Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools

Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 7; no. JAN; p. 2
Main Authors Björnson, Elias, Borén, Jan, Mardinoglu, Adil
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2016
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2016.00002

Cover

Loading…
Abstract Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach toward a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches.
AbstractList Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach toward a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches.
Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through heterogeneous populations and identify individuals at risk of developing CVD. However, applications of current risk scores have recently been shown to result in considerable misclassification of high-risk subjects. In addition, despite long standing beneficial effects in secondary prevention, current CVD medications have in a primary prevention setting shown modest benefit in terms of increasing life expectancy. A systems biology approach to CVD risk stratification may be employed for improving risk-estimating algorithms through addition of high-throughput derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment may help in guiding choice of intervention. In the area of medicine, realizing that CVD involves perturbations of large complex biological networks, future directions in drug development may involve moving away from a reductionist approach towards a system level approach. Here, we review current CVD risk scores and explore how novel algorithms could help to improve the identification of risk and maximize personalized treatment benefit. We also discuss possible future directions in the development of effective treatment strategies for CVD through the use of genome-scale metabolic models (GEMs) as well as other biological network-based approaches.
Author Mardinoglu, Adil
Borén, Jan
Björnson, Elias
AuthorAffiliation 2 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg Gothenburg, Sweden
3 Science for Life Laboratory, KTH – Royal Institute of Technology Stockholm, Sweden
1 Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
AuthorAffiliation_xml – name: 2 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg Gothenburg, Sweden
– name: 1 Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
– name: 3 Science for Life Laboratory, KTH – Royal Institute of Technology Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Elias
  surname: Björnson
  fullname: Björnson, Elias
– sequence: 2
  givenname: Jan
  surname: Borén
  fullname: Borén, Jan
– sequence: 3
  givenname: Adil
  surname: Mardinoglu
  fullname: Mardinoglu, Adil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26858650$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182148$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/232409$$DView record from Swedish Publication Index
BookMark eNp1kkFv0zAYhiM0xMbYnRPKkUuLHTuOfUGqugGTBky0IG6WY39pPZK4s92OcoEfwS_kl-C2Y1qR5ost-_keW5_fp9lB73rIsucYDQnh4lWzmK_DsECYDVEaxaPsCDNGB4gWXw_urQ-zkxCuNghFBUL4SXZYMF5yVqKj7Ocl-OB61dofYPKx8sa6lQp62Sqfn9oAKkB-6cFYHa3rc9WbfOpBxQ76-OfX71H-CVYWbnLX5GffbYi2n-WT6FWEmYWw5T-4FbT5ZB0idCF_v3HZHvKpc214lj1uVBvg5HY-zj6_OZuO3w0uPr49H48uBrqsWByAKjSpCSobRZlgHJOamwI1phGICUqEqgyvDW8IqahCyGDCoFRU86JCQhNynJ3vvMapK7nwtlN-LZ2ycrvh_EwqH61uQQpSCdoA1qbEtKKQtEgAJ8YozBthkmuyc4UbWCzrPZuH1DKv51LPVdul3soAssIUlwRxyRouJK1BSGEqkIhr2lQC6brWyTp40Hpqv4y2b_wW5xLzAlOe-Nc7PsEdGJ3-w6t2r2z_pLdzOXMrSauCVZQlwctbgXfXSwhRdjZoaFvVg1sGiStGUzsRKxP64v5dd5f8y1EC0A7Q3oXgoblDMJKbtMptWuUmrXKb1lTC_ivRNqpNyNJrbftw4V8cjvO3
CitedBy_id crossref_primary_10_3389_fpubh_2023_1130716
crossref_primary_10_1016_j_drudis_2017_07_005
crossref_primary_10_1109_ACCESS_2025_3541069
crossref_primary_10_3389_fbioe_2020_00239
crossref_primary_10_1186_s12873_022_00768_5
crossref_primary_10_1088_1758_5090_ab4c0a
crossref_primary_10_1111_1751_7915_13355
crossref_primary_10_3389_fcell_2017_00065
crossref_primary_10_2139_ssrn_3205400
crossref_primary_10_3389_fphys_2016_00561
crossref_primary_10_4070_kcj_2018_0127
crossref_primary_10_6061_clinics_2017_10_03
crossref_primary_10_1186_s12872_017_0662_7
crossref_primary_10_5551_jat_52407
crossref_primary_10_20340_mv_mn_17_25__03_58_62
crossref_primary_10_1186_s12916_017_0988_0
crossref_primary_10_1016_j_coisb_2017_05_007
crossref_primary_10_1007_s41666_017_0002_9
crossref_primary_10_1021_acssynbio_1c00140
crossref_primary_10_15252_msb_20155865
crossref_primary_10_15302_J_QB_022_0313
crossref_primary_10_1038_s41575_018_0007_8
crossref_primary_10_1089_nsm_2020_0002
crossref_primary_10_1088_1742_6596_1004_1_012032
crossref_primary_10_9758_cpn_2023_21_2_262
Cites_doi 10.1371/journal.pone.0057310
10.1371/journal.pcbi.1002518
10.1093/bioinformatics/btv134
10.1002/pros.22704
10.1126/science.1260419
10.1016/j.cmet.2015.07.001
10.1021/jm400856t
10.1093/eurheartj/ehs424
10.1001/jama.297.6.611
10.1002/msb.145122
10.1136/hrt.2006.108167
10.15252/msb.20156548
10.1160/TH12-02-0097
10.1177/193229681300700112
10.1007/s11030-014-9521-y
10.1371/journal.pcbi.1002980
10.1258/jms.2012.012076
10.1038/msb.2012.21
10.1038/srep08183
10.1016/j.cell.2012.05.044
10.15252/msb.20156157
10.1038/srep10738
10.1021/pr500390y
10.1371/journal.pmed.1001361
10.1016/j.cell.2015.05.019
10.15252/msb.20145746
10.1111/j.1365-2796.2011.02493.x
10.1161/CIRCGENETICS.109.852814
10.1186/1878-5085-4-7
10.1136/bmj.39609.449676.25
10.1038/srep02532
10.1038/ncomms3632
10.1172/JCI10762
10.1371/journal.pone.0106455
10.7554/eLife.03641
10.1038/nprot.2011.308
10.1074/mcp.m111.010694
10.1186/1752-0509-6-114
10.1038/msb.2013.5
10.1016/j.urolonc.2011.05.013
10.1039/C5IB00002E
10.1016/j.cmet.2009.02.002
10.1038/ncomms4083
10.1373/clinchem.2009.126706
10.1016/S0195-668X(03)00114-3
10.15252/msb.20145307
10.1161/CIRCULATIONAHA.113.002500
10.1016/j.celrep.2015.04.010
10.1161/01.CIR.97.18.1837
10.1038/nm.2307
10.1016/j.copbio.2014.12.013
10.1093/nar/gkt989
10.1096/fj.14-250555
10.1016/j.cell.2014.10.050
ContentType Journal Article
Copyright Copyright © 2016 Björnson, Borén and Mardinoglu. 2016 Björnson, Borén and Mardinoglu
Copyright_xml – notice: Copyright © 2016 Björnson, Borén and Mardinoglu. 2016 Björnson, Borén and Mardinoglu
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ABBSD
F1S
DOA
DOI 10.3389/fphys.2016.00002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
EndPage 2
ExternalDocumentID oai_doaj_org_article_93794fe1cd51474ebd809e83dda18f9d
oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc
oai_DiVA_org_kth_182148
PMC4726746
26858650
10_3389_fphys_2016_00002
Genre Journal Article
Review
GrantInformation_xml – fundername: Bill and Melinda Gates Foundation
– fundername: Knut and Alice Wallenberg Foundation
– fundername: FP7
– fundername: Novo Nordisk
– fundername: European Commission
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ABBSD
F1S
ID FETCH-LOGICAL-c576t-ea2c3b305fa4696813b8d20fdf9069439a7d8bd8f3374a00d136e5a4c82709c33
IEDL.DBID M48
ISSN 1664-042X
IngestDate Wed Aug 27 01:03:01 EDT 2025
Thu Aug 21 06:43:02 EDT 2025
Thu Aug 21 06:47:32 EDT 2025
Thu Aug 21 17:51:07 EDT 2025
Fri Jul 11 15:26:24 EDT 2025
Thu Jan 02 22:21:41 EST 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 04:18:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue JAN
Keywords systems biology
network medicine
systems medicine
metabolism
patient stratification
risk estimation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-ea2c3b305fa4696813b8d20fdf9069439a7d8bd8f3374a00d136e5a4c82709c33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Reviewed by: Ranjan K. Dash, Medical College of Wisconsin, USA; Marie Csete, Marie Csete Consulting, USA
This article was submitted to Systems Biology, a section of the journal Frontiers in Physiology
Edited by: Jiarui Wu, Shanghai Institutes for Biological Sciences, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2016.00002
PMID 26858650
PQID 1764337065
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_93794fe1cd51474ebd809e83dda18f9d
swepub_primary_oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc
swepub_primary_oai_DiVA_org_kth_182148
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4726746
proquest_miscellaneous_1764337065
pubmed_primary_26858650
crossref_primary_10_3389_fphys_2016_00002
crossref_citationtrail_10_3389_fphys_2016_00002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Shoaie (B38) 2013; 3
World Health Organization (B30) 2012
Rolland (B33) 2014; 159
Wang (B45) 2011; 17
Drucker (B10) 2013; 4
Ebrahim (B11) 2015; 11
Uhlén (B42) 2015; 347
Zampetaki (B52) 2012; 108
Mardinoglu (B25) 2012; 271
Woodward (B47) 2007; 93
Chindelevitch (B7) 2015; 11
Shoaie (B37) 2015; 22
Mardinoglu (B23) 2013; 9
McDunn (B27) 2013; 73
Gatto (B15) 2015; 5
Agren (B1) 2012; 8
Ganti (B14) 2011; 29
van Staa (B43) 2014; 9
Yizhak (B48) 2015; 11
Kampf (B19) 2014; 28
Stegemann (B40) 2014; 129
Karlstädt (B20) 2012; 6
Bordbar (B6) 2012; 8
Wilson (B46) 1998; 97
Zheng (B55) 2014; 18
Ridker (B32) 2007; 297
Varemo (B44) 2015; 11
Ryu (B34) 2015; 7
Zeng (B53) 2014; 13
Newgard (B28) 2009; 9
Schellenberger (B35) 2011; 6
Peters (B31) 2013; 56
Ginsberg (B17) 2000; 106
Yizhak (B49) 2013; 4
Magnusson (B22) 2013; 34
O'Brien (B29) 2015; 161
Yizhak (B51) 2014b; 10
Conroy (B9) 2003; 24
Tan (B41) 2012; 11
Ferket (B12) 2012; 9
Agren (B3) 2014; 10
Mardinoglu (B24) 2014; 5
Galhardo (B13) 2014; 42
Zhang (B54) 2015; 31
Yizhak (B50) 2014a; 3
Anderson (B4) 2010; 56
Mardinoglu (B26) 2015; 34
Cobb (B8) 2013; 7
Ghaffari (B16) 2015; 5
Karr (B21) 2012; 150
Simmonds (B39) 2012; 19
Agren (B2) 2013; 9
Hippisley-Cox (B18) 2008; 336
Bolton (B5) 2013; 8
Shah (B36) 2010; 3
23982459 - Sci Rep. 2013;3:2532
21886097 - Nat Protoc. 2011 Aug 04;6(9):1290-307
26000478 - Cell. 2015 May 21;161(5):971-87
24853826 - J Proteome Res. 2014 Jul 3;13(7):3420-31
21930086 - Urol Oncol. 2011 Sep-Oct;29(5):551-7
17299196 - JAMA. 2007 Feb 14;297(6):611-9
25271417 - PLoS One. 2014 Oct 01;9(10):e106455
25735769 - Bioinformatics. 2015 Jul 15;31(14):2324-31
20173117 - Circ Cardiovasc Genet. 2010 Apr;3(2):207-14
24419221 - Nat Commun. 2014;5:3083
26244934 - Cell Metab. 2015 Aug 4;22(2):320-31
23242195 - Eur Heart J. 2013 Jul;34(26):1982-9
23293165 - J Med Screen. 2012 Dec;19(4):201-5
23824564 - Prostate. 2013 Oct;73(14):1547-60
18573856 - BMJ. 2008 Jun 28;336(7659):1475-82
26130389 - Mol Syst Biol. 2015 Jun 30;11(6):817
25613900 - Science. 2015 Jan 23;347(6220):1260419
22084000 - Mol Cell Proteomics. 2012 Feb;11(2):M111.010694
25559199 - Curr Opin Biotechnol. 2015 Aug;34:91-7
22615553 - PLoS Comput Biol. 2012;8(5):e1002518
26040780 - Sci Rep. 2015 Jun 04;5:10738
21423183 - Nat Med. 2011 Apr;17(4):448-53
24646661 - Mol Syst Biol. 2014 Mar 19;10:721
22929619 - BMC Syst Biol. 2012 Aug 29;6:114
25415239 - Elife. 2014 Nov 21;3:null
17090561 - Heart. 2007 Feb;93(2):172-6
22735334 - Mol Syst Biol. 2012 Jun 26;8:558
25937284 - Cell Rep. 2015 May 12;11(6):921-33
23439165 - J Diabetes Sci Technol. 2013 Jan 01;7(1):100-10
25730289 - Integr Biol (Camb). 2015 Aug;7(8):859-68
25640694 - Sci Rep. 2015 Feb 02;5:8183
9603539 - Circulation. 1998 May 12;97(18):1837-47
10953019 - J Clin Invest. 2000 Aug;106(4):453-8
23511207 - Mol Syst Biol. 2013;9:649
24153335 - Nat Commun. 2013;4:2632
22817898 - Cell. 2012 Jul 20;150(2):389-401
26467284 - Mol Syst Biol. 2015 Oct 14;11(10):831
22142312 - J Intern Med. 2012 Feb;271(2):142-54
19884488 - Clin Chem. 2010 Feb;56(2):177-85
23468967 - PLoS One. 2013;8(2):e57310
23919353 - J Med Chem. 2013 Nov 27;56(22):8955-71
24198249 - Nucleic Acids Res. 2014 Feb;42(3):1474-96
24792224 - Mol Divers. 2014 Aug;18(3):621-35
22627831 - Thromb Haemost. 2012 Oct;108(4):592-8
23442211 - EPMA J. 2013 Feb 25;4(1):7
19356713 - Cell Metab. 2009 Apr;9(4):311-26
24648543 - FASEB J. 2014 Jul;28(7):2901-14
23300388 - PLoS Med. 2012;9(12):e1001361
24622385 - Circulation. 2014 May 6;129(18):1821-31
25416956 - Cell. 2014 Nov 20;159(5):1212-26
12788299 - Eur Heart J. 2003 Jun;24(11):987-1003
26467283 - Mol Syst Biol. 2015 Oct 14;11(10):830
25086087 - Mol Syst Biol. 2014 Aug 01;10:744
23555215 - PLoS Comput Biol. 2013;9(3):e1002980
References_xml – volume: 8
  start-page: e57310
  year: 2013
  ident: B5
  article-title: Improvement in prediction of coronary heart disease risk over conventional risk factors using SNPs identified in genome-wide association studies
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057310
– volume: 8
  start-page: e1002518
  year: 2012
  ident: B1
  article-title: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002518
– volume: 31
  start-page: 2324
  year: 2015
  ident: B54
  article-title: Logical transformation of genome-scale metabolic models for gene level applications and analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv134
– volume: 73
  start-page: 1547
  year: 2013
  ident: B27
  article-title: Metabolomic signatures of aggressive prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.22704
– volume: 347
  start-page: 1260419
  year: 2015
  ident: B42
  article-title: Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 22
  start-page: 320
  year: 2015
  ident: B37
  article-title: Quantifying diet-induced metabolic changes of the human gut microbiome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.001
– volume: 56
  start-page: 8955
  year: 2013
  ident: B31
  article-title: Polypharmacology - foe or friend?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400856t
– volume: 34
  start-page: 1982
  year: 2013
  ident: B22
  article-title: A diabetes-predictive amino acid score and future cardiovascular disease
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehs424
– volume: 297
  start-page: 611
  year: 2007
  ident: B32
  article-title: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score
  publication-title: JAMA
  doi: 10.1001/jama.297.6.611
– volume: 10
  start-page: 721
  year: 2014
  ident: B3
  article-title: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
  publication-title: Mol. Syst. Biol.
  doi: 10.1002/msb.145122
– volume: 93
  start-page: 172
  year: 2007
  ident: B47
  article-title: Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC)
  publication-title: Heart
  doi: 10.1136/hrt.2006.108167
– volume: 11
  start-page: 830
  year: 2015
  ident: B7
  article-title: Reply to “Do genome-scale models need exact solvers or clearer standards?”
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20156548
– volume: 108
  start-page: 592
  year: 2012
  ident: B52
  article-title: Analytical challenges and technical limitations in assessing circulating miRNAs
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH12-02-0097
– volume: 7
  start-page: 100
  year: 2013
  ident: B8
  article-title: A novel fasting blood test for insulin resistance and prediabetes
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681300700112
– volume: 18
  start-page: 621
  year: 2014
  ident: B55
  article-title: System-level multi-target drug discovery from natural products with applications to cardiovascular diseases
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-014-9521-y
– volume: 9
  start-page: e1002980
  year: 2013
  ident: B2
  article-title: The RAVEN Toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002980
– volume: 19
  start-page: 201
  year: 2012
  ident: B39
  article-title: Risk estimation versus screening performance: a comparison of six risk algorithms for cardiovascular disease
  publication-title: J. Med. Screen.
  doi: 10.1258/jms.2012.012076
– volume: 8
  start-page: 558
  year: 2012
  ident: B6
  article-title: Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2012.21
– volume: 5
  start-page: 8183
  year: 2015
  ident: B16
  article-title: Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
  publication-title: Sci. Rep.
  doi: 10.1038/srep08183
– volume: 150
  start-page: 389
  year: 2012
  ident: B21
  article-title: A whole-cell computational model predicts phenotype from genotype
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.044
– volume: 11
  start-page: 831
  year: 2015
  ident: B11
  article-title: Do genome-scale models need exact solvers or clearer standards?
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156157
– volume: 5
  start-page: 10738
  year: 2015
  ident: B15
  article-title: Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism
  publication-title: Sci. Rep.
  doi: 10.1038/srep10738
– volume: 13
  start-page: 3420
  year: 2014
  ident: B53
  article-title: Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500390y
– volume: 9
  start-page: e1001361
  year: 2012
  ident: B12
  article-title: Personalized prediction of lifetime benefits with statin therapy for asymptomatic individuals: a modeling study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001361
– volume: 161
  start-page: 971
  year: 2015
  ident: B29
  article-title: Using genome-scale models to predict biological capabilities
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.019
– volume-title: The 10 Leading Causes of Death in the World, 2000 and 2012, Vol. 2015
  year: 2012
  ident: B30
– volume: 10
  start-page: 744
  year: 2014b
  ident: B51
  article-title: A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145746
– volume: 271
  start-page: 142
  year: 2012
  ident: B25
  article-title: Systems medicine and metabolic modelling
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2011.02493.x
– volume: 3
  start-page: 207
  year: 2010
  ident: B36
  article-title: Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.109.852814
– volume: 4
  start-page: 7
  year: 2013
  ident: B10
  article-title: Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine
  publication-title: EPMA J.
  doi: 10.1186/1878-5085-4-7
– volume: 336
  start-page: 1475
  year: 2008
  ident: B18
  article-title: Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2
  publication-title: BMJ
  doi: 10.1136/bmj.39609.449676.25
– volume: 3
  start-page: 2532
  year: 2013
  ident: B38
  article-title: Understanding the interactions between bacteria in the human gut through metabolic modeling
  publication-title: Sci. Rep.
  doi: 10.1038/srep02532
– volume: 4
  start-page: 2632
  year: 2013
  ident: B49
  article-title: Model-based identification of drug targets that revert disrupted metabolism and its application to ageing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3632
– volume: 106
  start-page: 453
  year: 2000
  ident: B17
  article-title: Insulin resistance and cardiovascular disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI10762
– volume: 9
  start-page: e106455
  year: 2014
  ident: B43
  article-title: Prediction of cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they predict individual rather than population risk?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0106455
– volume: 3
  start-page: e03641
  year: 2014a
  ident: B50
  article-title: Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer
  publication-title: Elife
  doi: 10.7554/eLife.03641
– volume: 6
  start-page: 1290
  year: 2011
  ident: B35
  article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.308
– volume: 11
  start-page: M111.010694
  year: 2012
  ident: B41
  article-title: Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.m111.010694
– volume: 6
  start-page: 114
  year: 2012
  ident: B20
  article-title: CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-114
– volume: 9
  start-page: 649
  year: 2013
  ident: B23
  article-title: Integration of clinical data with a genome-scale metabolic model of the human adipocyte
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.5
– volume: 29
  start-page: 551
  year: 2011
  ident: B14
  article-title: Urine metabolomics for kidney cancer detection and biomarker discovery
  publication-title: Urol. Oncol.
  doi: 10.1016/j.urolonc.2011.05.013
– volume: 7
  start-page: 859
  year: 2015
  ident: B34
  article-title: Reconstruction of genome-scale human metabolic models using omics data
  publication-title: Integr. Biol.
  doi: 10.1039/C5IB00002E
– volume: 9
  start-page: 311
  year: 2009
  ident: B28
  article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.02.002
– volume: 5
  start-page: 3083
  year: 2014
  ident: B24
  article-title: Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4083
– volume: 56
  start-page: 177
  year: 2010
  ident: B4
  article-title: The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2009.126706
– volume: 24
  start-page: 987
  year: 2003
  ident: B9
  article-title: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project
  publication-title: Eur. Heart J.
  doi: 10.1016/S0195-668X(03)00114-3
– volume: 11
  start-page: 817
  year: 2015
  ident: B48
  article-title: Modeling cancer metabolism on a genome scale
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145307
– volume: 129
  start-page: 1821
  year: 2014
  ident: B40
  article-title: Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.002500
– volume: 11
  start-page: 921
  year: 2015
  ident: B44
  article-title: Transcriptome and proteome driven reconstruction of the human myocyte metabolic model and its use for identification of metabolic markers for type 2 diabetes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.010
– volume: 97
  start-page: 1837
  year: 1998
  ident: B46
  article-title: Prediction of coronary heart disease using risk factor categories
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.18.1837
– volume: 17
  start-page: 448
  year: 2011
  ident: B45
  article-title: Metabolite profiles and the risk of developing diabetes
  publication-title: Nat. Med.
  doi: 10.1038/nm.2307
– volume: 34
  start-page: 91
  year: 2015
  ident: B26
  article-title: New paradigms for metabolic modeling of human cells
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.12.013
– volume: 42
  start-page: 1474
  year: 2014
  ident: B13
  article-title: Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt989
– volume: 28
  start-page: 2901
  year: 2014
  ident: B19
  article-title: The human liver-specific proteome defined by transcriptomics and antibody-based profiling
  publication-title: FASEB J.
  doi: 10.1096/fj.14-250555
– volume: 159
  start-page: 1212
  year: 2014
  ident: B33
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
– reference: 24622385 - Circulation. 2014 May 6;129(18):1821-31
– reference: 25416956 - Cell. 2014 Nov 20;159(5):1212-26
– reference: 23982459 - Sci Rep. 2013;3:2532
– reference: 24198249 - Nucleic Acids Res. 2014 Feb;42(3):1474-96
– reference: 24153335 - Nat Commun. 2013;4:2632
– reference: 19356713 - Cell Metab. 2009 Apr;9(4):311-26
– reference: 23468967 - PLoS One. 2013;8(2):e57310
– reference: 17299196 - JAMA. 2007 Feb 14;297(6):611-9
– reference: 10953019 - J Clin Invest. 2000 Aug;106(4):453-8
– reference: 22929619 - BMC Syst Biol. 2012 Aug 29;6:114
– reference: 21930086 - Urol Oncol. 2011 Sep-Oct;29(5):551-7
– reference: 26040780 - Sci Rep. 2015 Jun 04;5:10738
– reference: 22084000 - Mol Cell Proteomics. 2012 Feb;11(2):M111.010694
– reference: 25559199 - Curr Opin Biotechnol. 2015 Aug;34:91-7
– reference: 22817898 - Cell. 2012 Jul 20;150(2):389-401
– reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53
– reference: 9603539 - Circulation. 1998 May 12;97(18):1837-47
– reference: 18573856 - BMJ. 2008 Jun 28;336(7659):1475-82
– reference: 26467283 - Mol Syst Biol. 2015 Oct 14;11(10):830
– reference: 22735334 - Mol Syst Biol. 2012 Jun 26;8:558
– reference: 25415239 - Elife. 2014 Nov 21;3:null
– reference: 23439165 - J Diabetes Sci Technol. 2013 Jan 01;7(1):100-10
– reference: 25937284 - Cell Rep. 2015 May 12;11(6):921-33
– reference: 22615553 - PLoS Comput Biol. 2012;8(5):e1002518
– reference: 24646661 - Mol Syst Biol. 2014 Mar 19;10:721
– reference: 21886097 - Nat Protoc. 2011 Aug 04;6(9):1290-307
– reference: 26000478 - Cell. 2015 May 21;161(5):971-87
– reference: 25735769 - Bioinformatics. 2015 Jul 15;31(14):2324-31
– reference: 26467284 - Mol Syst Biol. 2015 Oct 14;11(10):831
– reference: 19884488 - Clin Chem. 2010 Feb;56(2):177-85
– reference: 24648543 - FASEB J. 2014 Jul;28(7):2901-14
– reference: 20173117 - Circ Cardiovasc Genet. 2010 Apr;3(2):207-14
– reference: 25086087 - Mol Syst Biol. 2014 Aug 01;10:744
– reference: 25640694 - Sci Rep. 2015 Feb 02;5:8183
– reference: 22627831 - Thromb Haemost. 2012 Oct;108(4):592-8
– reference: 25730289 - Integr Biol (Camb). 2015 Aug;7(8):859-68
– reference: 26244934 - Cell Metab. 2015 Aug 4;22(2):320-31
– reference: 24419221 - Nat Commun. 2014;5:3083
– reference: 23242195 - Eur Heart J. 2013 Jul;34(26):1982-9
– reference: 23442211 - EPMA J. 2013 Feb 25;4(1):7
– reference: 24792224 - Mol Divers. 2014 Aug;18(3):621-35
– reference: 25613900 - Science. 2015 Jan 23;347(6220):1260419
– reference: 25271417 - PLoS One. 2014 Oct 01;9(10):e106455
– reference: 23555215 - PLoS Comput Biol. 2013;9(3):e1002980
– reference: 24853826 - J Proteome Res. 2014 Jul 3;13(7):3420-31
– reference: 23919353 - J Med Chem. 2013 Nov 27;56(22):8955-71
– reference: 17090561 - Heart. 2007 Feb;93(2):172-6
– reference: 23824564 - Prostate. 2013 Oct;73(14):1547-60
– reference: 23293165 - J Med Screen. 2012 Dec;19(4):201-5
– reference: 26130389 - Mol Syst Biol. 2015 Jun 30;11(6):817
– reference: 22142312 - J Intern Med. 2012 Feb;271(2):142-54
– reference: 23300388 - PLoS Med. 2012;9(12):e1001361
– reference: 12788299 - Eur Heart J. 2003 Jun;24(11):987-1003
– reference: 23511207 - Mol Syst Biol. 2013;9:649
SSID ssj0000402001
Score 2.2539408
SecondaryResourceType review_article
Snippet Cardiovascular disease (CVD) continues to constitute the leading cause of death globally. CVD risk stratification is an essential tool to sort through...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2
SubjectTerms Metabolism
Network medicine
patient stratification
Physiology
Risk estimation
Systems Biology
Systems Medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB7hJSOhShyitWMnto9LH6oQrXrYot4sP9mKJUHNFgEX_jpjJ7tqRAUXrslYsebhmfFMvkHojXeV9zSEEnTXlNyCpZvGxpLUlY1GxsblcW8np83xOX9_UV_cGPWVesIGeOCBcTNwn4rHQJ0H1y54sF4SFSTz3lAZlU-nL_i8G8lUPoNTWkToUJeELEzNYropSK1cTYYsrCZ-KMP13xZj_tkqOQEUzU7o6D66N0aPeD7s-gG6E9qHaHfeQub85Qfew7mfM1-U76JfZ5s4-2fweH_Sd4oPhroMPrtKhZokHGxajxebtnNc4jke6ga4i_jwezoK2k94A2Yb-kx_2n0LKzyinuOTsU6PF1236h-h86PDxf5xOY5bKB0kHesymMoxC_YfDU-QOZRZ6SsSfVTp71imjPAS2B8ZE9wQ4ilrQm24k5UgyjH2GO20XRueIsxqFh2TwoZYcScaZRoQWa0krUW0FS3QbMN87UYs8jQSY6UhJ0ni0llcOolLZ3EV6O12xdcBh-MvtO-SPLd0CUE7PwC90qNe6X_pVYFeb7RBg8WlMoppQ3fdayogimOpPFygJ4N2bD9VJTh_CHoLJCZ6M9nL9E17ucyo3lxUjeBNgfYGDZssObj8OM_b_7xeakgJIYkt0IdbCEeIqKV2yzx_p9d90IJCmMaI1E0EdnEblFZeBE2k41Eo4qx1z_4H056ju0kMwxXVC7SzvroOLyFoW9tX2T5_Awy5RIQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Personalized Cardiovascular Disease Prediction and Treatment—A Review of Existing Strategies and Novel Systems Medicine Tools
URI https://www.ncbi.nlm.nih.gov/pubmed/26858650
https://www.proquest.com/docview/1764337065
https://pubmed.ncbi.nlm.nih.gov/PMC4726746
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182148
https://research.chalmers.se/publication/232409
https://doaj.org/article/93794fe1cd51474ebd809e83dda18f9d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBQHmER2UkVIlDaBJ77eSA0NKHKsRWPeyivVl-dqsuCexuUYvEf2fGyS6KWHHimtiJ45mxv_FMviHkjbOFc7n3KeiuTrkBS9fChDQbFCboMggby72NzsTphH-aDqZ_fo_uJnC51bXDelKTxfzdzffbD2Dw79HjhP32IOAhAGZpichGCAvyXdiXJJrpqAP7cV1GVynWQ86FwOyLYtrGLbc-pLdPRTr_bRj071TKHuFo3KROHpD7Hbqkw1YdHpI7vn5Edoc1eNZfb-k-jfme8SB9l_w6X-Pwn97Rw15eKj1q4zb0fIGBHBQe1bWj43VaejqkbVSBNoEe3-BCUV_QNdWtX8bWZ80PP6cdJzoddVF8Om6a-fIxmZwcjw9P064YQ2rBJVmlXheWGVgdguZIqJMzU7oiCy5U-O8sq7R0pXFlYExynWUuZ8IPNLdlIbPKMvaE7NRN7Z8RygYsWFZK40PBrRSVFr5EJsF8IIMp8oQcrKde2Y6pHAtmzBV4LCgsFYWlUFgqCishbzc9vrUsHf9o-xGluWmH_NrxQrO4UJ25KgBtFQ8-tw4ApeQePiyrYJDO6bwMlUvI67UuKLBHDLLo2jfXS5VLwHgMg8cJedrqxuZVBZL9AyROiOxpTW8s_Tv15SxyfnNZCMlFQvZb_ep1Obr8MozDv1rNFDiM4OIm5POWhh2B1EzZWazOs1RLr2QOII5lpRIBposbX6nKSa-y0vIgq8waY5__38e9IPdQIO1R1kuys1pc-1cA7lZmLx6K7EXL_Q2R5lLP
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Cardiovascular+Disease+Prediction+and+Treatment-A+Review+of+Existing+Strategies+and+Novel+Systems+Medicine+Tools&rft.jtitle=Frontiers+in+physiology&rft.au=Bj%C3%B6rnson%2C+Elias&rft.au=Bor%C3%A9n%2C+Jan&rft.au=Mardinoglu%2C+Adil&rft.date=2016&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=7&rft.issue=JAN&rft_id=info:doi/10.3389%2Ffphys.2016.00002&rft.externalDocID=oai_research_chalmers_se_71415308_6f89_4be9_9d7e_08c4f790cbbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon