Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch

Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT,...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 33; no. 12; pp. 2957 - 2970
Main Authors Yang, Jiajia, Han, Hongbin, Chui, Dehua, Shen, Yong, Wu, Jinglong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley-Liss
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.21419

Cover

Loading…
Abstract Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high‐level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three‐angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT.
Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high‐level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three‐angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT.Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT.
Author Han, Hongbin
Shen, Yong
Chui, Dehua
Wu, Jinglong
Yang, Jiajia
AuthorAffiliation 4 Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA
5 Institute of Neuroscience, Beijing Institute of Technology, Beijing, China
2 Department of Neurology, Peking University Third Hospital, Beijing, China
3 Neuroscience Research Institute, Peking University, Beijing, China
1 Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
6 International WIC Institute, Beijing University of Technology, Beijing, China
AuthorAffiliation_xml – name: 1 Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
– name: 3 Neuroscience Research Institute, Peking University, Beijing, China
– name: 4 Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA
– name: 6 International WIC Institute, Beijing University of Technology, Beijing, China
– name: 2 Department of Neurology, Peking University Third Hospital, Beijing, China
– name: 5 Institute of Neuroscience, Beijing Institute of Technology, Beijing, China
Author_xml – sequence: 1
  givenname: Jiajia
  surname: Yang
  fullname: Yang, Jiajia
  organization: Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
– sequence: 2
  givenname: Hongbin
  surname: Han
  fullname: Han, Hongbin
  organization: Department of Neurology, Peking University Third Hospital, Beijing, China
– sequence: 3
  givenname: Dehua
  surname: Chui
  fullname: Chui, Dehua
  organization: Neuroscience Research Institute, Peking University, Beijing, China
– sequence: 4
  givenname: Yong
  surname: Shen
  fullname: Shen, Yong
  organization: Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, Florida, USA
– sequence: 5
  givenname: Jinglong
  surname: Wu
  fullname: Wu, Jinglong
  email: wu@mech.okayama-u.ac.jp
  organization: Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26617021$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22020967$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB-w4A-gSAgJFmltJ7GTTSWooEUqjwWo3Vk3zs2MS8YebKcw_x7PZDpAJVjZ0v3O0bmPQ7JnnUVCnjJ6zCjlJ_N2ccxZyZoH5IDRRuaUNcXe-i-qvCkl2yeHIdxQylhF2SOyzznltBHygITP3i2MRRsz0NHcQjTOZq7P4hwzY6OHJXiDEYYMbJcFt4DoAtrg_CoDjxCybvTGzlJ5NmDWmaC9SY6TUbuaTPKNOWbRjXr-mDzsYQj4ZPseka_v3n45u8gvP52_P3t9metKyibve9GIAkuteSWY1HUPvEasedMhb5tOdKLtS8FYR1HLHqDUHa8gSZEXQEVxRE4n3-XYLrDTuE4yqGXKB36lHBj1d8WauZq5WyVqSQvOksHLrYF330cMUS1SezgMYNGNQaVxsgTSpkro83vojRu9Te0lqqSsqrjkiXr2Z6JdlLt9JODFFoCgYeg9WG3Cb06kQdBNslcTp70LwWO_QxhV65tQ6SbU5iYSe3KP1SZu1pOaNsP_FD_MgKt_W6uLNx_uFPmkMCHiz50C_DeVupKVuvp4ruRVUdfyulbXxS_Uk9kl
CitedBy_id crossref_primary_10_3389_fspor_2019_00035
crossref_primary_10_1007_s13670_012_0007_4
crossref_primary_10_1016_j_neuroimage_2021_117754
crossref_primary_10_1080_1357650X_2014_920339
crossref_primary_10_1016_j_cortex_2013_06_007
crossref_primary_10_1097_NPT_0b013e318283de0d
crossref_primary_10_1016_j_tine_2013_06_004
crossref_primary_10_3389_fnhum_2014_00926
crossref_primary_10_1016_j_neubiorev_2021_07_005
crossref_primary_10_3389_fpsyg_2018_00571
crossref_primary_10_3390_brainsci12070924
crossref_primary_10_7144_sgf_21_1
Cites_doi 10.1016/S0896-6273(01)00362-2
10.1016/S0166-4328(05)80100-7
10.1002/hbm.10162
10.1016/S0959-4388(98)80041-X
10.1523/JNEUROSCI.1395-04.2004
10.1080/0899022031000083780
10.1002/hbm.460010207
10.1068/p6264
10.1016/S0028-3932(02)00017-9
10.1016/j.cogbrainres.2004.10.020
10.1038/nrn2331
10.1002/hbm.460020402
10.1016/j.neuropsychologia.2006.03.003
10.1002/hbm.20099
10.1073/pnas.0700253104
10.1523/JNEUROSCI.0822-06.2006
10.1016/0028-3932(71)90067-4
10.1016/S0926-6410(03)00076-4
10.1002/hbm.20107
10.1038/20939
10.1097/00004691-200011000-00004
10.1093/cercor/12.11.1202
10.1016/j.neuroimage.2004.11.026
10.1037/h0046962
10.1073/pnas.0505907102
10.1006/nimg.1996.0034
10.1016/j.neuroscience.2007.12.021
10.1073/pnas.95.6.3295
10.3758/BF03211351
10.1523/JNEUROSCI.1808-07.2007
10.1523/JNEUROSCI.4275-06.2006
10.1016/j.neuroimage.2004.11.044
10.1016/S0166-4328(03)00157-8
10.1523/JNEUROSCI.5536-05.2006
10.1038/85201
10.1080/08990229970375
10.1007/978-1-4613-2149-1_4
10.1093/brain/122.10.1989
10.1080/00221309.1984.9709968
10.1016/j.neuroimage.2007.05.038
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21419
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Prominent Activation of Intra‐Active Touch
EISSN 1097-0193
EndPage 2970
ExternalDocumentID PMC6870321
2809405121
22020967
26617021
10_1002_hbm_21419
HBM21419
ark_67375_WNG_7W3887X8_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Basic Research Program of China (973 program China)
  funderid: 2006CB500705
– fundername: Grant‐in‐Aid for Scientific Research (B), Japan
  funderid: 21404002
– fundername: AA Science Platform Program of the Japan Society for the Promotion of Science
– fundername: The National High Technology Research and Development Program of China (863 program China)
  funderid: 2006AA02A408
– fundername: The National High Technology Research and Development Program of China (863 program China)
  grantid: 2006AA02A408
– fundername: National Key Basic Research Program of China (973 program China)
  grantid: 2006CB500705
– fundername: Grant‐in‐Aid for Scientific Research (B), Japan
  grantid: 21404002
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5779-ff6963e4cc25617c8fa28ee829de2b9d6d6bf4611d0ec7faa4cd25a779e23a063
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:12:33 EDT 2025
Thu Sep 04 22:24:31 EDT 2025
Tue Aug 26 09:32:41 EDT 2025
Mon Jul 21 05:56:56 EDT 2025
Mon Jul 21 09:14:36 EDT 2025
Tue Jul 01 04:25:59 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Jan 22 16:20:16 EST 2025
Wed Oct 30 09:53:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Nervous system diseases
Radiodiagnosis
passive touch
Central nervous system
Finger
Nuclear magnetic resonance imaging
active touch
Encephalon
Somatosensory cortex
Discrimination
Angle
Somesthetic pathway
index finger
intraparietal sulcus
functional magnetic resonance imaging
Functional imaging
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5779-ff6963e4cc25617c8fa28ee829de2b9d6d6bf4611d0ec7faa4cd25a779e23a063
Notes Grant-in-Aid for Scientific Research (B), Japan - No. 21404002
National Key Basic Research Program of China (973 program China) - No. 2006CB500705
ark:/67375/WNG-7W3887X8-X
istex:8AB926F8531FC2B924CAC6CA9052CF1DE9693B04
The National High Technology Research and Development Program of China (863 program China) - No. 2006AA02A408
ArticleID:HBM21419
AA Science Platform Program of the Japan Society for the Promotion of Science
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21419?download=true
PMID 22020967
PQID 1140155272
PQPubID 996345
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870321
proquest_miscellaneous_1151032095
proquest_journals_1140155272
pubmed_primary_22020967
pascalfrancis_primary_26617021
crossref_primary_10_1002_hbm_21419
crossref_citationtrail_10_1002_hbm_21419
wiley_primary_10_1002_hbm_21419_HBM21419
istex_primary_ark_67375_WNG_7W3887X8_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Fabri M, Polonara G, Salvolini U, Manzoni T ( 2005): Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 25: 287-296.
Blatow M, Nennig E, Durst A, Sartor K, Stippich C ( 2007): fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage 37: 927-936.
Burton H, Sinclair RJ ( 2000): Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. J Clin Neurophysiol 17: 575-591.
James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA ( 2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714.
Newmana SD, Klatzky RL, Lederman SJ, Just MA ( 2005): Imagining material versus geometric properties of objects: An fMRI study. Cognit Brain Res 23: 235-246.
Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Sathian K ( 2007): Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45: 476-483.
Iwamura Y ( 1998): Hierarchical somatosensory processing. Curr Opin Neurobiol 8: 522-528.
Stilla R, Deshpande G, LaConte S, Hu X, Sathian K ( 2007): Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. J Neurosci 27: 11091-11102.
Bolanowski SJ, Verrillo RI, McGlone F ( 2004): Passive, active and intra-active (self) touch. Behav Brain Res 148: 41-45.
Stein BE, Stanford TR ( 2008): Multisensory intergration current issues from the perspective of the single neuron. Nat Rev Neurosci 9: 255-266.
Harada T, Saito DN, Kashikura K, Sato T, Yonekura Y, Honda M, Sadato N ( 2004): Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study. J Neurosci 24: 7524-7530.
Kitada R, Kito T, Saito DN, Kochiyama T, Matsumura M, Sadato N, Lederman SJ ( 2006): Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. J Neurosci 26: 7491-7501.
Bolanowski SJ, Verrillo RI, McGlone F ( 1999): Passive, active and intra-active (self) touch. Somatosens Motor Res 16: 304-311.
Klatzky RL, Lederman SJ, Metzger VA ( 1985): Identifying objects by touch: An "expert system." Percept Psychophys 37: 299-302.
Saito DN, Okada T, Morita Y, Yonekura Y, Sadato N ( 2003): Tactile-visual cross-modal shape matching: A functional MRI study. Cognit Brain Res 17: 14-25.
Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N ( 2005): Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25: 90-100.
Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ ( 2006): Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26: 12596-12601.
Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H ( 1999): Brain structures related to active and passive finger movement in man. Brain 22: 1989-1997.
Bodegård A, Geyer S, Grefkes C, Zilles K, Roland PE ( 2001): Hierarchical processing of tactile shape in the human brain. Neuron 31: 317-328.
Kostopoulos P, Albanese MC, Petrides M ( 2007): Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain. PNAS 104: 10223-10228.
Romo R, Brody CD, Hernández A, Lemus L ( 1999): Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399: 470-473.
Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG ( 2005): Tactile form and location processing in the human brain. PNAS 102: 12601-12605.
Hlushchuk Y, Hari R ( 2006): Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 26: 5819-5824.
Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S ( 1996): Brain representation of active and passive movements. NeuroImage 4: 105-110.
Reed CL, Klatzky RL, Halgren E ( 2005): What vs. where in touch: An fMRI study. NeuroImage 25: 718-726.
Amedi A, Malach R, Hendler T, Peled S, Zohary E ( 2001): Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330.
Heller MA ( 1984): Active and Passive touch: The influence of exploration time on form recognition. J Gen Psychol 110: 243-249.
Miquée A, Xerri C, Rainville C, Anton JL, Nazarian B, Roth M, Zennou-Azogui Y ( 2008): Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study. Neuroscience 152: 29-39.
Wu J, Yang J, Ogasa T ( 2010): Raised Angle Discrimination under passive hand movement. Perception 39: 993-1006.
Eacott MJ, Gaffan D ( 1991): The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes. Behav Brain Res 46: 95-98.
Friston KJ, Jezzard P, Turner R ( 1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171.
Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.
Verrillo RI, Bolanowski SJ, McGlone F ( 2003): Intra- and interactive touch on the face. Somatosens Motor Res 20: 3-11.
Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RSJ ( 1995): Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2: 189-210.
Yang J, Wu J ( 2010): Development and evaluation of a multi-model tactile pattern delivery device for fMRI study. J Inform 13: 1823-1832.
Gibson JJ ( 1962): Observation on active touch. Psychol Rev 69: 477-491.
Zhang M, Mariola E, Stilla R, Stoesz M, Mao H, Hu X, Sathian K ( 2005): Tactile discrimination of grating orientation: fMRI activation patterns. Hum Brain Mapp 25: 370-377.
Reed CL, Shoham S, Halgren E ( 2004): Neural substrates of tactile object recognition: An fMRI study. Hum Brain Mapp 21: 236-246.
Katz D ( 1989): The World Touch. Hillsdale, NJ: Erlbaum.
Amedi A, Jacobson G, Hendler T, Malach R, Zohary E ( 2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212.
Roland PE, O'sillivan B, Kawashima R ( 1998): Shape and roughness activate different somatosensory areas in the human brain. PNAS 95: 3295-3300.
2004; 21
2007; 104
2004; 148
2010; 13
2010; 39
2002; 12
2004; 24
2008; 9
1999; 22
2003; 17
1995; 2
2005; 23
2007; 37
2005; 25
1971; 9
1984; 110
2000; 17
1991; 46
2000
2001; 4
2002; 40
2005; 102
1999; 16
1986; 5
2006; 26
1962; 69
1999; 399
1994; 1
1996; 4
1998; 95
2007; 45
1985; 37
2008; 152
2003; 20
2001; 31
1989
1998; 8
2007; 27
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Katz D (e_1_2_6_21_1) 1989
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Gardner EP (e_1_2_6_13_1) 2000
e_1_2_6_42_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
Yang J (e_1_2_6_43_1) 2010; 13
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Friston KJ, Jezzard P, Turner R ( 1994): Analysis of functional MRI time-series. Hum Brain Mapp 1: 153-171.
– reference: Weiller C, Juptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S ( 1996): Brain representation of active and passive movements. NeuroImage 4: 105-110.
– reference: Amedi A, Malach R, Hendler T, Peled S, Zohary E ( 2001): Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4: 324-330.
– reference: Bolanowski SJ, Verrillo RI, McGlone F ( 1999): Passive, active and intra-active (self) touch. Somatosens Motor Res 16: 304-311.
– reference: Klatzky RL, Lederman SJ, Metzger VA ( 1985): Identifying objects by touch: An "expert system." Percept Psychophys 37: 299-302.
– reference: Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H ( 1999): Brain structures related to active and passive finger movement in man. Brain 22: 1989-1997.
– reference: Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N ( 2005): Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study. NeuroImage 25: 90-100.
– reference: Saito DN, Okada T, Morita Y, Yonekura Y, Sadato N ( 2003): Tactile-visual cross-modal shape matching: A functional MRI study. Cognit Brain Res 17: 14-25.
– reference: Blatow M, Nennig E, Durst A, Sartor K, Stippich C ( 2007): fMRI reflects functional connectivity of human somatosensory cortex. NeuroImage 37: 927-936.
– reference: Heller MA ( 1984): Active and Passive touch: The influence of exploration time on form recognition. J Gen Psychol 110: 243-249.
– reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.
– reference: Wu J, Yang J, Ogasa T ( 2010): Raised Angle Discrimination under passive hand movement. Perception 39: 993-1006.
– reference: Miquée A, Xerri C, Rainville C, Anton JL, Nazarian B, Roth M, Zennou-Azogui Y ( 2008): Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study. Neuroscience 152: 29-39.
– reference: Roland PE, O'sillivan B, Kawashima R ( 1998): Shape and roughness activate different somatosensory areas in the human brain. PNAS 95: 3295-3300.
– reference: Newmana SD, Klatzky RL, Lederman SJ, Just MA ( 2005): Imagining material versus geometric properties of objects: An fMRI study. Cognit Brain Res 23: 235-246.
– reference: Eacott MJ, Gaffan D ( 1991): The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes. Behav Brain Res 46: 95-98.
– reference: Burton H, Sinclair RJ ( 2000): Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. J Clin Neurophysiol 17: 575-591.
– reference: Bolanowski SJ, Verrillo RI, McGlone F ( 2004): Passive, active and intra-active (self) touch. Behav Brain Res 148: 41-45.
– reference: Harada T, Saito DN, Kashikura K, Sato T, Yonekura Y, Honda M, Sadato N ( 2004): Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study. J Neurosci 24: 7524-7530.
– reference: Verrillo RI, Bolanowski SJ, McGlone F ( 2003): Intra- and interactive touch on the face. Somatosens Motor Res 20: 3-11.
– reference: Stein BE, Stanford TR ( 2008): Multisensory intergration current issues from the perspective of the single neuron. Nat Rev Neurosci 9: 255-266.
– reference: Katz D ( 1989): The World Touch. Hillsdale, NJ: Erlbaum.
– reference: Bodegård A, Geyer S, Grefkes C, Zilles K, Roland PE ( 2001): Hierarchical processing of tactile shape in the human brain. Neuron 31: 317-328.
– reference: Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RSJ ( 1995): Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2: 189-210.
– reference: Fabri M, Polonara G, Salvolini U, Manzoni T ( 2005): Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 25: 287-296.
– reference: Pleger B, Ruff CC, Blankenburg F, Bestmann S, Wiech K, Stephan KE, Capilla A, Friston KJ, Dolan RJ ( 2006): Neural coding of tactile decisions in the human prefrontal cortex. J Neurosci 26: 12596-12601.
– reference: Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG ( 2005): Tactile form and location processing in the human brain. PNAS 102: 12601-12605.
– reference: Zhang M, Mariola E, Stilla R, Stoesz M, Mao H, Hu X, Sathian K ( 2005): Tactile discrimination of grating orientation: fMRI activation patterns. Hum Brain Mapp 25: 370-377.
– reference: Yang J, Wu J ( 2010): Development and evaluation of a multi-model tactile pattern delivery device for fMRI study. J Inform 13: 1823-1832.
– reference: Kostopoulos P, Albanese MC, Petrides M ( 2007): Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain. PNAS 104: 10223-10228.
– reference: Amedi A, Jacobson G, Hendler T, Malach R, Zohary E ( 2002): Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12: 1202-1212.
– reference: Hlushchuk Y, Hari R ( 2006): Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 26: 5819-5824.
– reference: Reed CL, Shoham S, Halgren E ( 2004): Neural substrates of tactile object recognition: An fMRI study. Hum Brain Mapp 21: 236-246.
– reference: Gibson JJ ( 1962): Observation on active touch. Psychol Rev 69: 477-491.
– reference: Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Sathian K ( 2007): Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45: 476-483.
– reference: Iwamura Y ( 1998): Hierarchical somatosensory processing. Curr Opin Neurobiol 8: 522-528.
– reference: James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA ( 2002): Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40: 1706-1714.
– reference: Reed CL, Klatzky RL, Halgren E ( 2005): What vs. where in touch: An fMRI study. NeuroImage 25: 718-726.
– reference: Romo R, Brody CD, Hernández A, Lemus L ( 1999): Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399: 470-473.
– reference: Stilla R, Deshpande G, LaConte S, Hu X, Sathian K ( 2007): Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. J Neurosci 27: 11091-11102.
– reference: Kitada R, Kito T, Saito DN, Kochiyama T, Matsumura M, Sadato N, Lederman SJ ( 2006): Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study. J Neurosci 26: 7491-7501.
– volume: 23
  start-page: 235
  year: 2005
  end-page: 246
  article-title: Imagining material versus geometric properties of objects: An fMRI study
  publication-title: Cognit Brain Res
– volume: 148
  start-page: 41
  year: 2004
  end-page: 45
  article-title: Passive, active and intra‐active (self) touch
  publication-title: Behav Brain Res
– start-page: 451
  year: 2000
  end-page: 471
– volume: 27
  start-page: 11091
  year: 2007
  end-page: 11102
  article-title: Posteromedial parietal cortical activity and inputs predict tactile spatial acuity
  publication-title: J Neurosci
– volume: 26
  start-page: 12596
  year: 2006
  end-page: 12601
  article-title: Neural coding of tactile decisions in the human prefrontal cortex
  publication-title: J Neurosci
– volume: 26
  start-page: 7491
  year: 2006
  end-page: 7501
  article-title: Multisensory activation of the intraparietal area when classifying grating orientation: A functional magnetic resonance imaging study
  publication-title: J Neurosci
– volume: 25
  start-page: 370
  year: 2005
  end-page: 377
  article-title: Tactile discrimination of grating orientation: fMRI activation patterns
  publication-title: Hum Brain Mapp
– volume: 8
  start-page: 522
  year: 1998
  end-page: 528
  article-title: Hierarchical somatosensory processing
  publication-title: Curr Opin Neurobiol
– volume: 104
  start-page: 10223
  year: 2007
  end-page: 10228
  article-title: Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain
  publication-title: PNAS
– volume: 24
  start-page: 7524
  year: 2004
  end-page: 7530
  article-title: Asymmetrical neural substrates of tactile discrimination in humans: A functional magnetic resonance imaging study
  publication-title: J Neurosci
– volume: 45
  start-page: 476
  year: 2007
  end-page: 483
  article-title: Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception
  publication-title: Neuropsychologia
– volume: 12
  start-page: 1202
  year: 2002
  end-page: 1212
  article-title: Convergence of visual and tactile shape processing in the human lateral occipital complex
  publication-title: Cereb Cortex
– year: 1989
– volume: 95
  start-page: 3295
  year: 1998
  end-page: 3300
  article-title: Shape and roughness activate different somatosensory areas in the human brain
  publication-title: PNAS
– volume: 152
  start-page: 29
  year: 2008
  end-page: 39
  article-title: Neuronal substrates of haptic shape encoding and matching: A functional magnetic resonance imaging study
  publication-title: Neuroscience
– volume: 17
  start-page: 575
  year: 2000
  end-page: 591
  article-title: Attending to and remembering tactile stimuli: A review of brain imaging data and single‐neuron responses
  publication-title: J Clin Neurophysiol
– volume: 39
  start-page: 993
  year: 2010
  end-page: 1006
  article-title: Raised Angle Discrimination under passive hand movement
  publication-title: Perception
– volume: 46
  start-page: 95
  year: 1991
  end-page: 98
  article-title: The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes
  publication-title: Behav Brain Res
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: A general linear approach
  publication-title: Hum Brain Mapp
– volume: 399
  start-page: 470
  year: 1999
  end-page: 473
  article-title: Neuronal correlates of parametric working memory in the prefrontal cortex
  publication-title: Nature
– volume: 31
  start-page: 317
  year: 2001
  end-page: 328
  article-title: Hierarchical processing of tactile shape in the human brain
  publication-title: Neuron
– volume: 69
  start-page: 477
  year: 1962
  end-page: 491
  article-title: Observation on active touch
  publication-title: Psychol Rev
– volume: 26
  start-page: 5819
  year: 2006
  end-page: 5824
  article-title: Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation
  publication-title: J Neurosci
– volume: 22
  start-page: 1989
  year: 1999
  end-page: 1997
  article-title: Brain structures related to active and passive finger movement in man
  publication-title: Brain
– volume: 4
  start-page: 105
  year: 1996
  end-page: 110
  article-title: Brain representation of active and passive movements
  publication-title: NeuroImage
– volume: 102
  start-page: 12601
  year: 2005
  end-page: 12605
  article-title: Tactile form and location processing in the human brain
  publication-title: PNAS
– volume: 9
  start-page: 255
  year: 2008
  end-page: 266
  article-title: Multisensory intergration current issues from the perspective of the single neuron
  publication-title: Nat Rev Neurosci
– volume: 40
  start-page: 1706
  year: 2002
  end-page: 1714
  article-title: Haptic study of three‐dimensional objects activates extrastriate visual areas
  publication-title: Neuropsychologia
– volume: 1
  start-page: 153
  year: 1994
  end-page: 171
  article-title: Analysis of functional MRI time‐series
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 90
  year: 2005
  end-page: 100
  article-title: Tactile estimation of the roughness of gratings yields a graded response in the human brain: An fMRI study
  publication-title: NeuroImage
– volume: 13
  start-page: 1823
  year: 2010
  end-page: 1832
  article-title: Development and evaluation of a multi‐model tactile pattern delivery device for fMRI study
  publication-title: J Inform
– volume: 25
  start-page: 287
  year: 2005
  end-page: 296
  article-title: Bilateral cortical representation of the trunk midline in human first somatic sensory area
  publication-title: Hum Brain Mapp
– volume: 37
  start-page: 299
  year: 1985
  end-page: 302
  article-title: Identifying objects by touch: An “expert system.”
  publication-title: Percept Psychophys
– volume: 4
  start-page: 324
  year: 2001
  end-page: 330
  article-title: Visuo‐haptic object‐related activation in the ventral visual pathway
  publication-title: Nat Neurosci
– volume: 25
  start-page: 718
  year: 2005
  end-page: 726
  article-title: What vs. where in touch: An fMRI study
  publication-title: NeuroImage
– volume: 16
  start-page: 304
  year: 1999
  end-page: 311
  article-title: Passive, active and intra‐active (self) touch
  publication-title: Somatosens Motor Res
– volume: 20
  start-page: 3
  year: 2003
  end-page: 11
  article-title: Intra‐ and interactive touch on the face
  publication-title: Somatosens Motor Res
– volume: 21
  start-page: 236
  year: 2004
  end-page: 246
  article-title: Neural substrates of tactile object recognition: An fMRI study
  publication-title: Hum Brain Mapp
– volume: 37
  start-page: 927
  year: 2007
  end-page: 936
  article-title: fMRI reflects functional connectivity of human somatosensory cortex
  publication-title: NeuroImage
– volume: 110
  start-page: 243
  year: 1984
  end-page: 249
  article-title: Active and Passive touch: The influence of exploration time on form recognition
  publication-title: J Gen Psychol
– volume: 17
  start-page: 14
  year: 2003
  end-page: 25
  article-title: Tactile‐visual cross‐modal shape matching: A functional MRI study
  publication-title: Cognit Brain Res
– volume: 5
  start-page: 113
  year: 1986
  end-page: 215
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– ident: e_1_2_6_5_1
  doi: 10.1016/S0896-6273(01)00362-2
– ident: e_1_2_6_9_1
  doi: 10.1016/S0166-4328(05)80100-7
– ident: e_1_2_6_32_1
  doi: 10.1002/hbm.10162
– ident: e_1_2_6_18_1
  doi: 10.1016/S0959-4388(98)80041-X
– ident: e_1_2_6_15_1
  doi: 10.1523/JNEUROSCI.1395-04.2004
– ident: e_1_2_6_40_1
  doi: 10.1080/0899022031000083780
– ident: e_1_2_6_11_1
  doi: 10.1002/hbm.460010207
– ident: e_1_2_6_42_1
  doi: 10.1068/p6264
– volume-title: The World Touch
  year: 1989
  ident: e_1_2_6_21_1
– ident: e_1_2_6_19_1
  doi: 10.1016/S0028-3932(02)00017-9
– start-page: 451
  volume-title: Principles of Neural Science
  year: 2000
  ident: e_1_2_6_13_1
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cogbrainres.2004.10.020
– ident: e_1_2_6_38_1
  doi: 10.1038/nrn2331
– ident: e_1_2_6_12_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neuropsychologia.2006.03.003
– ident: e_1_2_6_10_1
  doi: 10.1002/hbm.20099
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.0700253104
– ident: e_1_2_6_23_1
  doi: 10.1523/JNEUROSCI.0822-06.2006
– ident: e_1_2_6_29_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_6_36_1
  doi: 10.1016/S0926-6410(03)00076-4
– ident: e_1_2_6_44_1
  doi: 10.1002/hbm.20107
– ident: e_1_2_6_35_1
  doi: 10.1038/20939
– ident: e_1_2_6_8_1
  doi: 10.1097/00004691-200011000-00004
– ident: e_1_2_6_3_1
  doi: 10.1093/cercor/12.11.1202
– ident: e_1_2_6_22_1
  doi: 10.1016/j.neuroimage.2004.11.026
– ident: e_1_2_6_14_1
  doi: 10.1037/h0046962
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.0505907102
– ident: e_1_2_6_41_1
  doi: 10.1006/nimg.1996.0034
– volume: 13
  start-page: 1823
  year: 2010
  ident: e_1_2_6_43_1
  article-title: Development and evaluation of a multi‐model tactile pattern delivery device for fMRI study
  publication-title: J Inform
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroscience.2007.12.021
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.95.6.3295
– ident: e_1_2_6_24_1
  doi: 10.3758/BF03211351
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.1808-07.2007
– ident: e_1_2_6_31_1
  doi: 10.1523/JNEUROSCI.4275-06.2006
– ident: e_1_2_6_33_1
  doi: 10.1016/j.neuroimage.2004.11.044
– ident: e_1_2_6_7_1
  doi: 10.1016/S0166-4328(03)00157-8
– ident: e_1_2_6_17_1
  doi: 10.1523/JNEUROSCI.5536-05.2006
– ident: e_1_2_6_2_1
  doi: 10.1038/85201
– ident: e_1_2_6_6_1
  doi: 10.1080/08990229970375
– ident: e_1_2_6_20_1
  doi: 10.1007/978-1-4613-2149-1_4
– ident: e_1_2_6_26_1
  doi: 10.1093/brain/122.10.1989
– ident: e_1_2_6_16_1
  doi: 10.1080/00221309.1984.9709968
– ident: e_1_2_6_4_1
  doi: 10.1016/j.neuroimage.2007.05.038
SSID ssj0011501
Score 2.1523457
Snippet Intra‐active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT])...
Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT])...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2957
SubjectTerms active touch
Adult
Biological and medical sciences
Brain Mapping
Cerebellum - physiology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Discrimination (Psychology) - physiology
functional magnetic resonance imaging
Humans
index finger
intraparietal sulcus
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Nervous system
Neurology
Occipital Lobe - physiology
Parietal Lobe - physiology
passive touch
Radiodiagnosis. Nmr imagery. Nmr spectrometry
somatosensory cortex
Somatosensory Cortex - physiology
Touch - physiology
Touch Perception - physiology
Title Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch
URI https://api.istex.fr/ark:/67375/WNG-7W3887X8-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21419
https://www.ncbi.nlm.nih.gov/pubmed/22020967
https://www.proquest.com/docview/1140155272
https://www.proquest.com/docview/1151032095
https://pubmed.ncbi.nlm.nih.gov/PMC6870321
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NQ0K88GfjT2BMBqFpL-kaN7ET8TQQo0LqhBDT-oAUObazTlsT1DYS5YmPwGfkk3BnpxmFISHeIvlsxZfz-Wfn7ncAL4TRUtvShlzFcRgj4g5TPAgRE6YVg1KrTFKC8-hYDE_id-NkvAEvV7kwnh-iu3CjleH8NS1wVcwPrkhDJ8W0x6PYUX5SrBYBog8ddRQBHXfYwi02zNADr1iF-vyg67m2F90gtX6h2Eg1R_WUvq7FdcDzz_jJX3Gt25iO7sCn1ZR8PMpFr1kUPf31N7bH_5zzXbjdAlZ26C3sHmzYagu2Dys8rE-XbI-5EFJ3N78FN0ftn_ptaN7P6ik-VQtGqRP-4pfVJUPAyc5pQlT-0CL0Z6oybF4jcq7neKauZ0umKFKe-QxKbD67tIyyh30FMjdQsfSD_Pj23Q1v2aJu9OQ-nBy9-fh6GLYlHkKdSJmFZSnQA9hYa4RekdRpqXhqbcozY3mRGWFEUcYiikzfalkqFWvDE4VdLR8ohFcPYLOqK_sImO2LUopkgHgjihPEWamRmYrigifGIDgPYH_1sXPd8p9TGY7L3DM38xy1mzvtBvC8E_3sST-uE9pzFtNJqNkFRcnJJD89fpvL0wH673GajwPYXTOprgNhI4kYK4CdlY3lrQeZU7a4p8fjATzrmnHt0w8dVdm6IRnHh4goOYCH3iSvBud4EMiEDECuGWsnQLzi6y3V-cTxiwv04QN6rX1ni39XQT58NXIPj_9d9AncQszJfUTQDmwuZo19irhuUey6BfwTUrJMLQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9NmwS88GfjT2AMg9C0l3SNm9iJxMs2GAXWCqFN6wuKHMeh09YEtY1EeeIj8Bn5JNzZbUZhSIi3SD5b8eV8_tm5-x3Ac5FrqU1hfK7C0A8RcfsxHoSICdOITqFVIinBudcX3ZPw7SAarMCLRS6M44doLtxoZVh_TQucLqR3L1lDh9moxYOQOD_XqKI3LcuXHxryKII69riFm6yfoA9e8Aq1-W7TdWk3WiPFfqHoSDVBBRWussVV0PPPCMpfka3dmg5vwcfFpFxEynmrnmYt_fU3vsf_nfVtuDnHrGzPGdkdWDHlOmzslXheH83YNrNRpPZ6fh2u9eY_6zegfj-uRvhUThllT7i7X1YVDDEnO6MZUQVEg-ifqTJnkwrBczXBY3U1njFFwfLMJVFi86cLwyiB2BUhswNlMzfIj2_f7fCGTataD-_CyeGr44OuP6_y4OtIysQvCoFOwIRaI_oKpI4LxWNjYp7khmdJLnKRFaEIgrxttCyUCnXOI4VdDe8oRFj3YLWsSvMAmGmLQoqog5AjCCOEWnEuExWEGY_yHPG5BzuLr53qOQU6VeK4SB15M09Ru6nVrgfPGtHPjvfjKqFtazKNhBqfU6CcjNLT_utUnnbQhQ_idODB1pJNNR0IHkmEWR5sLowsnTuRCSWMO4Y87sHTphmXP_3TUaWpapKxlIgIlD2472zycnCOZ4FESA_kkrU2AkQtvtxSng0txbhAN96h19qxxvh3FaTd_Z59ePjvok_geve4d5Qevem_ewQ3EIJyFyC0CavTcW0eI8ybZlt2Nf8E0CFQRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTZp4gbHxETaGQWjaS7rGdexEPA1GKR-tJsS0PkyKHNuh09Zk6odEeeJP4G_kL-HObjMKQ0K8RfLZii_n8--cu58JeS6MltoWNmSK85AD4g4TCISQCdOKVqFVKrHAudsTnRP-rh_3V8iLRS2M54eoD9xwZTh_jQv8yhQH16Shg3zYYBFHys81LpoJRl5HH2vuKEQ6LtqCPTZMwQUvaIWa7KDuurQZraFev2BypBqDfgp_scVNyPPPBMpfga3bmdp3yNliTj4h5aIxneQN_fU3usf_nPQGuT1HrPTQm9hdsmLLTbJ1WEK0PpzRPepySN3h_CZZ785_1W-R6fGoGsJTOaFYO-FPfmlVUECc9BwnhPcfWsD-VJWGjiuAztUYgupqNKMKU-WpL6GE5s-XlmL5sL-CzA2Uz_wgP759d8NbOqmmenCPnLRff3rVCed3PIQ6ljINi0KAC7Bca8BekdRJoVhibcJSY1meGmFEXnARRaZptSyU4tqwWEFXy1oK8NV9slpWpX1IqG2KQoq4BYAj4jEArcTIVEU8Z7ExgM4Dsr_42JmeE6DjPRyXmaduZhloN3PaDcizWvTKs37cJLTnLKaWUKMLTJOTcXbae5PJ0xY48H6S9QOyu2RSdQcERxJAVkB2FjaWzV3IGMvFPT8eC8jTuhkWP_7RUaWtpijjCBEBJgfkgTfJ68EZRAKpkAGRS8ZaCyCx-HJLeT5wBOMCnHgLX2vf2eLfVZB1Xnbdw6N_F31C1o-P2tmHt7332-QW4E_ms4N2yOpkNLWPAeNN8l23ln8C0QBO_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prominent+activation+of+the+intraparietal+and+somatosensory+areas+during+angle+discrimination+by+intra-active+touch&rft.jtitle=Human+brain+mapping&rft.au=Yang%2C+Jiajia&rft.au=Han%2C+Hongbin&rft.au=Chui%2C+Dehua&rft.au=Shen%2C+Yong&rft.date=2012-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=12&rft.spage=2957&rft_id=info:doi/10.1002%2Fhbm.21419&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2809405121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon