Ecological traits influence the phylogenetic structure of bird species co‐occurrences worldwide
The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns ar...
Saved in:
Published in | Ecology letters Vol. 17; no. 7; pp. 811 - 820 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.07.2014
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds. |
---|---|
AbstractList | The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds. The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co-occurrence patterns are linked - after accounting for regional effects - to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co-occurrences of carnivorous, migratory and cold-climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life-history traits beyond the climatic niche. They further offer a novel species-oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co-occurrence patterns are linked - after accounting for regional effects - to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co-occurrences of carnivorous, migratory and cold-climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life-history traits beyond the climatic niche. They further offer a novel species-oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds. The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co-occurrence patterns are linked - after accounting for regional effects - to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co-occurrences of carnivorous, migratory and cold-climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life-history traits beyond the climatic niche. They further offer a novel species-oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds. [PUBLICATION ABSTRACT] |
Author | Barnagaud, Jean‐Yves Eiserhardt, Wolf L Şekercioğlu, Çağan H Svenning, Jens‐Christian Sandel, Brody Tsirogiannis, Constantinos Mouillot, David Daniel Kissling, W Enquist, Brian J |
Author_xml | – sequence: 1 fullname: Barnagaud, Jean‐Yves – sequence: 2 fullname: Daniel Kissling, W – sequence: 3 fullname: Sandel, Brody – sequence: 4 fullname: Eiserhardt, Wolf L – sequence: 5 fullname: Şekercioğlu, Çağan H – sequence: 6 fullname: Enquist, Brian J – sequence: 7 fullname: Tsirogiannis, Constantinos – sequence: 8 fullname: Svenning, Jens‐Christian – sequence: 9 fullname: Mouillot, David |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28536038$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24754339$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9qFDEUxoNUbLt64QvogAh6MW0ySSYzl1K29c-iFC0t3oRMcqZNzU7WZIbt3vkIPqNPYsbdrVAUDYGE5Ped5Hzn7KOdzneA0GOCD0gah-DggBRFxe-hPcJKkuOCVTu3e3qxi_ZjvMaYFLUgD9BuwQRnlNZ7SE21d_7SauWyPijbx8x2rRug05D1V5AtrlbpHjrorc5iHwbdDwEy32aNDSaLC9AWYqb9j2_fvdZDCKM0ZksfnFlaAw_R_Va5CI826wSdHU8_Hb3OZx9O3hy9muWaC8FzlT5bGWJoo2hdkRaEhlrTipmSKdOmA86waBtNSl1jJrAxTaWwwrwBXTWYTtCLddxF8F8HiL2c26jBOdWBH6IkdRqCJ2f-jaaniqIUtfgPlBY1wzi5PEHP7qDXfghdynmk0uR1QRL1ZEMNzRyMXAQ7V2EltyVJwPMNoGKqShtUp238zVWclpiOSRyuOR18jAFaqW2veuu7sY5OEizH5pCpOeSv5kiKl3cU26B_YjfRl9bB6u-gnM6mW0W-VtjYw82tQoUvshRUcHn-_kRenJ6-_Xw-4_Jd4p-u-VZ5qS5DyvHsY4FJMpNQlgyjPwE8meFA |
CitedBy_id | crossref_primary_10_1111_geb_12428 crossref_primary_10_3897_rio_3_e14944 crossref_primary_10_1111_ele_13631 crossref_primary_10_1111_ele_13830 crossref_primary_10_1111_ddi_13176 crossref_primary_10_1111_ecog_01814 crossref_primary_10_1111_geb_12741 crossref_primary_10_1111_geb_13556 crossref_primary_10_1111_jbi_13738 crossref_primary_10_1002_ecy_1503 crossref_primary_10_1111_ecog_05934 crossref_primary_10_1002_eap_70014 crossref_primary_10_1111_jbi_14746 crossref_primary_10_1098_rsbl_2019_0056 crossref_primary_10_1098_rstb_2015_0220 crossref_primary_10_1111_geb_12629 crossref_primary_10_1111_1365_2656_13986 crossref_primary_10_1111_ecog_02780 crossref_primary_10_1038_s41586_021_03876_7 crossref_primary_10_3897_BDJ_12_e129610 crossref_primary_10_1002_ecy_3124 crossref_primary_10_1038_ncomms11250 crossref_primary_10_1111_oik_04561 crossref_primary_10_1111_ddi_12373 crossref_primary_10_1002_ece3_7952 crossref_primary_10_1111_jav_01295 crossref_primary_10_1007_s11252_025_01702_w crossref_primary_10_1111_ecog_03825 crossref_primary_10_1111_ele_12395 crossref_primary_10_1111_btp_12881 crossref_primary_10_1002_ece3_1136 crossref_primary_10_1038_s41561_018_0236_z crossref_primary_10_1002_ece3_3910 crossref_primary_10_1002_ece3_1579 crossref_primary_10_1111_ecog_03783 crossref_primary_10_1111_jbi_13810 crossref_primary_10_1038_s41598_018_19686_3 crossref_primary_10_1002_ecm_1420 crossref_primary_10_1111_1365_2435_14102 crossref_primary_10_1134_S1067413622010088 crossref_primary_10_1111_ddi_12661 crossref_primary_10_1111_geb_12723 crossref_primary_10_1016_j_tree_2020_11_004 crossref_primary_10_1111_geb_12400 crossref_primary_10_1073_pnas_1706080114 crossref_primary_10_1086_700696 crossref_primary_10_1111_jbi_12826 crossref_primary_10_1111_jbi_13637 crossref_primary_10_1111_jbi_13683 crossref_primary_10_1371_journal_pone_0185493 crossref_primary_10_2989_00306525_2024_2349875 crossref_primary_10_3390_su13116044 crossref_primary_10_1111_geb_12910 crossref_primary_10_1093_ornithology_ukab077 crossref_primary_10_1111_geb_13005 crossref_primary_10_1643_CI_18_155 crossref_primary_10_1111_jav_01036 crossref_primary_10_1016_j_actao_2019_03_002 crossref_primary_10_1111_oik_02276 crossref_primary_10_7717_peerj_5370 crossref_primary_10_1111_1440_1703_12103 |
Cites_doi | 10.2307/1931600 10.1111/j.1365-2699.2006.01452.x 10.1146/annurev.ecolsys.110308.120317 10.1098/rstb.2011.0021 10.1093/oso/9780198510888.001.0001 10.1890/0012-9658(2006)87[2468:GVITDR]2.0.CO;2 10.1111/ele.12043 10.1016/j.tree.2004.09.011 10.1890/03-8006 10.1073/pnas.0501846102 10.1046/j.1461-0248.2003.00554.x 10.1086/345459 10.1038/nature12874 10.1073/pnas.0604181103 10.2307/2412010 10.1111/j.1365-2699.2011.02650.x 10.1098/rspb.2012.2570 10.1126/science.285.5431.1265 10.1111/j.1461-0248.2009.01314.x 10.1002/joc.1276 10.1111/j.1461-0248.2009.01281.x 10.1038/44766 10.1111/j.1466-8238.2011.00679.x 10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2 10.1016/j.tree.2007.01.014 10.1098/rstb.2009.0279 10.2307/1219449 10.1073/pnas.1120467109 10.1002/9780470999592 10.1111/j.1420-9101.2004.00761.x 10.1126/science.1228282 10.1046/j.1420-9101.2000.00178.x 10.1098/rspb.2006.0311 10.1023/A:1006538414645 10.1046/j.1365-2699.1999.00299.x 10.1146/annurev.ecolsys.33.010802.150448 10.1016/S0169-5347(02)00036-8 10.1038/nature11631 10.1086/650369 10.1111/j.1365-2656.2008.01504.x 10.1073/pnas.0408049101 10.1111/j.1461-0248.2011.01634.x 10.1890/0012-9658(2006)87[39:PATHOO]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd/CNRS 2015 INIST-CNRS 2014 John Wiley & Sons Ltd/CNRS. Copyright © 2014 John Wiley & Sons Ltd/CNRS |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2014 John Wiley & Sons Ltd/CNRS. – notice: Copyright © 2014 John Wiley & Sons Ltd/CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 7S9 L.6 |
DOI | 10.1111/ele.12285 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts Ecology Abstracts MEDLINE CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | Mouillot, David |
Editor_xml | – sequence: 9 givenname: David surname: Mouillot fullname: Mouillot, David |
EndPage | 820 |
ExternalDocumentID | 3322916741 24754339 28536038 10_1111_ele_12285 ELE12285 ark_67375_WNG_XQQJZWL5_K US201400134531 |
Genre | letter Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University of Amsterdam – fundername: MADALGO‐Center for Massive Data Algorithmics – fundername: Aarhus University Research Foundation – fundername: University of Utah – fundername: Christensen Fund |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c5775-a1468d1d3ba3981fe7ce9c384d64adf1fe5407fbc16c90470ddb8a0a05bec8b03 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 18:30:47 EDT 2025 Fri Jul 11 01:34:07 EDT 2025 Fri Jul 11 04:36:26 EDT 2025 Fri Jul 25 11:14:50 EDT 2025 Thu Apr 03 07:07:37 EDT 2025 Wed Apr 02 07:14:02 EDT 2025 Tue Jul 01 02:29:40 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Wed Aug 20 07:26:30 EDT 2025 Wed Oct 30 09:56:40 EDT 2024 Wed Dec 27 19:18:45 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Community structure Taxonomy Functional trait phylogenetic community structure Coexistence Phylogeny Diversification Vertebrata Geographic distribution functional traits Macroecology phylogenetic fields Aves Distribution range geographical range species coexistence macroecology |
Language | English |
License | CC BY 4.0 2014 John Wiley & Sons Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5775-a1468d1d3ba3981fe7ce9c384d64adf1fe5407fbc16c90470ddb8a0a05bec8b03 |
Notes | http://dx.doi.org/10.1111/ele.12285 University of Amsterdam Aarhus University Research Foundation University of Utah istex:BA94D4D43298876BC7384DDF2C56FC7423AF731C Christensen Fund MADALGO-Center for Massive Data Algorithmics ark:/67375/WNG-XQQJZWL5-K ArticleID:ELE12285 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24754339 |
PQID | 1531535921 |
PQPubID | 32390 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1999975248 proquest_miscellaneous_1540226797 proquest_miscellaneous_1532940002 proquest_journals_1531535921 pubmed_primary_24754339 pascalfrancis_primary_28536038 crossref_citationtrail_10_1111_ele_12285 crossref_primary_10_1111_ele_12285 wiley_primary_10_1111_ele_12285_ELE12285 istex_primary_ark_67375_WNG_XQQJZWL5_K fao_agris_US201400134531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: Blackwell |
References | Cueto, V.R. & de Casenave, J.L. (1999). Determinants of bird species richness: role of climate and vegetation structure at a regional scale. J. Biogeogr., 26, 487-492. Dunning, J.B. (2008). Handbook of Avian Body Masses, 2nd edn.. CRC Press, Boca Raton. Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475-505. Grant, P.R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Zool., 17, 319-333. Streelman, J.T. & Danley, P.D. (2003). The stages of vertebrate evolutionary radiation. Trends Ecol. Evol., 18, 126-131. Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M. et al. (2009). Global biogeography and ecology of body size in birds. Ecol. Lett., 12, 249-259. Şekercioğlu, Ç.H., Daily, G.C. & Ehrlich, P.R. (2004). Ecosystem consequences of bird declines. Proc. Natl Acad. Sci., 101, 18042-18047. BirdLife International & NatureServe. (2011). Bird Species Distribution Maps of the World. BirdLife International and NatureServe, Cambridge, UK, and Arlington, USA. Dawideit, B.A., Phillimore, A.B., Laube, I., Leisler, B. & Böhning-Gaese, K. (2009). Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol., 78, 388-395. Silvertown, J., Dodd, M., Gowing, D., Lawson, C. & McConway, K. (2006). Phylogeny and the hierarchical organization of plant diversity. Ecology, 87, S39-S49. Böhning-Gaese, K., González-Guzmán, L.I. & Brown, J.H. (1998). Constraints on dispersal and the evolution of the avifauna of the Northern Hemisphere. Evol. Ecol., 12, 767-783. Johnson, M.T.J. & Stinchcombe, J.R. (2007). An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol., 22, 250-257. Peterson, A.T., Soberon, J. & Sanchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267. Ricklefs, R.E. (2010). Host-pathogen coevolution, secondary sympatry and species diversification. Philos. Trans. R. Soc. B-Biol. Sci., 365, 1139-1147. Del Hoyo, J., Elliott, A. & Sargatal, J. (2013). Handbook of the Birds of the World. Lynx Edicions, Barcelona, Spain. Ericson, P.G.P. (2012). Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J. Biogeogr., 39, 813-824. Bokma, F. (2004). Differential rates of morphological divergence in birds. J. Evol. Biol., 17, 933-940. Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D. et al. (2013). An update of Wallace's zoogeographic regions of the world. Science, 339, 74-78. Ricklefs, R.E. (2006). Global variation in the diversification rate of passerine birds. Ecology, 87, 2468-2478. Ackerly, D.D., Schwilk, D.W. & Webb, C.O. (2006). Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology, 87, S50-S61. Pigot, A.L. & Tobias, J.A. (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett., 16, 330-338. Sexton, J.P., McIntyre, P.J., Angert, A.L. & Rice, K.J. (2009). Evolution and ecology of species range limits. Annu. Rev. Ecol. Syst., 40, 415-436. Gaston, K.J. & Blackburn, T. (2000). Pattern and Process in Macroecology. Blackwell Publishing, Oxford. Villalobos, F., Rangel, T.F. & Diniz-Filho, J.A.F. (2013). Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proc. R. Soc. B Biol. Sci., 280, 20122570. Hurlbert, A.H. & Haskell, J.P. (2003). The effect of energy and seasonality on avian species richness and community composition. Am. Nat., 161, 83-97. Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach, 2nd edn.. Springer-Verlag, Heidelberg. Ricklefs, R.E. (2004). A comprehensive framework for global patterns in biodiversity. Ecol. Lett., 7, 1-15. Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. et al. (2012a). Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl. Acad. Sci. U. S. A., 109, 7379-7384. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009). The merging of community ecology and phylogenetic biology. Ecol. Lett., 12, 693-715. Mac Arthur, R. (1958). Population ecology of some warblers of Northeastern coniferous forests. Ecology, 39, 599-619. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978. Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448. Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. & Soeller, S.A. (2006). Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J. Biogeogr., 33, 770-780. Kissling, W.D., Sekercioglu, C.H. & Jetz, W. (2012b). Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr., 21, 328-340. Edwards, S.V. (2005). Speciation in birds: genes, geography, and sexual selection. Proc. Natl Acad. Sci., 102, 6550-6557. Bennett, P.M. & Owens, I.P.F. (2002). Evolutionary Ecology of Birds: Life Histories, Mating Systems, and Extinction. Oxford University Press, Oxford. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884. Wiens, J.J. & Donoghue, M.J. (2004). Historical biogeography, ecology and species richness. Trends Ecol. Evol., 19, 639-644. Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D. et al. (2011). Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett., 14, 741-748. Kissling, W.D., Rahbek, C. & Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. B Biol. Sci., 274, 799-808. Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M. et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. Belliure, J., Sorci, G., Møller, A.P. & Clobert, J. (2000). Dispersal distances predict subspecies richness in birds. J. Evol. Biol., 13, 480-487. Hill, M.O. & Smith, A.J.E. (1976). Principal component analysis of taxonomic data with multi-state discrete characters. Taxon, 25, 249-255. Kisel, Y. & Barraclough, T.G. (2010). Speciation has a spatial scale that depends on levels of gene flow. Am. Nat., 175, 316-334. Tobias, J.A., Cornwallis, C.K., Derryberry, E.P., Claramunt, S., Brumfield, T. & Seddon, N. (2014). Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506, 359-363. Pimm, S., Raven, P., Peterson, A., Sekercioglu, C.H. & Ehrlich, P.R. (2006). Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U. S. A., 103, 10941-10946. Cardillo, M. (2011). Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, 2545-2553. 2004; 101 1976; 25 2009; 40 1958; 39 2012 2011 2006; 33 2004; 7 1999; 26 2010; 365 2002; 33 1999; 285 2008 2012; 39 2003; 18 2002 2011; 14 2013; 280 1999; 401 2012b; 21 2005; 25 2009; 12 2009; 78 2012; 491 2012a; 109 2011; 366 1968; 17 2013; 16 2014; 506 2000 2013; 339 2004; 19 2006; 87 2000; 13 2004; 17 2005; 102 2007; 274 2003; 161 2010; 175 2013 2003; 84 2007; 22 1998; 12 2006; 103 e_1_2_8_28_1 Dunning J.B. (e_1_2_8_14_1) 2008 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Tsirogiannis C. (e_1_2_8_47_1) 2012 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Burnham K.P. (e_1_2_8_8_1) 2002 BirdLife International & NatureServe (e_1_2_8_5_1) 2011 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Hoyo J. (e_1_2_8_13_1) 2013 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Bennett P.M. (e_1_2_8_4_1) 2002 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – reference: Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009). The merging of community ecology and phylogenetic biology. Ecol. Lett., 12, 693-715. – reference: Bennett, P.M. & Owens, I.P.F. (2002). Evolutionary Ecology of Birds: Life Histories, Mating Systems, and Extinction. Oxford University Press, Oxford. – reference: Edwards, S.V. (2005). Speciation in birds: genes, geography, and sexual selection. Proc. Natl Acad. Sci., 102, 6550-6557. – reference: BirdLife International & NatureServe. (2011). Bird Species Distribution Maps of the World. BirdLife International and NatureServe, Cambridge, UK, and Arlington, USA. – reference: Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475-505. – reference: Ericson, P.G.P. (2012). Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J. Biogeogr., 39, 813-824. – reference: Şekercioğlu, Ç.H., Daily, G.C. & Ehrlich, P.R. (2004). Ecosystem consequences of bird declines. Proc. Natl Acad. Sci., 101, 18042-18047. – reference: Mac Arthur, R. (1958). Population ecology of some warblers of Northeastern coniferous forests. Ecology, 39, 599-619. – reference: Streelman, J.T. & Danley, P.D. (2003). The stages of vertebrate evolutionary radiation. Trends Ecol. Evol., 18, 126-131. – reference: Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M. et al. (2009). Global biogeography and ecology of body size in birds. Ecol. Lett., 12, 249-259. – reference: Villalobos, F., Rangel, T.F. & Diniz-Filho, J.A.F. (2013). Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proc. R. Soc. B Biol. Sci., 280, 20122570. – reference: Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach, 2nd edn.. Springer-Verlag, Heidelberg. – reference: Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D. et al. (2011). Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett., 14, 741-748. – reference: Tobias, J.A., Cornwallis, C.K., Derryberry, E.P., Claramunt, S., Brumfield, T. & Seddon, N. (2014). Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506, 359-363. – reference: Cardillo, M. (2011). Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, 2545-2553. – reference: Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. & Soeller, S.A. (2006). Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J. Biogeogr., 33, 770-780. – reference: Del Hoyo, J., Elliott, A. & Sargatal, J. (2013). Handbook of the Birds of the World. Lynx Edicions, Barcelona, Spain. – reference: Johnson, M.T.J. & Stinchcombe, J.R. (2007). An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol., 22, 250-257. – reference: Wiens, J.J. & Donoghue, M.J. (2004). Historical biogeography, ecology and species richness. Trends Ecol. Evol., 19, 639-644. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965-1978. – reference: Silvertown, J., Dodd, M., Gowing, D., Lawson, C. & McConway, K. (2006). Phylogeny and the hierarchical organization of plant diversity. Ecology, 87, S39-S49. – reference: Bokma, F. (2004). Differential rates of morphological divergence in birds. J. Evol. Biol., 17, 933-940. – reference: Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. et al. (2012a). Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl. Acad. Sci. U. S. A., 109, 7379-7384. – reference: Grant, P.R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Zool., 17, 319-333. – reference: Pimm, S., Raven, P., Peterson, A., Sekercioglu, C.H. & Ehrlich, P.R. (2006). Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U. S. A., 103, 10941-10946. – reference: Sexton, J.P., McIntyre, P.J., Angert, A.L. & Rice, K.J. (2009). Evolution and ecology of species range limits. Annu. Rev. Ecol. Syst., 40, 415-436. – reference: Ricklefs, R.E. (2006). Global variation in the diversification rate of passerine birds. Ecology, 87, 2468-2478. – reference: Hill, M.O. & Smith, A.J.E. (1976). Principal component analysis of taxonomic data with multi-state discrete characters. Taxon, 25, 249-255. – reference: Belliure, J., Sorci, G., Møller, A.P. & Clobert, J. (2000). Dispersal distances predict subspecies richness in birds. J. Evol. Biol., 13, 480-487. – reference: Hurlbert, A.H. & Haskell, J.P. (2003). The effect of energy and seasonality on avian species richness and community composition. Am. Nat., 161, 83-97. – reference: Peterson, A.T., Soberon, J. & Sanchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267. – reference: Kissling, W.D., Rahbek, C. & Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. B Biol. Sci., 274, 799-808. – reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M. et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. – reference: Ackerly, D.D., Schwilk, D.W. & Webb, C.O. (2006). Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology, 87, S50-S61. – reference: Dawideit, B.A., Phillimore, A.B., Laube, I., Leisler, B. & Böhning-Gaese, K. (2009). Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol., 78, 388-395. – reference: Böhning-Gaese, K., González-Guzmán, L.I. & Brown, J.H. (1998). Constraints on dispersal and the evolution of the avifauna of the Northern Hemisphere. Evol. Ecol., 12, 767-783. – reference: Cueto, V.R. & de Casenave, J.L. (1999). Determinants of bird species richness: role of climate and vegetation structure at a regional scale. J. Biogeogr., 26, 487-492. – reference: Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448. – reference: Gaston, K.J. & Blackburn, T. (2000). Pattern and Process in Macroecology. Blackwell Publishing, Oxford. – reference: Ricklefs, R.E. (2004). A comprehensive framework for global patterns in biodiversity. Ecol. Lett., 7, 1-15. – reference: Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D. et al. (2013). An update of Wallace's zoogeographic regions of the world. Science, 339, 74-78. – reference: Pigot, A.L. & Tobias, J.A. (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett., 16, 330-338. – reference: Dunning, J.B. (2008). Handbook of Avian Body Masses, 2nd edn.. CRC Press, Boca Raton. – reference: Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884. – reference: Kissling, W.D., Sekercioglu, C.H. & Jetz, W. (2012b). Bird dietary guild richness across latitudes, environments and biogeographic regions. Glob. Ecol. Biogeogr., 21, 328-340. – reference: Kisel, Y. & Barraclough, T.G. (2010). Speciation has a spatial scale that depends on levels of gene flow. Am. Nat., 175, 316-334. – reference: Ricklefs, R.E. (2010). Host-pathogen coevolution, secondary sympatry and species diversification. Philos. Trans. R. Soc. B-Biol. Sci., 365, 1139-1147. – year: 2011 – volume: 339 start-page: 74 year: 2013 end-page: 78 article-title: An update of Wallace's zoogeographic regions of the world publication-title: Science – volume: 506 start-page: 359 year: 2014 end-page: 363 article-title: Species coexistence and the dynamics of phenotypic evolution in adaptive radiation publication-title: Nature – volume: 19 start-page: 639 year: 2004 end-page: 644 article-title: Historical biogeography, ecology and species richness publication-title: Trends Ecol. Evol. – volume: 491 start-page: 444 year: 2012 end-page: 448 article-title: The global diversity of birds in space and time publication-title: Nature – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 161 start-page: 83 year: 2003 end-page: 97 article-title: The effect of energy and seasonality on avian species richness and community composition publication-title: Am. Nat. – volume: 285 start-page: 1265 year: 1999 end-page: 1267 article-title: Conservatism of ecological niches in evolutionary time publication-title: Science – year: 2000 – volume: 109 start-page: 7379 year: 2012a end-page: 7384 article-title: Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 319 year: 1968 end-page: 333 article-title: Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands publication-title: Syst. Zool. – volume: 101 start-page: 18042 year: 2004 end-page: 18047 article-title: Ecosystem consequences of bird declines publication-title: Proc. Natl Acad. Sci. – volume: 39 start-page: 599 year: 1958 end-page: 619 article-title: Population ecology of some warblers of Northeastern coniferous forests publication-title: Ecology – volume: 7 start-page: 1 year: 2004 end-page: 15 article-title: A comprehensive framework for global patterns in biodiversity publication-title: Ecol. Lett. – volume: 102 start-page: 6550 year: 2005 end-page: 6557 article-title: Speciation in birds: genes, geography, and sexual selection publication-title: Proc. Natl Acad. Sci. – volume: 84 start-page: 3105 year: 2003 end-page: 3117 article-title: Energy, water, and broad‐scale geographic patterns of species richness publication-title: Ecology – volume: 87 start-page: S39 year: 2006 end-page: S49 article-title: Phylogeny and the hierarchical organization of plant diversity publication-title: Ecology – volume: 12 start-page: 693 year: 2009 end-page: 715 article-title: The merging of community ecology and phylogenetic biology publication-title: Ecol. Lett. – volume: 22 start-page: 250 year: 2007 end-page: 257 article-title: An emerging synthesis between community ecology and evolutionary biology publication-title: Trends Ecol. Evol. – volume: 175 start-page: 316 year: 2010 end-page: 334 article-title: Speciation has a spatial scale that depends on levels of gene flow publication-title: Am. Nat. – volume: 274 start-page: 799 year: 2007 end-page: 808 article-title: Food plant diversity as broad‐scale determinant of avian frugivore richness publication-title: Proc. R. Soc. B Biol. Sci. – volume: 39 start-page: 813 year: 2012 end-page: 824 article-title: Evolution of terrestrial birds in three continents: biogeography and parallel radiations publication-title: J. Biogeogr. – volume: 40 start-page: 415 year: 2009 end-page: 436 article-title: Evolution and ecology of species range limits publication-title: Annu. Rev. Ecol. Syst. – volume: 17 start-page: 933 year: 2004 end-page: 940 article-title: Differential rates of morphological divergence in birds publication-title: J. Evol. Biol. – volume: 401 start-page: 877 year: 1999 end-page: 884 article-title: Inferring the historical patterns of biological evolution publication-title: Nature – volume: 366 start-page: 2545 year: 2011 end-page: 2553 article-title: Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 280 start-page: 20122570 year: 2013 article-title: Phylogenetic fields of species: cross‐species patterns of phylogenetic structure and geographical coexistence publication-title: Proc. R. Soc. B Biol. Sci. – volume: 365 start-page: 1139 year: 2010 end-page: 1147 article-title: Host‐pathogen coevolution, secondary sympatry and species diversification publication-title: Philos. Trans. R. Soc. B‐Biol. Sci. – volume: 26 start-page: 487 year: 1999 end-page: 492 article-title: Determinants of bird species richness: role of climate and vegetation structure at a regional scale publication-title: J. Biogeogr. – volume: 14 start-page: 741 year: 2011 end-page: 748 article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles publication-title: Ecol. Lett. – volume: 21 start-page: 328 year: 2012b end-page: 340 article-title: Bird dietary guild richness across latitudes, environments and biogeographic regions publication-title: Glob. Ecol. Biogeogr. – year: 2002 – volume: 18 start-page: 126 year: 2003 end-page: 131 article-title: The stages of vertebrate evolutionary radiation publication-title: Trends Ecol. Evol. – volume: 87 start-page: S50 year: 2006 end-page: S61 article-title: Niche evolution and adaptive radiation: testing the order of trait divergence publication-title: Ecology – year: 2008 – volume: 33 start-page: 770 year: 2006 end-page: 780 article-title: Post‐Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds publication-title: J. Biogeogr. – volume: 25 start-page: 249 year: 1976 end-page: 255 article-title: Principal component analysis of taxonomic data with multi‐state discrete characters publication-title: Taxon – volume: 12 start-page: 767 year: 1998 end-page: 783 article-title: Constraints on dispersal and the evolution of the avifauna of the Northern Hemisphere publication-title: Evol. Ecol. – volume: 33 start-page: 475 year: 2002 end-page: 505 article-title: Phylogenies and community ecology publication-title: Annu. Rev. Ecol. Syst. – start-page: 30 year: 2012 end-page: 43 – volume: 103 start-page: 10941 year: 2006 end-page: 10946 article-title: Human impacts on the rates of recent, present, and future bird extinctions publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 480 year: 2000 end-page: 487 article-title: Dispersal distances predict subspecies richness in birds publication-title: J. Evol. Biol. – volume: 12 start-page: 249 year: 2009 end-page: 259 article-title: Global biogeography and ecology of body size in birds publication-title: Ecol. Lett. – volume: 16 start-page: 330 year: 2013 end-page: 338 article-title: Species interactions constrain geographic range expansion over evolutionary time publication-title: Ecol. Lett. – volume: 78 start-page: 388 year: 2009 end-page: 395 article-title: Ecomorphological predictors of natal dispersal distances in birds publication-title: J. Anim. Ecol. – volume: 87 start-page: 2468 year: 2006 end-page: 2478 article-title: Global variation in the diversification rate of passerine birds publication-title: Ecology – year: 2013 – volume-title: Handbook of the Birds of the World year: 2013 ident: e_1_2_8_13_1 – ident: e_1_2_8_33_1 doi: 10.2307/1931600 – ident: e_1_2_8_20_1 doi: 10.1111/j.1365-2699.2006.01452.x – ident: e_1_2_8_43_1 doi: 10.1146/annurev.ecolsys.110308.120317 – ident: e_1_2_8_9_1 doi: 10.1098/rstb.2011.0021 – volume-title: Evolutionary Ecology of Birds: Life Histories, Mating Systems, and Extinction year: 2002 ident: e_1_2_8_4_1 doi: 10.1093/oso/9780198510888.001.0001 – ident: e_1_2_8_40_1 doi: 10.1890/0012-9658(2006)87[2468:GVITDR]2.0.CO;2 – ident: e_1_2_8_37_1 doi: 10.1111/ele.12043 – ident: e_1_2_8_50_1 doi: 10.1016/j.tree.2004.09.011 – ident: e_1_2_8_19_1 doi: 10.1890/03-8006 – start-page: 30 volume-title: Algorithms Bioinforma., Lecture Notes in Computer Science year: 2012 ident: e_1_2_8_47_1 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.0501846102 – ident: e_1_2_8_39_1 doi: 10.1046/j.1461-0248.2003.00554.x – ident: e_1_2_8_26_1 doi: 10.1086/345459 – ident: e_1_2_8_46_1 doi: 10.1038/nature12874 – ident: e_1_2_8_38_1 doi: 10.1073/pnas.0604181103 – ident: e_1_2_8_18_1 doi: 10.2307/2412010 – ident: e_1_2_8_16_1 doi: 10.1111/j.1365-2699.2011.02650.x – ident: e_1_2_8_48_1 doi: 10.1098/rspb.2012.2570 – ident: e_1_2_8_36_1 doi: 10.1126/science.285.5431.1265 – ident: e_1_2_8_10_1 doi: 10.1111/j.1461-0248.2009.01314.x – ident: e_1_2_8_21_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_34_1 doi: 10.1111/j.1461-0248.2009.01281.x – volume-title: Bird Species Distribution Maps of the World year: 2011 ident: e_1_2_8_5_1 – ident: e_1_2_8_35_1 doi: 10.1038/44766 – ident: e_1_2_8_32_1 doi: 10.1111/j.1466-8238.2011.00679.x – ident: e_1_2_8_2_1 doi: 10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2 – ident: e_1_2_8_23_1 – ident: e_1_2_8_28_1 doi: 10.1016/j.tree.2007.01.014 – ident: e_1_2_8_41_1 doi: 10.1098/rstb.2009.0279 – ident: e_1_2_8_22_1 doi: 10.2307/1219449 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1120467109 – ident: e_1_2_8_17_1 doi: 10.1002/9780470999592 – ident: e_1_2_8_7_1 doi: 10.1111/j.1420-9101.2004.00761.x – ident: e_1_2_8_24_1 doi: 10.1126/science.1228282 – ident: e_1_2_8_3_1 doi: 10.1046/j.1420-9101.2000.00178.x – ident: e_1_2_8_30_1 doi: 10.1098/rspb.2006.0311 – ident: e_1_2_8_6_1 doi: 10.1023/A:1006538414645 – ident: e_1_2_8_11_1 doi: 10.1046/j.1365-2699.1999.00299.x – ident: e_1_2_8_49_1 doi: 10.1146/annurev.ecolsys.33.010802.150448 – ident: e_1_2_8_45_1 doi: 10.1016/S0169-5347(02)00036-8 – ident: e_1_2_8_27_1 doi: 10.1038/nature11631 – volume-title: Handbook of Avian Body Masses year: 2008 ident: e_1_2_8_14_1 – volume-title: Model Selection and Multimodel Inference: a Practical Information‐Theoretic Approach year: 2002 ident: e_1_2_8_8_1 – ident: e_1_2_8_29_1 doi: 10.1086/650369 – ident: e_1_2_8_12_1 doi: 10.1111/j.1365-2656.2008.01504.x – ident: e_1_2_8_42_1 doi: 10.1073/pnas.0408049101 – ident: e_1_2_8_25_1 doi: 10.1111/j.1461-0248.2011.01634.x – ident: e_1_2_8_44_1 doi: 10.1890/0012-9658(2006)87[39:PATHOO]2.0.CO;2 |
SSID | ssj0012971 |
Score | 2.3857458 |
Snippet | The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By... The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 811 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Animals Aves Biogeography Biological and medical sciences Birds Birds - classification Birds - physiology Body size carnivores classification Climate diet Diversification Ecosystem Evolution forest habitats frugivores functional traits Fundamental and applied biological sciences. Psychology General aspects geographical range Herbivores Homing Behavior invertebrates Life history macroecology migratory behavior Migratory species Models, Biological Niches phylogenetic community structure phylogenetic fields Phylogenetics Phylogeny physiology species coexistence Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
Title | Ecological traits influence the phylogenetic structure of bird species co‐occurrences worldwide |
URI | https://api.istex.fr/ark:/67375/WNG-XQQJZWL5-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12285 https://www.ncbi.nlm.nih.gov/pubmed/24754339 https://www.proquest.com/docview/1531535921 https://www.proquest.com/docview/1532940002 https://www.proquest.com/docview/1540226797 https://www.proquest.com/docview/1999975248 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEA61IPjFd-1qLVFE_LJHdpPsbvCTyNVSa6Hq0UOEkJfdclRu5V7Q-smf4G_0lziT3K6e1CLCfQi3k93NZDJ55m7yDCGPGWyphlmbNrZwqchNlhpACWklG6uUt9wEio3Xh8XeSOyP5XiDPOvOwkR-iP4HN1wZwV_jAjd2_tsiB688yPK8wgPmmKuFgOhNTx0F21gMtkQB4XLOxytWIczi6Xuu7UWXGtMCQkXlfsEMSTMHJTWxusV58HMdzYbtaPca-dANJGahnA6WCztwX__gePzPkV4nV1cwlT6PdnWDbNTTm-RyLFx5Bq1hILs-u0VMbOFUUyw3sZjTSVf3hAK4pDCNcB08KtyJRrba5aymbUPtZOYpnvSEYJ269se3761zgS4KfBcNVK6fJ76-TUa7w3cv9tJV2YbUybKUqcHTXD7z3BquqqypS1crxyvhC2F8A18g6V9jXVY4xUTJvLeVYYZJsKfKMn6HbE7bab1FKFfCc-nAqRiHzGNGVNyzwgNGsRaCsYQ87SZQuxWnOY71o-5iG9CdDrpLyKNe9FMk8jhPaAusQJsTcLB69DbH8BMwsgBHlZAnwTT6zmZ2iklxpdTHhy_1-Oho__3xgdSvErKzZjt9B7g_LxivErLdGZNeOYy5ho0HPlLl8KCH_WVY6vj_jZnW7TLI5FjHnuUXyQhAZUWpygtkIChQpcwFvMrdaMy_XlKUUnCuQLPBJP-uKz08GIbGvX8XvU-uoE5juvM22QSjqx8AqFvYnbB6fwIYj0YJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQQv484CYxiEEC-pnNhOYokXBB1l6yoNVq1CQpYvCao2NagXwXjiJ_Ab-SUc202gaEwIqQ9Wc5zGx-eaHn8HoScEXKoiWseVzkzMUpXECqKEuOCVFsJqqjzExsEg6w3Z3oiP1tDz5ixMwIdoX7g5zfD22im4eyH9m5aDWe4kaVrwdXTJdfR2yPmv3rbgUeDIQrrFMkiYUzpa4gq5Op526oo3Wq9UDTGqY-8XVyOpZsCmKvS3OC8AXY1nvUPavYY-NEsJdSgnncVcd8zXP1Ae_3et19HmMlLFL4Jo3UBr5eQmuhx6V57BqOvxrs9uIRVGbrex6zgxn-Fx0_oEQ3yJYSfhOhhVuBMOgLWLaYnrCuvx1GJ32BPydWzqH9--18Z4xCgwX9ijuX4e2_I2Gu52j1724mXnhtjwPOexcge6bGKpVlQUSVXmphSGFsxmTNkKvnC4f5U2SWYEYTmxVheKKMJBpApN6B20Makn5RbCVDBLuQG7oowDH1OsoJZkFsIUrSEfi9CzZgelWcKau7Weyia9Ad5Jz7sIPW5JPwUsj_OItkAMpPoINlYO36UuA4UwmYGtitBTLxvtZDU9cXVxOZfHg9dydHi49_64z-V-hHZWhKedAPenGaFFhLYbaZJLmzGT4Hvgw0UKP_SovQza7v7CUZOyXnia1LWyJ-lFNAwCsywX-QU0kBeInKcMHuVukOZfD8lyzigVwFkvk3_nlez2u35w799JH6IrvaODvuy_GezfR1cdf0P18zbaAAEsH0CMN9c7XpV_AlTvSiU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IRAv3GGBMQxCiJdUTmwnsXhCrGVspWJAtWpCsnxJUDXUTL0IxhM_gd_IL-HYbgJFY0JIfbCa4yQ-Ptf2-DsIPSbgUhXROq50ZmKWqiRWECXEBa-0EFZT5SE2Xg-y3SHbG_HRGnrWnIUJ-BDtD25OM7y9dgp-YqvflByscidJ04KvowssI8L1bdh522JHgR8L2RbLIF9O6WgJK-TKeNqpK85ovVI1hKiOu19ciaSaAZeq0N7irPhzNZz1_qh3FX1oVhLKUI47i7numK9_gDz-51KvoSvLOBU_D4J1Ha2VkxvoYuhceQqjrke7Pr2JVBi5vcau38R8hsdN4xMM0SWGfYTrYFLhTjjA1S6mJa4rrMdTi91RT8jWsal_fPteG-PxosB4YY_l-nlsy1to2Ou-f7EbL_s2xIbnOY-VO85lE0u1oqJIqjI3pTC0YDZjylbwhUP9q7RJMiMIy4m1ulBEEQ4CVWhCb6ONST0pNxGmglnKDVgVZRz0mGIFtSSzEKRoDdlYhJ42GyjNEtTcrfWTbJIb4J30vIvQo5b0JCB5nEW0CVIg1UewsHL4LnX5JwTJDCxVhJ540Wgnq-mxq4rLuTwcvJSjg4O9o8M-l_sR2l6RnXYC3J9mhBYR2mqESS4txkyC54EPFyk86GF7GXTd_YGjJmW98DSpa2RP0vNoGIRlWS7yc2ggKxA5Txm8yp0gzL9ekuWcUSqAs14k_84r2e13_eDuv5M-QJfe7PRk_9Vg_x667NgbSp-30AbIX3kfAry53vaK_BM7nUjU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+traits+influence+the+phylogenetic+structure+of+bird+species+co%E2%80%90occurrences+worldwide&rft.jtitle=Ecology+letters&rft.au=Barnagaud%2C+Jean%E2%80%90Yves&rft.au=Daniel+Kissling%2C+W.&rft.au=Sandel%2C+Brody&rft.au=Eiserhardt%2C+Wolf+L.&rft.date=2014-07-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=17&rft.issue=7&rft.spage=811&rft.epage=820&rft_id=info:doi/10.1111%2Fele.12285&rft.externalDBID=10.1111%252Fele.12285&rft.externalDocID=ELE12285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |