A real-time classification algorithm for EEG-based BCI driven by self-induced emotions
The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 122; no. 3; pp. 293 - 303 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed.
The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM.
Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels.
The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities. |
---|---|
AbstractList | The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed.
The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM.
Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels.
The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities. Abstract Background and objective The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities. |
Author | Petracca, Andrea Placidi, Giuseppe Spezialetti, Matteo Iacoviello, Daniela |
Author_xml | – sequence: 1 givenname: Daniela surname: Iacoviello fullname: Iacoviello, Daniela email: iacoviello@dis.uniroma1.it organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy – sequence: 2 givenname: Andrea surname: Petracca fullname: Petracca, Andrea organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy – sequence: 3 givenname: Matteo surname: Spezialetti fullname: Spezialetti, Matteo organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy – sequence: 4 givenname: Giuseppe surname: Placidi fullname: Placidi, Giuseppe organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26358282$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1KwzAcxYNMdE5fwAvJC7QmaZN2IoKOOYWBF37chjT5VzP7MZJusLc3dXozcF4FkvM74ZxzggZN2wBC55TElFBxuYh1vSxiRiiPSR4TSg_QkOYZizIu-AANg2gcMUGyY3Ti_YIQwjgXR-iYiYTnLGdD9HaLHagq6mwNWFfKe1tarTrbNlhV762z3UeNy9bh6XQWFcqDwXeTR2ycXUODiw32UJWRbcxKhyeo2x71p-iwVJWHs59zhF7vpy-Th2j-NHuc3M4jzTPRRUCJGfOUZDxNiowKyrgQKQHGiUoMqExTkxcmTVMAkYxVKphSuSjDXcLLgiYjdLH1Xa6KGoxcOlsrt5G_AYMg3wq0a713UEptu-94nVO2kpTIvku5kH2Xsu9SklyGLgPKdtBf973Q9RaCkHptwUmvLTShG-tAd9K0dj9-s4PryjZhkOoTNuAX7co1oU9JpWeSyOd-4X5gysO2jGbB4Opvg_9-_wI9nbRt |
CitedBy_id | crossref_primary_10_1007_s11042_020_09354_y crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_1016_j_eswa_2020_113768 crossref_primary_10_3389_frobt_2020_00125 crossref_primary_10_1109_ACCESS_2022_3155647 crossref_primary_10_1016_j_cmpb_2023_107380 crossref_primary_10_1016_j_bspc_2021_102648 crossref_primary_10_1088_1741_2552_14_1_011001 crossref_primary_10_1109_TNSRE_2020_2978951 crossref_primary_10_1016_j_inffus_2018_10_009 crossref_primary_10_1177_09544119231187287 crossref_primary_10_3389_fninf_2018_00066 crossref_primary_10_1080_21681163_2018_1479312 crossref_primary_10_1109_ACCESS_2022_3219844 crossref_primary_10_1007_s12243_019_00740_8 crossref_primary_10_1080_03091902_2021_1992519 crossref_primary_10_1109_ACCESS_2020_3035539 crossref_primary_10_35429_EJB_2020_12_7_1_9 crossref_primary_10_3390_s20185083 crossref_primary_10_1109_ACCESS_2020_2979898 crossref_primary_10_1109_TITS_2022_3166631 crossref_primary_10_1016_j_cogsys_2018_06_009 crossref_primary_10_3389_fninf_2022_997282 crossref_primary_10_1007_s00521_023_08343_0 crossref_primary_10_1007_s11517_019_01989_w crossref_primary_10_1007_s11277_019_06328_8 crossref_primary_10_1109_THMS_2021_3137015 crossref_primary_10_3389_fnins_2022_985709 crossref_primary_10_3390_brainsci10100687 crossref_primary_10_3390_s20226535 crossref_primary_10_1016_j_jneumeth_2017_04_008 crossref_primary_10_1016_j_cmpb_2017_03_016 crossref_primary_10_3389_fpsyg_2022_924793 crossref_primary_10_1080_0144929X_2021_1877356 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_1109_TAFFC_2017_2714671 crossref_primary_10_3389_fnins_2021_582608 crossref_primary_10_1007_s11042_018_5618_0 crossref_primary_10_1088_1741_2552_ad5b19 crossref_primary_10_3233_THC_174747 crossref_primary_10_1016_j_cmpb_2016_12_005 crossref_primary_10_1080_10255842_2022_2143714 crossref_primary_10_1016_j_compbiomed_2020_103810 crossref_primary_10_1109_TCDS_2016_2632130 crossref_primary_10_1109_TDSC_2021_3060775 crossref_primary_10_1080_0144929X_2018_1485745 crossref_primary_10_1038_s41598_024_61832_7 crossref_primary_10_1016_j_measurement_2017_06_006 crossref_primary_10_1371_journal_pone_0150584 crossref_primary_10_1007_s11831_016_9194_z |
Cites_doi | 10.1113/jphysiol.2006.125633 10.1109/TITB.2006.879600 10.1109/86.847810 10.1212/01.WNL.0000158616.43002.6D 10.1109/TSMC.2014.2313317 10.1111/j.1469-8986.2006.00456.x 10.1038/nn947 10.1038/nature04970 10.1371/journal.pone.0095415 10.1016/S1665-6423(13)71524-4 10.1016/S0166-2236(96)10065-5 10.1016/j.neucom.2015.02.034 10.1016/j.conengprac.2004.08.002 10.1016/S0167-8760(00)00145-8 10.1016/j.cviu.2013.11.009 10.1371/journal.pone.0066032 10.1109/TSMCB.2011.2177968 10.1103/PhysRevE.57.932 10.1145/1961189.1961199 10.1016/j.eswa.2010.06.065 10.1016/j.dsp.2007.05.009 10.1016/j.cmpb.2004.10.009 10.1016/j.eswa.2006.02.005 10.1109/5.939829 10.1016/j.bandc.2015.02.001 10.1080/01621459.1983.10477973 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ireland Ltd Elsevier Ireland Ltd Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.cmpb.2015.08.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 303 |
ExternalDocumentID | 26358282 10_1016_j_cmpb_2015_08_011 S0169260715002217 1_s2_0_S0169260715002217 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c576t-e10d95407543b7161256640e250a3dea7c1d8bd444ee639a462aa86f8bd35fb13 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Mon Jul 21 05:48:11 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 02:40:44 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Fri May 16 00:31:31 EDT 2025 Tue Aug 26 16:33:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Affective computing BCI Classification algorithm Principal components analysis EEG signals Self-induced emotions |
Language | English |
License | Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-e10d95407543b7161256640e250a3dea7c1d8bd444ee639a462aa86f8bd35fb13 |
OpenAccessLink | http://hdl.handle.net/11573/840800 |
PMID | 26358282 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_26358282 crossref_citationtrail_10_1016_j_cmpb_2015_08_011 crossref_primary_10_1016_j_cmpb_2015_08_011 elsevier_sciencedirect_doi_10_1016_j_cmpb_2015_08_011 elsevier_clinicalkeyesjournals_1_s2_0_S0169260715002217 elsevier_clinicalkey_doi_10_1016_j_cmpb_2015_08_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2015 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Guler, Ubeyli (bib0315) 2007; 11 Jasper (bib0450) 1958; 10 Chang, Lin (bib0345) 2011; 2 Bhuvaneswari, Kumar (bib0375) 2013; 63 Benimeli, Sharman (bib0330) 2007 Kassam, Markey, Cherkassky, Loewenstein, Just (bib0470) 2013; 8 Štastny, Sovka, Stancak (bib0320) 2003; 12 Mamun, Al-Kadi, Marufuzzaman (bib0440) 2013; 11 Basar, Basar-Eroglu, Karakas, Schumann (bib0410) 2001; 39 Cvetkovic, Übeyli, Cosic (bib0460) 2008; 18 Escolano, Antelis, Minguez (bib0295) 2012; 42 Hari, Salmelin (bib0255) 1997; 20 Srinivasan (bib0265) 1999; 1 Hochberg, Serruya, Friehs, Mukand, Saleh, Caplan, Branner, Chen, Penn, Donoghue (bib0280) 2006; 442 Omerhodzic, Avdakovic, Nuhanovic, Dizdarevic (bib0400) 2013; 61 Lin, Wang, Wu, Jeng, Chen (bib0390) 2008 Dahanayake, Upton (bib0305) 1994; 2 Christoforou, Haralick, Sajda, Parra (bib0355) 2010; 11 EnobioNE Daubechies (bib0405) 1992 Subasi (bib0465) 2007; 32 Birbaumer, Cohen (bib0270) 2007; 579 BCI2000 Kübler, Nijboer, Mellinger, Vaughan, Pawelzik, Schalk, McFarland, Birbaumer, Wolpaw (bib0275) 2005; 64 Efron (bib0430) 1983; 78 Balconi, Grippa, Vanutelli (bib0385) 2015; 95 . Song, Guo, Mei (bib0415) 2010 : Poyhonen, Arkkio, Jover, Hyotyniemi (bib0325) 2005; 13 Babiloni, Cincotti, Lazzarini, Millán, Mouriño, Varsta, Heikkonen, Bianchi, Marciani (bib0290) 2000; 8 Gandhi, Prasad, Coyle, Behera, McGinnity (bib0300) 2014; 44 Birbaumer (bib0245) 2006; 43 Placidi, Avola, Petracca, Sgallari, Spezialetti (bib0250) 2015; 160 Subasi, Ercelebi (bib0310) 2005; 78 Panda, Khobragade, Jambhule, Jengthe, Pal, Gandhi (bib0335) 2010 Nasehi, Pourghassem (bib0395) 2012; 8 Rached, Perkusich (bib0350) 2013 Chih-Wei, Chih-Chung, Chih-Jen (bib0425) 2003 Pfurtscheller, Neuper (bib0285) 2002; 89 Wolpaw, Birbaumer, Mcfarland, Pürtsceller, Vaughan (bib0240) 2002; 113 Subasi, Gürsoy (bib0360) 2010; 37 Donoghue (bib0260) 2002; 5 Blanco, Figliola, Quian Quiroga, Rosso, Serrano (bib0435) 1998; 57 Lee, Hsieh (bib0380) 2014; 9 Boser, Guyon, Vapnik (bib0420) 1992 Bouwmans, Zahzah (bib0365) 2014; 122 Das, Mohapatra, Panda (bib0340) 2013; 1 Fabris, Facchinetti, Sparacino, Cobelli (bib0370) 2014 Balconi (10.1016/j.cmpb.2015.08.011_bib0385) 2015; 95 Daubechies (10.1016/j.cmpb.2015.08.011_bib0405) 1992 Efron (10.1016/j.cmpb.2015.08.011_bib0430) 1983; 78 Placidi (10.1016/j.cmpb.2015.08.011_bib0250) 2015; 160 Pfurtscheller (10.1016/j.cmpb.2015.08.011_bib0285) 2002; 89 10.1016/j.cmpb.2015.08.011_bib0445 Song (10.1016/j.cmpb.2015.08.011_bib0415) 2010 Guler (10.1016/j.cmpb.2015.08.011_bib0315) 2007; 11 Omerhodzic (10.1016/j.cmpb.2015.08.011_bib0400) 2013; 61 Blanco (10.1016/j.cmpb.2015.08.011_bib0435) 1998; 57 Escolano (10.1016/j.cmpb.2015.08.011_bib0295) 2012; 42 Subasi (10.1016/j.cmpb.2015.08.011_bib0465) 2007; 32 Gandhi (10.1016/j.cmpb.2015.08.011_bib0300) 2014; 44 Christoforou (10.1016/j.cmpb.2015.08.011_bib0355) 2010; 11 Birbaumer (10.1016/j.cmpb.2015.08.011_bib0270) 2007; 579 Poyhonen (10.1016/j.cmpb.2015.08.011_bib0325) 2005; 13 Basar (10.1016/j.cmpb.2015.08.011_bib0410) 2001; 39 Wolpaw (10.1016/j.cmpb.2015.08.011_bib0240) 2002; 113 Štastny (10.1016/j.cmpb.2015.08.011_bib0320) 2003; 12 Subasi (10.1016/j.cmpb.2015.08.011_bib0310) 2005; 78 Srinivasan (10.1016/j.cmpb.2015.08.011_bib0265) 1999; 1 10.1016/j.cmpb.2015.08.011_bib0455 Chih-Wei (10.1016/j.cmpb.2015.08.011_bib0425) 2003 Lee (10.1016/j.cmpb.2015.08.011_bib0380) 2014; 9 Birbaumer (10.1016/j.cmpb.2015.08.011_bib0245) 2006; 43 Bouwmans (10.1016/j.cmpb.2015.08.011_bib0365) 2014; 122 Mamun (10.1016/j.cmpb.2015.08.011_bib0440) 2013; 11 Hari (10.1016/j.cmpb.2015.08.011_bib0255) 1997; 20 Jasper (10.1016/j.cmpb.2015.08.011_bib0450) 1958; 10 Fabris (10.1016/j.cmpb.2015.08.011_bib0370) 2014 Dahanayake (10.1016/j.cmpb.2015.08.011_bib0305) 1994; 2 Bhuvaneswari (10.1016/j.cmpb.2015.08.011_bib0375) 2013; 63 Rached (10.1016/j.cmpb.2015.08.011_bib0350) 2013 Hochberg (10.1016/j.cmpb.2015.08.011_bib0280) 2006; 442 Lin (10.1016/j.cmpb.2015.08.011_bib0390) 2008 Kassam (10.1016/j.cmpb.2015.08.011_bib0470) 2013; 8 Kübler (10.1016/j.cmpb.2015.08.011_bib0275) 2005; 64 Donoghue (10.1016/j.cmpb.2015.08.011_bib0260) 2002; 5 Panda (10.1016/j.cmpb.2015.08.011_bib0335) 2010 Das (10.1016/j.cmpb.2015.08.011_bib0340) 2013; 1 Babiloni (10.1016/j.cmpb.2015.08.011_bib0290) 2000; 8 Chang (10.1016/j.cmpb.2015.08.011_bib0345) 2011; 2 Subasi (10.1016/j.cmpb.2015.08.011_bib0360) 2010; 37 Boser (10.1016/j.cmpb.2015.08.011_bib0420) 1992 Benimeli (10.1016/j.cmpb.2015.08.011_bib0330) 2007 Nasehi (10.1016/j.cmpb.2015.08.011_bib0395) 2012; 8 Cvetkovic (10.1016/j.cmpb.2015.08.011_bib0460) 2008; 18 |
References_xml | – volume: 64 start-page: 1775 year: 2005 end-page: 1777 ident: bib0275 article-title: Patients with ALS can use sensorimotor rhythms to operate a brain computer interface publication-title: Neurology – volume: 13 start-page: 759 year: 2005 end-page: 769 ident: bib0325 article-title: Coupling pairwise support vector machines for fault classification publication-title: Control Eng. Pract. – reference: EnobioNE – volume: 95 start-page: 67 year: 2015 end-page: 76 ident: bib0385 article-title: What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing publication-title: Brain Cogn. – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: bib0465 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. – volume: 579 start-page: 621 year: 2007 end-page: 636 ident: bib0270 article-title: Brain–computer interfaces: communication and restoration of movement in paralysis publication-title: J. Physiol. (Lond.) – volume: 11 start-page: 156 year: 2013 end-page: 160 ident: bib0440 article-title: Effectiveness of wavelet denoising on electroencephalogram signals publication-title: J. Appl. Res. Technol. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib0240 article-title: Brain–computer interfaces for communication and control publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 11 start-page: 665 year: 2010 end-page: 685 ident: bib0355 article-title: Second-order bilinear discriminant analysis publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 41 year: 2013 end-page: 49 ident: bib0340 article-title: Epilepsy disorder detection from EEG signal publication-title: J. Intell. Comput. Appl. Sci. – volume: 122 start-page: 22 year: 2014 end-page: 34 ident: bib0365 article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance publication-title: Comput. Vis. Image Underst. – volume: 11 start-page: 117 year: 2007 end-page: 126 ident: bib0315 article-title: Multiclass support vector machines for EEG-signals classification publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 44 start-page: 1278 year: 2014 end-page: 1285 ident: bib0300 article-title: EEG-based mobile robot control through an adaptive brain robot interface publication-title: IEEE Trans. Syst. Man Cybern.: B – volume: 12 start-page: 51 year: 2003 end-page: 55 ident: bib0320 article-title: EEG signal classification: introduction to the problem publication-title: Radioengineering – volume: 78 start-page: 87 year: 2005 end-page: 99 ident: bib0310 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput. Methods Prog. Biomed. – volume: 8 start-page: 186 year: 2000 end-page: 188 ident: bib0290 article-title: Linear classification of low-resolution EEG patterns produced by imagined hand movements publication-title: IEEE Trans. Rehabil. Eng. Piscataway – reference: : – volume: 2 start-page: 187 year: 1994 end-page: 190 ident: bib0305 article-title: On line methodology for detection of suspected epileptic seizures from electroencephalogram publication-title: Control Eng. Pract. – volume: 89 year: 2002 ident: bib0285 article-title: Motor imagery and direct brain–computer communication publication-title: Proc. IEEE – volume: 57 start-page: 932 year: 1998 end-page: 940 ident: bib0435 article-title: Time–frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function publication-title: Phys. Rev. E – volume: 43 start-page: 517 year: 2006 end-page: 532 ident: bib0245 article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control publication-title: Psychophysiology – volume: 9 start-page: 1 year: 2014 end-page: 13 ident: bib0380 article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns publication-title: PLOS ONE – start-page: 127 year: 2008 end-page: 130 ident: bib0390 article-title: Support vector machine for EEG signal classification during listening to emotional music publication-title: Proceedings of IEEE 10th Workshop Multimedial Signal Processing IEEE – volume: 10 start-page: 371 year: 1958 end-page: 375 ident: bib0450 article-title: The ten-twenty electrode system of the International Federation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 39 start-page: 241 year: 2001 end-page: 248 ident: bib0410 article-title: Gamma, alpha, delta, and theta oscillations govern cognitive processes publication-title: Int. J. Psychophysiol. – year: 2013 ident: bib0350 article-title: Emotion recognition based on brain computer interface systems publication-title: Brain–Computer Interface Systems – Recent Progress and Future Prospects – volume: 37 year: 2010 ident: bib0360 article-title: Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM publication-title: Expert Syst. Appl. – start-page: 144 year: 1992 end-page: 152 ident: bib0420 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory – volume: 8 start-page: 1 year: 2013 end-page: 11 ident: bib0470 article-title: Identifying emotions on the basis of neural activation publication-title: PLOS ONE – volume: 1 start-page: 102 year: 1999 end-page: 111 ident: bib0265 article-title: Methods to improve the spatial resolution of EEG publication-title: Int. J. Bioelectromagn. – start-page: 361 year: 2007 end-page: 366 ident: bib0330 article-title: Electroencephalogram signal classification for brain computer interfaces using wavelets and support vector machines publication-title: ESAN’2007 Proceedings European Symposium on Artificial Neural Networks – volume: 5 start-page: 1085 year: 2002 end-page: 1088 ident: bib0260 article-title: Connecting cortex to machines: recent advances in brain interfaces publication-title: Nat. Neurosci. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib0345 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – reference: BCI2000: – volume: 20 start-page: 44 year: 1997 end-page: 49 ident: bib0255 article-title: Human cortical oscillations: a neuromagnetic view through the skull publication-title: Trends Neurosci. – year: 1992 ident: bib0405 article-title: Ten Lectures on Wavelet, Philadelphia – volume: 160 start-page: 308 year: 2015 end-page: 318 ident: bib0250 article-title: Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors publication-title: Neurocomputing – volume: 61 start-page: 1190 year: 2013 end-page: 1195 ident: bib0400 article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier publication-title: World Acad. Sci. Eng. Technol. – volume: 18 start-page: 861 year: 2008 end-page: 874 ident: bib0460 article-title: Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study publication-title: Digit. Signal Process. – volume: 78 start-page: 316 year: 1983 end-page: 331 ident: bib0430 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J. – Am. Stat. Assoc. – reference: . – start-page: 27 year: 2010 end-page: 30 ident: bib0415 article-title: Feature selection using principal component analysis publication-title: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization – volume: 42 start-page: 793 year: 2012 end-page: 804 ident: bib0295 article-title: A telepresence mobile robot controlled with non invasive brain–computer interface publication-title: IEEE Trans. Syst. Man Cybern.: B – volume: 8 start-page: 87 year: 2012 end-page: 99 ident: bib0395 article-title: An optimal EEG-based emotion recognition algorithm using Gabor features publication-title: WSEAS Trans. Signal Process. – volume: 442 start-page: 164 year: 2006 end-page: 171 ident: bib0280 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature – start-page: 405 year: 2010 end-page: 408 ident: bib0335 article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction publication-title: Proceedings International Conference on Systems in Medicine and Biology – year: 2003 ident: bib0425 article-title: A Practical Guide to Support Vector Classification – year: 2014 ident: bib0370 article-title: Sparse principal component analysis for the parsimonious description of glucose variability in diabetes publication-title: IEEE – volume: 63 start-page: 1 year: 2013 end-page: 5 ident: bib0375 article-title: Support vector machine technique for EEG signals publication-title: Int. J. Comput. Appl. – start-page: 405 year: 2010 ident: 10.1016/j.cmpb.2015.08.011_bib0335 article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction – start-page: 27 year: 2010 ident: 10.1016/j.cmpb.2015.08.011_bib0415 article-title: Feature selection using principal component analysis – volume: 579 start-page: 621 issue: 3 year: 2007 ident: 10.1016/j.cmpb.2015.08.011_bib0270 article-title: Brain–computer interfaces: communication and restoration of movement in paralysis publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2006.125633 – volume: 1 start-page: 102 issue: 1 year: 1999 ident: 10.1016/j.cmpb.2015.08.011_bib0265 article-title: Methods to improve the spatial resolution of EEG publication-title: Int. J. Bioelectromagn. – volume: 11 start-page: 117 issue: 2 year: 2007 ident: 10.1016/j.cmpb.2015.08.011_bib0315 article-title: Multiclass support vector machines for EEG-signals classification publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.879600 – year: 2003 ident: 10.1016/j.cmpb.2015.08.011_bib0425 – volume: 8 start-page: 186 issue: 2 year: 2000 ident: 10.1016/j.cmpb.2015.08.011_bib0290 article-title: Linear classification of low-resolution EEG patterns produced by imagined hand movements publication-title: IEEE Trans. Rehabil. Eng. Piscataway doi: 10.1109/86.847810 – year: 2014 ident: 10.1016/j.cmpb.2015.08.011_bib0370 article-title: Sparse principal component analysis for the parsimonious description of glucose variability in diabetes – volume: 64 start-page: 1775 issue: 10 year: 2005 ident: 10.1016/j.cmpb.2015.08.011_bib0275 article-title: Patients with ALS can use sensorimotor rhythms to operate a brain computer interface publication-title: Neurology doi: 10.1212/01.WNL.0000158616.43002.6D – volume: 44 start-page: 1278 issue: 9 year: 2014 ident: 10.1016/j.cmpb.2015.08.011_bib0300 article-title: EEG-based mobile robot control through an adaptive brain robot interface publication-title: IEEE Trans. Syst. Man Cybern.: B doi: 10.1109/TSMC.2014.2313317 – volume: 2 start-page: 187 issue: 5 year: 1994 ident: 10.1016/j.cmpb.2015.08.011_bib0305 article-title: On line methodology for detection of suspected epileptic seizures from electroencephalogram publication-title: Control Eng. Pract. – volume: 43 start-page: 517 issue: 6 year: 2006 ident: 10.1016/j.cmpb.2015.08.011_bib0245 article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00456.x – year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0350 article-title: Emotion recognition based on brain computer interface systems – volume: 5 start-page: 1085 year: 2002 ident: 10.1016/j.cmpb.2015.08.011_bib0260 article-title: Connecting cortex to machines: recent advances in brain interfaces publication-title: Nat. Neurosci. doi: 10.1038/nn947 – volume: 442 start-page: 164 issue: 7099 year: 2006 ident: 10.1016/j.cmpb.2015.08.011_bib0280 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 9 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.cmpb.2015.08.011_bib0380 article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns publication-title: PLOS ONE doi: 10.1371/journal.pone.0095415 – volume: 61 start-page: 1190 year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0400 article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier publication-title: World Acad. Sci. Eng. Technol. – volume: 11 start-page: 156 year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0440 article-title: Effectiveness of wavelet denoising on electroencephalogram signals publication-title: J. Appl. Res. Technol. doi: 10.1016/S1665-6423(13)71524-4 – start-page: 127 year: 2008 ident: 10.1016/j.cmpb.2015.08.011_bib0390 article-title: Support vector machine for EEG signal classification during listening to emotional music – volume: 12 start-page: 51 issue: 3 year: 2003 ident: 10.1016/j.cmpb.2015.08.011_bib0320 article-title: EEG signal classification: introduction to the problem publication-title: Radioengineering – volume: 63 start-page: 1 issue: 13 year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0375 article-title: Support vector machine technique for EEG signals publication-title: Int. J. Comput. Appl. – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.cmpb.2015.08.011_bib0240 article-title: Brain–computer interfaces for communication and control publication-title: Electroencephalogr. Clin. Neurophysiol. – start-page: 361 year: 2007 ident: 10.1016/j.cmpb.2015.08.011_bib0330 article-title: Electroencephalogram signal classification for brain computer interfaces using wavelets and support vector machines – volume: 20 start-page: 44 issue: 1 year: 1997 ident: 10.1016/j.cmpb.2015.08.011_bib0255 article-title: Human cortical oscillations: a neuromagnetic view through the skull publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(96)10065-5 – volume: 160 start-page: 308 year: 2015 ident: 10.1016/j.cmpb.2015.08.011_bib0250 article-title: Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.034 – volume: 1 start-page: 41 issue: 1 year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0340 article-title: Epilepsy disorder detection from EEG signal publication-title: J. Intell. Comput. Appl. Sci. – year: 1992 ident: 10.1016/j.cmpb.2015.08.011_bib0405 – volume: 13 start-page: 759 year: 2005 ident: 10.1016/j.cmpb.2015.08.011_bib0325 article-title: Coupling pairwise support vector machines for fault classification publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2004.08.002 – volume: 39 start-page: 241 issue: 2 year: 2001 ident: 10.1016/j.cmpb.2015.08.011_bib0410 article-title: Gamma, alpha, delta, and theta oscillations govern cognitive processes publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(00)00145-8 – volume: 8 start-page: 87 issue: 4 year: 2012 ident: 10.1016/j.cmpb.2015.08.011_bib0395 article-title: An optimal EEG-based emotion recognition algorithm using Gabor features publication-title: WSEAS Trans. Signal Process. – ident: 10.1016/j.cmpb.2015.08.011_bib0445 – start-page: 144 year: 1992 ident: 10.1016/j.cmpb.2015.08.011_bib0420 article-title: A training algorithm for optimal margin classifiers – volume: 11 start-page: 665 year: 2010 ident: 10.1016/j.cmpb.2015.08.011_bib0355 article-title: Second-order bilinear discriminant analysis publication-title: J. Mach. Learn. Res. – volume: 122 start-page: 22 year: 2014 ident: 10.1016/j.cmpb.2015.08.011_bib0365 article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2013.11.009 – volume: 8 start-page: 1 issue: 6 year: 2013 ident: 10.1016/j.cmpb.2015.08.011_bib0470 article-title: Identifying emotions on the basis of neural activation publication-title: PLOS ONE doi: 10.1371/journal.pone.0066032 – volume: 42 start-page: 793 issue: 3 year: 2012 ident: 10.1016/j.cmpb.2015.08.011_bib0295 article-title: A telepresence mobile robot controlled with non invasive brain–computer interface publication-title: IEEE Trans. Syst. Man Cybern.: B doi: 10.1109/TSMCB.2011.2177968 – volume: 57 start-page: 932 issue: 1 year: 1998 ident: 10.1016/j.cmpb.2015.08.011_bib0435 article-title: Time–frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.932 – volume: 2 start-page: 1 issue: 27 year: 2011 ident: 10.1016/j.cmpb.2015.08.011_bib0345 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 10 start-page: 371 issue: 2 year: 1958 ident: 10.1016/j.cmpb.2015.08.011_bib0450 article-title: The ten-twenty electrode system of the International Federation publication-title: Electroencephalogr. Clin. Neurophysiol. – ident: 10.1016/j.cmpb.2015.08.011_bib0455 – volume: 37 year: 2010 ident: 10.1016/j.cmpb.2015.08.011_bib0360 article-title: Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.065 – volume: 18 start-page: 861 year: 2008 ident: 10.1016/j.cmpb.2015.08.011_bib0460 article-title: Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2007.05.009 – volume: 78 start-page: 87 year: 2005 ident: 10.1016/j.cmpb.2015.08.011_bib0310 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2004.10.009 – volume: 32 start-page: 1084 year: 2007 ident: 10.1016/j.cmpb.2015.08.011_bib0465 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.005 – volume: 89 issue: 7 year: 2002 ident: 10.1016/j.cmpb.2015.08.011_bib0285 article-title: Motor imagery and direct brain–computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 95 start-page: 67 year: 2015 ident: 10.1016/j.cmpb.2015.08.011_bib0385 article-title: What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing publication-title: Brain Cogn. doi: 10.1016/j.bandc.2015.02.001 – volume: 78 start-page: 316 year: 1983 ident: 10.1016/j.cmpb.2015.08.011_bib0430 article-title: Estimating the error rate of a prediction rule: improvement on cross-validation publication-title: J. – Am. Stat. Assoc. doi: 10.1080/01621459.1983.10477973 |
SSID | ssj0002556 |
Score | 2.4166684 |
Snippet | The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG)... Abstract Background and objective The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 293 |
SubjectTerms | Adult Affective computing Algorithms BCI Brain-Computer Interfaces - statistics & numerical data Classification algorithm Computer Systems EEG signals Electroencephalography Emotions - physiology Humans Internal Medicine Male Other Principal Component Analysis Principal components analysis Self-induced emotions |
Title | A real-time classification algorithm for EEG-based BCI driven by self-induced emotions |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715002217 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715002217 https://dx.doi.org/10.1016/j.cmpb.2015.08.011 https://www.ncbi.nlm.nih.gov/pubmed/26358282 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsNADB0hkBAXxE5ZqjlwQ0MzyWQ7lqqlBdELi3obZZayKJSKlAMXvh27mRQQiEocM4qzOB77WbGfCTlSPE6iQKdMCd8iqbZgidGaqQTwKcAkTwvsHb7sR90bcT4IBwukVfXCYFml8_2lT596a7fScNpsjB8eGlfII-IjPVqIgYhjR7kQMVr5yftnmQdSbJX83inDs13jTFnjpZ_GCsu7wimNJ-dzgtOXyNNZI6sOMtJm-VTrZMGONsjypfspvklumxSQX85wTDzViIax_GeqcZrld8-Q_t8_UQCntN0-Yxi2DD1t9ah5QU9H1RstbD5kkJzDZzbUloN9ii1y02lft7rMjUtgGpKGCbPcMyny6YUiUJAGAXSJIuFZADlZYGwWa24SZYQQ1gIuyUTkZ1kSDWEtCIeKB9tkcfQ8sruERl5iAg1gzFjY5Okw4yq0XmwjI7I0tmGN8EpPUjsucRxpkcuqaOxRom4l6lbinEvOa-R4JjMumTT-PDuo1C-rHlHwahIc_Z9S8W9StnAbs5BcFr705A_jqZFwJvnN_ubecae0jdk7IbsPpLH-3j-vuE9W8KgsmTkgi5OXV3sIwGei6lPLrpOlZu-i2_8ACCj-lA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIgEXxDeBAnuAE1ritddfhx5KSUlo0wst6m3x7k4gKE2jOAj1wp_qH-xMvA4gUCsh9Wp71_bseOat_OYNwEur8iJLXCmtjpFFtbUsvHPSFoRPCSZFTnPt8HA_6x_qD0fp0RqctbUwTKsMsb-J6ctoHY50gzW7s_G4-5F1RGKWR0s5Eak8MCt38fQH7dvqzcE7WuRXcbzTO9juy9BaQDoC2AuJKvIla8-lOrG0ZaA0n2U6QgIEVeKxyp3yhfVaa0TK4ZXO4qoqshEdS9KRVQnNew2uawoX3Dbhzc9fvBLW9GoExUvJjxcqdRpSmTueWeaTpUvdUKUuyYa_pbqdO3A7YFSx1ZjhLqzh9B7cGIa_8Pfh05YgqDmR3JdeOIbfzDdaLrGoJl9O5uPF12NBaFj0eu8l50kv3m4PhJ9zaBX2VNQ4Gcnx1JNfeYFNJ6H6ARxeiREfwvr0ZIqPQWRR4RNH6M8jRZVyVCmbYpRj5nVV5ph2QLV2Mi6Il3MPjYlpWWrfDNvWsG0NN9ZUqgOvV2NmjXTHhVcnrflNW5RKYdRQZrlwVP6vUViHSFAbZerYROYvb-1Auhr5h8NfesdHjW-s3onlhGjfHD_5zxlfwM3-wXDP7A32d5_CLT7T8HU2YH0x_47PCHUt7POllwv4fNWf1TkcyTk7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+classification+algorithm+for+EEG-based+BCI+driven+by+self-induced+emotions&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Iacoviello%2C+Daniela&rft.au=Petracca%2C+Andrea&rft.au=Spezialetti%2C+Matteo&rft.au=Placidi%2C+Giuseppe&rft.date=2015-12-01&rft.eissn=1872-7565&rft.volume=122&rft.issue=3&rft.spage=293&rft_id=info:doi/10.1016%2Fj.cmpb.2015.08.011&rft_id=info%3Apmid%2F26358282&rft.externalDocID=26358282 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260715X00162%2Fcov150h.gif |