129 Xe Image Processing Pipeline: An open-source, graphical user interface application for the analysis of hyperpolarized 129 Xe MRI

Hyperpolarized Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, st...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine
Main Authors Bdaiwi, Abdullah S, Willmering, Matthew M, Plummer, Joseph W, Hussain, Riaz, Roach, David J, Parra-Robles, Juan, Niedbalski, Peter J, Woods, Jason C, Walkup, Laura L, Cleveland, Zackary I
Format Journal Article
LanguageEnglish
Published United States 31.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperpolarized Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, standardization becomes crucial. To that end, this study developed an executable, open-source Xe image processing pipeline (XIPline) to provide a user-friendly, graphical user interface-based analysis pipeline to analyze and visualize Xe MR data, including scanner calibration, ventilation, diffusion-weighted, and gas exchange images. The customizable XIPline is designed in MATLAB to analyze data from all three major scanner platforms. Calibration data is processed to calculate optimal flip angle and determine Xe frequency offset. Data processing includes loading, reconstructing, registering, segmenting, and post-processing images. Ventilation analysis incorporates three common algorithms to calculate ventilation defect percentage and novel techniques to assess defect distribution and ventilation texture. Diffusion analysis features ADC mapping, modified linear binning to account for ADC age-dependence, and common diffusion morphometry methods. Gas exchange processing uses a generalized linear binning for data acquired using 1-point Dixon imaging. The XIPline workflow is demonstrated using analysis from representative calibration, ventilation, diffusion, and gas exchange data. The application will reduce redundant effort when implementing new techniques across research sites by providing an open-source framework for developers. In its current form, it offers a robust and adaptable platform for Xe MRI analysis to ensure methodological consistency, transparency, and support for collaborative research across multiple sites and MRI manufacturers.
AbstractList Hyperpolarized Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, standardization becomes crucial. To that end, this study developed an executable, open-source Xe image processing pipeline (XIPline) to provide a user-friendly, graphical user interface-based analysis pipeline to analyze and visualize Xe MR data, including scanner calibration, ventilation, diffusion-weighted, and gas exchange images. The customizable XIPline is designed in MATLAB to analyze data from all three major scanner platforms. Calibration data is processed to calculate optimal flip angle and determine Xe frequency offset. Data processing includes loading, reconstructing, registering, segmenting, and post-processing images. Ventilation analysis incorporates three common algorithms to calculate ventilation defect percentage and novel techniques to assess defect distribution and ventilation texture. Diffusion analysis features ADC mapping, modified linear binning to account for ADC age-dependence, and common diffusion morphometry methods. Gas exchange processing uses a generalized linear binning for data acquired using 1-point Dixon imaging. The XIPline workflow is demonstrated using analysis from representative calibration, ventilation, diffusion, and gas exchange data. The application will reduce redundant effort when implementing new techniques across research sites by providing an open-source framework for developers. In its current form, it offers a robust and adaptable platform for Xe MRI analysis to ensure methodological consistency, transparency, and support for collaborative research across multiple sites and MRI manufacturers.
Abstract Purpose Hyperpolarized 129 Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, standardization becomes crucial. To that end, this study developed an executable, open‐source 129 Xe image processing pipeline (XIPline) to provide a user‐friendly, graphical user interface‐based analysis pipeline to analyze and visualize 129 Xe MR data, including scanner calibration, ventilation, diffusion‐weighted, and gas exchange images. Methods The customizable XIPline is designed in MATLAB to analyze data from all three major scanner platforms. Calibration data is processed to calculate optimal flip angle and determine 129 Xe frequency offset. Data processing includes loading, reconstructing, registering, segmenting, and post‐processing images. Ventilation analysis incorporates three common algorithms to calculate ventilation defect percentage and novel techniques to assess defect distribution and ventilation texture. Diffusion analysis features ADC mapping, modified linear binning to account for ADC age‐dependence, and common diffusion morphometry methods. Gas exchange processing uses a generalized linear binning for data acquired using 1‐point Dixon imaging. Results The XIPline workflow is demonstrated using analysis from representative calibration, ventilation, diffusion, and gas exchange data. Conclusion The application will reduce redundant effort when implementing new techniques across research sites by providing an open‐source framework for developers. In its current form, it offers a robust and adaptable platform for 129 Xe MRI analysis to ensure methodological consistency, transparency, and support for collaborative research across multiple sites and MRI manufacturers.
Author Cleveland, Zackary I
Niedbalski, Peter J
Parra-Robles, Juan
Walkup, Laura L
Plummer, Joseph W
Roach, David J
Hussain, Riaz
Woods, Jason C
Willmering, Matthew M
Bdaiwi, Abdullah S
Author_xml – sequence: 1
  givenname: Abdullah S
  orcidid: 0000-0001-7835-7032
  surname: Bdaiwi
  fullname: Bdaiwi, Abdullah S
  organization: Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 2
  givenname: Matthew M
  orcidid: 0000-0002-4356-9622
  surname: Willmering
  fullname: Willmering, Matthew M
  organization: Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 3
  givenname: Joseph W
  orcidid: 0000-0002-0200-7869
  surname: Plummer
  fullname: Plummer, Joseph W
  organization: Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
– sequence: 4
  givenname: Riaz
  orcidid: 0000-0003-4406-2345
  surname: Hussain
  fullname: Hussain, Riaz
  organization: Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 5
  givenname: David J
  surname: Roach
  fullname: Roach, David J
  organization: Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 6
  givenname: Juan
  surname: Parra-Robles
  fullname: Parra-Robles, Juan
  organization: Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 7
  givenname: Peter J
  orcidid: 0000-0002-0528-2508
  surname: Niedbalski
  fullname: Niedbalski, Peter J
  organization: Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
– sequence: 8
  givenname: Jason C
  surname: Woods
  fullname: Woods, Jason C
  organization: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 9
  givenname: Laura L
  orcidid: 0000-0002-5060-6401
  surname: Walkup
  fullname: Walkup, Laura L
  organization: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
– sequence: 10
  givenname: Zackary I
  orcidid: 0000-0001-6195-9061
  surname: Cleveland
  fullname: Cleveland, Zackary I
  organization: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39480807$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLAzEUhYMo9qEL_4BkKzg1r2k67krxUahYpAt3QyZz00ZmkpC0i7r2hzva6urA4eNezjdAp847QOiKkhElhN21sR1xwoU8QX2aM5axvBCnqE-kIBmnheihQUofhJCikOIc9XghJmRCZB99UVbgd8DzVq0BL6PXkJJ1a7y0ARrr4B5PHfYBXJb8Lmq4xeuowsZq1eBdgoit20I0SgNWITRdv7XeYeMj3m66zqlmn2zC3uDNPkAMvlHRfkKNj59f3uYX6MyoJsHlMYdo9fiwmj1ni9en-Wy6yHQuZVaLSvOqqBjnNRjJWM0lkXU3nI3JWOiKGsMKTiXXBoDneU401_V4zCYqrwXjQ3RzOKujTymCKUO0rYr7kpLyR2TZiSx_RXbs9YENu6qF-p_8M8e_AVM9cA8
Cites_doi 10.1002/mrm.26089
10.1002/mrm.30028
10.1002/mrm.28915
10.1002/mrm.28985
10.1002/mrm.23056
10.1002/nbm.4639
10.1002/mrm.25550
10.1109/TMI.2010.2046908
10.1016/j.acra.2018.08.015
10.1016/S0146-664X(75)80008-6
10.1371/journal.pone.0012192
10.1038/s41598-022-14672-2
10.1016/j.acra.2018.11.005
10.1002/mrm.28091
10.1002/mrm.29518
10.1002/mp.12944
10.1002/mrm.24482
10.1513/AnnalsATS.201812-880OC
10.1016/j.acra.2021.06.017
10.1016/j.acra.2014.07.017
10.1016/j.jcf.2016.07.008
10.1002/mrm.30188
10.1016/j.acra.2016.07.014
10.1016/j.jcf.2019.03.005
10.1002/jmri.22738
10.1002/nbm.4464
10.1016/j.jmr.2006.11.006
10.1002/jmri.28519
10.1002/mrm.25675
10.1002/mrm.22697
10.1002/jmri.23844
10.1152/japplphysiol.01206.2012
10.1002/mp.12264
10.1002/jmri.25804
10.1109/TIP.2007.901238
10.1002/mrm.29655
10.1016/j.acra.2011.10.007
10.1002/jmri.25992
10.1016/j.mric.2015.01.003
10.1002/jmri.20290
10.1152/japplphysiol.00186.2020
10.1016/j.jcf.2023.01.017
10.1002/nbm.3151
10.1148/radiol.12120485
10.1002/nbm.3448
10.1073/pnas.0608458103
10.1002/mrm.28947
10.1148/radiol.2020192804
10.1002/mrm.27713
10.14814/phy2.12068
10.1002/mrm.28114
10.1002/mrm.25732
10.1002/mrm.26120
10.1002/mrm.26960
10.1016/j.acra.2024.06.029
10.1109/TSMC.1979.4310076
10.1007/s10334-003-0028-2
10.1002/mrm.29254
10.1002/mrm.28908
10.1016/j.jcf.2024.07.002
10.1002/mrm.27836
10.1002/mrm.29505
ContentType Journal Article
Copyright 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID NPM
AAYXX
CITATION
DOI 10.1002/mrm.30347
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
ExternalDocumentID 10_1002_mrm_30347
39480807
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Health
  grantid: R01HL143011
– fundername: National Institute of Health
  grantid: R01HL166335
– fundername: National Institute of Health
  grantid: R01HL131012
– fundername: National Institute of Health
  grantid: R01HL168446
– fundername: National Institute of Health
  grantid: R00HL138255
GroupedDBID ---
-DZ
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
F00
F01
F04
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NPM
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
ROL
RWI
RX1
RYL
SUPJJ
TEORI
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c577-d4bc3b9b233def722d3707d30326064cb1ff293173cfee35550c3cd6628a5d423
ISSN 0740-3194
IngestDate Wed Nov 06 13:16:49 EST 2024
Sat Nov 02 12:06:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords diffusion analysis
gas exchange analysis
hyperpolarized 129Xe
ventilation analysis
Language English
License 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c577-d4bc3b9b233def722d3707d30326064cb1ff293173cfee35550c3cd6628a5d423
ORCID 0000-0003-4406-2345
0000-0001-7835-7032
0000-0002-4356-9622
0000-0002-5060-6401
0000-0002-0528-2508
0000-0002-0200-7869
0000-0001-6195-9061
PMID 39480807
ParticipantIDs crossref_primary_10_1002_mrm_30347
pubmed_primary_39480807
PublicationCentury 2000
PublicationDate 2024-Oct-31
2024-10-31
PublicationDateYYYYMMDD 2024-10-31
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
References Otsu N (e_1_2_9_26_1) 1979; 9
Tustison NJ (e_1_2_9_35_1) 2010; 29
Plummer JW (e_1_2_9_14_1) 2024; 92
Bdaiwi AS (e_1_2_9_21_1) 2023; 90
Collier GJ (e_1_2_9_12_1) 2019; 82
Kirby M (e_1_2_9_55_1) 2014; 2
He M (e_1_2_9_43_1) 2016; 23
Roos JE (e_1_2_9_3_1) 2015; 23
Bier EA (e_1_2_9_23_1) 2019; 82
Astley JR (e_1_2_9_27_1) 2022; 12
Yablonskiy DA (e_1_2_9_51_1) 2017; 30
Plummer JW (e_1_2_9_70_1) 2024; 1
Walkup LL (e_1_2_9_2_1) 2014; 27
Shim Y (e_1_2_9_18_1) 2020; 56
Kaushik SS (e_1_2_9_53_1) 2011; 65
West ME (e_1_2_9_9_1) 2023; 22
Bdaiwi AS (e_1_2_9_37_1) 2021; 35
Stewart NJ (e_1_2_9_33_1) 2018; 48
Sukstanskii A (e_1_2_9_61_1) 2012; 67
Kaushik SS (e_1_2_9_65_1) 2016; 75
e_1_2_9_6_1
e_1_2_9_4_1
Roach DJ (e_1_2_9_40_1) 2022; 29
Woodhouse N (e_1_2_9_39_1) 2005; 21
Ruppert K (e_1_2_9_57_1) 2019; 26
Ouriadov A (e_1_2_9_59_1) 2020; 84
Bdaiwi AS (e_1_2_9_8_1) 2024; 23
Cleveland ZI (e_1_2_9_64_1) 2010; 5
Shim YMM (e_1_2_9_17_1) 2020; 201
Inati SJ (e_1_2_9_24_1) 2017; 77
Dabov K (e_1_2_9_25_1) 2007; 16
Mugler JP (e_1_2_9_30_1) 2013; 37
Dregely I (e_1_2_9_13_1) 2013; 70
Thomen RP (e_1_2_9_52_1) 2017; 77
Hughes PJ (e_1_2_9_46_1) 2018; 47
He M (e_1_2_9_66_1) 2020; 27
Kirby M (e_1_2_9_58_1) 2013; 114
Wang Z (e_1_2_9_67_1) 2017; 44
Galloway MM (e_1_2_9_50_1) 1975; 4
He M (e_1_2_9_31_1) 2016; 23
Zanette B (e_1_2_9_69_1) 2022; 89
Tustison NJ (e_1_2_9_29_1) 2011; 34
Tafti S (e_1_2_9_60_1) 2020; 297
Miller G (e_1_2_9_20_1) 2004; 16
Lu J (e_1_2_9_22_1) 2022; 88
Niedbalski PJ (e_1_2_9_68_1) 2021; 34
Kirby M (e_1_2_9_56_1) 2012; 265
e_1_2_9_15_1
Stewart NJ (e_1_2_9_34_1) 2015; 74
Driehuys B (e_1_2_9_63_1) 2006; 103
Bdaiwi AS (e_1_2_9_10_1) 2023; 89
e_1_2_9_19_1
Zhang H (e_1_2_9_11_1) 2018; 45
He M (e_1_2_9_44_1) 2014; 21
He M (e_1_2_9_38_1) 2019; 26
O'Halloran RL (e_1_2_9_36_1) 2007; 185
Puddu C (e_1_2_9_5_1) 2021; 86
Couch MJ (e_1_2_9_32_1) 2019; 18
Ouriadov A (e_1_2_9_54_1) 2015; 74
Chan HF (e_1_2_9_62_1) 2018; 79
Tustison NJ (e_1_2_9_47_1) 2021; 86
Niedbalski PJ (e_1_2_9_16_1) 2021; 86
Thomen RP (e_1_2_9_42_1) 2017; 16
Walkup LL (e_1_2_9_41_1) 2019; 16
Kirby M (e_1_2_9_45_1) 2012; 19
Valk A (e_1_2_9_48_1) 2021; 86
Bdaiwi A (e_1_2_9_49_1) 2024
Willmering MM (e_1_2_9_7_1) 2020; 84
Astley JR (e_1_2_9_28_1) 2023; 57
References_xml – volume: 77
  start-page: 411
  year: 2017
  ident: e_1_2_9_24_1
  article-title: ISMRM Raw data format: A proposed standard for MRI raw datasets
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26089
  contributor:
    fullname: Inati SJ
– volume: 1
  start-page: 967
  year: 2024
  ident: e_1_2_9_70_1
  article-title: Analytical corrections for B1‐inhomogeneity and signal decay in multi‐slice 2D spiral hyperpolarized 129Xe MRI using keyhole reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.30028
  contributor:
    fullname: Plummer JW
– volume: 86
  start-page: 3373
  year: 2021
  ident: e_1_2_9_5_1
  article-title: An asymmetrical whole‐body birdcage RF coil without RF shield for hyperpolarized 129Xe lung MR imaging at 1.5 T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28915
  contributor:
    fullname: Puddu C
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.28985
– volume: 67
  start-page: 856
  year: 2012
  ident: e_1_2_9_61_1
  article-title: Lung morphometry with hyperpolarized 129Xe: theoretical background
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23056
  contributor:
    fullname: Sukstanskii A
– volume: 35
  year: 2021
  ident: e_1_2_9_37_1
  article-title: Improving hyperpolarized 129Xe ADC mapping in pediatric and adult lungs with uncertainty propagation
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4639
  contributor:
    fullname: Bdaiwi AS
– volume: 74
  start-page: 1726
  year: 2015
  ident: e_1_2_9_54_1
  article-title: Pulmonary hyperpolarized 129Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof‐of‐concept demonstration in healthy and COPD subjects
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25550
  contributor:
    fullname: Ouriadov A
– volume: 29
  start-page: 1310
  year: 2010
  ident: e_1_2_9_35_1
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
  contributor:
    fullname: Tustison NJ
– volume: 26
  start-page: 949
  year: 2019
  ident: e_1_2_9_38_1
  article-title: A comparison of two hyperpolarized 129Xe MRI ventilation quantification pipelines: the effect of signal to noise ratio
  publication-title: Academic radiology
  doi: 10.1016/j.acra.2018.08.015
  contributor:
    fullname: He M
– volume: 4
  start-page: 172
  year: 1975
  ident: e_1_2_9_50_1
  article-title: Texture analysis using gray level run lengths
  publication-title: Comput Graphics Image Process
  doi: 10.1016/S0146-664X(75)80008-6
  contributor:
    fullname: Galloway MM
– volume: 5
  year: 2010
  ident: e_1_2_9_64_1
  article-title: Hyperpolarized Xe MR Imaging of Alveolar Gas Uptake in Humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012192
  contributor:
    fullname: Cleveland ZI
– volume: 12
  year: 2022
  ident: e_1_2_9_27_1
  article-title: Large‐scale investigation of deep learning approaches for ventilated lung segmentation using multi‐nuclear hyperpolarized gas MRI
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14672-2
  contributor:
    fullname: Astley JR
– volume: 26
  start-page: 355
  year: 2019
  ident: e_1_2_9_57_1
  article-title: Using Hyperpolarized Xenon‐129 MRI to quantify early‐stage lung disease in smokers
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.11.005
  contributor:
    fullname: Ruppert K
– volume: 84
  start-page: 416
  year: 2020
  ident: e_1_2_9_59_1
  article-title: Accelerated 129Xe MRI morphometry of terminal airspace enlargement: Feasibility in volunteers and those with alpha‐1 antitrypsin deficiency
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28091
  contributor:
    fullname: Ouriadov A
– volume: 89
  start-page: 1342
  year: 2023
  ident: e_1_2_9_10_1
  article-title: Diffusion weighted hyperpolarized 129Xe MRI of the lung with 2D and 3D (FLORET) spiral
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29518
  contributor:
    fullname: Bdaiwi AS
– volume: 45
  start-page: 3097
  year: 2018
  ident: e_1_2_9_11_1
  article-title: Lung morphometry using hyperpolarized 129Xe multi‐b diffusion MRI with compressed sensing in healthy subjects and patients with COPD
  publication-title: Med Phys
  doi: 10.1002/mp.12944
  contributor:
    fullname: Zhang H
– ident: e_1_2_9_4_1
– volume: 56
  start-page: 2080
  year: 2020
  ident: e_1_2_9_18_1
  article-title: Randomized Phase III Trial Assessing Regional Lung Function for Thoracic Resection by Hyperpolarized 129Xenon Gas MRI
  publication-title: Eur Respir J
  contributor:
    fullname: Shim Y
– volume: 70
  start-page: 576
  year: 2013
  ident: e_1_2_9_13_1
  article-title: 32‐channel phased‐array receive with asymmetric birdcage transmit coil for hyperpolarized xenon‐129 lung imaging
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.24482
  contributor:
    fullname: Dregely I
– volume: 16
  start-page: 1008
  year: 2019
  ident: e_1_2_9_41_1
  article-title: Cyst ventilation heterogeneity and alveolar airspace dilation as early disease markers in lymphangioleiomyomatosis
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201812-880OC
  contributor:
    fullname: Walkup LL
– volume: 29
  start-page: S145
  year: 2022
  ident: e_1_2_9_40_1
  article-title: Hyperpolarized 129Xenon MRI ventilation defect quantification via thresholding and linear binning in multiple pulmonary diseases
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2021.06.017
  contributor:
    fullname: Roach DJ
– volume: 21
  start-page: 1530
  year: 2014
  ident: e_1_2_9_44_1
  article-title: Extending semiautomatic ventilation defect analysis for hyperpolarized 129Xe ventilation MRI
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2014.07.017
  contributor:
    fullname: He M
– volume: 16
  start-page: 275
  year: 2017
  ident: e_1_2_9_42_1
  article-title: Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients
  publication-title: Journal of Cystic Fibrosis
  doi: 10.1016/j.jcf.2016.07.008
  contributor:
    fullname: Thomen RP
– volume: 92
  start-page: 1363
  year: 2024
  ident: e_1_2_9_14_1
  article-title: A decay‐modeled compressed sensing reconstruction approach for non‐Cartesian hyperpolarized 129Xe MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.30188
  contributor:
    fullname: Plummer JW
– volume: 23
  start-page: 1521
  year: 2016
  ident: e_1_2_9_31_1
  article-title: Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.07.014
  contributor:
    fullname: He M
– volume: 18
  start-page: 728
  year: 2019
  ident: e_1_2_9_32_1
  article-title: A two‐center analysis of hyperpolarized 129Xe lung MRI in stable pediatric cystic fibrosis: Potential as a biomarker for multi‐site trials
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2019.03.005
  contributor:
    fullname: Couch MJ
– volume: 34
  start-page: 831
  year: 2011
  ident: e_1_2_9_29_1
  article-title: Ventilation‐based segmentation of the lungs using hyperpolarized 3He MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22738
  contributor:
    fullname: Tustison NJ
– volume: 34
  year: 2021
  ident: e_1_2_9_68_1
  article-title: Improved preclinical hyperpolarized 129Xe ventilation imaging with constant flip angle 3D radial golden means acquisition and keyhole reconstruction
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4464
  contributor:
    fullname: Niedbalski PJ
– volume: 185
  start-page: 42
  year: 2007
  ident: e_1_2_9_36_1
  article-title: The effects of SNR on ADC measurements in diffusion‐weighted hyperpolarized He‐3 MRI
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2006.11.006
  contributor:
    fullname: O'Halloran RL
– volume: 57
  start-page: 1878
  year: 2023
  ident: e_1_2_9_28_1
  article-title: A Dual‐Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28519
  contributor:
    fullname: Astley JR
– volume: 75
  start-page: 1434
  year: 2016
  ident: e_1_2_9_65_1
  article-title: Single‐Breath Clinical Imaging of Hyperpolarized 129Xe in the Airspaces, Barrier, and Red Blood Cells Using an Interleaved 3D Radial 1‐Point Dixon Acquisition
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25675
  contributor:
    fullname: Kaushik SS
– volume: 65
  start-page: 1154
  year: 2011
  ident: e_1_2_9_53_1
  article-title: Diffusion Weighted Imaging of Hyperpolarized 129Xe in Patients with Chronic Obstructive Pulmonary Disease
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22697
  contributor:
    fullname: Kaushik SS
– volume: 37
  start-page: 313
  year: 2013
  ident: e_1_2_9_30_1
  article-title: Hyperpolarized 129Xe MRI of the human lung
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23844
  contributor:
    fullname: Mugler JP
– volume-title: B80‐1 Methodological Advancements in Pulmonary Imaging
  year: 2024
  ident: e_1_2_9_49_1
  contributor:
    fullname: Bdaiwi A
– volume: 114
  start-page: 707
  year: 2013
  ident: e_1_2_9_58_1
  article-title: Pulmonary ventilation visualized using hyperpolarized helium‐3 and xenon‐129 magnetic resonance imaging: differences in COPD and relationship to emphysema
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01206.2012
  contributor:
    fullname: Kirby M
– volume: 44
  start-page: 2415
  year: 2017
  ident: e_1_2_9_67_1
  article-title: Quantitative analysis of hyperpolarized 129Xe gas transfer MRI
  publication-title: Med Phys
  doi: 10.1002/mp.12264
  contributor:
    fullname: Wang Z
– volume: 47
  start-page: 640
  year: 2018
  ident: e_1_2_9_46_1
  article-title: Spatial fuzzy c‐means thresholding for semiautomated calculation of percentage lung ventilated volume from hyperpolarized gas and 1H MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25804
  contributor:
    fullname: Hughes PJ
– volume: 16
  start-page: 2080
  year: 2007
  ident: e_1_2_9_25_1
  article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Transactions on image processing
  doi: 10.1109/TIP.2007.901238
  contributor:
    fullname: Dabov K
– volume: 90
  start-page: 473
  year: 2023
  ident: e_1_2_9_21_1
  article-title: B1 and magnetization decay correction for hyperpolarized 129Xe lung imaging using sequential 2D spiral acquisitions
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29655
  contributor:
    fullname: Bdaiwi AS
– volume: 86
  start-page: 2966
  year: 2021
  ident: e_1_2_9_16_1
  article-title: Protocols for multi‐site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar‐airspace size, and gas exchange: A position paper from the 129Xe MRI clinical trials consortium
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28985
  contributor:
    fullname: Niedbalski PJ
– volume: 19
  start-page: 141
  year: 2012
  ident: e_1_2_9_45_1
  article-title: Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.10.007
  contributor:
    fullname: Kirby M
– volume: 48
  start-page: 632
  year: 2018
  ident: e_1_2_9_33_1
  article-title: Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25992
  contributor:
    fullname: Stewart NJ
– volume: 23
  start-page: 217
  year: 2015
  ident: e_1_2_9_3_1
  article-title: Hyperpolarized Gas MR Imaging: Technique and Applications
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2015.01.003
  contributor:
    fullname: Roos JE
– volume: 27
  year: 2020
  ident: e_1_2_9_66_1
  article-title: Generalized linear binning to compare hyperpolarized 129Xe ventilation maps derived from 3D radial gas exchange versus dedicated multislice gradient echo MRI
  publication-title: Acad Radiol
  contributor:
    fullname: He M
– volume: 21
  start-page: 365
  year: 2005
  ident: e_1_2_9_39_1
  article-title: Combined helium‐3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never‐smokers
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20290
  contributor:
    fullname: Woodhouse N
– ident: e_1_2_9_6_1
  doi: 10.1152/japplphysiol.00186.2020
– volume: 22
  start-page: 926
  year: 2023
  ident: e_1_2_9_9_1
  article-title: Short‐term structural and functional changes after airway clearance therapy in cystic fibrosis
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2023.01.017
  contributor:
    fullname: West ME
– volume: 27
  start-page: 1429
  year: 2014
  ident: e_1_2_9_2_1
  article-title: Translational applications of hyperpolarized 3He and 129Xe
  publication-title: NMR in Biomedicine
  doi: 10.1002/nbm.3151
  contributor:
    fullname: Walkup LL
– volume: 23
  start-page: 1521
  year: 2016
  ident: e_1_2_9_43_1
  article-title: Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution
  publication-title: Academic radiology
  doi: 10.1016/j.acra.2016.07.014
  contributor:
    fullname: He M
– volume: 265
  start-page: 600
  year: 2012
  ident: e_1_2_9_56_1
  article-title: Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease
  publication-title: Radiology
  doi: 10.1148/radiol.12120485
  contributor:
    fullname: Kirby M
– volume: 30
  year: 2017
  ident: e_1_2_9_51_1
  article-title: Diffusion lung imaging with hyperpolarized gas MRI
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3448
  contributor:
    fullname: Yablonskiy DA
– volume: 103
  start-page: 18278
  year: 2006
  ident: e_1_2_9_63_1
  article-title: Imaging alveolar‐capillary gas transfer using hyperpolarized Xe‐129 MRI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0608458103
  contributor:
    fullname: Driehuys B
– volume: 86
  start-page: 3224
  year: 2021
  ident: e_1_2_9_48_1
  article-title: Defect distribution index: A novel metric for functional lung MRI in cystic fibrosis
  publication-title: Magnetic resonance in medicine
  doi: 10.1002/mrm.28947
  contributor:
    fullname: Valk A
– volume: 297
  start-page: 201
  year: 2020
  ident: e_1_2_9_60_1
  article-title: Emphysema Index Based on Hyperpolarized 3He or 129Xe Diffusion MRI: Performance and Comparison with Quantitative CT and Pulmonary Function Tests
  publication-title: Radiology
  doi: 10.1148/radiol.2020192804
  contributor:
    fullname: Tafti S
– volume: 82
  start-page: 342
  year: 2019
  ident: e_1_2_9_12_1
  article-title: Single breath‐held acquisition of coregistered 3D 129Xe lung ventilation and anatomical proton images of the human lung with compressed sensing
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27713
  contributor:
    fullname: Collier GJ
– volume: 2
  year: 2014
  ident: e_1_2_9_55_1
  article-title: Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never‐ and ex‐smokers
  publication-title: Physiol Rep
  doi: 10.14814/phy2.12068
  contributor:
    fullname: Kirby M
– volume: 84
  start-page: 312
  year: 2020
  ident: e_1_2_9_7_1
  article-title: Improved pulmonary 129Xe ventilation imaging via 3D‐spiral UTE MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28114
  contributor:
    fullname: Willmering MM
– volume: 74
  start-page: 346
  year: 2015
  ident: e_1_2_9_34_1
  article-title: Feasibility of human lung ventilation imaging using highly polarized naturally abundant xenon and optimized three‐dimensional steady‐state free precession
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25732
  contributor:
    fullname: Stewart NJ
– volume: 77
  start-page: 265
  year: 2017
  ident: e_1_2_9_52_1
  article-title: Direct comparison of 129Xe diffusion measurements with quantitative histology in human lungs
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26120
  contributor:
    fullname: Thomen RP
– volume: 79
  start-page: 2986
  year: 2018
  ident: e_1_2_9_62_1
  article-title: 3D diffusion‐weighted 129Xe MRI for whole lung morphometry
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26960
  contributor:
    fullname: Chan HF
– ident: e_1_2_9_15_1
  doi: 10.1016/j.acra.2024.06.029
– volume: 9
  start-page: 62
  year: 1979
  ident: e_1_2_9_26_1
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE transactions on systems, man, and cybernetics
  doi: 10.1109/TSMC.1979.4310076
  contributor:
    fullname: Otsu N
– volume: 201
  year: 2020
  ident: e_1_2_9_17_1
  article-title: Positive Results from Two Randomized Phase III Trials Assessing Hyperpolarized 129Xenon Gas MRI as a Measure of Regional Lung Function as Compared to Imaging with 133Xenon Scintigraphy
  publication-title: Am J Respir Crit Care Med
  contributor:
    fullname: Shim YMM
– volume: 16
  start-page: 218
  year: 2004
  ident: e_1_2_9_20_1
  article-title: Hyperpolarized 3 He lung ventilation imaging with B 1‐inhomogeneity correction in a single breath‐hold scan
  publication-title: Magn Reson Mater Phys Biol Med
  doi: 10.1007/s10334-003-0028-2
  contributor:
    fullname: Miller G
– volume: 88
  start-page: 802
  year: 2022
  ident: e_1_2_9_22_1
  article-title: Bias field correction in hyperpolarized 129Xe ventilation MRI using templates derived by RF‐depolarization mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29254
  contributor:
    fullname: Lu J
– volume: 86
  start-page: 2822
  year: 2021
  ident: e_1_2_9_47_1
  article-title: Image‐versus histogram‐based considerations in semantic segmentation of pulmonary hyperpolarized gas images
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28908
  contributor:
    fullname: Tustison NJ
– volume: 23
  start-page: 926
  year: 2024
  ident: e_1_2_9_8_1
  article-title: Quantifying abnormal alveolar microstructure in cystic fibrosis lung disease via hyperpolarized 129Xe diffusion MRI
  publication-title: J Cystic Fibrosis
  doi: 10.1016/j.jcf.2024.07.002
  contributor:
    fullname: Bdaiwi AS
– volume: 82
  start-page: 1961
  year: 2019
  ident: e_1_2_9_23_1
  article-title: A thermally polarized 129Xe phantom for quality assurance in multi‐center hyperpolarized gas MRI studies
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27836
  contributor:
    fullname: Bier EA
– volume: 89
  start-page: 1083
  year: 2022
  ident: e_1_2_9_69_1
  article-title: A 3D stack‐of‐spirals approach for rapid hyperpolarized 129Xe ventilation mapping in pediatric cystic fibrosis lung disease
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29505
  contributor:
    fullname: Zanette B
SSID ssj0009974
Score 2.5025053
Snippet Hyperpolarized Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image...
Abstract Purpose Hyperpolarized 129 Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware,...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
Title 129 Xe Image Processing Pipeline: An open-source, graphical user interface application for the analysis of hyperpolarized 129 Xe MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/39480807
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKIBAbBMNreMlC7EJC6jhxwq5CoBmkoNFQRHeVn0wWzVRtR0hdsWKNxB_yJVzbeZWZxcAmqtK6iXyO7HPt63MReqlhVpE6z0KWCQUBipahoGkeapPnoM4NoG4POJcfs8PP9MMsnY1GvwZZS-cbEcntpedK_gdVuAe42lOy_4Bs96dwAz4DvnAFhOF6JYxhFg1mOjhauMQbn_JvQ__jaqmdg6hf9bMVsrqkBr9ab3vWeVU7jOxKhTOOWBluDxD0m9pdFiIfmJecQuy6WtqYuNqCXm3eojw5Girdkn-ttTeItmrfjh9VfXErX_Hqm0somAgF0TA_DT5Fw7WghbNK9KeKXGXyoOy-P4aBtSn-4jcygi9RT9P1mleNdwDfDhc3CB3MCn4MZNTe8HWQI92M0RA_Q9RGL50BvKPsYrWIYHL2Zp67Ltt_zX5dTqL3byZzaDp3Ta-h6wRGL7f3f9J7khWFt_Zu36y1q4rJ6-6pOyJnJ1xxsmV6B91u4g088eS5i0a63kc3ywaGfXTDpQDL9T30A3DEM40dm3DPJtyy6Q2e1Nhy6ff3n55Fr3DHIWw5hDsO4QGHMHAIA3S45RA-M3iXQ7h5NnDoPpq-fzd9exg2VTpCmTIWKipkIgpBkkRpwwhRCYuZgm6ASDmjUoyNAUk5Zok0WoO6TWOZSJVlJOepAjH_AO3VZ7V-hDAHEcAKJkEhSxorw8eGyliT2NiiDWZ8gF60vTpfei-W-QXUDtBD39_dT5KCWvNU9vgqzZ-gWz0Pn6K9zepcPwPZuRHPHQ3-AFJvhAE
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=129+Xe+Image+Processing+Pipeline%3A+An+open%E2%80%90source%2C+graphical+user+interface+application+for+the+analysis+of+hyperpolarized+129+Xe+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Bdaiwi%2C+Abdullah+S.&rft.au=Willmering%2C+Matthew+M.&rft.au=Plummer%2C+Joseph+W.&rft.au=Hussain%2C+Riaz&rft.date=2024-10-31&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.30347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon