Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch
Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT,...
Saved in:
Published in | Human brain mapping Vol. 33; no. 12; pp. 2957 - 2970 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2012
Wiley-Liss John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.21419 |
Cover
Loading…
Abstract | Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high‐level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three‐angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high‐level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three‐angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT.Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. |
Author | Han, Hongbin Shen, Yong Chui, Dehua Wu, Jinglong Yang, Jiajia |
AuthorAffiliation | 4 Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA 5 Institute of Neuroscience, Beijing Institute of Technology, Beijing, China 2 Department of Neurology, Peking University Third Hospital, Beijing, China 3 Neuroscience Research Institute, Peking University, Beijing, China 1 Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan 6 International WIC Institute, Beijing University of Technology, Beijing, China |
AuthorAffiliation_xml | – name: 1 Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan – name: 3 Neuroscience Research Institute, Peking University, Beijing, China – name: 4 Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA – name: 6 International WIC Institute, Beijing University of Technology, Beijing, China – name: 2 Department of Neurology, Peking University Third Hospital, Beijing, China – name: 5 Institute of Neuroscience, Beijing Institute of Technology, Beijing, China |
Author_xml | – sequence: 1 givenname: Jiajia surname: Yang fullname: Yang, Jiajia organization: Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan – sequence: 2 givenname: Hongbin surname: Han fullname: Han, Hongbin organization: Department of Neurology, Peking University Third Hospital, Beijing, China – sequence: 3 givenname: Dehua surname: Chui fullname: Chui, Dehua organization: Neuroscience Research Institute, Peking University, Beijing, China – sequence: 4 givenname: Yong surname: Shen fullname: Shen, Yong organization: Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA – sequence: 5 givenname: Jinglong surname: Wu fullname: Wu, Jinglong email: wu@mech.okayama-u.ac.jp organization: Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26617021$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22020967$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB-w4A-gSAgJFmltJ7GTTSWooEUqjwWo3Vk3zs2MS8YebKcw_x7PZDpAJVjZ0v3O0bmPQ7JnnUVCnjJ6zCjlJ_N2ccxZyZoH5IDRRuaUNcXe-i-qvCkl2yeHIdxQylhF2SOyzznltBHygITP3i2MRRsz0NHcQjTOZq7P4hwzY6OHJXiDEYYMbJcFt4DoAtrg_CoDjxCybvTGzlJ5NmDWmaC9SY6TUbuaTPKNOWbRjXr-mDzsYQj4ZPseka_v3n45u8gvP52_P3t9metKyibve9GIAkuteSWY1HUPvEasedMhb5tOdKLtS8FYR1HLHqDUHa8gSZEXQEVxRE4n3-XYLrDTuE4yqGXKB36lHBj1d8WauZq5WyVqSQvOksHLrYF330cMUS1SezgMYNGNQaVxsgTSpkro83vojRu9Te0lqqSsqrjkiXr2Z6JdlLt9JODFFoCgYeg9WG3Cb06kQdBNslcTp70LwWO_QxhV65tQ6SbU5iYSe3KP1SZu1pOaNsP_FD_MgKt_W6uLNx_uFPmkMCHiz50C_DeVupKVuvp4ruRVUdfyulbXxS_Uk9kl |
CitedBy_id | crossref_primary_10_3389_fspor_2019_00035 crossref_primary_10_1007_s13670_012_0007_4 crossref_primary_10_1016_j_neuroimage_2021_117754 crossref_primary_10_1080_1357650X_2014_920339 crossref_primary_10_1016_j_cortex_2013_06_007 crossref_primary_10_1097_NPT_0b013e318283de0d crossref_primary_10_1016_j_tine_2013_06_004 crossref_primary_10_3389_fnhum_2014_00926 crossref_primary_10_1016_j_neubiorev_2021_07_005 crossref_primary_10_3389_fpsyg_2018_00571 crossref_primary_10_3390_brainsci12070924 crossref_primary_10_7144_sgf_21_1 |
Cites_doi | 10.1016/S0896-6273(01)00362-2 10.1016/S0166-4328(05)80100-7 10.1002/hbm.10162 10.1016/S0959-4388(98)80041-X 10.1523/JNEUROSCI.1395-04.2004 10.1080/0899022031000083780 10.1002/hbm.460010207 10.1068/p6264 10.1016/S0028-3932(02)00017-9 10.1016/j.cogbrainres.2004.10.020 10.1038/nrn2331 10.1002/hbm.460020402 10.1016/j.neuropsychologia.2006.03.003 10.1002/hbm.20099 10.1073/pnas.0700253104 10.1523/JNEUROSCI.0822-06.2006 10.1016/0028-3932(71)90067-4 10.1016/S0926-6410(03)00076-4 10.1002/hbm.20107 10.1038/20939 10.1097/00004691-200011000-00004 10.1093/cercor/12.11.1202 10.1016/j.neuroimage.2004.11.026 10.1037/h0046962 10.1073/pnas.0505907102 10.1006/nimg.1996.0034 10.1016/j.neuroscience.2007.12.021 10.1073/pnas.95.6.3295 10.3758/BF03211351 10.1523/JNEUROSCI.1808-07.2007 10.1523/JNEUROSCI.4275-06.2006 10.1016/j.neuroimage.2004.11.044 10.1016/S0166-4328(03)00157-8 10.1523/JNEUROSCI.5536-05.2006 10.1038/85201 10.1080/08990229970375 10.1007/978-1-4613-2149-1_4 10.1093/brain/122.10.1989 10.1080/00221309.1984.9709968 10.1016/j.neuroimage.2007.05.038 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.21419 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Prominent Activation of Intra‐Active Touch |
EISSN | 1097-0193 |
EndPage | 2970 |
ExternalDocumentID | PMC6870321 2809405121 22020967 26617021 10_1002_hbm_21419 HBM21419 ark_67375_WNG_7W3887X8_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Basic Research Program of China (973 program China) funderid: 2006CB500705 – fundername: Grant‐in‐Aid for Scientific Research (B), Japan funderid: 21404002 – fundername: AA Science Platform Program of the Japan Society for the Promotion of Science – fundername: The National High Technology Research and Development Program of China (863 program China) funderid: 2006AA02A408 – fundername: The National High Technology Research and Development Program of China (863 program China) grantid: 2006AA02A408 – fundername: National Key Basic Research Program of China (973 program China) grantid: 2006CB500705 – fundername: Grant‐in‐Aid for Scientific Research (B), Japan grantid: 21404002 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5779-ff6963e4cc25617c8fa28ee829de2b9d6d6bf4611d0ec7faa4cd25a779e23a063 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:12:33 EDT 2025 Thu Sep 04 22:24:31 EDT 2025 Tue Aug 26 09:32:41 EDT 2025 Mon Jul 21 05:56:56 EDT 2025 Mon Jul 21 09:14:36 EDT 2025 Tue Jul 01 04:25:59 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Wed Jan 22 16:20:16 EST 2025 Wed Oct 30 09:53:09 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Nervous system diseases Radiodiagnosis passive touch Central nervous system Finger Nuclear magnetic resonance imaging active touch Encephalon Somatosensory cortex Discrimination Angle Somesthetic pathway index finger intraparietal sulcus functional magnetic resonance imaging Functional imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5779-ff6963e4cc25617c8fa28ee829de2b9d6d6bf4611d0ec7faa4cd25a779e23a063 |
Notes | Grant-in-Aid for Scientific Research (B), Japan - No. 21404002 National Key Basic Research Program of China (973 program China) - No. 2006CB500705 ark:/67375/WNG-7W3887X8-X istex:8AB926F8531FC2B924CAC6CA9052CF1DE9693B04 The National High Technology Research and Development Program of China (863 program China) - No. 2006AA02A408 ArticleID:HBM21419 AA Science Platform Program of the Japan Society for the Promotion of Science ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21419?download=true |
PMID | 22020967 |
PQID | 1140155272 |
PQPubID | 996345 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870321 proquest_miscellaneous_1151032095 proquest_journals_1140155272 pubmed_primary_22020967 pascalfrancis_primary_26617021 crossref_primary_10_1002_hbm_21419 crossref_citationtrail_10_1002_hbm_21419 wiley_primary_10_1002_hbm_21419_HBM21419 istex_primary_ark_67375_WNG_7W3887X8_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
References | Fabri M, Polonara G, Salvolini U, Manzoni T ( 2005): Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 25: 287-296. Blatow M, Nennig E, Durst A, Sartor K, Stippich C ( 2007): fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage 37: 927-936. Burton H, Sinclair RJ ( 2000): Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. J Clin Neurophysiol 17: 575-591. James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA ( 2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714. Newmana SD, Klatzky RL, Lederman SJ, Just MA ( 2005): Imagining material versus geometric properties of objects: An fMRI study. Cognit Brain Res 23: 235-246. Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Sathian K ( 2007): Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45: 476-483. Iwamura Y ( 1998): Hierarchical somatosensory processing. Curr Opin Neurobiol 8: 522-528. Stilla R, Deshpande G, LaConte S, Hu X, Sathian K ( 2007): Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. J Neurosci 27: 11091-11102. Bolanowski SJ, Verrillo RI, McGlone F ( 2004): Passive, active and intra-active (self) touch. Behav Brain Res 148: 41-45. Stein BE, Stanford TR ( 2008): Multisensory intergration current issues from the perspective of the single neuron. Nat Rev Neurosci 9: 255-266. Harada T, Saito DN, Kashikura K, Sato T, Yonekura Y, Honda M, Sadato N ( 2004): Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study. J Neurosci 24: 7524-7530. Kitada R, Kito T, Saito DN, Kochiyama T, Matsumura M, Sadato N, Lederman SJ ( 2006): Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. J Neurosci 26: 7491-7501. Bolanowski SJ, Verrillo RI, McGlone F ( 1999): Passive, active and intra-active (self) touch. Somatosens Motor Res 16: 304-311. Klatzky RL, Lederman SJ, Metzger VA ( 1985): Identifying objects by touch: An "expert system." Percept Psychophys 37: 299-302. Saito DN, Okada T, Morita Y, Yonekura Y, Sadato N ( 2003): Tactile-visual cross-modal shape matching: A functional MRI study. Cognit Brain Res 17: 14-25. Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N ( 2005): Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25: 90-100. Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ ( 2006): Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26: 12596-12601. Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H ( 1999): Brain structures related to active and passive finger movement in man. Brain 22: 1989-1997. Bodegård A, Geyer S, Grefkes C, Zilles K, Roland PE ( 2001): Hierarchical processing of tactile shape in the human brain. Neuron 31: 317-328. Kostopoulos P, Albanese MC, Petrides M ( 2007): Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain. PNAS 104: 10223-10228. Romo R, Brody CD, Hernández A, Lemus L ( 1999): Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399: 470-473. Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG ( 2005): Tactile form and location processing in the human brain. PNAS 102: 12601-12605. Hlushchuk Y, Hari R ( 2006): Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 26: 5819-5824. Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S ( 1996): Brain representation of active and passive movements. NeuroImage 4: 105-110. Reed CL, Klatzky RL, Halgren E ( 2005): What vs. where in touch: An fMRI study. NeuroImage 25: 718-726. Amedi A, Malach R, Hendler T, Peled S, Zohary E ( 2001): Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330. Heller MA ( 1984): Active and Passive touch: The influence of exploration time on form recognition. J Gen Psychol 110: 243-249. Miquée A, Xerri C, Rainville C, Anton JL, Nazarian B, Roth M, Zennou-Azogui Y ( 2008): Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study. Neuroscience 152: 29-39. Wu J, Yang J, Ogasa T ( 2010): Raised Angle Discrimination under passive hand movement. Perception 39: 993-1006. Eacott MJ, Gaffan D ( 1991): The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes. Behav Brain Res 46: 95-98. Friston KJ, Jezzard P, Turner R ( 1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171. Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113. Verrillo RI, Bolanowski SJ, McGlone F ( 2003): Intra- and interactive touch on the face. Somatosens Motor Res 20: 3-11. Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RSJ ( 1995): Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2: 189-210. Yang J, Wu J ( 2010): Development and evaluation of a multi-model tactile pattern delivery device for fMRI study. J Inform 13: 1823-1832. Gibson JJ ( 1962): Observation on active touch. Psychol Rev 69: 477-491. Zhang M, Mariola E, Stilla R, Stoesz M, Mao H, Hu X, Sathian K ( 2005): Tactile discrimination of grating orientation: fMRI activation patterns. Hum Brain Mapp 25: 370-377. Reed CL, Shoham S, Halgren E ( 2004): Neural substrates of tactile object recognition: An fMRI study. Hum Brain Mapp 21: 236-246. Katz D ( 1989): The World Touch. Hillsdale, NJ: Erlbaum. Amedi A, Jacobson G, Hendler T, Malach R, Zohary E ( 2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212. Roland PE, O'sillivan B, Kawashima R ( 1998): Shape and roughness activate different somatosensory areas in the human brain. PNAS 95: 3295-3300. 2004; 21 2007; 104 2004; 148 2010; 13 2010; 39 2002; 12 2004; 24 2008; 9 1999; 22 2003; 17 1995; 2 2005; 23 2007; 37 2005; 25 1971; 9 1984; 110 2000; 17 1991; 46 2000 2001; 4 2002; 40 2005; 102 1999; 16 1986; 5 2006; 26 1962; 69 1999; 399 1994; 1 1996; 4 1998; 95 2007; 45 1985; 37 2008; 152 2003; 20 2001; 31 1989 1998; 8 2007; 27 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Katz D (e_1_2_6_21_1) 1989 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Gardner EP (e_1_2_6_13_1) 2000 e_1_2_6_42_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 Yang J (e_1_2_6_43_1) 2010; 13 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Friston KJ, Jezzard P, Turner R ( 1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171. – reference: Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S ( 1996): Brain representation of active and passive movements. NeuroImage 4: 105-110. – reference: Amedi A, Malach R, Hendler T, Peled S, Zohary E ( 2001): Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330. – reference: Bolanowski SJ, Verrillo RI, McGlone F ( 1999): Passive, active and intra-active (self) touch. Somatosens Motor Res 16: 304-311. – reference: Klatzky RL, Lederman SJ, Metzger VA ( 1985): Identifying objects by touch: An "expert system." Percept Psychophys 37: 299-302. – reference: Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H ( 1999): Brain structures related to active and passive finger movement in man. Brain 22: 1989-1997. – reference: Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N ( 2005): Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25: 90-100. – reference: Saito DN, Okada T, Morita Y, Yonekura Y, Sadato N ( 2003): Tactile-visual cross-modal shape matching: A functional MRI study. Cognit Brain Res 17: 14-25. – reference: Blatow M, Nennig E, Durst A, Sartor K, Stippich C ( 2007): fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage 37: 927-936. – reference: Heller MA ( 1984): Active and Passive touch: The influence of exploration time on form recognition. J Gen Psychol 110: 243-249. – reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113. – reference: Wu J, Yang J, Ogasa T ( 2010): Raised Angle Discrimination under passive hand movement. Perception 39: 993-1006. – reference: Miquée A, Xerri C, Rainville C, Anton JL, Nazarian B, Roth M, Zennou-Azogui Y ( 2008): Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study. Neuroscience 152: 29-39. – reference: Roland PE, O'sillivan B, Kawashima R ( 1998): Shape and roughness activate different somatosensory areas in the human brain. PNAS 95: 3295-3300. – reference: Newmana SD, Klatzky RL, Lederman SJ, Just MA ( 2005): Imagining material versus geometric properties of objects: An fMRI study. Cognit Brain Res 23: 235-246. – reference: Eacott MJ, Gaffan D ( 1991): The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes. Behav Brain Res 46: 95-98. – reference: Burton H, Sinclair RJ ( 2000): Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. J Clin Neurophysiol 17: 575-591. – reference: Bolanowski SJ, Verrillo RI, McGlone F ( 2004): Passive, active and intra-active (self) touch. Behav Brain Res 148: 41-45. – reference: Harada T, Saito DN, Kashikura K, Sato T, Yonekura Y, Honda M, Sadato N ( 2004): Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study. J Neurosci 24: 7524-7530. – reference: Verrillo RI, Bolanowski SJ, McGlone F ( 2003): Intra- and interactive touch on the face. Somatosens Motor Res 20: 3-11. – reference: Stein BE, Stanford TR ( 2008): Multisensory intergration current issues from the perspective of the single neuron. Nat Rev Neurosci 9: 255-266. – reference: Katz D ( 1989): The World Touch. Hillsdale, NJ: Erlbaum. – reference: Bodegård A, Geyer S, Grefkes C, Zilles K, Roland PE ( 2001): Hierarchical processing of tactile shape in the human brain. Neuron 31: 317-328. – reference: Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RSJ ( 1995): Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2: 189-210. – reference: Fabri M, Polonara G, Salvolini U, Manzoni T ( 2005): Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 25: 287-296. – reference: Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ ( 2006): Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26: 12596-12601. – reference: Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG ( 2005): Tactile form and location processing in the human brain. PNAS 102: 12601-12605. – reference: Zhang M, Mariola E, Stilla R, Stoesz M, Mao H, Hu X, Sathian K ( 2005): Tactile discrimination of grating orientation: fMRI activation patterns. Hum Brain Mapp 25: 370-377. – reference: Yang J, Wu J ( 2010): Development and evaluation of a multi-model tactile pattern delivery device for fMRI study. J Inform 13: 1823-1832. – reference: Kostopoulos P, Albanese MC, Petrides M ( 2007): Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain. PNAS 104: 10223-10228. – reference: Amedi A, Jacobson G, Hendler T, Malach R, Zohary E ( 2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212. – reference: Hlushchuk Y, Hari R ( 2006): Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 26: 5819-5824. – reference: Reed CL, Shoham S, Halgren E ( 2004): Neural substrates of tactile object recognition: An fMRI study. Hum Brain Mapp 21: 236-246. – reference: Gibson JJ ( 1962): Observation on active touch. Psychol Rev 69: 477-491. – reference: Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Sathian K ( 2007): Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45: 476-483. – reference: Iwamura Y ( 1998): Hierarchical somatosensory processing. Curr Opin Neurobiol 8: 522-528. – reference: James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA ( 2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714. – reference: Reed CL, Klatzky RL, Halgren E ( 2005): What vs. where in touch: An fMRI study. NeuroImage 25: 718-726. – reference: Romo R, Brody CD, Hernández A, Lemus L ( 1999): Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399: 470-473. – reference: Stilla R, Deshpande G, LaConte S, Hu X, Sathian K ( 2007): Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. J Neurosci 27: 11091-11102. – reference: Kitada R, Kito T, Saito DN, Kochiyama T, Matsumura M, Sadato N, Lederman SJ ( 2006): Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. J Neurosci 26: 7491-7501. – volume: 23 start-page: 235 year: 2005 end-page: 246 article-title: Imagining material versus geometric properties of objects: An fMRI study publication-title: Cognit Brain Res – volume: 148 start-page: 41 year: 2004 end-page: 45 article-title: Passive, active and intra‐active (self) touch publication-title: Behav Brain Res – start-page: 451 year: 2000 end-page: 471 – volume: 27 start-page: 11091 year: 2007 end-page: 11102 article-title: Posteromedial parietal cortical activity and inputs predict tactile spatial acuity publication-title: J Neurosci – volume: 26 start-page: 12596 year: 2006 end-page: 12601 article-title: Neural coding of tactile decisions in the human prefrontal cortex publication-title: J Neurosci – volume: 26 start-page: 7491 year: 2006 end-page: 7501 article-title: Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study publication-title: J Neurosci – volume: 25 start-page: 370 year: 2005 end-page: 377 article-title: Tactile discrimination of grating orientation: fMRI activation patterns publication-title: Hum Brain Mapp – volume: 8 start-page: 522 year: 1998 end-page: 528 article-title: Hierarchical somatosensory processing publication-title: Curr Opin Neurobiol – volume: 104 start-page: 10223 year: 2007 end-page: 10228 article-title: Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain publication-title: PNAS – volume: 24 start-page: 7524 year: 2004 end-page: 7530 article-title: Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study publication-title: J Neurosci – volume: 45 start-page: 476 year: 2007 end-page: 483 article-title: Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception publication-title: Neuropsychologia – volume: 12 start-page: 1202 year: 2002 end-page: 1212 article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex publication-title: Cereb Cortex – year: 1989 – volume: 95 start-page: 3295 year: 1998 end-page: 3300 article-title: Shape and roughness activate different somatosensory areas in the human brain publication-title: PNAS – volume: 152 start-page: 29 year: 2008 end-page: 39 article-title: Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study publication-title: Neuroscience – volume: 17 start-page: 575 year: 2000 end-page: 591 article-title: Attending to and remembering tactile stimuli: A review of brain imaging data and single‐neuron responses publication-title: J Clin Neurophysiol – volume: 39 start-page: 993 year: 2010 end-page: 1006 article-title: Raised Angle Discrimination under passive hand movement publication-title: Perception – volume: 46 start-page: 95 year: 1991 end-page: 98 article-title: The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes publication-title: Behav Brain Res – volume: 2 start-page: 189 year: 1995 end-page: 210 article-title: Statistical parametric maps in functional imaging: A general linear approach publication-title: Hum Brain Mapp – volume: 399 start-page: 470 year: 1999 end-page: 473 article-title: Neuronal correlates of parametric working memory in the prefrontal cortex publication-title: Nature – volume: 31 start-page: 317 year: 2001 end-page: 328 article-title: Hierarchical processing of tactile shape in the human brain publication-title: Neuron – volume: 69 start-page: 477 year: 1962 end-page: 491 article-title: Observation on active touch publication-title: Psychol Rev – volume: 26 start-page: 5819 year: 2006 end-page: 5824 article-title: Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation publication-title: J Neurosci – volume: 22 start-page: 1989 year: 1999 end-page: 1997 article-title: Brain structures related to active and passive finger movement in man publication-title: Brain – volume: 4 start-page: 105 year: 1996 end-page: 110 article-title: Brain representation of active and passive movements publication-title: NeuroImage – volume: 102 start-page: 12601 year: 2005 end-page: 12605 article-title: Tactile form and location processing in the human brain publication-title: PNAS – volume: 9 start-page: 255 year: 2008 end-page: 266 article-title: Multisensory intergration current issues from the perspective of the single neuron publication-title: Nat Rev Neurosci – volume: 40 start-page: 1706 year: 2002 end-page: 1714 article-title: Haptic study of three‐dimensional objects activates extrastriate visual areas publication-title: Neuropsychologia – volume: 1 start-page: 153 year: 1994 end-page: 171 article-title: Analysis of functional MRI time‐series publication-title: Hum Brain Mapp – volume: 25 start-page: 90 year: 2005 end-page: 100 article-title: Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study publication-title: NeuroImage – volume: 13 start-page: 1823 year: 2010 end-page: 1832 article-title: Development and evaluation of a multi‐model tactile pattern delivery device for fMRI study publication-title: J Inform – volume: 25 start-page: 287 year: 2005 end-page: 296 article-title: Bilateral cortical representation of the trunk midline in human first somatic sensory area publication-title: Hum Brain Mapp – volume: 37 start-page: 299 year: 1985 end-page: 302 article-title: Identifying objects by touch: An “expert system.” publication-title: Percept Psychophys – volume: 4 start-page: 324 year: 2001 end-page: 330 article-title: Visuo‐haptic object‐related activation in the ventral visual pathway publication-title: Nat Neurosci – volume: 25 start-page: 718 year: 2005 end-page: 726 article-title: What vs. where in touch: An fMRI study publication-title: NeuroImage – volume: 16 start-page: 304 year: 1999 end-page: 311 article-title: Passive, active and intra‐active (self) touch publication-title: Somatosens Motor Res – volume: 20 start-page: 3 year: 2003 end-page: 11 article-title: Intra‐ and interactive touch on the face publication-title: Somatosens Motor Res – volume: 21 start-page: 236 year: 2004 end-page: 246 article-title: Neural substrates of tactile object recognition: An fMRI study publication-title: Hum Brain Mapp – volume: 37 start-page: 927 year: 2007 end-page: 936 article-title: fMRI reflects functional connectivity of human somatosensory cortex publication-title: NeuroImage – volume: 110 start-page: 243 year: 1984 end-page: 249 article-title: Active and Passive touch: The influence of exploration time on form recognition publication-title: J Gen Psychol – volume: 17 start-page: 14 year: 2003 end-page: 25 article-title: Tactile‐visual cross‐modal shape matching: A functional MRI study publication-title: Cognit Brain Res – volume: 5 start-page: 113 year: 1986 end-page: 215 – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia – ident: e_1_2_6_5_1 doi: 10.1016/S0896-6273(01)00362-2 – ident: e_1_2_6_9_1 doi: 10.1016/S0166-4328(05)80100-7 – ident: e_1_2_6_32_1 doi: 10.1002/hbm.10162 – ident: e_1_2_6_18_1 doi: 10.1016/S0959-4388(98)80041-X – ident: e_1_2_6_15_1 doi: 10.1523/JNEUROSCI.1395-04.2004 – ident: e_1_2_6_40_1 doi: 10.1080/0899022031000083780 – ident: e_1_2_6_11_1 doi: 10.1002/hbm.460010207 – ident: e_1_2_6_42_1 doi: 10.1068/p6264 – volume-title: The World Touch year: 1989 ident: e_1_2_6_21_1 – ident: e_1_2_6_19_1 doi: 10.1016/S0028-3932(02)00017-9 – start-page: 451 volume-title: Principles of Neural Science year: 2000 ident: e_1_2_6_13_1 – ident: e_1_2_6_28_1 doi: 10.1016/j.cogbrainres.2004.10.020 – ident: e_1_2_6_38_1 doi: 10.1038/nrn2331 – ident: e_1_2_6_12_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_6_30_1 doi: 10.1016/j.neuropsychologia.2006.03.003 – ident: e_1_2_6_10_1 doi: 10.1002/hbm.20099 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0700253104 – ident: e_1_2_6_23_1 doi: 10.1523/JNEUROSCI.0822-06.2006 – ident: e_1_2_6_29_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_6_36_1 doi: 10.1016/S0926-6410(03)00076-4 – ident: e_1_2_6_44_1 doi: 10.1002/hbm.20107 – ident: e_1_2_6_35_1 doi: 10.1038/20939 – ident: e_1_2_6_8_1 doi: 10.1097/00004691-200011000-00004 – ident: e_1_2_6_3_1 doi: 10.1093/cercor/12.11.1202 – ident: e_1_2_6_22_1 doi: 10.1016/j.neuroimage.2004.11.026 – ident: e_1_2_6_14_1 doi: 10.1037/h0046962 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.0505907102 – ident: e_1_2_6_41_1 doi: 10.1006/nimg.1996.0034 – volume: 13 start-page: 1823 year: 2010 ident: e_1_2_6_43_1 article-title: Development and evaluation of a multi‐model tactile pattern delivery device for fMRI study publication-title: J Inform – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroscience.2007.12.021 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.95.6.3295 – ident: e_1_2_6_24_1 doi: 10.3758/BF03211351 – ident: e_1_2_6_37_1 doi: 10.1523/JNEUROSCI.1808-07.2007 – ident: e_1_2_6_31_1 doi: 10.1523/JNEUROSCI.4275-06.2006 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuroimage.2004.11.044 – ident: e_1_2_6_7_1 doi: 10.1016/S0166-4328(03)00157-8 – ident: e_1_2_6_17_1 doi: 10.1523/JNEUROSCI.5536-05.2006 – ident: e_1_2_6_2_1 doi: 10.1038/85201 – ident: e_1_2_6_6_1 doi: 10.1080/08990229970375 – ident: e_1_2_6_20_1 doi: 10.1007/978-1-4613-2149-1_4 – ident: e_1_2_6_26_1 doi: 10.1093/brain/122.10.1989 – ident: e_1_2_6_16_1 doi: 10.1080/00221309.1984.9709968 – ident: e_1_2_6_4_1 doi: 10.1016/j.neuroimage.2007.05.038 |
SSID | ssj0011501 |
Score | 2.1523457 |
Snippet | Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT])... Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT])... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2957 |
SubjectTerms | active touch Adult Biological and medical sciences Brain Mapping Cerebellum - physiology Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Discrimination (Psychology) - physiology functional magnetic resonance imaging Humans index finger intraparietal sulcus Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Nervous system Neurology Occipital Lobe - physiology Parietal Lobe - physiology passive touch Radiodiagnosis. Nmr imagery. Nmr spectrometry somatosensory cortex Somatosensory Cortex - physiology Touch - physiology Touch Perception - physiology |
Title | Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch |
URI | https://api.istex.fr/ark:/67375/WNG-7W3887X8-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21419 https://www.ncbi.nlm.nih.gov/pubmed/22020967 https://www.proquest.com/docview/1140155272 https://www.proquest.com/docview/1151032095 https://pubmed.ncbi.nlm.nih.gov/PMC6870321 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NQ0K88GfjT2BMBqFpL-kaN7ET8TQQo0LqhBDT-oAUObazTlsT1DYS5YmPwGfkk3BnpxmFISHeIvlsxZfz-Wfn7ncAL4TRUtvShlzFcRgj4g5TPAgRE6YVg1KrTFKC8-hYDE_id-NkvAEvV7kwnh-iu3CjleH8NS1wVcwPrkhDJ8W0x6PYUX5SrBYBog8ddRQBHXfYwi02zNADr1iF-vyg67m2F90gtX6h2Eg1R_WUvq7FdcDzz_jJX3Gt25iO7sCn1ZR8PMpFr1kUPf31N7bH_5zzXbjdAlZ26C3sHmzYagu2Dys8rE-XbI-5EFJ3N78FN0ftn_ptaN7P6ik-VQtGqRP-4pfVJUPAyc5pQlT-0CL0Z6oybF4jcq7neKauZ0umKFKe-QxKbD67tIyyh30FMjdQsfSD_Pj23Q1v2aJu9OQ-nBy9-fh6GLYlHkKdSJmFZSnQA9hYa4RekdRpqXhqbcozY3mRGWFEUcYiikzfalkqFWvDE4VdLR8ohFcPYLOqK_sImO2LUopkgHgjihPEWamRmYrigifGIDgPYH_1sXPd8p9TGY7L3DM38xy1mzvtBvC8E_3sST-uE9pzFtNJqNkFRcnJJD89fpvL0wH673GajwPYXTOprgNhI4kYK4CdlY3lrQeZU7a4p8fjATzrmnHt0w8dVdm6IRnHh4goOYCH3iSvBud4EMiEDECuGWsnQLzi6y3V-cTxiwv04QN6rX1ni39XQT58NXIPj_9d9AncQszJfUTQDmwuZo19irhuUey6BfwTUrJMLQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NmwS88GfjT2AMg9C0l3SNm9iJxMs2GAXWCqFN6wuKHMeh09YEtY1EeeIj8Bn5JNzZbUZhSIi3SD5b8eV8_tm5-x3Ac5FrqU1hfK7C0A8RcfsxHoSICdOITqFVIinBudcX3ZPw7SAarMCLRS6M44doLtxoZVh_TQucLqR3L1lDh9moxYOQOD_XqKI3LcuXHxryKII69riFm6yfoA9e8Aq1-W7TdWk3WiPFfqHoSDVBBRWussVV0PPPCMpfka3dmg5vwcfFpFxEynmrnmYt_fU3vsf_nfVtuDnHrGzPGdkdWDHlOmzslXheH83YNrNRpPZ6fh2u9eY_6zegfj-uRvhUThllT7i7X1YVDDEnO6MZUQVEg-ifqTJnkwrBczXBY3U1njFFwfLMJVFi86cLwyiB2BUhswNlMzfIj2_f7fCGTataD-_CyeGr44OuP6_y4OtIysQvCoFOwIRaI_oKpI4LxWNjYp7khmdJLnKRFaEIgrxttCyUCnXOI4VdDe8oRFj3YLWsSvMAmGmLQoqog5AjCCOEWnEuExWEGY_yHPG5BzuLr53qOQU6VeK4SB15M09Ru6nVrgfPGtHPjvfjKqFtazKNhBqfU6CcjNLT_utUnnbQhQ_idODB1pJNNR0IHkmEWR5sLowsnTuRCSWMO4Y87sHTphmXP_3TUaWpapKxlIgIlD2472zycnCOZ4FESA_kkrU2AkQtvtxSng0txbhAN96h19qxxvh3FaTd_Z59ePjvok_geve4d5Qevem_ewQ3EIJyFyC0CavTcW0eI8ybZlt2Nf8E0CFQRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTZp4gbHxETaGQWjaS7rGdexEPA1GKR-tJsS0PkyKHNuh09Zk6odEeeJP4G_kL-HObjMKQ0K8RfLZii_n8--cu58JeS6MltoWNmSK85AD4g4TCISQCdOKVqFVKrHAudsTnRP-rh_3V8iLRS2M54eoD9xwZTh_jQv8yhQH16Shg3zYYBFHys81LpoJRl5HH2vuKEQ6LtqCPTZMwQUvaIWa7KDuurQZraFev2BypBqDfgp_scVNyPPPBMpfga3bmdp3yNliTj4h5aIxneQN_fU3usf_nPQGuT1HrPTQm9hdsmLLTbJ1WEK0PpzRPepySN3h_CZZ785_1W-R6fGoGsJTOaFYO-FPfmlVUECc9BwnhPcfWsD-VJWGjiuAztUYgupqNKMKU-WpL6GE5s-XlmL5sL-CzA2Uz_wgP759d8NbOqmmenCPnLRff3rVCed3PIQ6ljINi0KAC7Bca8BekdRJoVhibcJSY1meGmFEXnARRaZptSyU4tqwWEFXy1oK8NV9slpWpX1IqG2KQoq4BYAj4jEArcTIVEU8Z7ExgM4Dsr_42JmeE6DjPRyXmaduZhloN3PaDcizWvTKs37cJLTnLKaWUKMLTJOTcXbae5PJ0xY48H6S9QOyu2RSdQcERxJAVkB2FjaWzV3IGMvFPT8eC8jTuhkWP_7RUaWtpijjCBEBJgfkgTfJ68EZRAKpkAGRS8ZaCyCx-HJLeT5wBOMCnHgLX2vf2eLfVZB1Xnbdw6N_F31C1o-P2tmHt7332-QW4E_ms4N2yOpkNLWPAeNN8l23ln8C0QBO_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prominent+activation+of+the+intraparietal+and+somatosensory+areas+during+angle+discrimination+by+intra-active+touch&rft.jtitle=Human+brain+mapping&rft.au=Yang%2C+Jiajia&rft.au=Han%2C+Hongbin&rft.au=Chui%2C+Dehua&rft.au=Shen%2C+Yong&rft.date=2012-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=12&rft.spage=2957&rft_id=info:doi/10.1002%2Fhbm.21419&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2809405121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |