A real-time classification algorithm for EEG-based BCI driven by self-induced emotions

The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 122; no. 3; pp. 293 - 303
Main Authors Iacoviello, Daniela, Petracca, Andrea, Spezialetti, Matteo, Placidi, Giuseppe
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities.
AbstractList The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities.
Abstract Background and objective The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities.
Author Petracca, Andrea
Placidi, Giuseppe
Spezialetti, Matteo
Iacoviello, Daniela
Author_xml – sequence: 1
  givenname: Daniela
  surname: Iacoviello
  fullname: Iacoviello, Daniela
  email: iacoviello@dis.uniroma1.it
  organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
– sequence: 2
  givenname: Andrea
  surname: Petracca
  fullname: Petracca, Andrea
  organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy
– sequence: 3
  givenname: Matteo
  surname: Spezialetti
  fullname: Spezialetti, Matteo
  organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy
– sequence: 4
  givenname: Giuseppe
  surname: Placidi
  fullname: Placidi, Giuseppe
  organization: A2VI-Lab, c/o Department of Life, Health and Environmental Sciences, University of ĽAquila, Via Vetoio, 67100 ĽAquila, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26358282$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1KwzAcxYNMdE5fwAvJC7QmaZN2IoKOOYWBF37chjT5VzP7MZJusLc3dXozcF4FkvM74ZxzggZN2wBC55TElFBxuYh1vSxiRiiPSR4TSg_QkOYZizIu-AANg2gcMUGyY3Ti_YIQwjgXR-iYiYTnLGdD9HaLHagq6mwNWFfKe1tarTrbNlhV762z3UeNy9bh6XQWFcqDwXeTR2ycXUODiw32UJWRbcxKhyeo2x71p-iwVJWHs59zhF7vpy-Th2j-NHuc3M4jzTPRRUCJGfOUZDxNiowKyrgQKQHGiUoMqExTkxcmTVMAkYxVKphSuSjDXcLLgiYjdLH1Xa6KGoxcOlsrt5G_AYMg3wq0a713UEptu-94nVO2kpTIvku5kH2Xsu9SklyGLgPKdtBf973Q9RaCkHptwUmvLTShG-tAd9K0dj9-s4PryjZhkOoTNuAX7co1oU9JpWeSyOd-4X5gysO2jGbB4Opvg_9-_wI9nbRt
CitedBy_id crossref_primary_10_1007_s11042_020_09354_y
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1016_j_eswa_2020_113768
crossref_primary_10_3389_frobt_2020_00125
crossref_primary_10_1109_ACCESS_2022_3155647
crossref_primary_10_1016_j_cmpb_2023_107380
crossref_primary_10_1016_j_bspc_2021_102648
crossref_primary_10_1088_1741_2552_14_1_011001
crossref_primary_10_1109_TNSRE_2020_2978951
crossref_primary_10_1016_j_inffus_2018_10_009
crossref_primary_10_1177_09544119231187287
crossref_primary_10_3389_fninf_2018_00066
crossref_primary_10_1080_21681163_2018_1479312
crossref_primary_10_1109_ACCESS_2022_3219844
crossref_primary_10_1007_s12243_019_00740_8
crossref_primary_10_1080_03091902_2021_1992519
crossref_primary_10_1109_ACCESS_2020_3035539
crossref_primary_10_35429_EJB_2020_12_7_1_9
crossref_primary_10_3390_s20185083
crossref_primary_10_1109_ACCESS_2020_2979898
crossref_primary_10_1109_TITS_2022_3166631
crossref_primary_10_1016_j_cogsys_2018_06_009
crossref_primary_10_3389_fninf_2022_997282
crossref_primary_10_1007_s00521_023_08343_0
crossref_primary_10_1007_s11517_019_01989_w
crossref_primary_10_1007_s11277_019_06328_8
crossref_primary_10_1109_THMS_2021_3137015
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_3390_brainsci10100687
crossref_primary_10_3390_s20226535
crossref_primary_10_1016_j_jneumeth_2017_04_008
crossref_primary_10_1016_j_cmpb_2017_03_016
crossref_primary_10_3389_fpsyg_2022_924793
crossref_primary_10_1080_0144929X_2021_1877356
crossref_primary_10_1007_s00521_022_07292_4
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_3389_fnins_2021_582608
crossref_primary_10_1007_s11042_018_5618_0
crossref_primary_10_1088_1741_2552_ad5b19
crossref_primary_10_3233_THC_174747
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_1080_10255842_2022_2143714
crossref_primary_10_1016_j_compbiomed_2020_103810
crossref_primary_10_1109_TCDS_2016_2632130
crossref_primary_10_1109_TDSC_2021_3060775
crossref_primary_10_1080_0144929X_2018_1485745
crossref_primary_10_1038_s41598_024_61832_7
crossref_primary_10_1016_j_measurement_2017_06_006
crossref_primary_10_1371_journal_pone_0150584
crossref_primary_10_1007_s11831_016_9194_z
Cites_doi 10.1113/jphysiol.2006.125633
10.1109/TITB.2006.879600
10.1109/86.847810
10.1212/01.WNL.0000158616.43002.6D
10.1109/TSMC.2014.2313317
10.1111/j.1469-8986.2006.00456.x
10.1038/nn947
10.1038/nature04970
10.1371/journal.pone.0095415
10.1016/S1665-6423(13)71524-4
10.1016/S0166-2236(96)10065-5
10.1016/j.neucom.2015.02.034
10.1016/j.conengprac.2004.08.002
10.1016/S0167-8760(00)00145-8
10.1016/j.cviu.2013.11.009
10.1371/journal.pone.0066032
10.1109/TSMCB.2011.2177968
10.1103/PhysRevE.57.932
10.1145/1961189.1961199
10.1016/j.eswa.2010.06.065
10.1016/j.dsp.2007.05.009
10.1016/j.cmpb.2004.10.009
10.1016/j.eswa.2006.02.005
10.1109/5.939829
10.1016/j.bandc.2015.02.001
10.1080/01621459.1983.10477973
ContentType Journal Article
Copyright 2015 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.cmpb.2015.08.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 303
ExternalDocumentID 26358282
10_1016_j_cmpb_2015_08_011
S0169260715002217
1_s2_0_S0169260715002217
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c576t-e10d95407543b7161256640e250a3dea7c1d8bd444ee639a462aa86f8bd35fb13
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Mon Jul 21 05:48:11 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Tue Jul 01 02:40:44 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Fri May 16 00:31:31 EDT 2025
Tue Aug 26 16:33:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Affective computing
BCI
Classification algorithm
Principal components analysis
EEG signals
Self-induced emotions
Language English
License Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-e10d95407543b7161256640e250a3dea7c1d8bd444ee639a462aa86f8bd35fb13
OpenAccessLink http://hdl.handle.net/11573/840800
PMID 26358282
PageCount 11
ParticipantIDs pubmed_primary_26358282
crossref_citationtrail_10_1016_j_cmpb_2015_08_011
crossref_primary_10_1016_j_cmpb_2015_08_011
elsevier_sciencedirect_doi_10_1016_j_cmpb_2015_08_011
elsevier_clinicalkeyesjournals_1_s2_0_S0169260715002217
elsevier_clinicalkey_doi_10_1016_j_cmpb_2015_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2015
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Guler, Ubeyli (bib0315) 2007; 11
Jasper (bib0450) 1958; 10
Chang, Lin (bib0345) 2011; 2
Bhuvaneswari, Kumar (bib0375) 2013; 63
Benimeli, Sharman (bib0330) 2007
Kassam, Markey, Cherkassky, Loewenstein, Just (bib0470) 2013; 8
Štastny, Sovka, Stancak (bib0320) 2003; 12
Mamun, Al-Kadi, Marufuzzaman (bib0440) 2013; 11
Basar, Basar-Eroglu, Karakas, Schumann (bib0410) 2001; 39
Cvetkovic, Übeyli, Cosic (bib0460) 2008; 18
Escolano, Antelis, Minguez (bib0295) 2012; 42
Hari, Salmelin (bib0255) 1997; 20
Srinivasan (bib0265) 1999; 1
Hochberg, Serruya, Friehs, Mukand, Saleh, Caplan, Branner, Chen, Penn, Donoghue (bib0280) 2006; 442
Omerhodzic, Avdakovic, Nuhanovic, Dizdarevic (bib0400) 2013; 61
Lin, Wang, Wu, Jeng, Chen (bib0390) 2008
Dahanayake, Upton (bib0305) 1994; 2
Christoforou, Haralick, Sajda, Parra (bib0355) 2010; 11
EnobioNE
Daubechies (bib0405) 1992
Subasi (bib0465) 2007; 32
Birbaumer, Cohen (bib0270) 2007; 579
BCI2000
Kübler, Nijboer, Mellinger, Vaughan, Pawelzik, Schalk, McFarland, Birbaumer, Wolpaw (bib0275) 2005; 64
Efron (bib0430) 1983; 78
Balconi, Grippa, Vanutelli (bib0385) 2015; 95
.
Song, Guo, Mei (bib0415) 2010
:
Poyhonen, Arkkio, Jover, Hyotyniemi (bib0325) 2005; 13
Babiloni, Cincotti, Lazzarini, Millán, Mouriño, Varsta, Heikkonen, Bianchi, Marciani (bib0290) 2000; 8
Gandhi, Prasad, Coyle, Behera, McGinnity (bib0300) 2014; 44
Birbaumer (bib0245) 2006; 43
Placidi, Avola, Petracca, Sgallari, Spezialetti (bib0250) 2015; 160
Subasi, Ercelebi (bib0310) 2005; 78
Panda, Khobragade, Jambhule, Jengthe, Pal, Gandhi (bib0335) 2010
Nasehi, Pourghassem (bib0395) 2012; 8
Rached, Perkusich (bib0350) 2013
Chih-Wei, Chih-Chung, Chih-Jen (bib0425) 2003
Pfurtscheller, Neuper (bib0285) 2002; 89
Wolpaw, Birbaumer, Mcfarland, Pürtsceller, Vaughan (bib0240) 2002; 113
Subasi, Gürsoy (bib0360) 2010; 37
Donoghue (bib0260) 2002; 5
Blanco, Figliola, Quian Quiroga, Rosso, Serrano (bib0435) 1998; 57
Lee, Hsieh (bib0380) 2014; 9
Boser, Guyon, Vapnik (bib0420) 1992
Bouwmans, Zahzah (bib0365) 2014; 122
Das, Mohapatra, Panda (bib0340) 2013; 1
Fabris, Facchinetti, Sparacino, Cobelli (bib0370) 2014
Balconi (10.1016/j.cmpb.2015.08.011_bib0385) 2015; 95
Daubechies (10.1016/j.cmpb.2015.08.011_bib0405) 1992
Efron (10.1016/j.cmpb.2015.08.011_bib0430) 1983; 78
Placidi (10.1016/j.cmpb.2015.08.011_bib0250) 2015; 160
Pfurtscheller (10.1016/j.cmpb.2015.08.011_bib0285) 2002; 89
10.1016/j.cmpb.2015.08.011_bib0445
Song (10.1016/j.cmpb.2015.08.011_bib0415) 2010
Guler (10.1016/j.cmpb.2015.08.011_bib0315) 2007; 11
Omerhodzic (10.1016/j.cmpb.2015.08.011_bib0400) 2013; 61
Blanco (10.1016/j.cmpb.2015.08.011_bib0435) 1998; 57
Escolano (10.1016/j.cmpb.2015.08.011_bib0295) 2012; 42
Subasi (10.1016/j.cmpb.2015.08.011_bib0465) 2007; 32
Gandhi (10.1016/j.cmpb.2015.08.011_bib0300) 2014; 44
Christoforou (10.1016/j.cmpb.2015.08.011_bib0355) 2010; 11
Birbaumer (10.1016/j.cmpb.2015.08.011_bib0270) 2007; 579
Poyhonen (10.1016/j.cmpb.2015.08.011_bib0325) 2005; 13
Basar (10.1016/j.cmpb.2015.08.011_bib0410) 2001; 39
Wolpaw (10.1016/j.cmpb.2015.08.011_bib0240) 2002; 113
Štastny (10.1016/j.cmpb.2015.08.011_bib0320) 2003; 12
Subasi (10.1016/j.cmpb.2015.08.011_bib0310) 2005; 78
Srinivasan (10.1016/j.cmpb.2015.08.011_bib0265) 1999; 1
10.1016/j.cmpb.2015.08.011_bib0455
Chih-Wei (10.1016/j.cmpb.2015.08.011_bib0425) 2003
Lee (10.1016/j.cmpb.2015.08.011_bib0380) 2014; 9
Birbaumer (10.1016/j.cmpb.2015.08.011_bib0245) 2006; 43
Bouwmans (10.1016/j.cmpb.2015.08.011_bib0365) 2014; 122
Mamun (10.1016/j.cmpb.2015.08.011_bib0440) 2013; 11
Hari (10.1016/j.cmpb.2015.08.011_bib0255) 1997; 20
Jasper (10.1016/j.cmpb.2015.08.011_bib0450) 1958; 10
Fabris (10.1016/j.cmpb.2015.08.011_bib0370) 2014
Dahanayake (10.1016/j.cmpb.2015.08.011_bib0305) 1994; 2
Bhuvaneswari (10.1016/j.cmpb.2015.08.011_bib0375) 2013; 63
Rached (10.1016/j.cmpb.2015.08.011_bib0350) 2013
Hochberg (10.1016/j.cmpb.2015.08.011_bib0280) 2006; 442
Lin (10.1016/j.cmpb.2015.08.011_bib0390) 2008
Kassam (10.1016/j.cmpb.2015.08.011_bib0470) 2013; 8
Kübler (10.1016/j.cmpb.2015.08.011_bib0275) 2005; 64
Donoghue (10.1016/j.cmpb.2015.08.011_bib0260) 2002; 5
Panda (10.1016/j.cmpb.2015.08.011_bib0335) 2010
Das (10.1016/j.cmpb.2015.08.011_bib0340) 2013; 1
Babiloni (10.1016/j.cmpb.2015.08.011_bib0290) 2000; 8
Chang (10.1016/j.cmpb.2015.08.011_bib0345) 2011; 2
Subasi (10.1016/j.cmpb.2015.08.011_bib0360) 2010; 37
Boser (10.1016/j.cmpb.2015.08.011_bib0420) 1992
Benimeli (10.1016/j.cmpb.2015.08.011_bib0330) 2007
Nasehi (10.1016/j.cmpb.2015.08.011_bib0395) 2012; 8
Cvetkovic (10.1016/j.cmpb.2015.08.011_bib0460) 2008; 18
References_xml – volume: 64
  start-page: 1775
  year: 2005
  end-page: 1777
  ident: bib0275
  article-title: Patients with ALS can use sensorimotor rhythms to operate a brain computer interface
  publication-title: Neurology
– volume: 13
  start-page: 759
  year: 2005
  end-page: 769
  ident: bib0325
  article-title: Coupling pairwise support vector machines for fault classification
  publication-title: Control Eng. Pract.
– reference: EnobioNE
– volume: 95
  start-page: 67
  year: 2015
  end-page: 76
  ident: bib0385
  article-title: What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing
  publication-title: Brain Cogn.
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: bib0465
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
– volume: 579
  start-page: 621
  year: 2007
  end-page: 636
  ident: bib0270
  article-title: Brain–computer interfaces: communication and restoration of movement in paralysis
  publication-title: J. Physiol. (Lond.)
– volume: 11
  start-page: 156
  year: 2013
  end-page: 160
  ident: bib0440
  article-title: Effectiveness of wavelet denoising on electroencephalogram signals
  publication-title: J. Appl. Res. Technol.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib0240
  article-title: Brain–computer interfaces for communication and control
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 11
  start-page: 665
  year: 2010
  end-page: 685
  ident: bib0355
  article-title: Second-order bilinear discriminant analysis
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 41
  year: 2013
  end-page: 49
  ident: bib0340
  article-title: Epilepsy disorder detection from EEG signal
  publication-title: J. Intell. Comput. Appl. Sci.
– volume: 122
  start-page: 22
  year: 2014
  end-page: 34
  ident: bib0365
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vis. Image Underst.
– volume: 11
  start-page: 117
  year: 2007
  end-page: 126
  ident: bib0315
  article-title: Multiclass support vector machines for EEG-signals classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 44
  start-page: 1278
  year: 2014
  end-page: 1285
  ident: bib0300
  article-title: EEG-based mobile robot control through an adaptive brain robot interface
  publication-title: IEEE Trans. Syst. Man Cybern.: B
– volume: 12
  start-page: 51
  year: 2003
  end-page: 55
  ident: bib0320
  article-title: EEG signal classification: introduction to the problem
  publication-title: Radioengineering
– volume: 78
  start-page: 87
  year: 2005
  end-page: 99
  ident: bib0310
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput. Methods Prog. Biomed.
– volume: 8
  start-page: 186
  year: 2000
  end-page: 188
  ident: bib0290
  article-title: Linear classification of low-resolution EEG patterns produced by imagined hand movements
  publication-title: IEEE Trans. Rehabil. Eng. Piscataway
– reference: :
– volume: 2
  start-page: 187
  year: 1994
  end-page: 190
  ident: bib0305
  article-title: On line methodology for detection of suspected epileptic seizures from electroencephalogram
  publication-title: Control Eng. Pract.
– volume: 89
  year: 2002
  ident: bib0285
  article-title: Motor imagery and direct brain–computer communication
  publication-title: Proc. IEEE
– volume: 57
  start-page: 932
  year: 1998
  end-page: 940
  ident: bib0435
  article-title: Time–frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function
  publication-title: Phys. Rev. E
– volume: 43
  start-page: 517
  year: 2006
  end-page: 532
  ident: bib0245
  article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control
  publication-title: Psychophysiology
– volume: 9
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib0380
  article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns
  publication-title: PLOS ONE
– start-page: 127
  year: 2008
  end-page: 130
  ident: bib0390
  article-title: Support vector machine for EEG signal classification during listening to emotional music
  publication-title: Proceedings of IEEE 10th Workshop Multimedial Signal Processing IEEE
– volume: 10
  start-page: 371
  year: 1958
  end-page: 375
  ident: bib0450
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 39
  start-page: 241
  year: 2001
  end-page: 248
  ident: bib0410
  article-title: Gamma, alpha, delta, and theta oscillations govern cognitive processes
  publication-title: Int. J. Psychophysiol.
– year: 2013
  ident: bib0350
  article-title: Emotion recognition based on brain computer interface systems
  publication-title: Brain–Computer Interface Systems – Recent Progress and Future Prospects
– volume: 37
  year: 2010
  ident: bib0360
  article-title: Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM
  publication-title: Expert Syst. Appl.
– start-page: 144
  year: 1992
  end-page: 152
  ident: bib0420
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
– volume: 8
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib0470
  article-title: Identifying emotions on the basis of neural activation
  publication-title: PLOS ONE
– volume: 1
  start-page: 102
  year: 1999
  end-page: 111
  ident: bib0265
  article-title: Methods to improve the spatial resolution of EEG
  publication-title: Int. J. Bioelectromagn.
– start-page: 361
  year: 2007
  end-page: 366
  ident: bib0330
  article-title: Electroencephalogram signal classification for brain computer interfaces using wavelets and support vector machines
  publication-title: ESAN’2007 Proceedings European Symposium on Artificial Neural Networks
– volume: 5
  start-page: 1085
  year: 2002
  end-page: 1088
  ident: bib0260
  article-title: Connecting cortex to machines: recent advances in brain interfaces
  publication-title: Nat. Neurosci.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib0345
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– reference: BCI2000:
– volume: 20
  start-page: 44
  year: 1997
  end-page: 49
  ident: bib0255
  article-title: Human cortical oscillations: a neuromagnetic view through the skull
  publication-title: Trends Neurosci.
– year: 1992
  ident: bib0405
  article-title: Ten Lectures on Wavelet, Philadelphia
– volume: 160
  start-page: 308
  year: 2015
  end-page: 318
  ident: bib0250
  article-title: Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors
  publication-title: Neurocomputing
– volume: 61
  start-page: 1190
  year: 2013
  end-page: 1195
  ident: bib0400
  article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 18
  start-page: 861
  year: 2008
  end-page: 874
  ident: bib0460
  article-title: Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study
  publication-title: Digit. Signal Process.
– volume: 78
  start-page: 316
  year: 1983
  end-page: 331
  ident: bib0430
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J. – Am. Stat. Assoc.
– reference: .
– start-page: 27
  year: 2010
  end-page: 30
  ident: bib0415
  article-title: Feature selection using principal component analysis
  publication-title: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization
– volume: 42
  start-page: 793
  year: 2012
  end-page: 804
  ident: bib0295
  article-title: A telepresence mobile robot controlled with non invasive brain–computer interface
  publication-title: IEEE Trans. Syst. Man Cybern.: B
– volume: 8
  start-page: 87
  year: 2012
  end-page: 99
  ident: bib0395
  article-title: An optimal EEG-based emotion recognition algorithm using Gabor features
  publication-title: WSEAS Trans. Signal Process.
– volume: 442
  start-page: 164
  year: 2006
  end-page: 171
  ident: bib0280
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
– start-page: 405
  year: 2010
  end-page: 408
  ident: bib0335
  article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction
  publication-title: Proceedings International Conference on Systems in Medicine and Biology
– year: 2003
  ident: bib0425
  article-title: A Practical Guide to Support Vector Classification
– year: 2014
  ident: bib0370
  article-title: Sparse principal component analysis for the parsimonious description of glucose variability in diabetes
  publication-title: IEEE
– volume: 63
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib0375
  article-title: Support vector machine technique for EEG signals
  publication-title: Int. J. Comput. Appl.
– start-page: 405
  year: 2010
  ident: 10.1016/j.cmpb.2015.08.011_bib0335
  article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction
– start-page: 27
  year: 2010
  ident: 10.1016/j.cmpb.2015.08.011_bib0415
  article-title: Feature selection using principal component analysis
– volume: 579
  start-page: 621
  issue: 3
  year: 2007
  ident: 10.1016/j.cmpb.2015.08.011_bib0270
  article-title: Brain–computer interfaces: communication and restoration of movement in paralysis
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2006.125633
– volume: 1
  start-page: 102
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2015.08.011_bib0265
  article-title: Methods to improve the spatial resolution of EEG
  publication-title: Int. J. Bioelectromagn.
– volume: 11
  start-page: 117
  issue: 2
  year: 2007
  ident: 10.1016/j.cmpb.2015.08.011_bib0315
  article-title: Multiclass support vector machines for EEG-signals classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.879600
– year: 2003
  ident: 10.1016/j.cmpb.2015.08.011_bib0425
– volume: 8
  start-page: 186
  issue: 2
  year: 2000
  ident: 10.1016/j.cmpb.2015.08.011_bib0290
  article-title: Linear classification of low-resolution EEG patterns produced by imagined hand movements
  publication-title: IEEE Trans. Rehabil. Eng. Piscataway
  doi: 10.1109/86.847810
– year: 2014
  ident: 10.1016/j.cmpb.2015.08.011_bib0370
  article-title: Sparse principal component analysis for the parsimonious description of glucose variability in diabetes
– volume: 64
  start-page: 1775
  issue: 10
  year: 2005
  ident: 10.1016/j.cmpb.2015.08.011_bib0275
  article-title: Patients with ALS can use sensorimotor rhythms to operate a brain computer interface
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000158616.43002.6D
– volume: 44
  start-page: 1278
  issue: 9
  year: 2014
  ident: 10.1016/j.cmpb.2015.08.011_bib0300
  article-title: EEG-based mobile robot control through an adaptive brain robot interface
  publication-title: IEEE Trans. Syst. Man Cybern.: B
  doi: 10.1109/TSMC.2014.2313317
– volume: 2
  start-page: 187
  issue: 5
  year: 1994
  ident: 10.1016/j.cmpb.2015.08.011_bib0305
  article-title: On line methodology for detection of suspected epileptic seizures from electroencephalogram
  publication-title: Control Eng. Pract.
– volume: 43
  start-page: 517
  issue: 6
  year: 2006
  ident: 10.1016/j.cmpb.2015.08.011_bib0245
  article-title: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2006.00456.x
– year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0350
  article-title: Emotion recognition based on brain computer interface systems
– volume: 5
  start-page: 1085
  year: 2002
  ident: 10.1016/j.cmpb.2015.08.011_bib0260
  article-title: Connecting cortex to machines: recent advances in brain interfaces
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn947
– volume: 442
  start-page: 164
  issue: 7099
  year: 2006
  ident: 10.1016/j.cmpb.2015.08.011_bib0280
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 9
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.cmpb.2015.08.011_bib0380
  article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0095415
– volume: 61
  start-page: 1190
  year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0400
  article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 11
  start-page: 156
  year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0440
  article-title: Effectiveness of wavelet denoising on electroencephalogram signals
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/S1665-6423(13)71524-4
– start-page: 127
  year: 2008
  ident: 10.1016/j.cmpb.2015.08.011_bib0390
  article-title: Support vector machine for EEG signal classification during listening to emotional music
– volume: 12
  start-page: 51
  issue: 3
  year: 2003
  ident: 10.1016/j.cmpb.2015.08.011_bib0320
  article-title: EEG signal classification: introduction to the problem
  publication-title: Radioengineering
– volume: 63
  start-page: 1
  issue: 13
  year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0375
  article-title: Support vector machine technique for EEG signals
  publication-title: Int. J. Comput. Appl.
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.cmpb.2015.08.011_bib0240
  article-title: Brain–computer interfaces for communication and control
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 361
  year: 2007
  ident: 10.1016/j.cmpb.2015.08.011_bib0330
  article-title: Electroencephalogram signal classification for brain computer interfaces using wavelets and support vector machines
– volume: 20
  start-page: 44
  issue: 1
  year: 1997
  ident: 10.1016/j.cmpb.2015.08.011_bib0255
  article-title: Human cortical oscillations: a neuromagnetic view through the skull
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10065-5
– volume: 160
  start-page: 308
  year: 2015
  ident: 10.1016/j.cmpb.2015.08.011_bib0250
  article-title: Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.034
– volume: 1
  start-page: 41
  issue: 1
  year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0340
  article-title: Epilepsy disorder detection from EEG signal
  publication-title: J. Intell. Comput. Appl. Sci.
– year: 1992
  ident: 10.1016/j.cmpb.2015.08.011_bib0405
– volume: 13
  start-page: 759
  year: 2005
  ident: 10.1016/j.cmpb.2015.08.011_bib0325
  article-title: Coupling pairwise support vector machines for fault classification
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2004.08.002
– volume: 39
  start-page: 241
  issue: 2
  year: 2001
  ident: 10.1016/j.cmpb.2015.08.011_bib0410
  article-title: Gamma, alpha, delta, and theta oscillations govern cognitive processes
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(00)00145-8
– volume: 8
  start-page: 87
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2015.08.011_bib0395
  article-title: An optimal EEG-based emotion recognition algorithm using Gabor features
  publication-title: WSEAS Trans. Signal Process.
– ident: 10.1016/j.cmpb.2015.08.011_bib0445
– start-page: 144
  year: 1992
  ident: 10.1016/j.cmpb.2015.08.011_bib0420
  article-title: A training algorithm for optimal margin classifiers
– volume: 11
  start-page: 665
  year: 2010
  ident: 10.1016/j.cmpb.2015.08.011_bib0355
  article-title: Second-order bilinear discriminant analysis
  publication-title: J. Mach. Learn. Res.
– volume: 122
  start-page: 22
  year: 2014
  ident: 10.1016/j.cmpb.2015.08.011_bib0365
  article-title: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.11.009
– volume: 8
  start-page: 1
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2015.08.011_bib0470
  article-title: Identifying emotions on the basis of neural activation
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0066032
– volume: 42
  start-page: 793
  issue: 3
  year: 2012
  ident: 10.1016/j.cmpb.2015.08.011_bib0295
  article-title: A telepresence mobile robot controlled with non invasive brain–computer interface
  publication-title: IEEE Trans. Syst. Man Cybern.: B
  doi: 10.1109/TSMCB.2011.2177968
– volume: 57
  start-page: 932
  issue: 1
  year: 1998
  ident: 10.1016/j.cmpb.2015.08.011_bib0435
  article-title: Time–frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.57.932
– volume: 2
  start-page: 1
  issue: 27
  year: 2011
  ident: 10.1016/j.cmpb.2015.08.011_bib0345
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 10
  start-page: 371
  issue: 2
  year: 1958
  ident: 10.1016/j.cmpb.2015.08.011_bib0450
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– ident: 10.1016/j.cmpb.2015.08.011_bib0455
– volume: 37
  year: 2010
  ident: 10.1016/j.cmpb.2015.08.011_bib0360
  article-title: Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.065
– volume: 18
  start-page: 861
  year: 2008
  ident: 10.1016/j.cmpb.2015.08.011_bib0460
  article-title: Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2007.05.009
– volume: 78
  start-page: 87
  year: 2005
  ident: 10.1016/j.cmpb.2015.08.011_bib0310
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2004.10.009
– volume: 32
  start-page: 1084
  year: 2007
  ident: 10.1016/j.cmpb.2015.08.011_bib0465
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.02.005
– volume: 89
  issue: 7
  year: 2002
  ident: 10.1016/j.cmpb.2015.08.011_bib0285
  article-title: Motor imagery and direct brain–computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 95
  start-page: 67
  year: 2015
  ident: 10.1016/j.cmpb.2015.08.011_bib0385
  article-title: What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2015.02.001
– volume: 78
  start-page: 316
  year: 1983
  ident: 10.1016/j.cmpb.2015.08.011_bib0430
  article-title: Estimating the error rate of a prediction rule: improvement on cross-validation
  publication-title: J. – Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10477973
SSID ssj0002556
Score 2.4166684
Snippet The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG)...
Abstract Background and objective The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 293
SubjectTerms Adult
Affective computing
Algorithms
BCI
Brain-Computer Interfaces - statistics & numerical data
Classification algorithm
Computer Systems
EEG signals
Electroencephalography
Emotions - physiology
Humans
Internal Medicine
Male
Other
Principal Component Analysis
Principal components analysis
Self-induced emotions
Title A real-time classification algorithm for EEG-based BCI driven by self-induced emotions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715002217
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715002217
https://dx.doi.org/10.1016/j.cmpb.2015.08.011
https://www.ncbi.nlm.nih.gov/pubmed/26358282
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsNADB0hkBAXxE5ZqjlwQ0MzyWQ7lqqlBdELi3obZZayKJSKlAMXvh27mRQQiEocM4qzOB77WbGfCTlSPE6iQKdMCd8iqbZgidGaqQTwKcAkTwvsHb7sR90bcT4IBwukVfXCYFml8_2lT596a7fScNpsjB8eGlfII-IjPVqIgYhjR7kQMVr5yftnmQdSbJX83inDs13jTFnjpZ_GCsu7wimNJ-dzgtOXyNNZI6sOMtJm-VTrZMGONsjypfspvklumxSQX85wTDzViIax_GeqcZrld8-Q_t8_UQCntN0-Yxi2DD1t9ah5QU9H1RstbD5kkJzDZzbUloN9ii1y02lft7rMjUtgGpKGCbPcMyny6YUiUJAGAXSJIuFZADlZYGwWa24SZYQQ1gIuyUTkZ1kSDWEtCIeKB9tkcfQ8sruERl5iAg1gzFjY5Okw4yq0XmwjI7I0tmGN8EpPUjsucRxpkcuqaOxRom4l6lbinEvOa-R4JjMumTT-PDuo1C-rHlHwahIc_Z9S8W9StnAbs5BcFr705A_jqZFwJvnN_ubecae0jdk7IbsPpLH-3j-vuE9W8KgsmTkgi5OXV3sIwGei6lPLrpOlZu-i2_8ACCj-lA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIgEXxDeBAnuAE1ritddfhx5KSUlo0wst6m3x7k4gKE2jOAj1wp_qH-xMvA4gUCsh9Wp71_bseOat_OYNwEur8iJLXCmtjpFFtbUsvHPSFoRPCSZFTnPt8HA_6x_qD0fp0RqctbUwTKsMsb-J6ctoHY50gzW7s_G4-5F1RGKWR0s5Eak8MCt38fQH7dvqzcE7WuRXcbzTO9juy9BaQDoC2AuJKvIla8-lOrG0ZaA0n2U6QgIEVeKxyp3yhfVaa0TK4ZXO4qoqshEdS9KRVQnNew2uawoX3Dbhzc9fvBLW9GoExUvJjxcqdRpSmTueWeaTpUvdUKUuyYa_pbqdO3A7YFSx1ZjhLqzh9B7cGIa_8Pfh05YgqDmR3JdeOIbfzDdaLrGoJl9O5uPF12NBaFj0eu8l50kv3m4PhJ9zaBX2VNQ4Gcnx1JNfeYFNJ6H6ARxeiREfwvr0ZIqPQWRR4RNH6M8jRZVyVCmbYpRj5nVV5ph2QLV2Mi6Il3MPjYlpWWrfDNvWsG0NN9ZUqgOvV2NmjXTHhVcnrflNW5RKYdRQZrlwVP6vUViHSFAbZerYROYvb-1Auhr5h8NfesdHjW-s3onlhGjfHD_5zxlfwM3-wXDP7A32d5_CLT7T8HU2YH0x_47PCHUt7POllwv4fNWf1TkcyTk7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+classification+algorithm+for+EEG-based+BCI+driven+by+self-induced+emotions&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Iacoviello%2C+Daniela&rft.au=Petracca%2C+Andrea&rft.au=Spezialetti%2C+Matteo&rft.au=Placidi%2C+Giuseppe&rft.date=2015-12-01&rft.eissn=1872-7565&rft.volume=122&rft.issue=3&rft.spage=293&rft_id=info:doi/10.1016%2Fj.cmpb.2015.08.011&rft_id=info%3Apmid%2F26358282&rft.externalDocID=26358282
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260715X00162%2Fcov150h.gif