty liver disease
GAPDH
glucose-6-phosphate dehydrogenase
glucose transporter 2
transcription factor EB
fatty acid translocase
hormone sensitive lipase
adipose triglyceride lipase
manganese superoxide dismutase
phosphatidylinositol 3 kinase
copper zinc superoxide dismutase
Acyl-CoA synthetase long chain family member 1
NADPH oxidase 2
non-acholic fatty liver disease
ATP Citrate Lyase
microtubule-associated protein B-light chain 3 II
autophagy protein 7
6-phosphogluconate dehydrogenase
interleukin-1 β
cyclin-dependent kinase inhibitor 2A
diacylglycerol O-acyltransferase 1
fatty acid binding protein 1
B-Cell Leukemia/Lymphoma 2
mammalian target of rapamycin
Acyl-CoA Synthetase Short Chain Family Member 2
glyceraldehyde-3-phosphate dehydrogenase
tumor suppressor protein 53
protein kinase B
adenosine mono phosphate-activated protein kinase
cyclin-dependent kinase inhibitor 1
alpha-beta hydrolase domain-containing 5
insulin receptor β
phosphoenolpyruvate carboxykinase1
lysosome-associated membrane protein 2
carnitine palmitoyl transferase 1A
cysteine-dependent aspartate-directed protease 3
tumor necrosis factor- α
glycogen synthase kinase
poly ADP ribose polymerase
glucose-6-phosphatase
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-1aaba17dcdf346e51f6191fa49205ab726c5f215c49b78b1d4649aa0372e03633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3508-7065
0000-0002-5613-8231
OpenAccessLink https://doaj.org/article/725042efdbc4419bb5af2c9aa862b63e
PMID 35489641
PQID 2658228924
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_725042efdbc4419bb5af2c9aa862b63e
proquest_miscellaneous_2658228924
pubmed_primary_35489641
crossref_citationtrail_10_1016_j_aohep_2022_100709
crossref_primary_10_1016_j_aohep_2022_100709
elsevier_sciencedirect_doi_10_1016_j_aohep_2022_100709
elsevier_clinicalkeyesjournals_1_s2_0_S1665268122000515
elsevier_clinicalkey_doi_10_1016_j_aohep_2022_100709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Mexico
PublicationPlace_xml – name: Mexico
PublicationTitle Annals of hepatology
PublicationTitleAlternate Ann Hepatol
PublicationYear 2022
Publisher Elsevier España, S.L.U
Elsevier
Publisher_xml – name: Elsevier España, S.L.U
– name: Elsevier
References Hallsworth, Fattakhova, Hollingsworth, Thoma, Moore, Taylor (bib0007) 2011; 60
Sharma, Sinha, Danishad, Vikram, Gupta, Ahuja (bib0023) 2009; 203
Zhang, Zhou, Strakovsky, Zhang, Pan (bib0046) 2012; 302
Kwon, Song, Jang, Choi, Vinci, Lee (bib0030) 2020; 19
Singh, Kaushik, Wang, Xiang, Novak, Komatsu (bib0029) 2009; 458
Cho, Lee, Kim, Koh, Kong, Lee (bib0008) 2014; 18
Alex, Boss, Heerschap, Kersten (bib0011) 2015; 12
Bhargava, Schnellmann (bib0017) 2017; 13
Yang, Wang, Tang, Sun, Ma, Lin (bib0005) 2020; 10
Hazari, Bravo-San Pedro, Hetz, Galluzzi, Kroemer (bib0028) 2020; 72
Durand, Coué, Croyal, Moyon, Tesse, Atger (bib0036) 2021; 2021
Jang, Kwon, Cosio-Lima, Wirth, Vinci, Lee (bib0024) 2019; 51
Villanueva, Monetti, Shih, Zhou, Watkins, Bhanot (bib0035) 2009; 50
Guo, Ma, Kadegowda, Betters, Xie, Liu (bib0006) 2013; 54
Fletcher, Deja, Satapati, Fu, Burgess, Browning (bib0038) 2019; 5
Younossi, Tacke, Arrese, Chander Sharma, Mostafa, Bugianesi (bib0001) 2019; 69
Del Ben, Polimeni, Carnevale, Bartimoccia, Nocella, Baratta (bib0043) 2014; 14
Zheng F, Cai Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis 2019;18:6.
Ye, Zhao, Xu, Lin, Xu, Wang (bib0025) 2021; 19
Jin, Lee, Murphy, Malloy (bib0042) 2018; 314
Lehnig, Dewal, Baer, Kitching, Munoz, Arts (bib0010) 2019; 11
Gonçalves, Maciel, Passos, Torrella, Rizo, Viscor (bib0014) 2014; 54
Gonçalves, Passos, Rocha-Rodrigues, Diogo, Torrella, Rizo (bib0015) 2014; 15
Song, Xiaoli, Yang (bib0016) 2018; 10
Yun, Lee, Jeong (bib0009) 2020; 23
Gluchowski, Gabriel, Chitraju, Bronson, Mejhert, Boland (bib0022) 2019; 70
Ko, Kim (bib0031) 2013; 17
Wang, Jiang, Wang, Li, Yu, You (bib0019) 2009; 49
Fukushima, Yamashina, Arakawa, Taniguchi, Aoyama, Uchiyama (bib0049) 2018; 48
Aharoni-Simon, Hann-Obercyger, Pen, Madar, Tirosh (bib0037) 2011; 91
Peng, Chen, Wang, Zhu, Wu, Luo (bib0002) 2019; 11
Simoes, Karkucinska-Wieckowska, Janikiewicz, Szymanska, Pronicki, Dobrzyn (bib0020) 2020; 9
Brooks, Lampi, Bihun (bib0033) 1999; 38
Guo, Guo, Li, Peng, Chang, Gao (bib0018) 2019; 294
García-Ruiz, Solís-Muñoz, Fernández-Moreira, Grau, Muñoz-Yagüe, Solís-Herruzo (bib0044) 2016; 6
Fealy, Haus, Solomon, Pagadala, Flask, McCullough (bib0047) 1985; 113
Li, Park, Deng, Bai (bib0041) 2006; 38
Manley, Williams, Ding (bib0048) 2013; 238
Sunny, Parks, Browning, Burgess (bib0039) 2011; 14
Fernández-Tussy, Fernández-Ramos, Lopitz-Otsoa, Simón, Barbier-Torres, Gomez-Santos (bib0040) 2019; 29
Tuohetahuntila, Molenaar, Spee, Brouwers, Houweling, Vaandrager (bib0021) 2016; 57
Schefer, Talan (bib0032) 1996; 31
Ogrodnik, Miwa, Tchkonia, Tiniakos, Wilson, Lahat (bib0045) 2017; 8
la Fuente, Quezada, Sepúlveda, Monsalves-Alvarez, Rodríguez, Sacristán (bib0004) 2019; 1864
Keating, Hackett, Parker, O'Connor, Gerofi, Sainsbury (bib0003) 2015; 63
Chang, Chang, Lin, Huang, Chen, Yen (bib0027) 2020; 63
Zhang, Yu, Cao, Luo, Liu, Zhao (bib0026) 2021; 270
Liou, Lee, Ting, Chen, Shen, Wu (bib0034) 2019; 8
Nadal-Casellas, Amengual-Cladera, Proenza, Lladó, Gianotti (bib0013) 2010; 26
Ko (10.1016/j.aohep.2022.100709_bib0031) 2013; 17
Lehnig (10.1016/j.aohep.2022.100709_bib0010) 2019; 11
Manley (10.1016/j.aohep.2022.100709_bib0048) 2013; 238
Villanueva (10.1016/j.aohep.2022.100709_bib0035) 2009; 50
Fealy (10.1016/j.aohep.2022.100709_bib0047) 1985; 113
Gonçalves (10.1016/j.aohep.2022.100709_bib0015) 2014; 15
Jin (10.1016/j.aohep.2022.100709_bib0042) 2018; 314
Gluchowski (10.1016/j.aohep.2022.100709_bib0022) 2019; 70
Guo (10.1016/j.aohep.2022.100709_bib0006) 2013; 54
Wang (10.1016/j.aohep.2022.100709_bib0019) 2009; 49
Ogrodnik (10.1016/j.aohep.2022.100709_bib0045) 2017; 8
Keating (10.1016/j.aohep.2022.100709_bib0003) 2015; 63
Peng (10.1016/j.aohep.2022.100709_bib0002) 2019; 11
Guo (10.1016/j.aohep.2022.100709_bib0018) 2019; 294
Fernández-Tussy (10.1016/j.aohep.2022.100709_bib0040) 2019; 29
Gonçalves (10.1016/j.aohep.2022.100709_bib0014) 2014; 54
Hallsworth (10.1016/j.aohep.2022.100709_bib0007) 2011; 60
Aharoni-Simon (10.1016/j.aohep.2022.100709_bib0037) 2011; 91
Alex (10.1016/j.aohep.2022.100709_bib0011) 2015; 12
Singh (10.1016/j.aohep.2022.100709_bib0029) 2009; 458
10.1016/j.aohep.2022.100709_bib0012
Fletcher (10.1016/j.aohep.2022.100709_bib0038) 2019; 5
Tuohetahuntila (10.1016/j.aohep.2022.100709_bib0021) 2016; 57
Schefer (10.1016/j.aohep.2022.100709_bib0032) 1996; 31
Kwon (10.1016/j.aohep.2022.100709_bib0030) 2020; 19
Nadal-Casellas (10.1016/j.aohep.2022.100709_bib0013) 2010; 26
Del Ben (10.1016/j.aohep.2022.100709_bib0043) 2014; 14
Liou (10.1016/j.aohep.2022.100709_bib0034) 2019; 8
Jang (10.1016/j.aohep.2022.100709_bib0024) 2019; 51
Sunny (10.1016/j.aohep.2022.100709_bib0039) 2011; 14
Cho (10.1016/j.aohep.2022.100709_bib0008) 2014; 18
Hazari (10.1016/j.aohep.2022.100709_bib0028) 2020; 72
la Fuente (10.1016/j.aohep.2022.100709_bib0004) 2019; 1864
Younossi (10.1016/j.aohep.2022.100709_bib0001) 2019; 69
Fukushima (10.1016/j.aohep.2022.100709_bib0049) 2018; 48
Yun (10.1016/j.aohep.2022.100709_bib0009) 2020; 23
García-Ruiz (10.1016/j.aohep.2022.100709_bib0044) 2016; 6
Zhang (10.1016/j.aohep.2022.100709_bib0046) 2012; 302
Durand (10.1016/j.aohep.2022.100709_bib0036) 2021; 2021
Yang (10.1016/j.aohep.2022.100709_bib0005) 2020; 10
Bhargava (10.1016/j.aohep.2022.100709_bib0017) 2017; 13
Brooks (10.1016/j.aohep.2022.100709_bib0033) 1999; 38
Simoes (10.1016/j.aohep.2022.100709_bib0020) 2020; 9
Zhang (10.1016/j.aohep.2022.100709_bib0026) 2021; 270
Ye (10.1016/j.aohep.2022.100709_bib0025) 2021; 19
Li (10.1016/j.aohep.2022.100709_bib0041) 2006; 38
Sharma (10.1016/j.aohep.2022.100709_bib0023) 2009; 203
Chang (10.1016/j.aohep.2022.100709_bib0027) 2020; 63
Song (10.1016/j.aohep.2022.100709_bib0016) 2018; 10
References_xml – volume: 70
  start-page: 1972
  year: 2019
  end-page: 1985
  ident: bib0022
  article-title: Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice
  publication-title: Hepatology
– volume: 51
  start-page: 2012
  year: 2019
  end-page: 2024
  ident: bib0024
  article-title: Endurance exercise prevents metabolic distress-induced senescence in the hippocampus
  publication-title: Med Sci Sports Exerc
– volume: 63
  start-page: 149
  year: 2020
  end-page: 155
  ident: bib0027
  article-title: Administration of low-dose resveratrol attenuated hepatic inflammation and lipid accumulation in high cholesterol-fructose diet-induced rat model of nonalcoholic fatty liver disease
  publication-title: Chin J Physiol
– volume: 72
  start-page: 183
  year: 2020
  end-page: 196
  ident: bib0028
  article-title: Autophagy in hepatic adaptation to stress
  publication-title: J Hepatol
– volume: 302
  start-page: G558
  year: 2012
  end-page: G564
  ident: bib0046
  article-title: Hepatic cellular senescence pathway genes are induced through histone modifications in a diet-induced obese rat model
  publication-title: Am J Physiol Gastrointest Liver Physiol
– reference: Zheng F, Cai Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis 2019;18:6.
– volume: 12
  start-page: 29
  year: 2015
  ident: bib0011
  article-title: Exercise training improves liver steatosis in mice
  publication-title: Nutr Metab (Lond)
– volume: 19
  start-page: 101
  year: 2021
  ident: bib0025
  article-title: LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-[Formula: see text]B/JNK pathway by endoplasmic reticulum stress
  publication-title: J Transl Med
– volume: 50
  start-page: 434
  year: 2009
  end-page: 442
  ident: bib0035
  article-title: Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids
  publication-title: Hepatology
– volume: 26
  start-page: 291
  year: 2010
  end-page: 302
  ident: bib0013
  article-title: Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats
  publication-title: Cell Physiol Biochem
– volume: 14
  start-page: 804
  year: 2011
  end-page: 810
  ident: bib0039
  article-title: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease
  publication-title: Cell Metab
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: bib0029
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 54
  start-page: 2109
  year: 2013
  end-page: 2120
  ident: bib0006
  article-title: Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice
  publication-title: J Lipid Res
– volume: 13
  start-page: 629
  year: 2017
  end-page: 646
  ident: bib0017
  article-title: Mitochondrial energetics in the kidney
  publication-title: Nat Rev Nephrol
– volume: 294
  start-page: 11805
  year: 2019
  end-page: 11816
  ident: bib0018
  article-title: Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease
  publication-title: J Biol Chem
– volume: 31
  start-page: 387
  year: 1996
  end-page: 392
  ident: bib0032
  article-title: Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity
  publication-title: Exp Gerontol
– volume: 238
  start-page: 525
  year: 2013
  end-page: 538
  ident: bib0048
  article-title: Role of p62/SQSTM1 in liver physiology and pathogenesis
  publication-title: Exp Biol Med (Maywood)
– volume: 8
  start-page: 15691
  year: 2017
  ident: bib0045
  article-title: Cellular senescence drives age-dependent hepatic steatosis
  publication-title: Nat Commun
– volume: 17
  start-page: 181
  year: 2013
  end-page: 188
  ident: bib0031
  article-title: Effects of exercise and diet composition on expression of MCP-1 and oxidative stress-related mRNA of adipose tissue in diet-induced obese mice
  publication-title: J Exerc Nutrition Biochem
– volume: 1864
  year: 2019
  ident: bib0004
  article-title: Exercise regulates lipid droplet dynamics in normal and fatty liver
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
– volume: 11
  start-page: 425
  year: 2019
  end-page: 439
  ident: bib0010
  article-title: Exercise training induces depot-specific adaptations to white and brown adipose tissue
  publication-title: iScience
– volume: 19
  start-page: 69
  year: 2020
  end-page: 78
  ident: bib0030
  article-title: Elevation of hepatic autophagy and antioxidative capacity by endurance exercise is associated with suppression of apoptosis in mice
  publication-title: Ann Hepatol
– volume: 69
  start-page: 2672
  year: 2019
  end-page: 2682
  ident: bib0001
  article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 38
  start-page: 19
  year: 1999
  end-page: 24
  ident: bib0033
  article-title: The influence of euthanasia methods on rat liver metabolism
  publication-title: Contemp Top Lab Anim Sci
– volume: 203
  start-page: 291
  year: 2009
  end-page: 297
  ident: bib0023
  article-title: Investigation of hepatic gluconeogenesis pathway in non-diabetic Asian Indians with non-alcoholic fatty liver disease using in vivo ((31)P) phosphorus magnetic resonance spectroscopy
  publication-title: Atherosclerosis
– volume: 6
  start-page: 23664
  year: 2016
  ident: bib0044
  article-title: NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet
  publication-title: Sci Rep
– volume: 57
  start-page: 1162
  year: 2016
  end-page: 1174
  ident: bib0021
  article-title: ATGL and DGAT1 are involved in the turnover of newly synthesized triacylglycerols in hepatic stellate cells
  publication-title: J Lipid Res
– volume: 314
  start-page: E543
  year: 2018
  end-page: e551
  ident: bib0042
  article-title: Pentose phosphate pathway activity parallels lipogenesis but not antioxidant processes in rat liver
  publication-title: Am J Physiol Endocrinol Metab
– volume: 8
  year: 2019
  ident: bib0034
  article-title: Protective effects of licochalcone a ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet
  publication-title: Cells
– volume: 60
  start-page: 1278
  year: 2011
  end-page: 1283
  ident: bib0007
  article-title: Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss
  publication-title: Gut
– volume: 270
  year: 2021
  ident: bib0026
  article-title: miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3
  publication-title: Life Sciences
– volume: 38
  start-page: 283
  year: 2006
  end-page: 291
  ident: bib0041
  article-title: Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex
  publication-title: J Bioenerg Biomembr
– volume: 11
  start-page: 11520
  year: 2019
  end-page: 11540
  ident: bib0002
  article-title: Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes
  publication-title: Aging (Albany NY)
– volume: 23
  start-page: 281
  year: 2020
  end-page: 288
  ident: bib0009
  article-title: High-fat diet increases fat oxidation and promotes skeletal muscle fatty acid transporter expression in exercise-trained mice
  publication-title: J Med Food
– volume: 18
  start-page: 339
  year: 2014
  end-page: 346
  ident: bib0008
  article-title: Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice
  publication-title: J Exerc Nutr Biochem
– volume: 9
  year: 2020
  ident: bib0020
  article-title: Western diet causes obesity-induced nonalcoholic fatty liver disease development by differentially compromising the autophagic response
  publication-title: Antioxidants (Basel)
– volume: 113
  start-page: 1
  year: 1985
  end-page: 6
  ident: bib0047
  article-title: Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease
  publication-title: J Appl Physiol
– volume: 15
  start-page: 40
  year: 2014
  end-page: 51
  ident: bib0015
  article-title: Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments
  publication-title: Mitochondrion
– volume: 48
  start-page: 757
  year: 2018
  end-page: 767
  ident: bib0049
  article-title: Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease
  publication-title: Hepatol Res
– volume: 63
  start-page: 174
  year: 2015
  end-page: 182
  ident: bib0003
  article-title: Effect of aerobic exercise training dose on liver fat and visceral adiposity
  publication-title: J Hepatol
– volume: 5
  year: 2019
  ident: bib0038
  article-title: Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver
  publication-title: JCI Insight
– volume: 54
  start-page: 163
  year: 2014
  end-page: 173
  ident: bib0014
  article-title: Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis
  publication-title: Int J Biochem Cell Biol
– volume: 49
  start-page: 1166
  year: 2009
  end-page: 1175
  ident: bib0019
  article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice
  publication-title: Hepatology
– volume: 10
  year: 2018
  ident: bib0016
  article-title: Regulation and metabolic significance of de novo lipogenesis in adipose tissues
  publication-title: Nutrients
– volume: 2021
  year: 2021
  ident: bib0036
  article-title: Changes in key mitochondrial lipids accompany mitochondrial dysfunction and oxidative stress in NAFLD
  publication-title: Oxid Med Cell Longev
– volume: 10
  start-page: 4701
  year: 2020
  ident: bib0005
  article-title: Western diet induces severe nonalcoholic steatohepatitis, ductular reaction, and hepatic fibrosis in liver CGI-58 knockout mice
  publication-title: Sci Rep
– volume: 91
  start-page: 1018
  year: 2011
  end-page: 1028
  ident: bib0037
  article-title: Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice
  publication-title: Lab Invest
– volume: 29
  start-page: 40
  year: 2019
  end-page: 54
  ident: bib0040
  article-title: miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease
  publication-title: Mol Metab
– volume: 14
  start-page: 81
  year: 2014
  ident: bib0043
  article-title: NOX2-generated oxidative stress is associated with severity of ultrasound liver steatosis in patients with non-alcoholic fatty liver disease
  publication-title: BMC Gastroenterol
– volume: 11
  start-page: 11520
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0002
  article-title: Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102552
– volume: 203
  start-page: 291
  year: 2009
  ident: 10.1016/j.aohep.2022.100709_bib0023
  article-title: Investigation of hepatic gluconeogenesis pathway in non-diabetic Asian Indians with non-alcoholic fatty liver disease using in vivo ((31)P) phosphorus magnetic resonance spectroscopy
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2008.06.016
– volume: 302
  start-page: G558
  year: 2012
  ident: 10.1016/j.aohep.2022.100709_bib0046
  article-title: Hepatic cellular senescence pathway genes are induced through histone modifications in a diet-induced obese rat model
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00032.2011
– volume: 63
  start-page: 149
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0027
  article-title: Administration of low-dose resveratrol attenuated hepatic inflammation and lipid accumulation in high cholesterol-fructose diet-induced rat model of nonalcoholic fatty liver disease
  publication-title: Chin J Physiol
  doi: 10.4103/CJP.CJP_43_20
– volume: 23
  start-page: 281
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0009
  article-title: High-fat diet increases fat oxidation and promotes skeletal muscle fatty acid transporter expression in exercise-trained mice
  publication-title: J Med Food
  doi: 10.1089/jmf.2019.4651
– volume: 91
  start-page: 1018
  year: 2011
  ident: 10.1016/j.aohep.2022.100709_bib0037
  article-title: Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2011.55
– volume: 50
  start-page: 434
  year: 2009
  ident: 10.1016/j.aohep.2022.100709_bib0035
  article-title: Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids
  publication-title: Hepatology
  doi: 10.1002/hep.22980
– volume: 60
  start-page: 1278
  year: 2011
  ident: 10.1016/j.aohep.2022.100709_bib0007
  article-title: Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss
  publication-title: Gut
  doi: 10.1136/gut.2011.242073
– volume: 63
  start-page: 174
  year: 2015
  ident: 10.1016/j.aohep.2022.100709_bib0003
  article-title: Effect of aerobic exercise training dose on liver fat and visceral adiposity
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2015.02.022
– volume: 26
  start-page: 291
  year: 2010
  ident: 10.1016/j.aohep.2022.100709_bib0013
  article-title: Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000320552
– volume: 13
  start-page: 629
  year: 2017
  ident: 10.1016/j.aohep.2022.100709_bib0017
  article-title: Mitochondrial energetics in the kidney
  publication-title: Nat Rev Nephrol
  doi: 10.1038/nrneph.2017.107
– volume: 49
  start-page: 1166
  year: 2009
  ident: 10.1016/j.aohep.2022.100709_bib0019
  article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice
  publication-title: Hepatology
  doi: 10.1002/hep.22774
– volume: 19
  start-page: 69
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0030
  article-title: Elevation of hepatic autophagy and antioxidative capacity by endurance exercise is associated with suppression of apoptosis in mice
  publication-title: Ann Hepatol
  doi: 10.1016/j.aohep.2019.08.010
– volume: 19
  start-page: 101
  year: 2021
  ident: 10.1016/j.aohep.2022.100709_bib0025
  article-title: LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-[Formula: see text]B/JNK pathway by endoplasmic reticulum stress
  publication-title: J Transl Med
  doi: 10.1186/s12967-021-02769-7
– volume: 14
  start-page: 81
  year: 2014
  ident: 10.1016/j.aohep.2022.100709_bib0043
  article-title: NOX2-generated oxidative stress is associated with severity of ultrasound liver steatosis in patients with non-alcoholic fatty liver disease
  publication-title: BMC Gastroenterol
  doi: 10.1186/1471-230X-14-81
– volume: 11
  start-page: 425
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0010
  article-title: Exercise training induces depot-specific adaptations to white and brown adipose tissue
  publication-title: iScience
  doi: 10.1016/j.isci.2018.12.033
– volume: 10
  start-page: 4701
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0005
  article-title: Western diet induces severe nonalcoholic steatohepatitis, ductular reaction, and hepatic fibrosis in liver CGI-58 knockout mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61473-6
– volume: 14
  start-page: 804
  year: 2011
  ident: 10.1016/j.aohep.2022.100709_bib0039
  article-title: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.11.004
– volume: 113
  start-page: 1
  year: 1985
  ident: 10.1016/j.aohep.2022.100709_bib0047
  article-title: Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00127.2012
– volume: 12
  start-page: 29
  year: 2015
  ident: 10.1016/j.aohep.2022.100709_bib0011
  article-title: Exercise training improves liver steatosis in mice
  publication-title: Nutr Metab (Lond)
  doi: 10.1186/s12986-015-0026-1
– volume: 8
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0034
  article-title: Protective effects of licochalcone a ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet
  publication-title: Cells
  doi: 10.3390/cells8050447
– volume: 270
  year: 2021
  ident: 10.1016/j.aohep.2022.100709_bib0026
  article-title: miR-125b promotes the NF-κB-mediated inflammatory response in NAFLD via directly targeting TNFAIP3
  publication-title: Life Sciences
  doi: 10.1016/j.lfs.2021.119071
– volume: 5
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0038
  article-title: Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver
  publication-title: JCI Insight
– volume: 57
  start-page: 1162
  year: 2016
  ident: 10.1016/j.aohep.2022.100709_bib0021
  article-title: ATGL and DGAT1 are involved in the turnover of newly synthesized triacylglycerols in hepatic stellate cells
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M066415
– volume: 1864
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0004
  article-title: Exercise regulates lipid droplet dynamics in normal and fatty liver
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
– volume: 54
  start-page: 2109
  year: 2013
  ident: 10.1016/j.aohep.2022.100709_bib0006
  article-title: Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M035519
– volume: 458
  start-page: 1131
  year: 2009
  ident: 10.1016/j.aohep.2022.100709_bib0029
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
  doi: 10.1038/nature07976
– volume: 17
  start-page: 181
  year: 2013
  ident: 10.1016/j.aohep.2022.100709_bib0031
  article-title: Effects of exercise and diet composition on expression of MCP-1 and oxidative stress-related mRNA of adipose tissue in diet-induced obese mice
  publication-title: J Exerc Nutrition Biochem
  doi: 10.5717/jenb.2013.17.4.181
– volume: 6
  start-page: 23664
  year: 2016
  ident: 10.1016/j.aohep.2022.100709_bib0044
  article-title: NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet
  publication-title: Sci Rep
  doi: 10.1038/srep23664
– volume: 9
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0020
  article-title: Western diet causes obesity-induced nonalcoholic fatty liver disease development by differentially compromising the autophagic response
  publication-title: Antioxidants (Basel)
– volume: 18
  start-page: 339
  year: 2014
  ident: 10.1016/j.aohep.2022.100709_bib0008
  article-title: Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice
  publication-title: J Exerc Nutr Biochem
  doi: 10.5717/jenb.2014.18.4.339
– volume: 70
  start-page: 1972
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0022
  article-title: Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.30765
– volume: 38
  start-page: 19
  year: 1999
  ident: 10.1016/j.aohep.2022.100709_bib0033
  article-title: The influence of euthanasia methods on rat liver metabolism
  publication-title: Contemp Top Lab Anim Sci
– volume: 294
  start-page: 11805
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0018
  article-title: Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA119.008708
– ident: 10.1016/j.aohep.2022.100709_bib0012
  doi: 10.1186/s12944-018-0933-z
– volume: 38
  start-page: 283
  year: 2006
  ident: 10.1016/j.aohep.2022.100709_bib0041
  article-title: Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex
  publication-title: J Bioenerg Biomembr
  doi: 10.1007/s10863-006-9052-z
– volume: 15
  start-page: 40
  year: 2014
  ident: 10.1016/j.aohep.2022.100709_bib0015
  article-title: Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2014.03.012
– volume: 10
  year: 2018
  ident: 10.1016/j.aohep.2022.100709_bib0016
  article-title: Regulation and metabolic significance of de novo lipogenesis in adipose tissues
  publication-title: Nutrients
  doi: 10.3390/nu10101383
– volume: 8
  start-page: 15691
  year: 2017
  ident: 10.1016/j.aohep.2022.100709_bib0045
  article-title: Cellular senescence drives age-dependent hepatic steatosis
  publication-title: Nat Commun
  doi: 10.1038/ncomms15691
– volume: 72
  start-page: 183
  year: 2020
  ident: 10.1016/j.aohep.2022.100709_bib0028
  article-title: Autophagy in hepatic adaptation to stress
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.08.026
– volume: 48
  start-page: 757
  year: 2018
  ident: 10.1016/j.aohep.2022.100709_bib0049
  article-title: Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease
  publication-title: Hepatol Res
  doi: 10.1111/hepr.13071
– volume: 314
  start-page: E543
  year: 2018
  ident: 10.1016/j.aohep.2022.100709_bib0042
  article-title: Pentose phosphate pathway activity parallels lipogenesis but not antioxidant processes in rat liver
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00342.2017
– volume: 31
  start-page: 387
  year: 1996
  ident: 10.1016/j.aohep.2022.100709_bib0032
  article-title: Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity
  publication-title: Exp Gerontol
  doi: 10.1016/0531-5565(95)02032-2
– volume: 69
  start-page: 2672
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0001
  article-title: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30251
– volume: 238
  start-page: 525
  year: 2013
  ident: 10.1016/j.aohep.2022.100709_bib0048
  article-title: Role of p62/SQSTM1 in liver physiology and pathogenesis
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1177/1535370213489446
– volume: 2021
  year: 2021
  ident: 10.1016/j.aohep.2022.100709_bib0036
  article-title: Changes in key mitochondrial lipids accompany mitochondrial dysfunction and oxidative stress in NAFLD
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2021/9986299
– volume: 54
  start-page: 163
  year: 2014
  ident: 10.1016/j.aohep.2022.100709_bib0014
  article-title: Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2014.07.011
– volume: 51
  start-page: 2012
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0024
  article-title: Endurance exercise prevents metabolic distress-induced senescence in the hippocampus
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000002011
– volume: 29
  start-page: 40
  year: 2019
  ident: 10.1016/j.aohep.2022.100709_bib0040
  article-title: miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease
  publication-title: Mol Metab
  doi: 10.1016/j.molmet.2019.08.008
SSID ssj0043512
Score 2.3396986
Snippet Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative...
AbstractIntroduction and ObjectivesNon-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese...
Introduction and aim: Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100709
SubjectTerms Endurance exercise
Gastroenterology and Hepatology
Mitochondria
Non-alcoholic fatty liver disease
Oxidative stress
Senescence
Title Endurance exercise-mediated metabolic reshuffle attenuates high-caloric diet-induced non-alcoholic fatty liver disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1665268122000515
https://www.clinicalkey.es/playcontent/1-s2.0-S1665268122000515
https://dx.doi.org/10.1016/j.aohep.2022.100709
https://www.ncbi.nlm.nih.gov/pubmed/35489641
https://www.proquest.com/docview/2658228924
https://doaj.org/article/725042efdbc4419bb5af2c9aa862b63e
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kh-JFtH7Fqqzg0cVksx_JUaWlCPWihd6W_aRPnnnFlxT633dmN3lU0PbiJYckmw0zk5nfMJPfEPLe6eg6sBSWvOqZAEDKeu9qOED49jx1hez59Js6ORNfz-X5rVFf2BNW6IGL4D5q5NjiMQXnIXL3zkmbuO-tBSjuVBvR-0LMW5Kp4oMBA5Q6p8o9XF2z8A3lzi67uYhIVcl57hHAXsRbMSlT9_8Rmv4FPXMIOn5MHs3YkX4q7_yEPIjDAdk_navjT8nV0RAmHJQR6TJJieU_QwBV0l9xBH2vV55Cgn0xpbSOFLk1hwnRJkXaYgb6QsoQGlZxZJCsg9oDHTYDs2WQLlxKsOaarrGbg87FnWfk7Pjox5cTNs9VYF5qPbLGWmcbHXxIrVBRNgmyqCZZ0fNaWqe58jIBFPCid7pzTRBKgMDrVvOIdd_2OdmDveNLQtsUk7MhNTbWwnbWyth1SSQFqLBVMlSEL5I1fiYdx9kXa7N0l_00WR0G1WGKOiryYbfosnBu3H37Z1TZ7lYkzM4nwIzMbEbmPjOqiFgUbpZ_UsGLwoNWd--t_7YsbmdPsDWN2XJTm-9oimiJnGfYLCuiditnsFNAzP1bvlvs0YArwPqOHeJm2hoOaJJDAs1FRV4UQ90JpYXMtFeiefU_hHVIHuILla7l12Rv_D3FN4DNRvc2f4Y3qL82kQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endurance+exercise-mediated+metabolic+reshuffle+attenuates+high-caloric+diet-induced+non-alcoholic+fatty+liver+disease&rft.jtitle=Annals+of+hepatology&rft.au=Cook%2C+Joshua+J.&rft.au=Wei%2C+Madeline&rft.au=Segovia%2C+Benny&rft.au=Cosio-Lima%2C+Ludmila&rft.date=2022-07-01&rft.issn=1665-2681&rft.volume=27&rft.issue=4&rft.spage=100709&rft_id=info:doi/10.1016%2Fj.aohep.2022.100709&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aohep_2022_100709
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F16652681%2FS1665268122X00033%2Fcov150h.gif