Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools
Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown t...
Saved in:
Published in | Frontiers in physiology Vol. 7; no. JAN; p. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-042X 1664-042X |
DOI | 10.3389/fphys.2016.00002 |
Cover
Loading…
Abstract | Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach toward a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches. |
---|---|
AbstractList | Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach toward a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches. Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach towards a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches. |
Author | Mardinoglu, Adil Borén, Jan Björnson, Elias |
AuthorAffiliation | 2 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg Gothenburg, Sweden 3 Science for Life Laboratory, KTH – Royal Institute of Technology Stockholm, Sweden 1 Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden |
AuthorAffiliation_xml | – name: 2 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg Gothenburg, Sweden – name: 1 Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden – name: 3 Science for Life Laboratory, KTH – Royal Institute of Technology Stockholm, Sweden |
Author_xml | – sequence: 1 givenname: Elias surname: Björnson fullname: Björnson, Elias – sequence: 2 givenname: Jan surname: Borén fullname: Borén, Jan – sequence: 3 givenname: Adil surname: Mardinoglu fullname: Mardinoglu, Adil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26858650$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182148$$DView record from Swedish Publication Index https://research.chalmers.se/publication/232409$$DView record from Swedish Publication Index |
BookMark | eNp1kkFv0zAYhiM0xMbYnRPKkUuLHTuOfUGqugGTBky0IG6WY39pPZK4s92OcoEfwS_kl-C2Y1qR5ost-_keW5_fp9lB73rIsucYDQnh4lWzmK_DsECYDVEaxaPsCDNGB4gWXw_urQ-zkxCuNghFBUL4SXZYMF5yVqKj7Ocl-OB61dofYPKx8sa6lQp62Sqfn9oAKkB-6cFYHa3rc9WbfOpBxQ76-OfX71H-CVYWbnLX5GffbYi2n-WT6FWEmYWw5T-4FbT5ZB0idCF_v3HZHvKpc214lj1uVBvg5HY-zj6_OZuO3w0uPr49H48uBrqsWByAKjSpCSobRZlgHJOamwI1phGICUqEqgyvDW8IqahCyGDCoFRU86JCQhNynJ3vvMapK7nwtlN-LZ2ycrvh_EwqH61uQQpSCdoA1qbEtKKQtEgAJ8YozBthkmuyc4UbWCzrPZuH1DKv51LPVdul3soAssIUlwRxyRouJK1BSGEqkIhr2lQC6brWyTp40Hpqv4y2b_wW5xLzAlOe-Nc7PsEdGJ3-w6t2r2z_pLdzOXMrSauCVZQlwctbgXfXSwhRdjZoaFvVg1sGiStGUzsRKxP64v5dd5f8y1EC0A7Q3oXgoblDMJKbtMptWuUmrXKb1lTC_ivRNqpNyNJrbftw4V8cjvO3 |
CitedBy_id | crossref_primary_10_3389_fpubh_2023_1130716 crossref_primary_10_1016_j_drudis_2017_07_005 crossref_primary_10_1109_ACCESS_2025_3541069 crossref_primary_10_3389_fbioe_2020_00239 crossref_primary_10_1186_s12873_022_00768_5 crossref_primary_10_1088_1758_5090_ab4c0a crossref_primary_10_1111_1751_7915_13355 crossref_primary_10_3389_fcell_2017_00065 crossref_primary_10_2139_ssrn_3205400 crossref_primary_10_3389_fphys_2016_00561 crossref_primary_10_4070_kcj_2018_0127 crossref_primary_10_6061_clinics_2017_10_03 crossref_primary_10_1186_s12872_017_0662_7 crossref_primary_10_5551_jat_52407 crossref_primary_10_20340_mv_mn_17_25__03_58_62 crossref_primary_10_1186_s12916_017_0988_0 crossref_primary_10_1016_j_coisb_2017_05_007 crossref_primary_10_1007_s41666_017_0002_9 crossref_primary_10_1021_acssynbio_1c00140 crossref_primary_10_15252_msb_20155865 crossref_primary_10_15302_J_QB_022_0313 crossref_primary_10_1038_s41575_018_0007_8 crossref_primary_10_1089_nsm_2020_0002 crossref_primary_10_1088_1742_6596_1004_1_012032 crossref_primary_10_9758_cpn_2023_21_2_262 |
Cites_doi | 10.1371/journal.pone.0057310 10.1371/journal.pcbi.1002518 10.1093/bioinformatics/btv134 10.1002/pros.22704 10.1126/science.1260419 10.1016/j.cmet.2015.07.001 10.1021/jm400856t 10.1093/eurheartj/ehs424 10.1001/jama.297.6.611 10.1002/msb.145122 10.1136/hrt.2006.108167 10.15252/msb.20156548 10.1160/TH12-02-0097 10.1177/193229681300700112 10.1007/s11030-014-9521-y 10.1371/journal.pcbi.1002980 10.1258/jms.2012.012076 10.1038/msb.2012.21 10.1038/srep08183 10.1016/j.cell.2012.05.044 10.15252/msb.20156157 10.1038/srep10738 10.1021/pr500390y 10.1371/journal.pmed.1001361 10.1016/j.cell.2015.05.019 10.15252/msb.20145746 10.1111/j.1365-2796.2011.02493.x 10.1161/CIRCGENETICS.109.852814 10.1186/1878-5085-4-7 10.1136/bmj.39609.449676.25 10.1038/srep02532 10.1038/ncomms3632 10.1172/JCI10762 10.1371/journal.pone.0106455 10.7554/eLife.03641 10.1038/nprot.2011.308 10.1074/mcp.m111.010694 10.1186/1752-0509-6-114 10.1038/msb.2013.5 10.1016/j.urolonc.2011.05.013 10.1039/C5IB00002E 10.1016/j.cmet.2009.02.002 10.1038/ncomms4083 10.1373/clinchem.2009.126706 10.1016/S0195-668X(03)00114-3 10.15252/msb.20145307 10.1161/CIRCULATIONAHA.113.002500 10.1016/j.celrep.2015.04.010 10.1161/01.CIR.97.18.1837 10.1038/nm.2307 10.1016/j.copbio.2014.12.013 10.1093/nar/gkt989 10.1096/fj.14-250555 10.1016/j.cell.2014.10.050 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Björnson, Borén and Mardinoglu. 2016 Björnson, Borén and Mardinoglu |
Copyright_xml | – notice: Copyright © 2016 Björnson, Borén and Mardinoglu. 2016 Björnson, Borén and Mardinoglu |
DBID | AAYXX CITATION NPM 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC ABBSD F1S DOA |
DOI | 10.3389/fphys.2016.00002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Chalmers tekniska högskola full text SWEPUB Chalmers tekniska högskola DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
EndPage | 2 |
ExternalDocumentID | oai_doaj_org_article_93794fe1cd51474ebd809e83dda18f9d oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc oai_DiVA_org_kth_182148 PMC4726746 26858650 10_3389_fphys_2016_00002 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Bill and Melinda Gates Foundation – fundername: Knut and Alice Wallenberg Foundation – fundername: FP7 – fundername: Novo Nordisk – fundername: European Commission |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC ABBSD F1S |
ID | FETCH-LOGICAL-c576t-ea2c3b305fa4696813b8d20fdf9069439a7d8bd8f3374a00d136e5a4c82709c33 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:03:01 EDT 2025 Thu Aug 21 06:43:02 EDT 2025 Thu Aug 21 06:47:32 EDT 2025 Thu Aug 21 17:51:07 EDT 2025 Fri Jul 11 15:26:24 EDT 2025 Thu Jan 02 22:21:41 EST 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 04:18:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | JAN |
Keywords | systems biology network medicine systems medicine metabolism patient stratification risk estimation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-ea2c3b305fa4696813b8d20fdf9069439a7d8bd8f3374a00d136e5a4c82709c33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Reviewed by: Ranjan K. Dash, Medical College of Wisconsin, USA; Marie Csete, Marie Csete Consulting, USA This article was submitted to Systems Biology, a section of the journal Frontiers in Physiology Edited by: Jiarui Wu, Shanghai Institutes for Biological Sciences, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2016.00002 |
PMID | 26858650 |
PQID | 1764337065 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93794fe1cd51474ebd809e83dda18f9d swepub_primary_oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc swepub_primary_oai_DiVA_org_kth_182148 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4726746 proquest_miscellaneous_1764337065 pubmed_primary_26858650 crossref_primary_10_3389_fphys_2016_00002 crossref_citationtrail_10_3389_fphys_2016_00002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Shoaie (B38) 2013; 3 World Health Organization (B30) 2012 Rolland (B33) 2014; 159 Wang (B45) 2011; 17 Drucker (B10) 2013; 4 Ebrahim (B11) 2015; 11 Uhlén (B42) 2015; 347 Zampetaki (B52) 2012; 108 Mardinoglu (B25) 2012; 271 Woodward (B47) 2007; 93 Chindelevitch (B7) 2015; 11 Shoaie (B37) 2015; 22 Mardinoglu (B23) 2013; 9 McDunn (B27) 2013; 73 Gatto (B15) 2015; 5 Agren (B1) 2012; 8 Ganti (B14) 2011; 29 van Staa (B43) 2014; 9 Yizhak (B48) 2015; 11 Kampf (B19) 2014; 28 Stegemann (B40) 2014; 129 Karlstädt (B20) 2012; 6 Bordbar (B6) 2012; 8 Wilson (B46) 1998; 97 Zheng (B55) 2014; 18 Ridker (B32) 2007; 297 Varemo (B44) 2015; 11 Ryu (B34) 2015; 7 Zeng (B53) 2014; 13 Newgard (B28) 2009; 9 Schellenberger (B35) 2011; 6 Peters (B31) 2013; 56 Ginsberg (B17) 2000; 106 Yizhak (B49) 2013; 4 Magnusson (B22) 2013; 34 O'Brien (B29) 2015; 161 Yizhak (B51) 2014b; 10 Conroy (B9) 2003; 24 Tan (B41) 2012; 11 Ferket (B12) 2012; 9 Agren (B3) 2014; 10 Mardinoglu (B24) 2014; 5 Galhardo (B13) 2014; 42 Zhang (B54) 2015; 31 Yizhak (B50) 2014a; 3 Anderson (B4) 2010; 56 Mardinoglu (B26) 2015; 34 Cobb (B8) 2013; 7 Ghaffari (B16) 2015; 5 Karr (B21) 2012; 150 Simmonds (B39) 2012; 19 Agren (B2) 2013; 9 Hippisley-Cox (B18) 2008; 336 Bolton (B5) 2013; 8 Shah (B36) 2010; 3 23982459 - Sci Rep. 2013;3:2532 21886097 - Nat Protoc. 2011 Aug 04;6(9):1290-307 26000478 - Cell. 2015 May 21;161(5):971-87 24853826 - J Proteome Res. 2014 Jul 3;13(7):3420-31 21930086 - Urol Oncol. 2011 Sep-Oct;29(5):551-7 17299196 - JAMA. 2007 Feb 14;297(6):611-9 25271417 - PLoS One. 2014 Oct 01;9(10):e106455 25735769 - Bioinformatics. 2015 Jul 15;31(14):2324-31 20173117 - Circ Cardiovasc Genet. 2010 Apr;3(2):207-14 24419221 - Nat Commun. 2014;5:3083 26244934 - Cell Metab. 2015 Aug 4;22(2):320-31 23242195 - Eur Heart J. 2013 Jul;34(26):1982-9 23293165 - J Med Screen. 2012 Dec;19(4):201-5 23824564 - Prostate. 2013 Oct;73(14):1547-60 18573856 - BMJ. 2008 Jun 28;336(7659):1475-82 26130389 - Mol Syst Biol. 2015 Jun 30;11(6):817 25613900 - Science. 2015 Jan 23;347(6220):1260419 22084000 - Mol Cell Proteomics. 2012 Feb;11(2):M111.010694 25559199 - Curr Opin Biotechnol. 2015 Aug;34:91-7 22615553 - PLoS Comput Biol. 2012;8(5):e1002518 26040780 - Sci Rep. 2015 Jun 04;5:10738 21423183 - Nat Med. 2011 Apr;17(4):448-53 24646661 - Mol Syst Biol. 2014 Mar 19;10:721 22929619 - BMC Syst Biol. 2012 Aug 29;6:114 25415239 - Elife. 2014 Nov 21;3:null 17090561 - Heart. 2007 Feb;93(2):172-6 22735334 - Mol Syst Biol. 2012 Jun 26;8:558 25937284 - Cell Rep. 2015 May 12;11(6):921-33 23439165 - J Diabetes Sci Technol. 2013 Jan 01;7(1):100-10 25730289 - Integr Biol (Camb). 2015 Aug;7(8):859-68 25640694 - Sci Rep. 2015 Feb 02;5:8183 9603539 - Circulation. 1998 May 12;97(18):1837-47 10953019 - J Clin Invest. 2000 Aug;106(4):453-8 23511207 - Mol Syst Biol. 2013;9:649 24153335 - Nat Commun. 2013;4:2632 22817898 - Cell. 2012 Jul 20;150(2):389-401 26467284 - Mol Syst Biol. 2015 Oct 14;11(10):831 22142312 - J Intern Med. 2012 Feb;271(2):142-54 19884488 - Clin Chem. 2010 Feb;56(2):177-85 23468967 - PLoS One. 2013;8(2):e57310 23919353 - J Med Chem. 2013 Nov 27;56(22):8955-71 24198249 - Nucleic Acids Res. 2014 Feb;42(3):1474-96 24792224 - Mol Divers. 2014 Aug;18(3):621-35 22627831 - Thromb Haemost. 2012 Oct;108(4):592-8 23442211 - EPMA J. 2013 Feb 25;4(1):7 19356713 - Cell Metab. 2009 Apr;9(4):311-26 24648543 - FASEB J. 2014 Jul;28(7):2901-14 23300388 - PLoS Med. 2012;9(12):e1001361 24622385 - Circulation. 2014 May 6;129(18):1821-31 25416956 - Cell. 2014 Nov 20;159(5):1212-26 12788299 - Eur Heart J. 2003 Jun;24(11):987-1003 26467283 - Mol Syst Biol. 2015 Oct 14;11(10):830 25086087 - Mol Syst Biol. 2014 Aug 01;10:744 23555215 - PLoS Comput Biol. 2013;9(3):e1002980 |
References_xml | – volume: 8 start-page: e57310 year: 2013 ident: B5 article-title: Improvement in prediction of coronary heart disease risk over conventional risk factors using SNPs identified in genome-wide association studies publication-title: PLoS ONE doi: 10.1371/journal.pone.0057310 – volume: 8 start-page: e1002518 year: 2012 ident: B1 article-title: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002518 – volume: 31 start-page: 2324 year: 2015 ident: B54 article-title: Logical transformation of genome-scale metabolic models for gene level applications and analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv134 – volume: 73 start-page: 1547 year: 2013 ident: B27 article-title: Metabolomic signatures of aggressive prostate cancer publication-title: Prostate doi: 10.1002/pros.22704 – volume: 347 start-page: 1260419 year: 2015 ident: B42 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 22 start-page: 320 year: 2015 ident: B37 article-title: Quantifying diet-induced metabolic changes of the human gut microbiome publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.001 – volume: 56 start-page: 8955 year: 2013 ident: B31 article-title: Polypharmacology - foe or friend? publication-title: J. Med. Chem. doi: 10.1021/jm400856t – volume: 34 start-page: 1982 year: 2013 ident: B22 article-title: A diabetes-predictive amino acid score and future cardiovascular disease publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehs424 – volume: 297 start-page: 611 year: 2007 ident: B32 article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score publication-title: JAMA doi: 10.1001/jama.297.6.611 – volume: 10 start-page: 721 year: 2014 ident: B3 article-title: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling publication-title: Mol. Syst. Biol. doi: 10.1002/msb.145122 – volume: 93 start-page: 172 year: 2007 ident: B47 article-title: Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC) publication-title: Heart doi: 10.1136/hrt.2006.108167 – volume: 11 start-page: 830 year: 2015 ident: B7 article-title: Reply to “Do genome-scale models need exact solvers or clearer standards?” publication-title: Mol. Syst. Biol doi: 10.15252/msb.20156548 – volume: 108 start-page: 592 year: 2012 ident: B52 article-title: Analytical challenges and technical limitations in assessing circulating miRNAs publication-title: Thromb. Haemost. doi: 10.1160/TH12-02-0097 – volume: 7 start-page: 100 year: 2013 ident: B8 article-title: A novel fasting blood test for insulin resistance and prediabetes publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681300700112 – volume: 18 start-page: 621 year: 2014 ident: B55 article-title: System-level multi-target drug discovery from natural products with applications to cardiovascular diseases publication-title: Mol. Divers. doi: 10.1007/s11030-014-9521-y – volume: 9 start-page: e1002980 year: 2013 ident: B2 article-title: The RAVEN Toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002980 – volume: 19 start-page: 201 year: 2012 ident: B39 article-title: Risk estimation versus screening performance: a comparison of six risk algorithms for cardiovascular disease publication-title: J. Med. Screen. doi: 10.1258/jms.2012.012076 – volume: 8 start-page: 558 year: 2012 ident: B6 article-title: Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2012.21 – volume: 5 start-page: 8183 year: 2015 ident: B16 article-title: Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling publication-title: Sci. Rep. doi: 10.1038/srep08183 – volume: 150 start-page: 389 year: 2012 ident: B21 article-title: A whole-cell computational model predicts phenotype from genotype publication-title: Cell doi: 10.1016/j.cell.2012.05.044 – volume: 11 start-page: 831 year: 2015 ident: B11 article-title: Do genome-scale models need exact solvers or clearer standards? publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156157 – volume: 5 start-page: 10738 year: 2015 ident: B15 article-title: Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism publication-title: Sci. Rep. doi: 10.1038/srep10738 – volume: 13 start-page: 3420 year: 2014 ident: B53 article-title: Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry publication-title: J. Proteome Res. doi: 10.1021/pr500390y – volume: 9 start-page: e1001361 year: 2012 ident: B12 article-title: Personalized prediction of lifetime benefits with statin therapy for asymptomatic individuals: a modeling study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001361 – volume: 161 start-page: 971 year: 2015 ident: B29 article-title: Using genome-scale models to predict biological capabilities publication-title: Cell doi: 10.1016/j.cell.2015.05.019 – volume-title: The 10 Leading Causes of Death in the World, 2000 and 2012, Vol. 2015 year: 2012 ident: B30 – volume: 10 start-page: 744 year: 2014b ident: B51 article-title: A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145746 – volume: 271 start-page: 142 year: 2012 ident: B25 article-title: Systems medicine and metabolic modelling publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2011.02493.x – volume: 3 start-page: 207 year: 2010 ident: B36 article-title: Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events publication-title: Circ. Cardiovasc. Genet. doi: 10.1161/CIRCGENETICS.109.852814 – volume: 4 start-page: 7 year: 2013 ident: B10 article-title: Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine publication-title: EPMA J. doi: 10.1186/1878-5085-4-7 – volume: 336 start-page: 1475 year: 2008 ident: B18 article-title: Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2 publication-title: BMJ doi: 10.1136/bmj.39609.449676.25 – volume: 3 start-page: 2532 year: 2013 ident: B38 article-title: Understanding the interactions between bacteria in the human gut through metabolic modeling publication-title: Sci. Rep. doi: 10.1038/srep02532 – volume: 4 start-page: 2632 year: 2013 ident: B49 article-title: Model-based identification of drug targets that revert disrupted metabolism and its application to ageing publication-title: Nat. Commun. doi: 10.1038/ncomms3632 – volume: 106 start-page: 453 year: 2000 ident: B17 article-title: Insulin resistance and cardiovascular disease publication-title: J. Clin. Invest. doi: 10.1172/JCI10762 – volume: 9 start-page: e106455 year: 2014 ident: B43 article-title: Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk? publication-title: PLoS ONE doi: 10.1371/journal.pone.0106455 – volume: 3 start-page: e03641 year: 2014a ident: B50 article-title: Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer publication-title: Elife doi: 10.7554/eLife.03641 – volume: 6 start-page: 1290 year: 2011 ident: B35 article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.308 – volume: 11 start-page: M111.010694 year: 2012 ident: B41 article-title: Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.m111.010694 – volume: 6 start-page: 114 year: 2012 ident: B20 article-title: CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-114 – volume: 9 start-page: 649 year: 2013 ident: B23 article-title: Integration of clinical data with a genome-scale metabolic model of the human adipocyte publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.5 – volume: 29 start-page: 551 year: 2011 ident: B14 article-title: Urine metabolomics for kidney cancer detection and biomarker discovery publication-title: Urol. Oncol. doi: 10.1016/j.urolonc.2011.05.013 – volume: 7 start-page: 859 year: 2015 ident: B34 article-title: Reconstruction of genome-scale human metabolic models using omics data publication-title: Integr. Biol. doi: 10.1039/C5IB00002E – volume: 9 start-page: 311 year: 2009 ident: B28 article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.02.002 – volume: 5 start-page: 3083 year: 2014 ident: B24 article-title: Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease publication-title: Nat. Commun. doi: 10.1038/ncomms4083 – volume: 56 start-page: 177 year: 2010 ident: B4 article-title: The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum publication-title: Clin. Chem. doi: 10.1373/clinchem.2009.126706 – volume: 24 start-page: 987 year: 2003 ident: B9 article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project publication-title: Eur. Heart J. doi: 10.1016/S0195-668X(03)00114-3 – volume: 11 start-page: 817 year: 2015 ident: B48 article-title: Modeling cancer metabolism on a genome scale publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145307 – volume: 129 start-page: 1821 year: 2014 ident: B40 article-title: Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.002500 – volume: 11 start-page: 921 year: 2015 ident: B44 article-title: Transcriptome and proteome driven reconstruction of the human myocyte metabolic model and its use for identification of metabolic markers for type 2 diabetes publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.010 – volume: 97 start-page: 1837 year: 1998 ident: B46 article-title: Prediction of coronary heart disease using risk factor categories publication-title: Circulation doi: 10.1161/01.CIR.97.18.1837 – volume: 17 start-page: 448 year: 2011 ident: B45 article-title: Metabolite profiles and the risk of developing diabetes publication-title: Nat. Med. doi: 10.1038/nm.2307 – volume: 34 start-page: 91 year: 2015 ident: B26 article-title: New paradigms for metabolic modeling of human cells publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.12.013 – volume: 42 start-page: 1474 year: 2014 ident: B13 article-title: Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt989 – volume: 28 start-page: 2901 year: 2014 ident: B19 article-title: The human liver-specific proteome defined by transcriptomics and antibody-based profiling publication-title: FASEB J. doi: 10.1096/fj.14-250555 – volume: 159 start-page: 1212 year: 2014 ident: B33 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 – reference: 24622385 - Circulation. 2014 May 6;129(18):1821-31 – reference: 25416956 - Cell. 2014 Nov 20;159(5):1212-26 – reference: 23982459 - Sci Rep. 2013;3:2532 – reference: 24198249 - Nucleic Acids Res. 2014 Feb;42(3):1474-96 – reference: 24153335 - Nat Commun. 2013;4:2632 – reference: 19356713 - Cell Metab. 2009 Apr;9(4):311-26 – reference: 23468967 - PLoS One. 2013;8(2):e57310 – reference: 17299196 - JAMA. 2007 Feb 14;297(6):611-9 – reference: 10953019 - J Clin Invest. 2000 Aug;106(4):453-8 – reference: 22929619 - BMC Syst Biol. 2012 Aug 29;6:114 – reference: 21930086 - Urol Oncol. 2011 Sep-Oct;29(5):551-7 – reference: 26040780 - Sci Rep. 2015 Jun 04;5:10738 – reference: 22084000 - Mol Cell Proteomics. 2012 Feb;11(2):M111.010694 – reference: 25559199 - Curr Opin Biotechnol. 2015 Aug;34:91-7 – reference: 22817898 - Cell. 2012 Jul 20;150(2):389-401 – reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53 – reference: 9603539 - Circulation. 1998 May 12;97(18):1837-47 – reference: 18573856 - BMJ. 2008 Jun 28;336(7659):1475-82 – reference: 26467283 - Mol Syst Biol. 2015 Oct 14;11(10):830 – reference: 22735334 - Mol Syst Biol. 2012 Jun 26;8:558 – reference: 25415239 - Elife. 2014 Nov 21;3:null – reference: 23439165 - J Diabetes Sci Technol. 2013 Jan 01;7(1):100-10 – reference: 25937284 - Cell Rep. 2015 May 12;11(6):921-33 – reference: 22615553 - PLoS Comput Biol. 2012;8(5):e1002518 – reference: 24646661 - Mol Syst Biol. 2014 Mar 19;10:721 – reference: 21886097 - Nat Protoc. 2011 Aug 04;6(9):1290-307 – reference: 26000478 - Cell. 2015 May 21;161(5):971-87 – reference: 25735769 - Bioinformatics. 2015 Jul 15;31(14):2324-31 – reference: 26467284 - Mol Syst Biol. 2015 Oct 14;11(10):831 – reference: 19884488 - Clin Chem. 2010 Feb;56(2):177-85 – reference: 24648543 - FASEB J. 2014 Jul;28(7):2901-14 – reference: 20173117 - Circ Cardiovasc Genet. 2010 Apr;3(2):207-14 – reference: 25086087 - Mol Syst Biol. 2014 Aug 01;10:744 – reference: 25640694 - Sci Rep. 2015 Feb 02;5:8183 – reference: 22627831 - Thromb Haemost. 2012 Oct;108(4):592-8 – reference: 25730289 - Integr Biol (Camb). 2015 Aug;7(8):859-68 – reference: 26244934 - Cell Metab. 2015 Aug 4;22(2):320-31 – reference: 24419221 - Nat Commun. 2014;5:3083 – reference: 23242195 - Eur Heart J. 2013 Jul;34(26):1982-9 – reference: 23442211 - EPMA J. 2013 Feb 25;4(1):7 – reference: 24792224 - Mol Divers. 2014 Aug;18(3):621-35 – reference: 25613900 - Science. 2015 Jan 23;347(6220):1260419 – reference: 25271417 - PLoS One. 2014 Oct 01;9(10):e106455 – reference: 23555215 - PLoS Comput Biol. 2013;9(3):e1002980 – reference: 24853826 - J Proteome Res. 2014 Jul 3;13(7):3420-31 – reference: 23919353 - J Med Chem. 2013 Nov 27;56(22):8955-71 – reference: 17090561 - Heart. 2007 Feb;93(2):172-6 – reference: 23824564 - Prostate. 2013 Oct;73(14):1547-60 – reference: 23293165 - J Med Screen. 2012 Dec;19(4):201-5 – reference: 26130389 - Mol Syst Biol. 2015 Jun 30;11(6):817 – reference: 22142312 - J Intern Med. 2012 Feb;271(2):142-54 – reference: 23300388 - PLoS Med. 2012;9(12):e1001361 – reference: 12788299 - Eur Heart J. 2003 Jun;24(11):987-1003 – reference: 23511207 - Mol Syst Biol. 2013;9:649 |
SSID | ssj0000402001 |
Score | 2.2539408 |
SecondaryResourceType | review_article |
Snippet | Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2 |
SubjectTerms | Metabolism Network medicine patient stratification Physiology Risk estimation Systems Biology Systems Medicine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB7hJSOhShyitWMnto9LH6oQrXrYot4sP9mKJUHNFgEX_jpjJ7tqRAUXrslYsebhmfFMvkHojXeV9zSEEnTXlNyCpZvGxpLUlY1GxsblcW8np83xOX9_UV_cGPWVesIGeOCBcTNwn4rHQJ0H1y54sF4SFSTz3lAZlU-nL_i8G8lUPoNTWkToUJeELEzNYropSK1cTYYsrCZ-KMP13xZj_tkqOQEUzU7o6D66N0aPeD7s-gG6E9qHaHfeQub85Qfew7mfM1-U76JfZ5s4-2fweH_Sd4oPhroMPrtKhZokHGxajxebtnNc4jke6ga4i_jwezoK2k94A2Yb-kx_2n0LKzyinuOTsU6PF1236h-h86PDxf5xOY5bKB0kHesymMoxC_YfDU-QOZRZ6SsSfVTp71imjPAS2B8ZE9wQ4ilrQm24k5UgyjH2GO20XRueIsxqFh2TwoZYcScaZRoQWa0krUW0FS3QbMN87UYs8jQSY6UhJ0ni0llcOolLZ3EV6O12xdcBh-MvtO-SPLd0CUE7PwC90qNe6X_pVYFeb7RBg8WlMoppQ3fdayogimOpPFygJ4N2bD9VJTh_CHoLJCZ6M9nL9E17ucyo3lxUjeBNgfYGDZssObj8OM_b_7xeakgJIYkt0IdbCEeIqKV2yzx_p9d90IJCmMaI1E0EdnEblFZeBE2k41Eo4qx1z_4H056ju0kMwxXVC7SzvroOLyFoW9tX2T5_Awy5RIQ priority: 102 providerName: Directory of Open Access Journals |
Title | Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26858650 https://www.proquest.com/docview/1764337065 https://pubmed.ncbi.nlm.nih.gov/PMC4726746 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182148 https://research.chalmers.se/publication/232409 https://doaj.org/article/93794fe1cd51474ebd809e83dda18f9d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBQHmER2UkVIlDaBJ77eSA0NKHKsRWPeyivVl-dqsuCexuUYvEf2fGyS6KWHHimtiJ45mxv_FMviHkjbOFc7n3KeiuTrkBS9fChDQbFCboMggby72NzsTphH-aDqZ_fo_uJnC51bXDelKTxfzdzffbD2Dw79HjhP32IOAhAGZpichGCAvyXdiXJJrpqAP7cV1GVynWQ86FwOyLYtrGLbc-pLdPRTr_bRj071TKHuFo3KROHpD7Hbqkw1YdHpI7vn5Edoc1eNZfb-k-jfme8SB9l_w6X-Pwn97Rw15eKj1q4zb0fIGBHBQe1bWj43VaejqkbVSBNoEe3-BCUV_QNdWtX8bWZ80PP6cdJzoddVF8Om6a-fIxmZwcjw9P064YQ2rBJVmlXheWGVgdguZIqJMzU7oiCy5U-O8sq7R0pXFlYExynWUuZ8IPNLdlIbPKMvaE7NRN7Z8RygYsWFZK40PBrRSVFr5EJsF8IIMp8oQcrKde2Y6pHAtmzBV4LCgsFYWlUFgqCishbzc9vrUsHf9o-xGluWmH_NrxQrO4UJ25KgBtFQ8-tw4ApeQePiyrYJDO6bwMlUvI67UuKLBHDLLo2jfXS5VLwHgMg8cJedrqxuZVBZL9AyROiOxpTW8s_Tv15SxyfnNZCMlFQvZb_ep1Obr8MozDv1rNFDiM4OIm5POWhh2B1EzZWazOs1RLr2QOII5lpRIBposbX6nKSa-y0vIgq8waY5__38e9IPdQIO1R1kuys1pc-1cA7lZmLx6K7EXL_Q2R5lLP |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Cardiovascular+Disease+Prediction+and+Treatment-A+Review+of+Existing+Strategies+and+Novel+Systems+Medicine+Tools&rft.jtitle=Frontiers+in+physiology&rft.au=Bj%C3%B6rnson%2C+Elias&rft.au=Bor%C3%A9n%2C+Jan&rft.au=Mardinoglu%2C+Adil&rft.date=2016&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=7&rft.issue=JAN&rft_id=info:doi/10.3389%2Ffphys.2016.00002&rft.externalDocID=oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |